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single 5d SCFT are described by different gauge theories, or equivalently that the SCFT

points in parameter space of two gauge theories coincide. The pairs of dual theories that

we study are realized by brane webs in type IIB string theory that are S-dual to each

other. We focus on SU(2) SQCD theories with Nf ≤ 4 flavors, which are self-dual, and

on SU(3) SQCD theories, which are dual to SU(2)2 quiver theories. From string theory

engineering we predict that Wilson loops are mapped to dual Wilson loops under S-duality.

We confirm the predictions with exact computations of Wilson loop VEVs, which we extract

from the 5d half-index in the presence of auxiliary loop operators (also known as higher

qq-characters) sourced by D3 branes placed in the brane webs. A special role is played

by Wilson loops in tensor products of the (anti)fundamental representation, which provide

a natural basis to express the S-duality action. The exact computations also reveal the

presence of additional multiplicative factors in the duality map, in the form of background

Wilson loops.

Keywords: D-branes, Field Theories in Higher Dimensions, Supersymmetry and Duality,

Wilson, ‘t Hooft and Polyakov loops

ArXiv ePrint: 1806.09636

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)082

mailto:benjamin.assel@gmail.com
mailto:asciara@kias.re.kr
https://arxiv.org/abs/1806.09636
https://doi.org/10.1007/JHEP10(2018)082


J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

Contents

1 Introduction and summary of results 2

2 Branes and loops 5

2.1 Brane setup 5

2.2 Half-BPS loop operators 6

2.3 S-duality 11

3 Loops in pure SU(2) theory 12

3.1 Half-index computations from residues 13

3.2 S-duality of Wilson loops 18

4 Loops in SU(2) theories with matter 21

4.1 Nf = 1 21

4.2 Nf = 2 24

5 SU(3)-SU(2)2 dualities 27

5.1 SU(3) Nf = 2 and SU(2)π × SU(2)π 27

5.1.1 SU(3), Nf = 2 loops 27

5.1.2 SU(2)π × SU(2)π loops 30

5.1.3 S-duality 32

5.2 SU(3) Nf = 6 and SU(2)× SU(2) Nf = 2 + 2 33

5.2.1 SU(3) Nf = 6 33

5.2.2 SU(2)× SU(2), Nf = 2 + 2 36

5.2.3 S-duality 36

6 Generalization 37

A ADHM formulae 38

A.1 Single gauge node case 39

A.2 Linear quiver case 41

B SU(2) theory with Nf = 3, 4 43

B.1 Nf = 3 43

B.2 Nf = 4 45

C Results 47

C.1 Wilson loops in SU(3), Nf = 2 theory 47

C.2 Wilson loops in SU(2)π × SU(2)π theory 48

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

1 Introduction and summary of results

Five-dimensional SCFTs deformed by relevant operators often admit a low energy descrip-

tion in terms of 5d N = 1 SYM gauge theories with matter. The corresponding massive

parameters are interpreted in the gauge theory as the Yang-Mills couplings t = g−2
YM for

the simple factors in the gauge group and the masses of the matter hypermultiplets. The

SCFTs are then viewed as the limit of infinite coupling gYM → ∞ (t → 0) and massless

matter of the gauge theories. This was described first in the seminal paper of Seiberg [1] for

SU(2) gauge theories with Nf ≤ 7 flavor hypermultiplets, where it was argued from their

string theory engineering that the SCFTs have enhanced ENf+1 global symmetry. Many

more SCFTs have been contructed from 5d N = 1 quiver gauge theories and related to

brane systems and geometric engineering in string theory (see [2–6] for some early papers).1

It can happen that different massive deformations of a SCFT lead to different gauge

theory descriptions. Typically a deformation with parameter t > 0 or t < 0 can lead

to two different gauge theories with couplings g−2
YM ∼ |t|. Thus deformations in different

“chambers” of the parameter space may be described by different gauge theories.2 This can

be phrased as a duality between the gauge theories which are obtained from deformations

of the same SCFT.

One such duality is realized by S-duality in the type IIB brane setup realizing the

5d theories and we will thus call it S-duality. An important class of S-dual theories are

SU(N)M−1 linear quivers and their dual SU(M)N−1 linear quivers. They can be realized as

the low-energy theories of webs of 5-branes in type IIB string theory as described in [5, 6]

and the action of S-duality exchanges the brane webs of the dual theories. This duality

can be tested by computing observables in the dual theories and matching them with

appropriate identification of parameters. This assumes that the gauge theory observables in

question can be analytically continued in the deformation parameters to the full parameter

space of the SCFT. Such tests have been performed with exact results from topological

strings [10, 11] and from supersymmetric localization at the level of the partition function

(or supersymmetric index) of the gauge theories [12].

An important challenge is to understand how S-duality acts on loop operators. In this

paper we answer this question for half-BPS Wilson loop operators,

W = TrR P exp

(∫
iA+ σdx

)
, (1.1)

where A is the one-form gauge potential, σ the adjoint scalar in the vector multiplet andR is

a representation of the gauge group. We find that S-duality acts as an automorphism on the

space of Wilson loops, namely that Wilson loops are mapped to Wilson loops. This differs

from 4d S-duality where Wilson loops are mapped to ’t Hooft loops (or in general to dyonic

loops), and from 3d mirror symmetry where they are mapped to vortex loops [13]. Our

1Recently there were some attempts to classify low rank 5d N = 1 SCFTs based on their Coulomb

branch or their engineering in M-theory [7, 8]. See also [9] for an analysis of low rank 5d SCFTs based on

numerical bootstrap techniques.
2However this is not a generic phenomenon. Often some regions of parameter space simply do not admit

a gauge theory description.
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findings are guided by the type IIB brane realization of half-BPS loop operator insertions.

We relate Wilson loops to configurations with specific arrays of strings stretched between

D5 branes and auxiliary D3 branes. Through standard brane manipulations we identify

these configurations across S-duality and deduce a prediction for the S-duality map between

Wilson loops.

We consider two classes of theories, which are those with lowest gauge algebra rank.

In section 3 and 4 we consider SU(2) theories with Nf ≤ 4 flavor hypermultiplets. These

theories are self-dual under S-duality. For instance the pure SU(2) theory is dual to another

pure SU(2) theory with the gauge couplings related by t = −t̃ (namely the region of negative

t is described by the dual SU(2)t̃=−t theory). In section 5 we consider examples of SU(3)

theories and their SU(2) × SU(2) quiver duals.

An important prediction of the brane analysis is that there is a privileged basis of

Wilson loops in which to express the S-duality map: these are Wilson loops in tensor

products of fundamental and anti-fundamental representations for each gauge node.3 They

are naturally realized in the brane setup. For these loops we predict a one-to-one S-duality

map. For Wilson loops in other representations (which are linear combinations of loops in

the privileged basis), each individual loop is mapped to a linear combination of loops in

the dual theory. We therefore focus on Wilson loops of the former kind.

To test the proposed duality map we compute the exact VEVs of the Wilson loops

wrapping the circle at the origin of the 5d Omega background S1×R4
ε1,ε2 , or ‘half-index’ in

the presence of Wilson loop insertions, using supersymmetric localization. This happens

to be a challenging computation because the modifications of the instanton corrections (in

particular to the moduli space of singular instantons at the origin) in the presence of a Wil-

son loop are not yet completely understood (to our knowledge). To side-step this problem

we follow the approach advocated in [14] (see also [15]) and compute instead the VEVs of

certain N = (0, 4) SQM loop operators, which are roughly speaking generating functions

for some Wilson loops. They are defined by an array of 1d fermions with a subgroup of the

flavor symmetry gauged with 5d fields in an N = (0, 4) supersymmetry preserving manner

(they preserve the same supersymmetry as the half-BPS Wilson loops). The relevant SQM

loops are those sourced by stacks of n D3 branes placed in the brane web.4 The Wilson

loop VEVs can then be identified as certain residues of the SQM loop VEVs in the SQM

flavor fugacities. This property is inferred from string considerations. The virtue of the

SQM loops is that one can use their brane realization as a guide to find the appropriate

modification of the ADHM quiver quantum mechanics computing instanton corrections.

Our results confirm the validity of the procedure by correctly reproducing the classical

contributions to the Wilson loop VEVs and by confirming the conjectured S-duality map.5

3For higher rank theories, the relevant representations are tensor products of anti-symmetric represen-

tations for each gauge node.
4These SQM loop operators are also known under the name of fundamental (for n = 1 D3) or higher

(for n > 1) qq-characters in the language of [16–19], although the relation to Wilson loops is not discussed

in those works.
5For the N = 1 and N = 1∗ SU(N) theory our prescription for computing the VEVs of Wilson loops in

anti-symmetric representations is the same as that of [14]. This case corresponds to the SQM loop sourced

by a single D3 brane (n = 1).

– 3 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

We find however a somewhat surprising feature: Wilson loops in the appropriate tensor

product representations do not transform exactly into their dual Wilson loop, but rather

come with an extra multiplicative factor which can be interpreted as a background Wilson

loop. We say that they transform covariantly under S-duality. Let us summarize our results:

• For the self-S-dual SU(2) theories with Nf ≤ 4 flavors we consider Wilson loops in

the representations 2⊗n and find that they transform under S-duality as

S.W2⊗n(t,mk) = Y −n W̃2⊗n(t̃, m̃k) , (1.2)

with t,mk, t̃, m̃k the gauge coupling and mass parameters in the dual theories respec-

tively (see section 4 and appendix B for the precise maps), and Y = e
t
2

+ 1
4

∑Nf
k=1(−1)kmk

= Ỹ −1. We also find that at each order in the appropriate expansion parameter the

contributions to the Wilson loop VEVs are organized into characters of the ENf+1

symmetry, confirming the symmetry enhancement. S-duality is then a transformation

in the Weyl group of ENf+1 [11]. The parameter Y can be understood as a charge

one background Wilson loop for a U(1) subgroup of ENf+1. We strongly believe that

these results hold for Nf = 5, 6, 7 (but we were not able to test it).

• For SU(3) theories we consider Wilson loops in representations 3⊗n1 ⊗ 3⊗n2 and in

the dual SU(2)×SU(2) quiver Wilson loops in representations (2⊗n1 ,2⊗n2). We find

the exact map

S.W3⊗n1⊗3⊗n2 = Y −n1
1 Y −n2

2 W̃(2⊗n1 ,2⊗n2 ) , (1.3)

with background Wilson loops Y1, Y2 which are given, for instance in the duality re-

lating the SU(3) Nf = 2 to the SU(2)×SU(2) quiver without fundamental hypermul-

tiplet (see section 5.1) by Y1 = e−
2t̃1+t̃2

3 = e
t
2

+
m1+m2

4 and Y2 = e−
t̃1+2t̃2

3 = e
t
2
−m1+m2

4 .

These results are based on exact computations up to 2 or 3-instanton corrections and for

the Wilson loops in the lowest rank representations, namely with n = 1, 2 (sometimes

n = 3) and n1 + n2 ≤ 2, which is as far as we could reasonably go technically (using

Mathematica). We conjecture a generalization of the S-duality map of Wilson loops with

the relation (6.2) for the duality relating SU(M) SQCD theories to SU(2)M−1 quivers.

Before moving to the bulk of the discussion it is worth mentioning some related work.

Analogous dualities of 5d N = 1 theories for SU(N) theory with Nf flavors and Chern-

Simons level N − Nf
2 were studied in [20] (with generalization to quiver theories). In that

case the theories are self-dual with a map of massive parameters which reverses the sign

of the (squared) gauge coupling. The paper describes duality interface theories for this

duality, but also study the action of the duality on Wilson loop operators. This involves

a dressing factor in the form of a background Wilson loop as well.6 The enhancement to

6The map proposed in [20] (equation (4.2)) is not quite analogous to what we find for S-duality, because

it acts covariantly on Wilson loops in irreducible representations, instead of tensor product representations.

We observe that the proposal does not seem consistent with the fact that Wilson loops in rank N antisym-

metric representations are trivial. The duality studied is not S-duality in general, but it should be S-duality

for SU(2) theories (up to ENf+1 Weyl transformations). Moreover the method proposed to compute the

half-index in the presence of a Wilson loop differs from the one proposed in this paper and might explain

the slightly different results. We believe that the method we present provides a more robust framework to

carry out such computations.
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0 1 2 3 4 5 6 7 8 9

D5 X X X X X X

NS5 X X X X X X

5(p,q) X X X X X θ θ

F1 X X

D1 X X

D3 X X X X

Table 1. Brane array for 5d N = 1 theories and half-BPS loop operators. (tan θ = q
p ).

ENf+1 global symmetry seen from the computation of the superconformal index in SU(2)

SQCD theories was also found in [21, 22] and with Wilson ray insertions in [23], using

closely related computational methods.

The rest of the paper is organized as follows. In section 2 we discuss the brane realiza-

tion of Wilson loops and SQM loops in IIB string theory, their relations and the action of

S-duality inferred from type IIB S-duality. In section 3 we explain the computation of the

half-index with Wilson loops in detail and derive the exact S-duality action for the pure

SU(2) theory. Section 4 contains the computation and the results for the SU(2) theory with

Nf = 1 and Nf = 2 flavors. We relegate to appendix B the study of SU(2) with Nf = 3

and 4. In section 5 we study the duality relating SU(3) theories to SU(2) quivers and

we generalize it in section 6. The remaining appendices contain details about the ADHM

instanton computations (appendix A) and some exact results which were too voluminous

to fit in the main text (appendix C).

2 Branes and loops

In this section we give a brief review of the brane realization of 5d N = 1 theories follow-

ing [6] and we explain how the insertion of half-BPS loop operators can be achieved by

adding extra branes or strings to the construction.

2.1 Brane setup

The 5d N = 1 theories that we will study are engineered with a 5-brane web in type

IIB string theory, with the orientations described in the first entries of table 1. A 5(p,q)

brane spans a line in the x56 plane defined by cos(θ)x5 + sin(θ)x6 = 0 with tan θ = q
p . In

this convention we have D5 = 5(0,1) and NS5 = 5(1,0). In pictures we stick to the usual

convention that D5 branes are horizontal lines, while NS5 branes are vertical lines, which

means we draw pictures in the x56 plane.

The brane setups have parallel D5 branes spanning an interval along x5 and supporting

a 5d Yang-Mills gauge theory at energies lower than the size of the interval. The simplest

example is that of figure 1-a with two parallel D5s supporting an SU(2) gauge theory.7

7For N D5 brane segments, it is believed that the diagonal U(1) ⊂ U(N) subgroup of the gauge group

living on the D5s is massive, so that the theory at energies sufficiently small is an SU(N) gauge theory.

– 5 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

2a + t

2a D1

F1

a) b)a)

D1 : instanton particle

F1 : W boson 

Figure 1. a) Brane realization of the pure SU(2) theory. b) Half-BPS strings excitations for

W-bosons and instanton particles.

There are two distances in this configuration: the distance 2a between the D5s correspond-

ing to the VEV of the real scalar in the vector multiplet 〈φ〉 =

(
a 0
0 −a

)
, and the distance

teff := 1
g2
eff

= t + 2a between the NS5s corresponding to the effective abelian coupling on

either of the D5 branes, where we denoted t := 1
g2 the bare Yang-Mills coupling of the

SU(2) theory. The brane setup thus describes the gauge theory at finite coupling t and

on the Coulomb branch of vacua. The SCFT is obtained as the configuration where these

two sizes are set to zero, namely when the D5s and NS5s are shrunk to zero size and the

configuration looks like two intersecting 5(1,1) and 5(1,−1) branes.

In this picture one can add strings stretched between 5-branes associated to particle

excitations of the 5d N = 1 theory, as shown in figure 1-b. F1 strings stretched between

D5s are W-bosons excitations with mass 2a, while D1 strings stretched between NS5s are

instanton particles with mass t+ 2a.

To add flavor hypermultiplets to the 5d theory one should add external (semi-infinite)

D5 branes to the construction. To increase the rank of the gauge group one should add D5

segments to the construction. We will look at these more elaborate brane setups in later

sections.

2.2 Half-BPS loop operators

Half-BPS loop operators are realized by adding semi-infinite F1 strings, D1 strings and/or

D3 branes to the setup with the orientations given in the second entries of table 1. The

F1 strings, D1 strings and D3 branes all preserve the same four supercharges, so we can

consider configurations with all of them together if we wish. The presence of the strings

and/or D3 branes break the supersymmetry to a 1d N = (0, 4) subalgebra.

Importantly the D3 and D5 branes are in a Hanany-Witten orientation relative to each

other, with a F1 string creation effect, which means that as the D3 brane crosses the D5

brane a F1 string is created stretched between them. Similarly (and remarkably) the D3

and NS5 branes are also in a Hanany-Witten orientation relative to each other, but with a

D1 string creation effect: as a D3 brane crosses an NS5 brane a D1 string is created. We

illustrate these effects in figure 2. This will be important since, according to [24], the low

energy physics is not affected by moving the D3 brane along x56 as long as one takes into

account these string creation effects.

– 6 –
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D3

F1

D3
D1

Figure 2. Hanany-Witten string creation/annihilation effects as we move a D3 brane (green dot)

in the x56 plane.

This also comes with an important property, usually called s-rule: at low energies

there can be at most one F1 string stretched between a D3 and a D5, and similarly at most

a D1 string stretched between a D3 and an NS5. This is because the lowest energy mode

on such a string is fermionic.

The interpretation of the semi-infinite F1 and D1 string as operator insertions in the

SU(2) gauge theory is the following. A semi-infinite F1 string stretched from infinity (along

x5) to the D5s inserts a half-BPS Wilson loop in the fundamental representation of SU(2).

There are two configurations — the string ending on one or the other D5 — corresponding

to the two states traced over in the fundamental representation. A semi-infinite D1 string

stretched from infinity (along x6) to the NS5s inserts a loop operator which should be a 1d

defect related to instantons in the 5d theory, however we do not know of any description

of these loops in terms of a singularity prescription for the 5d fields. We will not try to

characterize them further in this paper, however we observe from figure 2 that such loops

are related to standard Wilson loops through Hanany-Witten moves, therefore it is enough

in principle to study Wilson loops.

The interpretation of a D3 brane placed in the middle of the 5-brane array is not

strictly speaking as the insertion of a loop operator since the D3 brane support a 4d N = 4

U(1) SYM theory at low-energies. However the 4d theory is coupled to 5d theory along

a line, through charged localized 1d fields, and the whole 5d-4d-1d setup preserves the

same supersymmetry as a half-BPS loop operator in the 5d theory, namely 1d N = (0, 4)

supersymmetry. Moreover the 4d theory will not play a role in our computations and we

can consider it as non-dynamical.8 Therefore we interpret this setup as inserting a loop

operator described by coupling a (0,4) SQM to the 5d theory.

At low energies the localized 1d modes are two complex fermions χa=1,2 (two (0,4)

Fermi multiplets), which arise as the lowest excitation of strings stretched between the D3

and D5 branes. They form a doublet of SU(2) which is identified with the 5d gauge group.

The 1d fermions χa are coupled to the 5d ‘bulk’ theory via gauging the SU(2) symmetries

by the 5d vector multiplet at the location of the line defect.9 This leaves a U(1)f flavor

symmetry acting on both fermions with the same charge. The corresponding mixed 5d-1d

8It would be interesting to study the full 5d-4d theories interacting along a line defect and to understand

the duality properties of such systems.
9The 5d N = 1 vector multiplet can be decomposed into 1d N = (0, 4) multiplets. This provides a 1d

vector multiplet which gauges the SU(2) flavor symmetry of the defect theory.

– 7 –
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D3 12

5d 1d

Figure 3. 5d-1d quiver theory corresponding to the addition of a D3 brane in the center. The circle

indicates the 1d flavor symmetry gauged with 5d fields. The dashed line indicates a bifundamental

Fermi multiplet (two fermions).

quiver theory is shown in figure 3. The 1d action is (in implicit notation)

Sχ =

∫
dt χ̄a(∂t − iA(5d)

a
b + φ(5d)

a
b −M δba)χb . (2.1)

The VEVs of the vector multiplet scalar φ(5d) and the real mass M can be identified with

the positions of the D5s and of the D3 along x5 respectively. Denoting M the position of

the D3 brane and a1, a2 the positions of the D5s along x5, the fermions have mass a1 −M
and a2 −M .

It will be central in our discussion to understand the relation between such ‘D3-loop

operators’ or ‘SQM loop operators’ and the Wilson loop operators that we wish to study.

This is because the exact computation of Wilson loop VEVs is at the moment not com-

pletely understood, therefore in order to evaluate them we will have to make use of certain

relations between the VEVs of SQM operators and the VEVs of Wilson loops on a given

manifold. To this purpose we make the following heuristic argument.

We consider the supersymmetric partition function on some manifold of the SQM

theory associated to the presence of the D3 brane, by which we mean the partition func-

tion of the 5d-1d theory, and we normalize it by the partition function of the 5d theory

alone Z5d-1d/Z5d. We define this as the normalized VEV of the SQM loop. It receives

contributions from the degrees of freedom sourced by (fundamental) strings stretched be-

tween the D3 and D5 branes. Since there can be at most one F1 string stretched between

the D3 and a D5, there are four possible configurations with F1 strings contributing:

(0, 0), (0, 1), (1, 0), (1, 1), where (n,m) stands for n strings stretched to the top D5 and m

strings stretched to the bottom D5. In the configurations (1, 0) and (0, 1), with a single

string, one can move the D3 brane to the top or to the bottom of the brane setup so that

no string ends on it anymore (taking into account the string annihilation effect). Such

configurations carry almost trivial contributions to the SQM loop VEV10 since the D3

brane is decoupled from the brane web. In the two other configurations, (0,0) and (1,1),

10Because of the flux induced by the D3 brane on the D5 worldvolumes (and vice-versa) [24], such a

contribution is not 1, but rather a simple classical factor, as we will see in later sections.
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D3

F1
D3

D3

F1

D3

F1

F1

Figure 4. The (0,0) and (1,1) string configurations (on the left) are related to the two configurations

for the fundamental Wilson loop insertion (on the right) by Hanany-Witten moves.

by moving the D3 vertically to the top of the brane configuration we obtain a brane con-

figuration with a string stretched between the D3 and one of the D5s, corresponding of the

two setups of the fundamental Wilson loop insertion. This is illustrated in figure 4. There-

fore the (normalized) fundamental Wilson loop VEV corresponds to a sector of the SQM

loop, which is associated to the two configurations (0,0) and (1,1). These configurations

are those with zero net number of strings ending on the D3 (when placed in the middle

of the web)11 and correspond to states with no charge under the U(1)f symmetry. The

same considerations apply in the presence of D1 strings stretched between the two NS5s,

corresponding to instanton sectors of the gauge theory, and in the presence of extra F1

strings stretched between the two D5s, corresponding to sectors with W-boson excitations.

Therefore we arrive at the proposal for the pure SU(2) theory,

〈fundamental Wilson loop〉 = 〈SQM loop〉
∣∣∣
U(1)f neutral sector

. (2.2)

In explicit computations this means that the Wilson loop will be obtained by taking a

residue in the U(1)f flavor fugacity. Of course the heuristic argument that we gave is not

precise enough to predict the overall coefficient in the above relation and we will find in

later sections that it holds up to a sign.

To access Wilson loops in higher representations we need to consider more D3 branes.

Let us place n D3 branes in the middle of the 5-brane web, as in figure 5. The SQM theory

has now Fermi multiplets transforming in the bifundamental representation of SU(2) ×
U(n)f , with U(n)f flavor symmetry associated to the stack of D3s. Once again we can

think of configurations with strings stretched between the D3s and the D5s and try to

isolate those corresponding to Wilson loops insertions. We take the D3s separated, namely

11The net number of strings ending on the D3 is the number of strings ending on the D3 counted with a

sign according to their orientation, namely the difference between the number of strings ending on the top

and on the bottom of the D3 brane in the picture.

– 9 –
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n D3
n2

5d 1d

Figure 5. Adding n D3 branes realizes a quiver theory with a Fermi multiplet in the bifundamental

of the SU(2)×U(n)f flavor symmetry.

we give generic masses to the n fundamental Fermi multiplets. Each D3 brane of type (0,0)

or (1,1) (zero or two strings attached) contributes as the insertion of a fundamental Wilson

loop. The sum over configurations with D3s of type (0,0) or (1,1) only can be mapped to

the trace over states in the tensor product representation 2⊗n := 2⊗2⊗ · · ·⊗2 (n times).

It corresponds to the sector of the SQM theory neutral under a U(1)nf maximal torus of

U(n)f . We thus arrive at the proposal

〈Wilson loop in 2⊗n〉 = 〈SQM loop〉
∣∣∣
U(1)nf neutral sector

. (2.3)

Finally we may think about identifying configurations related by D3 permutations, which

correspond to averaging over U(n)f Weyl transformations. The resulting reduced set of

configurations reproduces the states in the symmetric representation of rank n of SU(2),

or spin n representation, and corresponds to projecting to the U(n)f invariant sector in

the SQM,

〈Wilson loop in spin n〉 = 〈SQM loop〉
∣∣∣
U(n)f neutral sector

. (2.4)

These are the predictions we can make from the analysis of the brane setup realizing half-

BPS loop insertions. As we will see in the next sections, some more refined prescription

will be needed to extract the Wilson loop VEVs from the SQM loop VEVs, in the form

of a precise residue integration. We will now try to make these claims more precise, to

confirm them by exact computations and use the results to understand the S-duality map

of Wilson loops.

Before proceeding we should make a comment. In the description of the SQM defect

theory there is no excitation corresponding to D1 strings stretched between the D3 and the

NS5 branes, although these are present in the brane setup. These should correspond to ’t

Hooft loops in the 4d SYM theory living on the D3 branes (that we consider as frozen).

This means that in our field theory description we are restricting to a sector of the full

system which excludes these excitations. One consequence of this is that when applying

S-duality to the brane setup we will not be able to map the full SQM operator to a dual

SQM operator, but we will only map the Wilson loops which are sectors of the SQM loop.
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2.3 S-duality

A type IIB brane configuration realizing a 5d gauge theory can be transformed by S-duality,

namely the element S =

(
0 −1
1 0

)
of the SL(2,Z) symmetry of IIB string theory, to a dual

brane configuration, which may realize a different 5d gauge theory. S-duality in type IIB

thus implies a duality or equivalence of the two 5d gauge theories and in particular the

identification of their infinite coupling SCFT limit. We will refer to the duality of 5d

theories as S-duality again.

In the brane picture S-duality transforms a 5(p,q) brane into a 5(−q,p) brane. For

convenience we combine it with a reflection x5 ↔ x6 so that NS5 and D5 branes are still

horizontal and vertical respectively in the brane picture.12 Therefore under S-duality the

brane picture is simply flipped around the x5 = x6 diagonal.

In many situations the dual brane configuration has no D5 branes and we cannot read

a dual field theory. We will only discuss situations where there is a dual 5d field theory.

When this is the case, in general the dual 5d gauge theories have different gauge gauge

groups and hypermultiplet representations. The Coulomb parameters are exchanged with

the effective abelian gauge couplings.

In the simplest cases, and in particular for the pure SU(2) theory, S-duality brings

back the brane configuration to itself with the Coulomb parameter and effective coupling

exchanged 2a ↔ t + 2a. This means that the theory is mapped to itself under this map

of parameters. We say that the pure SU(2) theory is self-dual. We will see that SU(2)

theories with Nf flavors are also self-dual, while SU(N) theories with N > 2 are dual to

SU(2) quiver theories. We will study both situations in this paper.

The action of S-duality on loop operators can be understood from their realization

in the IIB brane picture. F1 strings and D1 strings are swapped under S-duality, which

means that in general Wilson loops will be exchanged with the loops created by the D1

strings. However, brane manipulations like those in figure 2 suggest that these two classes

of loops are not independent, but rather form a single class of half-BPS loops which can all

be realized with D3 branes placed in the middle of the brane web. One way to phrase this

is that Wilson loops of one theory are mapped to Wilson loops of the dual theory under

S-duality. This is the conjecture that we wish to verify.

Theory A

Wilson loop in RA

Theory B

Wilson loop in RB

We will make this mapping more precise in examples by providing the map of representa-

tions labelling the Wilson loops RA ↔ RB. We will see that the mapping of Wilson loops

is actually slightly more complicated in the presence of massive deformations because it

involves some dressing factors corresponding to background Wilson loops.

12The reflection can be seen as a π
2

rotation in x56, followed by a parity x5 → −x5 reversing the orientation

of one type of 5-branes. Combined with IIB S-duality, it ensures that NS5s and D5s are exchanged. This

convention is different from part of the literature on the topic where S is only combined with the π
2

rotation.
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In the case of a self-dual theory, the brane picture predicts that the set of all Wilson

loops gets mapped to itself under the exchange of deformation parameters, with contribu-

tions from W-boson excitations exchanged with contributions from instanton excitations.

We will see that Wilson loops in certain representations — the tensor products of funda-

mental representations — are directly mapped back to themselves under the duality, they

transform covariantly under S, while loops in other SU(2) representations are mapped to

linear combinations of Wilson loops.

3 Loops in pure SU(2) theory

The simplest theory to analyse is the pure SU(2) theory, whose brane web is shown in

figure 1. According to the discussion in the previous section we expect the set of all Wilson

loops to be mapped to itself under S-duality. We now wish to find precisely how S-duality

acts on each individual Wilson loop.

To do so we propose to compute the exact half-index of the 5d theory in the presence

of a Wilson loop, which is the VEV of a Wilson loop on S1 ×R4
ε1,ε2 , where the loop wraps

S1 and is placed at the origin in R4
ε1,ε2 .13 Here R4

ε1,ε2 denotes the R4 Omega background

with equivariant parameters ε1, ε2. To be more precise we will be considering the VEVs of

Wilson loops normalized by the partition function.

Such supersymmetric observables can in principle be computed by equivariant localiza-

tion techniques, as discussed for example in [20, 25–27] following the seminal works [28, 29].

However, in practice one encounters difficulties because the computations reduce to an in-

tegration over the moduli spaces of singular instantons localized at the origin of R4
ε1,ε2 .

The presence of a Wilson loop affects these moduli spaces in a way that is not completely

understood to our knowledge. To circumvent this difficulty it has been proposed in partic-

ular cases [14] (building on the analysis of [30, 31]) that Wilson loop observables can be

identified as certain contributions in partition functions of 5d-1d coupled systems, namely

contributions in SQM loop observables (aka qq-characters [16–19]). To compute the SQM

loop observables 〈LSQM〉 one then relies on the string theory realization of the defect the-

ory. From the brane construction it is possible to understand how the loop affects each

instanton sector, as we will see below. Explicit proposals and computations have been

made in [14] for Wilson loops in completely antisymmetric representations in 5d N = 1∗

U(N) theory and 5d N = 1 pure U(N) theory, as well as in [15] for Wilson loops in more

general representations in 5d N = 1∗ U(N) theory. Here we apply the same approach to

study Wilson loops in all possible tensor product of antisymmetric representations for a

larger class of 5d N = 1 theories with unitary gauge groups. In section 2 we have proposed

a relation between Wilson loops and SQM loops. Based on the brane realization of the

SQM loops we will be able to carry out the computations and extract the exact results

for the Wilson loops. The validity of the method will be ensured by consistency checks,

including nice S-duality properties.

13The name half-index comes from the fact that the superconformal index is computed by the partition

function on S1 × S4, which can be obtained by a gluing procedure from two copies of S1 × R4
ε1,ε2 . It is

sometimes called hemisphere index.
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3.1 Half-index computations from residues

In section 2.2 we predicted the equality (2.3) between the (normalized) VEVs of the Wilson

loop in the tensor product representation 〈W2⊗n〉 and the U(1)nf neutral sector of the

(normalized) SQM loop VEVs realized with n D3 branes 〈LSQM〉.
The evaluation of the SQM loop on S1 × R4

ε1,ε2 is obtained from standard equivariant

localization techniques. The exact result has the form of a supersymmetric index and

depends on various fugacities:

• q1 = eε1 and q2 = eε2 are the fugacities associated to the symmetry generators
1
2(j1+j2+R) and 1

2(j2−j1+R) respectively, with j1, j2 the Cartans of the SO(4)1234 ∼
SU(2)1×SU(2)2 rotation symmetry on R4 and R the Cartan of the SO(3)789 ∼ SU(2)R
R-symmetry;

• α = ea is the fugacity associated to the Cartan generator of global SU(2) gauge

symmetries;

• Q = e−t is the fugacity associated to the U(1)inst symmetry (instanton counting

parameter);

• xi = eMi are the U(n)f flavor symmetry fugacities of the defect theory, with Mi the

masses of the SQM multiplets.

In the N = (0, 4) SQM, the R-symmetry is SO(4) ∼ SU(2)2 × SU(2)R. The result of the

computation is organized in an expansion in instanton sectors weighted by Qk, k ≥ 0,

multiplied by a common perturbative part. Since we normalize the SQM loop by the

partition function in the absence of the defect, we have the following structure

Z5d = Zpert
5d (α)

∑
k≥0

Z
inst,(k)
5d (α)Qk ,

Z5d-1d = Zpert
5d (α)

∑
k≥0

Z
inst,(k)
5d-1d (α, x)Qk ,

〈LSQM〉 =
Z5d-1d

Z5d
=
∑
k≥0

ck(α, x)Qk .

(3.1)

Since Zpert
5d cancels in the normalization there is no need to compute it. The coefficient

Z
inst,(k)
5d (α) is computed as the supersymmetric index of the ADHM quantum mechanics

of the instanton sector k. The coefficient Z
inst,(k)
5d-1d (α, x) arises from a modified N = (0, 4)

ADHM quantum mechanics14 which can be read off from the brane realization of the SQM

loop and which is shown in figure 6 for the SQM loop realized with n D3 branes. The various

(0,4) supermultiplets arise from the lowest modes of fundamental strings stretched between

various D-branes. We have a U(k) gauge theory with a vector multiplet and an adjoint

hypermultiplet (both symbolized by a circle in the figure), 2 fundamental hypermultiplets

141d N = (0, 4) supermultiplets and Lagrangians can be constructed as the dimensional reduction of the

2d N = (0, 4) supermultiplets and Lagrangians. See [14, 22] for a detailed presentation of the (0,4) ADHM

quiver data. See e.g. [30, 32] for details on 2d (0,4) supersymmetry.
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k D1

n2

k

n D3

Figure 6. Brane setup for the k-instanton sector in the presence of the SQM loop and associated

N = (0, 4) ADHM quiver SQM. The circle denotes a U(k) vector multiplet with an adjoint hyper-

multiplet, the continuous line a bifundamental hypermultiplet, the dashed line a Fermi multiplet

with single fermion and the mixed-doubled line a twisted hypermultiplet and a Fermi multiplet with

two fermions. The SU(2) flavor symmetry is gauged with 5d fields in the 5d-1d theory.

(continuous line), n fundamental twisted hypermultiplets and n Fermi multiplets with two

complex fermions (doubled continuous-dashed lines), and 2n uncharged Fermi multiplets

with a single fermion (dashed line). In addition there are potential terms (J and E terms)

required by (0,4) supersymmetry and other potentials coupling 1d and 5d fields.15 The

flavor symmetries of the ADHM theory are SU(2) × U(n)f with fugacities α for SU(2),

identified with the global SU(2) gauge transformations of the 5d theory, and xi=1,··· ,n for

U(n)f . Closely related ADHM quantum mechanics were already considered in [14, 15, 30,

31] in relation to Wilson loops in 5d N = 1∗ theories.

We relegate the details of the computations to appendix A. It is still worth mentioning

that we obtain our results by first considering the 5d U(2) gauge theory with fugacities

α1 = ea1 , α2 = ea2 , and then projecting onto the SU(2) theory by imposing the traceless

conditiona1 = −a2 = a with α = ea. There are additional subtleties to this procedure that

arise when including matter hypermultiplets (see next sections and appendix A) and we

follow [12] for the precise method. To keep the formulas short we show some results only

at the one instanton order, although we computed them up to three instanton order.

For the n = 1 SQM loop (single D3 brane), we find

〈Ln=1
SQM〉 = x−

(
α+ α−1 −Q q1q2(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2)

)
+ x−1 . (3.2)

It is a Laurent polynomial in the U(1)f fugacity x. We can easily relate the various terms

in this polynomial to contributions from strings in the brane setup with a single D3 brane

(figure 3). In particular, the terms x and x−1 can be associated to the contributions with

one string stretched from the D3 (placed in the middle) to the upper and to the lower D5

respectively; moving the D3 brane to the top, respectively to the bottom, of the brane

web and taking into account the string annihilation effect we observe that the D3 brane

decouples from the 5-brane array, explaining the almost trivial contribution to the SQM

15We did not study in detail the form of the J and E terms. Being Q-exact, they do not affect the

computations, except for the identifications of 1d and 5d flavor symmetries which are implicit in appendix A.

The J and E terms ensuring N = (0, 4) supersymmetry can be found e.g. in [30].
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loop (no instanton correction). The counting parameter x and x−1 can be associated to

the presence of fluxes induced by the D5 brane on the D3 worldvolume [24]: with a D3 at

(exponentiated) position x and a D5 at (exponentiated) position y we associate a classical

contribution
√
x/y or

√
y/x if the D3 is above or below the D5. In addition, if a string

is stretched from the D3 to the D5 we add a factor y/x or x/y if the D3 is above or

below the D5. These rules ensure that the contribution of a given configuration of strings

is invariant under Hanany-Witten moves of the D3 brane along x6. Using these rules we

understand the four classical contributions x =
√
α/x
√
xα(x/α), x−1 =

√
α/x
√
xα(1/xα),

α =
√
α/x
√
xα and α−1 =

√
α/x
√
xα(x/α)(1/xα) as associated to the four possible string

configurations (1,0), (0,1), (0,0) and (1,1) discussed in section 2.2 (the positions of the two

D5s are y = α and y = 1/α). The other terms are instanton terms and only affect

the sectors (0,0),(1,1), namely the sector neutral under U(1)f , that we recognized as the

fundamental Wilson loop.

Following our prescription (2.2) we can extract the fundamental Wilson loop 〈W2〉 by

taking a residue over x, which selects the contributions from U(1)f neutral states,

〈W2〉 = −
∮

dx

2πix
〈Ln=1

SQM〉(x) . (3.3)

Here we have fixed the coefficient in the relation to −1, so that the classical contribution

to the Wilson loop matches usual conventions. This leads to

〈W2〉 = α+ α−1 −Q q1q2(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) . (3.4)

We can now look at larger values of n, where the SQM loop is defined by coupling n

fundamental fermions to the 5d SU(2) theory (figure 5), with n flavor fugacities xi. For

n = 2 (two D3 branes) the SQM loop evaluates to

〈Ln=2
SQM〉 = x1x2 + x−1

1 x−1
2 + x1x

−1
2 + x−1

1 x2 − (x1 + x2 + x−1
1 + x−1

2 )〈W2〉

+ 〈W2⊗2〉 −Q
(1− q1)(1− q2)(1 + q1q2)x1x2

(x1 − q1q2x2)(x2 − q1q2x1)
,

(3.5)

where we have identified the contribution 〈W2〉, given by (3.4), and the contribution

〈W2⊗2〉 for the Wilson loop in the tensor product representation 2 ⊗ 2, with

〈W2⊗2〉 =

∮
C

dx1

2πix1

dx2

2πix2
〈Ln=2

SQM〉(x1, x2)

= α2 + 2 + α−2 +Q
(1− q1)(1− q2)(1 + q1q2)− 2q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) ,

(3.6)

with the contour C for x1, x2 being circles around the origin with radii such that |x2| <
q1q2|x1| and |x2| < (q1q2)−1|x1| (see explanation below). Here again the classical contri-

butions to 〈Ln=2
SQM〉 (zero-instanton level) can be understood as associated to the possible

configurations of strings stretched between the two D3s and the two D5s. The Wilson

loop VEV 〈W2⊗2〉 corresponds, according to our prescription (2.3), to the U(1)2
f invariant
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Figure 7. Contour C (red) for the x2 integration, assuming x1 is integrated (after x2) on the unit

circle. On the left: we exclude the residue at x2 = q1q2x1 (keeping only the residue at zero). This

can be achieved by choosing the integration circle on the right.

sector, which can be isolated by taking the residue over the two fugacities x1, x2 (3.6).

Indeed we recognize the classical contribution as that of the 2 ⊗ 2 SU(2) character.

The appearance of the fundamental Wilson loop 〈W2〉 can be understood as the con-

tribution from string configurations where one D3 brane has a single string attached. We

can move and decouple such a D3 brane from the brane web, leaving a single D3 in the

middle of the web, sourcing a fundamental Wilson loop. There are four such configurations

(with one D3 in the middle and one D3 moved outside) corresponding to the four factors

〈W2〉 appearing in (3.5).

In addition to the classical and Wilson loop factors there is a extra contribution in

〈Ln=2
SQM〉 at one-instanton level (but not at higher instanton levels) in the form of a rational

function of x1, x2. We notice that this term has poles at x2/x1 = q1q2 and x2/x1 = (q1q2)−1.

We interpret this term in the string/brane language as arising from the motion of a D1

segment stretched between the two D3 branes. Indeed, such modes have (exponentiated)

mass parameters (x2/x1)±1 when the D3 branes are in flat space (corresponding to q1q2 =

1), explaining the presence of the poles. They contribute to the VEV of a line operator in

the D3 brane theory16 and should a priori not contribute to the Wilson loop VEV of the

5d theory that we would like to compute.

If we take a naive contour of integration C as two unit circles, we would pick a residue

contribution from these terms at x2 = (q1q2)±1x1. Based on the above discussion, we

believe that these residues should be excluded. One way to achieve this is to define the

contour C as described above. We illustrate this in figure 7. This choice provides a consis-

tent picture in the study of S-duality in the later sections.

16By taking a residue over α we can isolate this extra factor and recognize it as a monopole bubbling

contribution for an ’t Hooft loop of minimal magnetic charge in the 4d U(2) SYM theory living on the D3

branes, with x1, x2 identified with the 4d Coulomb branch parameters (see [33–35]).

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

The method generalizes to any n. The Wilson loop in the tensor product representation

2⊗n is extracted from the SQM loop by the residue computation

〈W2⊗n〉 = (−1)n
∮
C

n∏
i=1

dxi
2πixi

〈LnSQM〉(x1, . . . , xn) , (3.7)

with a contour C around the origin such that poles at xi = (q1q2)±1xj are excluded. For

instance one can pick contours as circles around zero radii such that |xi+1| < (q1q2)±1|xi|,
i = 1, · · · , n− 1. This reproduces the prediction from the heuristic brane argument (2.3).

Let us give one more explicit results for n = 3,

〈W2⊗2⊗2〉 = −
∮
C

dx1

2πix1

dx2

2πix2

dx3

2πix3
〈Ln=3

SQM〉(x1, x2, x3)

= α3 + 3α+ 3α−1 + α−3

+Q(α+α−1)
(1−q1)(1− q2)(2 + q1 + q2 + 2q1q2)− 3q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

(3.8)

The fact that we always recover the correct classical part for the Wilson loop VEVs is a

confirmation of the validity of our residue procedure.

From the evaluation of the Wilson loops in the tensor product representation 2⊗n, one

can compute Wilson loops in any representation. For instance the Wilson loop in the rank

two symmetric representation (spin 1/2) is given by WS2 = W2⊗2 −WA2 = W2⊗2 − 1,

where we used the fact that the rank two antisymmetric representation A2 is trivial.

Although we will focus only on Wilson loops in tensor product representations in

this paper, we can also compute directly the VEV of Wilson loops in rank n symmetric

representations Sn, which are simply the irreducible spin n representations of SU(2), by a

different residue prescription. Following the logic of section 2.2 we expect that such Wilson

loops can be extracted from the SQM loop 〈LnSQM〉 by projecting onto the U(n) invariant

sector. This is achieved by computing the residue in x1, x2, · · · , xn with the U(n) Haar

measure,

〈WSn〉 = (−1)n
∮
C

n∏
i=1

dxi
2πixi

1

n!

∏
i 6=j

(
1− xi

xj

)
〈LnSQM〉(x1, . . . , xn) . (3.9)

Once again we define the contour C as unit circles with residues at xi = (q1q2)±1xj removed.

In explicit computations we recover, for instance, the identity W2⊗2 = 1 +WS2 .

Before concluding this section, for the sake of completeness, we should also mention

that different string theory realizations of the 5d N = 1 pure SU(2) theory appear to have

different SQM loop operators, but same Wilson loop observables. Consider for example the

brane configuration in figure 8: as argued in [12, 36–38] this describes the same pure SU(2)

theory as figure 1, after removing the contribution of extra decoupled states associated to

the parallel external NS5-branes.17 The partition functions of the two brane configurations

17In computations, the difference arises because one starts from U(2) with Chern-Simons level κ = −2

rather than κ = 0, before projecting to SU(2).
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Figure 8. A possible alternative brane realization of the 5d N = 1 pure SU(2) theory.

coincide, modulo a factor which is independent of the SU(2) gauge fugacity α but only

depends on the instanton fugacity Q [12, 21, 22]. The situation is somehow similar, although

slightly more complicated, for our SQM loop operator. For example, when adding one D3

brane the configuration in figure 8 gives

〈Ln=1
SQM〉 = x(1 +Q)− 〈W2〉+ x−1 , (3.10)

with 〈W2〉 as in (3.4). Comparing with (3.2) we see that the only difference appears in

the x sector, which receives a single instanton correction (due to the interaction between

D1 stretched along the parallel external NS5 branes and the D3 inside of them), while the

fundamental SU(2) Wilson loop is the same. With two D3 branes we find instead

〈Ln=2
SQM〉 =x1x2(1 +Q)2 + x−1

1 x−1
2 + (x1x

−1
2 + x−1

1 x2)(1 +Q)− (x1 + x2)(1 +Q)〈W2〉

− (x−1
1 + x−1

2 )〈W2〉+ 〈W2⊗2〉 −Q
(1− q1)(1− q2)(1 + q1q2)x2

1x
2
2

(x1 − q1q2x2)(x2 − q1q2x1)
, (3.11)

with 〈W2〉, 〈W2⊗2〉 as in (3.4), (3.6) respectively. Comparing with (3.5) we again notice

that although the sectors involving positive powers of x1, x2 receive Q corrections (and the

extra rational function is also slightly modified), the Wilson loops still coincide. A similar

pattern can be observed at higher number of D3 branes, as well as in more complicated

theories. It is however not clear to us whether only one SQM loop VEV is the correct result,

or whether the different options correspond to several SQM loops in the SU(2) theory.

3.2 S-duality of Wilson loops

As we explained in the previous section the pure SU(2) theory is self-dual under S-duality

with the exchange of massive parameters 2a↔ 2a+t, which is the map (2a, t)→ (2a+t,−t).
We see here that S-duality relates the theory at coupling t to the theory at coupling −t,
i.e. at negative 1

g2 . It is not obvious how to make sense of the 5d theory at negative t.

One needs to analytically continue the theory to negative t, assuming that observables are

holomorphic in t. This may be possible, however we only need to assume something weaker,

which is that the theory is well-defined as long as the effective coupling t+ 2a is positive,

which can be seen as a constraint on the space of vacua (a > −t/2). This condition ensures

for instance that instantons on the Coulomb branch have positive mass.

It is convenient to introduce the exponentiated parameters, or “fugacities”,

QF = e−2a , QB = e−t−2a ; (3.12)
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in terms of these variables the S-duality map is

S-duality map : (QF , QB)→ (QB, QF ) . (3.13)

The terminology QF , QB refer to the fiber-base duality of toric Calabi-Yau three-folds,

realizing the 5d SCFTs in M-theory, studied in [11]. The M-theory realization is dual to

the type IIB brane realization and the fiber-base duality of the Calabi-Yaus is the S-duality

that we want to study.

In the previous section we evaluated the Wilson loop VEVs in a small Q = QB/QF
expansion. To check S-duality we should further expand in small QF and write the result

as a double expansion in QF , QB. We find18

Q
1/2
F 〈W2〉 = 1 +QF +QB + χA1

3 (q+)QFQB + χA1
5 (q+)QFQB(QF +QB)

+QFQB(Q2
F +QFQB +Q2

B)χA1
7 (q+) (3.14)

+Q2
FQ

2
B

(
χA1
7 (q+) + χA1

5 (q+) + χA1
2 (q−)χA1

8 (q+)
)

+ . . . ,

QF 〈W2⊗2〉 = 1 + 2(QF +QB) +
(
Q2
F +QFQB +Q2

B

)
+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−)

)
QFQB

+QFQB(QF +QB)
(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)

+QFQB(Q2
F +QFQB +Q2

B)
(
χA1
7 (q+) + χA1

5 (q+) + χA1
6 (q+)χA1

2 (q−)
)

+Q2
FQ

2
B

(
χA1
8 (q+)χA1

2 (q−) + χA1
6 (q+)χA1

2 (q−) + χA1
4 (q+)χA1

2 (q−)

+ χA1
7 (q+)χA1

3 (q−) + χA1
7 (q+) + 2χA1

5 (q+) + 1
)

+ . . . , (3.15)

Q
3/2
F 〈W2⊗2⊗2〉= 1 + 3(QF +QB) + 3(Q2

F +QFQB +Q2
B)

+
(
χA1
3 (q+) + χA1

3 (q−) + χA1
2 (q+)χA1

2 (q−) + 2
)
QFQB

+
(
χA1
5 (q+) + 3χA1

3 (q+) + χA1
3 (q+)χA1

3 (q−) + χA1
4 (q+)χA1

2 (q−)

+ χA1
2 (q+)χA1

2 (q−)
)
QFQB(QF +QB) +

(
Q3
F +Q2

FQB +QFQ
2
B +Q3

B

)
+ . . . . (3.16)

SU(2) (∼ A1) characters for various representations. Indeed q+ and q− are fugacities for

two SU(2) symmetries of the theory: SU(2)diag =diag(SU(2)2 × SU(2)R) and SU(2)1 re-

spectively.

Every term in the above expansions is invariant under the S-duality map QF ↔ QB.

However we had to multiply each Wilson loop by a factor Q
n/2
F to obtain this result. We

therefore have the identity

〈W2⊗n〉(QF , QB) =

(
QB
QF

)n/2
〈W2⊗n〉(QB, QF ) . (3.17)

18We use the evaluation of the Wilson loop up to three instantons, which we did not explicitly write in

the previous section.
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This means that the Wilson loops are not invariant under S-duality, but rather covariant

with the transformation

S.W2⊗n(a, t) = e−
nt
2 W2⊗n(a+ t/2,−t) , (3.18)

with “S.” denoting the action of S-duality. In the CFT limit t → 0, the Wilson loops

become invariant under S-duality. The multiplicative factor e−
nt
2 can be interpreted as

background Wilson loop of charge −n for the a U(1)inst global symmetry associated with

the instanton charge.

We thus find that Wilson loops in tensor product representations 2⊗n transform co-

variantly under S-duality. From here we can deduce the transformation of Wilson loops

in any representation. What we find is that in general Wilson loops do not transform

covariantly, but rather pick up an inhomogeneous part in the transformation. In particular

all the Wilson loops in spin n representations are mapped to combinations of Wilson loops

involving various representations with different multiplicative factors.

E1 symmetry. This is not the whole story since the pure SU(2) theory is conjectured to

have an E1 = SU(2)I global symmetry in the CFT limit (t = 0), enhanced from the U(1)inst

symmetry, and S-duality should correspond to the Z2 Weyl transformation in SU(2)I . To

make the SU(2)I symmetry manifest one should introduce a different set of variables,

A = e−
t
4
−a , y = e

t
2 = Q−

1
2 . (3.19)

The parameters QF , QB are re-expressed as QF = A2y and QB = A2

y . The S-duality (or

Weyl transformation) then corresponds to

S-duality map : (A, y)→ (A, y−1) . (3.20)

The parameter y is the SU(2)I fugacity. Expanding observables in powers of A2, one

expects coefficients fn(y) which are SU(2) characters. This was checked at the level of the

S1 ×R4
ε1,ε2 partition function or “half-index” in [11] at the first few orders in A, using the

topological vertex formalism.

Expanding the Wilson loops in this new set of parameters we find

Ay1/2〈W2〉= 1 + χA1
2 (y)A2 + χA1

3 (q+)A4 + χA1
2 (y)χA1

5 (q+)A6 (3.21)

+
(
χA1
3 (y)χA1

7 (q+) + χA1
7 (q+) + χA1

5 (q+) + χA1
2 (q−)χA1

8 (q+)
)
A8 + . . . ,

A2y〈W2⊗2〉= 1 + 2χA1
2 (y)A2 +

(
χA1
3 (y) + χA1

3 (q+) + χA1
2 (q+)χA1

2 (q−)
)
A4

+ χA1
2 (y)

(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
A6

+ χA1
3 (y)

(
χA1
7 (q+) + χA1

5 (q+) + χA1
6 (q+)χA1

2 (q−)
)
A8

+
(
χA1
8 (q+)χA1

2 (q−) + χA1
6 (q+)χA1

2 (q−)+χA1
4 (q+)χA1

2 (q−)+χA1
7 (q+)χA1

3 (q−)

+ χA1
7 (q+) + 2χA1

5 (q+) + 1
)
A8 + . . . , (3.22)
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A3y3/2〈W2⊗2⊗2〉 = 1 + 3χA1
2 (y)A2

+
(

3χA1
3 (y) + χA1

3 (q+) + χA1
3 (q−) + χA1

2 (q+)χA1
2 (q−) + 2

)
A4

+ χA1
2 (y)

(
χA1
5 (q+) + 3χA1

3 (q+) + χA1
3 (q+)χA1

3 (q−) + χA1
4 (q+)χA1

2 (q−)

+ χA1
2 (q+)χA1

2 (q−)
)
A6 + χA1

4 (y)A6 + . . . . (3.23)

The SU(2)I characters do appear, but only after multiplying the Wilson loop by a factor

(A2y)n/2.

4 Loops in SU(2) theories with matter

The discussion of Wilson loops in the pure SU(2) theory generalizes to SU(2) theories

with Nf fundamental flavors. These are realized via 5-brane webs with extra external

D5 and NS5 branes. They are again self-dual under S-duality and we will show that the

Wilson loops in the 2⊗n representations transform covariantly under S-duality. It is well-

known that the SU(2) theories with Nf flavors enjoy a conjectured symmetry enhancement

U(1)inst × SO(2Nf ) → ENf+1 at the CFT locus. The S-duality is again a Weyl transfor-

mation in ENf+1 [11]. We check this remarkable conjecture by showing that the Wilson

loop VEVs on S1 × R4
ε1,ε2 admit an expansion in ENf+1 characters.

Because of technical limitations we studied only the cases Nf = 1, 2, 3, 4, however

we strongly believe that the Wilson loops in the remaining theories with Nf = 5, 6, 7

have qualitatively identical properties. In this section we provide the results for Nf = 1

and Nf = 2 flavors, while the theories with Nf = 3, 4 are discussed in appendix B to

shorten the presentation. Our results strongly support the general relation (4.20) for the

action of S-duality on Wilson loops in tensor product representations 2⊗n at finite massive

deformations.

4.1 Nf = 1

We start by considering the SU(2) gauge theory with one fundamental hypermultiplet.

The brane web realizing the theory is shown in figure 9-a. It is useful to see it as arising

from the U(2)−1/2 theory with Nf = 1, by ungauging the diagonal U(1). The index −1
2

indicates a Chern-Simons at level −1
2 for the diagonal U(1).19 This U(2) theory is used to

facilitate explicit half-index computations (see appendix A).

The vertical positions of the internal D5 branes are a1, a2 for the Coulomb parameters,

and the vertical position of the external D5 brane is m1 for the mass parameter of the

hypermultiplet. The horizontal distance between the two NS5 branes is the effective gauge

coupling teff of the abelian theory on a single D5. At a generic point on the Coulomb

branch the adjoint real scalar is φ =diag(a1, a2), with say a1 > a2, and the prepotential

19This ‘parent’ U(2) theory is also in principle the theory realized by the brane setup 9-a. However the

diagonal U(1) subgroup of the gauge group is massive, since there is only one Coulomb branch deformation

of the brane web (i.e. preserving the positions of the exterior 5-branes), corresponding to the SU(2) Coulomb

parameter.
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Figure 9. a) Brane realization of the SU(2) theory with Nf = 1, with a1 = −a2 = a. b)

Brane setup and ADHM quiver SQM for the k-instanton sector in the presence of an n D3 branes

SQM loop.

evaluates to [4]

F =
t

2
(a2

1 + a2
2) +

1

6
(a1 − a2)3 − 1

12

(
(m1 − a1)3 + (m1 − a2)3

)
− 1

12
(a3

1 + a3
2) , (4.1)

where we assumed m1 > ai for i = 1, 2, as in the figure. The effective coupling on a D5

brane is

teff =
∂2F
∂a1

2
= t+ (a1 − a2)− m1

2
. (4.2)

We now impose the traceless condition a1 = −a2 = a and define the fugacities

α = ea , µ1 = em1 . (4.3)

The half-index in the presence of a Wilson loop in the tensor product representation

2⊗n is computed using the same technology as for the pure SU(2) theory. We identify

the Wilson loop VEVs with sectors of the SQM loop realized by the addition of n D3

branes in the center of the brane web. This SQM loop LnSQM is described, as for the pure

SU(2) SYM theory, by a (0,4) SQM theory with 2n Fermi multiplets with flavor symmetry

SU(2)×U(n)f and the SU(2) flavor gauged with 5d fields.

The SQM loop VEV 〈LnSQM〉 is computed with the modified ADHM quiver for the

k-instanton sector shown in figure 9-b, deduced from the brane setup with n D3 branes

and k D1 branes. This ADHM quiver is not the same as in the pure SU(2) theory (there

are (0,4) Fermi multiplets from strings stretched between the D1s and the external D5 and
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superpotential terms identifying 1d and 5d flavor symmetries). Finally the Wilson loop in

2⊗n is extracted by the residue computation (the same as (3.7))

〈W2⊗n〉 = (−1)n
∮
C

n∏
i=1

dxi
2πixi

〈LnSQM〉(x1, . . . , xn) , (4.4)

where x1, · · · , xn are the fugacities for the U(n)f SQM flavor symmetry and the contour C
is chosen such that |xi+1| < (q1q2)±1|xi|, for i = 1, · · · , n− 1.

We find for n = 1,

〈Ln=1
SQM〉 = x1 − 〈W2〉+ x−1

1 ,

〈W2〉 = α+ α−1 +Qq1q2
µ
−1/2
1 (q

1/2
1 q

1/2
2 + q

−1/2
1 q

−1/2
2 )− µ1/2

1 (α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

(4.5)

For n = 2,

〈Ln=2
SQM〉 =x1x2 + x−1

1 x−1
2 + x1x

−1
2 + x−1

1 x2 − (x1 + x2 + x−1
1 + x−1

2 )〈W2〉+ 〈W2⊗2〉

−Qµ1/2
1

(1− q1)(1− q2)(1 + q1q2)x1x2

(x1 − q1q2x2)(x2 − q1q2x1)

+Qq
1/2
1 q

1/2
2 µ

−1/2
1

(1− q1)(1− q2)x1x2(x1 + x2)

(x1 − q1q2x2)(x2 − q1q2x1)
, (4.6)

〈W2⊗2〉 =α2 + 2 + α−2 +Qµ
1/2
1

(1− q1)(1− q2)(1 + q1q2)− 2q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)

−Qq1/2
1 q

1/2
2 µ

−1/2
1

(α+ α−1)(1 + q1)(1 + q2)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

Acting with S-duality in the brane setup (x5 ↔ x6 reflection) we find that 2a is

exchanged with teff = t+ 2a−m1/2 and m1 becomes m1 − a+ teff/2 = 3m1/4 + t/2. The

S-symmetry is the Weyl transformation in the full E2 = SU(2) × U(1) global symmetry

(enhanced from SO(2)×U(1)). To make this symmetry apparent, we define

A = e−a−
t
4

+
m1
8 , y = e

t
2
−m1

4 , v = e−
t
4
− 7m1

8 , (4.7)

giving the map of fugacities

α = A−1y−1/2 , µ1 = y−1/2v−1 . (4.8)

The parameter A captures the Coulomb branch moduli, while y and v are fugacities for

the SU(2) and U(1) global symmetries respectively. S-duality corresponds to the action

y → y−1, with A and v invariant.

– 23 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
2

Expanding further the above results (at 3-instanton order) at small A, we find

Ay1/2〈W2〉 =1 + χA1
2 (y)A2 − χA1

2 (q+)vA3 + χA1
3 (q+)A4

− χA1
2 (y)χA1

4 (q+)vA5 + χA1
2 (y)χA1

5 (q+)A6 + χA1
5 (q+)v2A6 + . . . ,

A2y〈W2⊗2〉 =1 + 2χA1
2 (y)A2 −

(
χA1
2 (q+) + χA1

2 (q−)
)
vA3

+
(
χA1
3 (y) + χA1

3 (q+) + χA1
2 (q+)χA1

2 (q−)
)
A4

− χA1
2 (y)χA1

3 (q+)
(
χA1
2 (q+) + χA1

2 (q−)
)
vA5

+ χA1
2 (y)

(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
A6

+
(
χA1
5 (q+) + χA1

4 (q+)χA1
2 (q−) + 1

)
v2A6 + . . . .

(4.9)

The coefficients are expressed as characters of SU(2) as in the previous section.

Here again the characters of the SU(2) ⊂ E2 global symmetry arise only after multi-

plying the Wilson loops by a factor (A2y)n/2. We deduce that under S-duality the Wilson

loops transform covariantly, with the S action

S.W2⊗n(A, y, v) = y−nW2⊗n(A, y−1, v) . (4.10)

This is the same transformation as in the pure SU(2) theory (3.18), except that now the

parameter y is y = e
t
2
−m1

4 .

4.2 Nf = 2

The brane realization of the SU(2) theory with Nf = 2 fundamental hypermultiplets is

shown in figure 10. We can regard the theory as arising from the U(2) theory with Nf = 2

(without Chern-Simons term), by ungauging the diagonal U(1). We denote m1,m2 the

masses of the fundamental hypermultiplets.

The prepotential of the theory on the Coulomb branch, with parameter ranges m2 <

a1, a2 < m1 (corresponding to the brane configuration of figure 10), is

F =
t

2
(a2

1 + a2
2) +

1

6
(a1 − a2)3 − 1

12

∑
i=1,2

[
(m1 − ai)3 + (ai −m2)3

]
, (4.11)

and the effective abelian coupling is

teff =
∂2F
∂a1

2
= t+ (a1 − a2)− m1 −m2

2
= t+ 2a− m1 −m2

2
, (4.12)

corresponding to the distance between the NS5 branes in the brane configuration. In the

last equality we imposed the traceless condition a1 = −a2 = a. We define the fugacities

α = ea , µ1 = em1 , µ2 = em2 . (4.13)

The Wilson loops W2⊗n are evaluated from the residue formula (3.7) from the SQM

loop LnSQM defined as before, but with the modified k-instanton ADHM SQM shown in
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Figure 10. a) Brane realization of the SU(2) theory with Nf = 2 (with a1 = −a2 = a). b)

Brane setup and ADHM quiver SQM for the k-instanton sector in the presence of an n D3 branes

SQM loop.

figure 10-b. We find for n = 1

〈Ln=1
SQM〉 =x1 − 〈W2〉+ x−1

1 ,

〈W2〉 =α+ α−1 +Qq1q2
(µ

1/2
1 µ

1/2
2 + µ

−1/2
1 µ

−1/2
2 )(q

1/2
1 q

1/2
2 + q

−1/2
1 q

−1/2
2 )

(1− α2q1q2)(1− α−2q1q2)

−Qq1q2
(µ

1/2
1 µ

−1/2
2 + µ

−1/2
1 µ

1/2
2 )(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) ,

(4.14)

while for n = 2

〈Ln=2
SQM〉 =x1x2 + x−1

1 x−1
2 + x1x

−1
2 + x−1

1 x2 − (x1 + x2 + x−1
1 + x−1

2 )〈W2〉+ 〈W2⊗2〉

+Q
(1−q1)(1−q2)

µ
1/2
1 µ

1/2
2

q
1/2
1 q

1/2
2 (x1x2 + µ1µ2)(x1 + x2)− x1x2(1 + q1q2)(µ1 + µ2)

(x1 − q1q2x2)(x2 − q1q2x1)
,

〈W2⊗2〉 =α2 + 2 + α−2 +Q
µ1 + µ2√
µ1µ2

(1− q1)(1− q2)(1 + q1q2)− 2q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)

+Q
1 + µ1µ2√
µ1µ2

√
q1q2(1 + q1)(1 + q2)(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

(4.15)
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S-duality, implemented by the x5 ↔ x6 reflection, acts on the parameters as follows:

S action : a→ t

2
+ a− m1 −m2

4
, t→ − t

2
+

3

4
(m1 −m2) ,

m1 →
t

2
+

3m1 +m2

4
, m2 → −

t

2
+
m1 + 3m2

4
. (4.16)

To make the E3 = SU(2)×SU(3) global symmetries (enhanced from SO(4)×U(1)) appear,

we define the new set of fugacities

A = e−
t
3
−a , u = e−

m1+m2
2 ,

y1 = e
2t
3 , y2 = e−

t
3

+
m1−m2

2 , y3 = e−
t
3
−m1−m2

2 , (4.17)

satisfying y1y2y3 = 1. The yi are the SU(3) fugacities and u is the SU(2) fugacity. In

terms of the new parameters, the S action is simply y1 ↔ y2 (with the other parameters

invariant) and corresponds to a Weyl transformation in SU(3). In particular it does not

commute with the flavor symmetry m1 ↔ m2, which is the Weyl transformation y2 ↔ y3.

The full group of Weyl symmetries of SU(2) × SU(3) corresponds to the action u → u−1

for SU(2) and the permutations of y1, y2, y3 for SU(3).

Expanding further the above results (at 3-instanton order) at small A, we find

Ay
1/2
1 〈W2〉 = 1 + χA2

3 (~y)A2 − χA1
2 (q+)χA1

2 (u)A3 + χA1
3 (q+)χA2

3
(~y)A4

− χA1
4 (q+)χA2

3 (~y)χA1
2 (u)A5 + χA1

5 (q+)χA1
3 (u)A6 + χA1

5 (q+)χA2
8 (~y)A6

+
(
χA1
6 (q+)χA1

2 (q−) + χA1
5 (q+) + χA1

3 (q+)
)
A6 + . . . ,

A2y1〈W2⊗2〉 = 1 + 2χA2
3 (~y)A2 −

(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (u)A3

+ χA2
6 (~y)A4 +

(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−)

)
χA2

3
(~y)A4

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
3 (q+)χA1

2 (q−)
)
χA1
2 (v)χA2

3 (~y)A5

+
(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
χA2
8 (~y)A6

+
(
χA1
5 (q+) + χA1

4 (q+)χA1
2 (q−) + 1

)
χA1
3 (u)A6 + . . . .

(4.18)

We find the expansions in characters of the E3 global symmetry after multiplying the

Wilson loops by a factor (A2y1)n/2. We deduce that under S-duality the Wilson loops

transform covariantly, with the S action

S.W2⊗n(A, y1, y2, y3, u) =

(
y1

y2

)−n
2

W2⊗n(A, y2, y1, y3, u) , (4.19)

with the multiplicative parameter (y1/y2)1/2 = e
t
2
−m1−m2

4 . Since it does not commute with

the flavor Weyl symmetry F exchanging m1 and m2 (y2 ↔ y3), we can define a second S-

duality action S′ = F−1.S.F which implements y1 ↔ y3 and transform the Wilson loop with

a multiplicative parameter (y1/y3)1/2 = e
t
2

+
m1−m2

4 . The flavor symmetry transformation

F exchanges S and S′.
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We study similarly the SU(2) theories with Nf = 3 and Nf = 4 flavors in appendix B.

We find again that the Wilson loop VEVs 〈W2⊗n〉 are computed from the residue for-

mula (3.7), with appropriate SQM loop LnSQM derived from the brane configurations with

n D3 branes. The results for n = 1, 2 are again consistent with the enhanced ENf+1 flavor

symmetry at the CFT point.

Under S-duality we find that the Wilson loops W2⊗n transform covariantly,

S.W2⊗n(~y) = Y −nW2⊗n(~y′) , (4.20)

with ~y the fugacities, ~y′ their S-transform, and Y = e
t
2

+ 1
4

∑Nf
k=1(−1)kmk .20 The parameter

Y can be understood as a charge one background Wilson loop for a U(1) subgroup of

ENf+1. This is our main result for SU(2) theories with Nf ≤ 4 flavor hypermultiplets. We

conjecture that this will hold for Nf = 5, 6, 7 and n ≥ 3 as well.

5 SU(3)-SU(2)2 dualities

We now explore the action of S-duality in theories which are not self-dual. The lowest rank

examples relate SU(3) theories with flavor hypermultiplets to SU(2)×SU(2) quiver theories.

They are part of a larger group of dualities relating SU(N)M−1 quivers to SU(M)N−1

quivers, proposed in [5, 6, 39] and studied e.g. in [10, 11]. We will discuss two instances

of such dualities and find how the Wilson loops of one theory are mapped to the Wilson

loops of the dual theory.

5.1 SU(3) Nf = 2 and SU(2)π × SU(2)π

First we consider the SU(3) theory with Nf = 2 fundamental hypermultiplets. Its brane

realization is shown in figure 11-a. Acting with S-duality on the brane configuration we

obtain the web diagram of figure 12-a, which realizes the quiver theory SU(2)π × SU(2)π,

which has one bifundamental hypermultiplet. The index π indicates that the SU(2) gauge

nodes have a non-trivial theta angle.21 Indeed in five dimensions an SU(2) gauge theory

admits a Z2 valued deformation, parametrized by θ = 0, π, which affects the weight of

instanton contributions in the path integral. We refer to [2] for a more detailed discussion

on the theta angle deformation and to [12] for the determination of the theta angles from

the brane configuration.

We will see that the exact computations of the half index with Wilson loop insertions

support the S-duality map between loops that one can read from the brane picture. We start

by computing the Wilson loop VEVs in the two dual theories from residues of SQM loops.

5.1.1 SU(3), Nf = 2 loops

To start with we would like to compute the VEVs of Wilson loops on S1 × R4
ε1,ε2 in the

SU(3) theory. In particular, in analogy with the SU(2) case, we will focus on Wilson loops

20This one S-duality. Other S-duality transformations are obtained by conjugating S by flavor Weyl

symmetries (permutations of the mk).
21In the previous sections the theta angle was always vanishing.
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Figure 11. a) Brane realization of the SU(3) theory with Nf = 2. b) Brane setup ADHM quiver

SQM for the k-instanton sector in the presence of an n D3 branes SQM loop.

in tensor product representations Rn1,n2 = 3⊗n1 ⊗ 3⊗n2 . Loops in other representations

can be obtained as linear combinations of those.

The Wilson loop VEVs will arise from various residues of SQM loops realized with

n = n1 +n2 D3 branes placed in the central regions of the brane web. The associated (0,4)

SQM has 3n Fermi multiplets transforming in the (3,n) of SU(3)×U(n)f , where U(n)f is

the flavor symmetry of the SQM and SU(3) is gauged with 5d fields.

The string configurations contributing to a Wilson loop in the 3 are those with a D3

brane above the brane web and with a single string stretched from the D3 to any D5

segment. Upon moving the D3 brane towards the middle regions, taking into account

Hanany-Witten effects, we reach configurations with a D3 brane placed between the top

and middle D5s, with zero net number of strings attached. Such configurations are associ-

ated to states with a non-vanishing charge under the U(1)f flavor symmetry associated to

the D3. Indeed the classical factor arising from D5 and D3 actions with this positioning

is
√

α1
x

√
x
α2

√
x
α3

=
√

α1x
α2α3

(as discussed in section 2.2), thus in the U(1)f sector of charge

1
2 (sector x1/2). Additional strings do not change the U(1)f charge since their net number

on the D3 is zero. Similarly a Wilson loop in the 3 representation is realized from config-

urations with a D3 below the brane web and with a single string stretched from the D3

to any D5 segment. After Hanany-Witten moves they become configurations with the D3

placed between the middle and bottom D5s and with zero net number of strings ending

in it. They carry a classical contribution
√

α1
x

√
α2
x

√
x
α3

=
√

α1α2
α3x

and correspond to the

SQM sector of U(1)f charge −1
2 .

Similarly, for a Wilson loop in Rn1,n2 the string configurations contributing are those

with n1 D3s between the top and middle D5s and n2 D3s between the middle and bottom
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D5s, and with zero net number of strings attached. These configurations match the SQM

sector of charge

(
1

2
, · · · , 1

2︸ ︷︷ ︸
n1

,−1

2
, · · · ,−1

2︸ ︷︷ ︸
n2

)
under U(1)n1×U(1)n2 ⊂ U(n), with n = n1+n2.

Here a charge 1
2 or −1

2 is a flavor U(1) charge associated to a single D3 brane in the upper

or lower central region of the web.

We thus arrive at the following proposal for the residue relation between the SQM loop

and the Wilson loops, isolating the relevant charge sector:

〈WRn1,n2
〉 = (−1)n

∮
C

n1∏
i=1

dxi

2πix
3/2
i

n2∏
j=1

dxj

2πix
1/2
j

〈LnSQM〉(x) , (5.1)

where n = n1 + n2 , xi are the U(n) fugacities, and the contour C needs to be fixed

to avoid spurious residues. As before, we will take C to be unit circles with residues at

xi = (q1q2)±1xj , i < j, excluded. The sign in (5.1) is fixed a posteriori from the explicit

computations.

The evaluation of the SQM loop VEV proceeds with the k-instanton ADHM quiver of

figure 11-b, derived from the brane picture. We start from the computation for the U(3)

theory with Nf = 2 flavors and then impose the traceless condition a1 + a2 + a3 = 0 on

the Coulomb branch parameters.

We denote m1,m2 the flavor masses and work in the chamber a1 > a2 > mi > a3 as

in the figure. We define a12 = a1 − a2, a23 = a2 − a3 and the fugacities

α12 = ea12 , α23 = ea23 , µ1 = em1 , µ2 = em2 . (5.2)

The formulas that we find in terms of these parameters are too long to be reported here (we

provide some explicit results in terms of other variables below). Still we find the expected

structure, for n = 1, 2,

〈Ln=1
SQM〉 =x

3/2
1 − x1/2

1 〈W3〉+ x
−1/2
1 〈W3〉 − x

−3/2
1 ,

〈Ln=2
SQM〉 =x

3/2
1 x

3/2
2 + x

−3/2
1 x

−3/2
2 − x3/2

1 x
−3/2
2 − x−3/2

1 x
3/2
2

−
(
x

3/2
1 x

1/2
2 + x

1/2
1 x

3/2
2 − x−3/2

1 x
1/2
2 − x1/2

1 x
−3/2
2

)
〈W3〉

−
(
x
−3/2
1 x

−1/2
2 + x

−1/2
1 x

−3/2
2 − x3/2

1 x
−1/2
2 − x−1/2

1 x
3/2
2

)
〈W3〉

+ x
1/2
1 x

1/2
2 〈W3⊗3〉+ x

−1/2
1 x

−1/2
2 〈W3⊗3〉 −

(
x

1/2
1 x

−1/2
2 + x

−1/2
1 x

1/2
2

)
〈W3⊗3〉

+Q
(1−q1)(1−q2)

√
x1x2√

µ1µ2

√
q1q2(x1 + x2)(µ1 + µ2)− (1 + q1q2)(x1x2 + µ1µ2)

(x1 − q1q2x2)(x2 − q1q2x1)
.

(5.3)

The appearance of Wilson loops VEVs in (5.3), with the correct classical part (zero in-

stanton sector), is in agreement and confirms the residue formula (5.1). Here again we see

spurious terms at one-instanton level in 〈Ln=2
SQM〉 (last line in (5.3)), whose poles are avoided

by the contour prescription in 5.1.
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In order to check S-duality we introduce a new set of variables corresponding to (ex-

ponentiated) distances between D5 branes (QFi) and between NS5 branes (QBi),
22

QF1 = e−a12 = α−1
12 , QF2 = e−a23 = α−1

23 , Qm = e
m1−m2

2 =

√
µ1

µ2
,

QB1 = e−t−
4
3
a12− 2

3
a23−m1+m2

2 =
Q

α
4/3
12 α

2/3
23
√
µ1µ2

,

QB2 = e−t−
2
3
a12− 4

3
a23+

m1+m2
2 =

Q
√
µ1µ2

α
2/3
12 α

4/3
23

.

(5.4)

S-duality exchanges D5 and NS5 branes in the brane web, therefore it will map QB pa-

rameters of the SU(3) theory to QF parameters of the SU(2)2 theory and vice-versa. To

compare the vevs we will need a double expansion in QB and QF parameters. Thus we

want to express the Wilson loop VEVs in terms of the new parameters and expand further

in small QF . We show here the results at order two in QF , QB, and at order three in

appendix C.1,

Q
2/3
F1
Q

1/3
F2
〈W3〉 = 1 +QF1 +QB1 +QF1QF2 +QF1QB2 + χA1

3 (q+)QF1QB1

− χA1
2 (q+)χA1

2 (Qm)QF1

√
QB1QB2 + . . . ,

Q
4/3
F1
Q

2/3
F2
〈W3⊗3〉 = 1 + 2(QF1 +QB1) +Q2

F1
+Q2

B1
+ 2QF1QF2 + 2QF1QB2

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
QF1QB1

−
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (Qm)QF1

√
QB1QB2 + . . . ,

QF1QF2〈W3⊗3〉 = 1 +QF1 +QF2 +QB1 +QB2 + 3QF1QF2

+ 2QF1QB2 + 2QF2QB1 +QB1QB2 + χA1
3 (q+)(QF1QB1 +QF2QB2)

− χA1
2 (q+)χA1

2 (Qm)(QF1 +QF2)
√
QB1QB2 + . . . .

(5.5)

The VEV of the Wilson loop 〈WRn1,n2
〉 := 〈WRn2,n1

〉 is obtained from 〈WRn1,n2
〉 by ex-

changing QF1 ↔ QF2 , QB1 ↔ QB2 and inverting Qm → (Qm)−1 (reflection about the x5

axis in the brane picture).

We have multiplied the VEVs by appropriate factors Q
2n1+n2

3
F1

Q
n1+2n2

3
F2

to facilitate the

comparison under S-duality. This normalization always corresponds to having expansions

starting with a term 1. This indicates that they are normalized indices counting some

BPS states. It would be interesting to understand what these states are in detail in a

future work.

5.1.2 SU(2)π × SU(2)π loops

In the SU(2)π × SU(2)π theory we consider Wilson loops in the tensor product repre-

sentations R̃n1,n2 = (2⊗n1 ,2⊗n2). Again other Wilson loops can be obtained as linear

22The distances between NS5 branes are, in this case, the lengths of D5 segments and correspond to the

effective abelian couplings on the Coulomb branch. They can be computed as the second derivative of the

prepotential as in previous sections. Here F = t
2

∑
i a

2
i + 1

6

∑
i<j |ai−aj |

3− 1
12

∑
i

[
|ai−m1|3 + |ai−m2|3

]
.
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Figure 12. a) Brane realization of the SU(2)π × SU(2)π theory. b) Brane setup ADHM quiver

SQM for the (k1, k2)-instanton sector in the presence of an (n1, n2) D3 branes SQM loop.

combination of those. These Wilson loops are related to the natural SQM loop that is

engineered with n1 D3 branes in the right-central region (between the middle and the rigth

NS5 segment) and n2 D3 branes in the left-central region (between the left and middle

NS5 segments), as shown in figure 12-b. This SQM loop corresponds to a (0,4) SQM

theory with 2n1 + 2n2 Fermi multiplets transforming in the (2,1,n1,1) ⊕ (1,2,1,n2)

of SU(2) × SU(2) × U(n1)f1 × U(n2)f2 with U(n1)f1 × U(n2)f2 the flavor symmetries

and SU(2) × SU(2) gauged with 5d fields (this is the SQM theory in figure 12-b when

k1 = k2 = 0).

Following the usual heuristic argument, we say that the string configurations contribut-

ing to the Wilson loop VEV 〈WR̃n1,n2
〉 are those with n1 D3s in the central right-region,

n2 D3s in the left-central region, and with zero net-number of strings attached. These

contributions are extracted from the SQM loop VEV by selecting the U(1)n1 × U(1)n2 ⊂
U(n1)f1 ×U(n2)f2 neutral sector, namely by performing the residue computation

〈WR̃n1,n2
〉 = (−1)n1+n2

∮
C

n1∏
i=1

dxi
2πixi

n2∏
j=1

dzj
2πizj

〈L(n1,n2)
SQM 〉(x, z) , (5.6)

where xi and zj are the U(n1)f1 and U(n2)f2 fugacities, respectively, and the contour C is

chosen as unit circles with residues at xi = (q1q2)±1xj and zi = (q1q2)±1zj excluded.

The computation of 〈L(n1,n2)
SQM 〉 is performed using the (k1, k2)-instanton ADHM quiver

of figure 12-b, read from the brane setup with k1 + k2 D1 segments. In the presence of a
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non-zero theta angle for the SU(2) gauge factors the computation of the half-index must

be modified. We follow the prescription of [12], appendix A (see also appendix A).

We start from the U(2) × U(2) theory (without Chern-Simons terms) with Coulomb

parameters aij , i = 1, 2, j = 1, 2, and impose the trace condition a11 +a12 = −(a21 +a22) =

mbif the mass of the bifundamental hypermultiplet. We then define the SU(2) × SU(2)

Coulomb parameters ã1 = 1
2(a11 − a12), ã2 = 1

2(a21 − a22) and the fugacities23

α̃1 = eã1 , α̃2 = eã2 , µ̃ = embif . (5.7)

Here again the formulas are too long to be reported in terms of the gauge theory parameters.

The result that we find from the residue formula (5.6) reproduce the known classical parts

of the Wilson loop VEVs.

To compare with the dual SU(3) Wilson loops we introduce the new set of variables

Q̃Fi , Q̃Bj corresponding to (exponentiated) distances between D5 segments and between

NS5 segments respectively.

Q̃F1 = e−2ã1 = α̃−2
1 , Q̃F2 = e−2ã2 = α̃−2

2 , Q̃m = em̃ = µ̃ ,

Q̃B1 = e−t̃1−2ã1+ã2 = Q̃1α̃
−2
1 α̃2 , Q̃B2 = e−t̃2+ã1−2ã2 = Q̃2α̃1α̃

−2
2 .

(5.8)

We then express the results in terms a double expansion in Q̃Fi , Q̃Bj . We show here the

expansions up to order two, and in appendix C.2 up to order three, with appropriate

multiplicative factors Q̃
n1/2
F1

Q̃
n2/2
F2

,

Q̃
1/2
F1
〈W(2,1)〉 = 1 + Q̃B1 + Q̃F1 + Q̃B1Q̃B2 + Q̃B1Q̃F2 + χA1

3 (q+)Q̃B1Q̃F1

− χA1
2 (q+)χA1

2 (Q̃m)Q̃B1

√
Q̃F1Q̃F2 + . . . ,

Q̃F1〈W(2⊗2,1)〉 = 1 + 2(Q̃B1 + Q̃F1) + Q̃2
B1

+ Q̃2
F1

+ 2Q̃B1Q̃B2 + 2Q̃B1Q̃F2

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
Q̃B1Q̃F1

−
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (Q̃m)Q̃B1

√
Q̃F1Q̃F2 + . . . ,

Q̃
1/2
F1
Q̃

1/2
F2
〈W(2,2)〉 = 1 + Q̃B1 + Q̃B2 + Q̃F1 + Q̃F2 + 3Q̃B1Q̃B2

+ 2Q̃B1Q̃F2 + 2Q̃B2Q̃F1 + Q̃F1Q̃F2 + χA1
3 (q+)(Q̃B1Q̃F1 + Q̃B2Q̃F2)

− χA1
2 (q+)χA1

2 (Q̃m)(Q̃B1 + Q̃B2)

√
Q̃F1Q̃F2 + . . . .

(5.9)

The Wilson loops 〈WRn2,n1
〉 are obtained from 〈WRn1,n2

〉 by the exchange Q̃F1 ↔ Q̃F2 ,

Q̃B1 ↔ Q̃B2 and the inversion Q̃m → (Q̃m)−1, corresponding to a reflection about the x6

axis in the brane picture.

5.1.3 S-duality

We are now ready to compare Wilson loops across S-duality and find the exact map. The

map of parameters is simply the exchange of the QFi , QBj with the Q̃Bi , Q̃Fj :

S-duality map : (QFi , QBj , Qm)↔ (Q̃Bi , Q̃Fj , Q̃m) . (5.10)

23To be precise the aij parameters corresponds to the x6 positions of the D5 segments in the brane

picture. They are related to the a
(I)
j of appendix A as a1j = a

(1)
j +mbif/2 and a2j = a

(2)
j −mbif/2.
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From the brane realization of the loops we can already predict the map up to multiplicative

factors. The Wilson loops realized with n1 and n2 D3 branes in the two central regions of

the brane web, with zero net number of strings attached, are related across S-duality. We

thus expect the duality to map the SU(3) loop WRn1,n2
to the SU(2)×SU(2) loop WR̃n1,n2

(we chose the notations purposefully). From the low n1, n2 exact computations above we

find the exact relation

Q
2n1+n2

3
F1

Q
n1+2n2

3
F2

〈WRn1,n2
〉 = Q̃

n1
2
F1
Q̃

n2
2
F2
〈WR̃n1,n2

〉 , (5.11)

which, expressed in terms of gauge theory parameters, yields

〈WRn1,n2
〉 = Y −n1

1 Y −n2
2 〈WR̃n1,n2

〉 , (5.12)

with Y1 = e−
2t̃1+t̃2

3 = e
t
2

+
m1+m2

4 and Y2 = e−
t̃1+2t̃2

3 = e
t
2
−m1+m2

4 . Therefore the S-duality

action can be expressed as

S.WRn1,n2
= Y −n1

1 Y −n2
2 WR̃n1,n2

,

S.WR̃n1,n2
= Y n1

1 Y n2
2 WRn1,n2

.
(5.13)

The parameters Y1, Y2 can be understood as background Wilson loops of charge one for

U(1) subgroups of the global symmetry. For instance Y1 is a charge one Wilson loop in

U(1)diag ⊂ U(1)inst ×U(2)flavor in the SU(3) theory.

The fact that explicit computations are in agreement with the above simple formula

is remarkable and provides a strong validation of the procedure we devised for extracting

the Wilson loops VEVs.

Importantly we focused on Wilson loops in the tensor product of (anti)fundamental

representations Rn1,n2 , R̃n1,n2 . From this results one can deduce the S-duality map involv-

ing any chosen representation, however the map will be more complicated, in the sense that

a given SU(3) Wilson loop in representation R will be mapped to a linear combination of

SU(2)× SU(2) Wilson loops and vice-versa.

5.2 SU(3) Nf = 6 and SU(2)× SU(2) Nf = 2 + 2

As a second example we consider the SU(3) theory with Nf = 6 fundamental hyper-

multiplets (without Chern-Simons term). Its brane realization is shown in figure 13-a.

The S-dual brane configuration is that of figure 14-a, which realizes the quiver theory

SU(2)× SU(2), with two fundamental hypermultiplets in each gauge node. We will call it

the SU(2)2
Nf=2+2 theory.

5.2.1 SU(3) Nf = 6

We first compute the VEVs of Wilson loops on S1 × R4
ε1,ε2 in the SU(3) theory, and we

focus on Wilson loops in tensor product representations Rn1,n2 = 3⊗n1 ⊗ 3⊗n2 .

The computation is essentially the same as for the SU(3) Nf = 2 theory. The Wilson

loop VEVs will arise from residues of the SQM loops realized with n = n1 + n2 D3 branes

placed in the central regions of the brane web. The SQM loop 1d theory is the same as
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Figure 13. a) Brane realization of the SU(3) theory with Nf = 6. b) Brane setup ADHM quiver

SQM for the k-instanton sector in the presence of an n D3 branes SQM loop.

for the SU(3) Nf = 2 theory, but the k-instanton ADHM quiver is modified. It is given by

the (0, 4) quiver of figure 13-b.

The relation between the SQM loop and the Wilson loops is still given by (5.1).

We start from the computation for the U(3) theory with Nf = 6 flavors and then

impose the traceless condition a1 + a2 + a3 = 0 on the Coulomb branch parameters. We

denote mi=1,··· ,6 the flavor masses and work in the chamber m1 > a1 > (m2,m3) > a2 >

(m4,m5) > a3 > m6 as depicted in the figure. We define a12 = a1 − a2, a23 = a2 − a3 and

the fugacities

α12 = ea12 , α23 = ea23 , Q = e−t , µi = emi . (5.14)

The formulas that we find in terms of these parameters are again too long to be re-

ported here.

To check conveniently S-duality we express the results in terms of the new variables

A1, A2, w, z and yi, satisfying
∏6
i=1 yi = 1, defined as

α12 =
1

A1w
, α23 =

1

A2z
, Q =

1

wz
, µi =

(w
z

)1/3
yi (i = 1, . . . , 6) . (5.15)

It is believed that the global symmetry group at the SCFT point is enhanced from U(6)flavor

×U(1)inst to SU(2) × SU(2) × SU(6) [11, 12] (see also [40]). Our choice of parameters is

such that w and z will be the fugacities of the two SU(2) factors, while the yi will be the

fugacities of the SU(6).

The new “Coulomb branch” parameters are A1, A2 and in order to check S-duality we

need to expand further the results in small A1, A2. Using the ADHM quivers described in
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figure 13-b and the residue relations, we obtain for 0 ≤ n1, n2 ≤ 1,

A
2/3
1 A

1/3
2 w2/3z1/3〈W3〉 = 1 +A1χ

A1
2 (w)−A5/3

1 A
1/3
2 χA1

2 (q+)χA5
6 (~y) +A

4/3
1 A

2/3
2 χA5

15(~y)

+A1A2χ
A1
2 (w)χA1

2 (z) +A2
1χ
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3 (q+) +A1A

2
2χ

A1
3 (q+)χA1

2 (w)

+A2
1A2

(
1 + χA1

3 (q+)
)
χA1
2 (z)−A2

1A2χ
A1
2 (q+)χA1

2 (w)χA5
20(~y)

−A4/3
1 A

5/3
2 χA1

2 (q+)χA1
2 (w)χA5

6
(~y) +A

5/3
1 A
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2 χA1

2 (w)χA5

15
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−A5/3
1 A

4/3
2 χA1

2 (q+)χA1
2 (z)χA5

6 (~y) +A3
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A1
5 (q+)χA1

2 (w)

−A8/3
1 A

1/3
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2 (w)χA5

6 (~y)

+A
7/3
1 A

2/3
2 χA1

3 (q+)χA1
2 (w)χA5

15(~y) + . . . ,

(5.16)
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4/3
1 A

2/3
2 w4/3z2/3〈W3⊗3〉 = 1 + 2A1χ

A1
2 (w) + 2A

4/3
1 A

2/3
2 χA5

15(~y) + 2A1A2χ
A1
2 (w)χA1

2 (z)

−A5/3
1 A

1/3
2

(
χA1
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2 (q−)
)
χA5
6 (~y) +A2

1χ
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3 (w)

+A2
1

(
χA1
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2 (q+)χA1
2 (q−)

)
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2χ
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3 (q+)χA1

2 (w)

+A3
1χ
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4 (q+)

(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (w)

−A8/3
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1/3
2 χA1

3 (q+)
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (w)χA5

6 (~y)
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1 A
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2 χA1

2 (q+)
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (w)χA5
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4/3
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2 χA1

2 (q+)χA1
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−A2
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(
χA1
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2 (q−)
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χA1
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2 (q+) + χA1

2 (q−)
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+ 2A
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6 (~y) + . . . ,

(5.17)

A1A2wz〈W3⊗3〉 = 1 +A1χ
A1
2 (w) +A2χ

A1
2 (z) +A2

1χ
A1
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−A2
1A2χ

A1
2 (q+)χA1

2 (w)χA5
20(~y) +A2

1A2

(
2χA1

3 (q+)

+ χA1
2 (q+)χA1

2 (q−) + 1
)
χA1
2 (z)

+A2
1A2χ
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2 (z)−A5/3
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2

(
2χA1
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)
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+ 2A
5/3
1 A

4/3
2 χA1

2 (w)χA5

15
(~y)

−A4/3
1 A

5/3
2

(
2χA1

2 (q+) + χA1
2 (q−)

)
χA1
2 (w)χA5

6
(~y)

+ 2A
4/3
1 A

5/3
2 χA1

2 (z)χA5
15(~y) + . . . . (5.18)

As expected the coefficients in the expansion are characters of SU(2)2×SU(6), providing a

strong support to the symmetry enhancement proposal.

5.2.2 SU(2)× SU(2), Nf = 2 + 2

In the SU(2)2
Nf=2+2 theory we consider Wilson loops in the tensor product representa-

tions R̃n1,n2 = (2⊗n1 ,2⊗n2). Their VEVs are computed from the residue formula 5.6 as

before, from the same SQM loop VEVs, but with the (k1, k2)-instanton ADHM quiver of

figure 14-b.

The relevant fugacities are the same α̃1, α̃2, Q̃1, Q̃2, µ̃ as before, together with the

flavor fugacities µ̃ij = emij−
1
2

(ai1+ai2) ≡ em
′
ij , with i, j = 1, 2, for the 2+2 fundamental

hypermultiplets. m′ij are the masses of the fundamental hypermultiplets in the SU(2)2

theory.

We reorganize the fugacities to check S-duality and make the SU(2)2×SU(6) symmetry

manifest (enhanced from SU(2)2
fund × SU(2)bif ×U(1)2

inst) as follows:

α̃1 =
(y3y4y5y6)1/4

A
2/3
1 A

1/3
2 (y1y2)1/4

, α̃2 =
(y5y6)1/4

A
1/3
1 A

2/3
2 (y1y2y3y4)1/4

, Q̃1 =

√
y3y4

y1y2
, Q̃2 =

√
y5y6

y3y4
,

µ̃=

√
y3

y4
, µ̃11 = w

√
y1

y2
, µ̃12 =

1

w

√
y1

y2
, µ̃21 = z

√
y6

y5
, µ̃22 =

1

z

√
y6

y5
,

(5.19)

where we used the same notations A1, A2, w, z, yi as in the previous section, providing

implicitly the map of parameters under S-duality.

Expanding at small A1, A2 we find

A
2/3
1 A

1/3
2

(
y1y2

y3y4y5y6

)1/4

〈W(2,1)〉 = r.h.s. of (5.16) ,

A
4/3
1 A

2/3
2

(
y1y2

y3y4y5y6

)1/2

〈W(2⊗2,1)〉 = r.h.s. of (5.17) ,

A1A2

(
y1y2

y5y6

)1/2

〈W(2,2)〉 = r.h.s. of (5.18) .

(5.20)

5.2.3 S-duality

Acting with S-duality on the brane setups realizing the loop insertions we can predict the

same map between Wilson loop operators as in the previous section, up to the dressing
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Figure 14. a) Brane realization of the SU(2)2Nf=2+2 theory. b) Brane setup ADHM quiver SQM

for the (k1, k2)-instanton sector in the presence of an (n1, n2) D3 branes SQM loop.

with a background Wilson loop: the SU(3) Wilson loop WRn1,n2
is mapped to the SU(2)2

Wilson loop WR̃n1,n2
. The exact computations above support the precise relation

〈WRn1,n2
〉 = Y −n1

1 Y −n2
2 〈WR̃n1,n2

〉 , (5.21)

with

Y1 = e−
2t̃1+t̃2

3
+ 1

3
(m′11−m′12)+ 1

6
(m′21−m′22) = e

t
2
−m1+m2−m3−m4−m5−m6

4 ,

Y2 = e−
t̃1+2t̃2

3
+ 1

6
(m′11−m′12)+ 1

3
(m′21−m′22) = e

t
2
−m1+m2+m3+m4−m5−m6

4 .
(5.22)

The S-duality action can be expressed as

S.WRn1,n2
= Y −n1

1 Y −n2
2 WR̃n1,n2

. (5.23)

The parameters Y1, Y2 can be understood as background Wilson loops of the global sym-

metry group.

6 Generalization

From the heuristic brane reasoning and the above exact results it is straightforward to

conjecture the S-duality map relating the two following theories: the SU(M)(Nf1−Nf2)/2

theory (the subscript indicates the Chern-Simons level) with 2N−4+Nf1+Nf2 fundamental
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hypermultiplets, for 0 ≤ Nf1 ≤ 2 and 0 ≤ Nf2 ≤ 2, and the SU(2)M−1 linear quiver theory

with Nf1 and Nf2 fundamental hypermultiplets in the left-most and right-most SU(2)

nodes respectively.24

The Wilson loops transforming covariantly under S-duality are the SU(M) loops

W(n1,··· ,nM−1) in tensor product of rank i antisymmetric representations Ai and their dual

SU(2)M−1 loops W̃(n1,··· ,nM−1) in the representation 2⊗ni for each quiver node:

A⊗n1
1 ⊗A⊗n2

2 ⊗ · · · ⊗ A⊗nM−1

M−1 ↔ (2⊗n1 ,2⊗n2 , · · · ,2⊗nM−1) . (6.1)

The associated SQM loops are realized with stacks of n1, n2, · · · , nM−1 D3 branes placed

in the M − 1 central regions of the brane system. The results in this paper generalize to

the S-duality map

S.W(n1,··· ,nM−1) = Y −n1
1 · · ·Y −nM−1

M−1 W̃(n1,··· ,nM−1) , (6.2)

with parameters Yi which are background Wilson loops, for which we conjecture the ex-

pressions in terms of SU(M) parameters Yi = e
t
2
− 1

4
(
∑Nf1
k=1 m̂k+

∑2i−2
k=1 mk−

∑2M−4
k=2i−1 mk−

∑Nf2
k=1 m̌k),

where m̂k, mk and m̌k are the masses of the Nf1, 2M − 4 and Nk2 fundamental hypermul-

tiplets respectively.

Further generalization to the SU(M)N−1− SU(N)M−1 duality can also be worked out

along the same lines.
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A ADHM formulae

In this appendix we collect the formulae we used in the main text to compute the partition

function on the Omega-deformed flat space R4
ε1,2×S

1, or “half-index”, of 5d N = 1 SU(N)

theories with Nf flavors, engineered via 5-brane webs, in the presence of the SQM loop

operator generated by the insertion of n D3 branes. More precisely what we introduce

below are the formulae for U(N)κ theories, with Chern-Simons level κ.25 SU(N)κ results

can be recovered after imposing the traceless condition and performing some other minor

changes, as discussed for example in [12, 36] and reviewed below. Most of this short review

is based on [14, 22].

24The conjectured duality actually extends to the ranges 0 ≤ Nf1 ≤ 4, 0 ≤ Nf1 ≤ 4, although this relates

to more involved brane configurations compared to what we have been considering in this paper. The case

Nf1 = Nf2 = 4 is actually conjectured to describe a 6d N = (1, 0) SCFT compactified on a circle. We

thank Gabi Zafrir for pointing this to us.
25The specific choices of κ is dictated by the number of flavors Nf in the theory and the sign of their

mass parameters (and related to the angles of the external 5-branes of the web).
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A.1 Single gauge node case

Let us start by considering the half-index Z5d for a 5d N = 1 U(N)κ theory with Nf

fundamental matter (without loop operators), which is just the partition function of the

5d theory on the Omega-deformed background R4
ε1,2 × S

1. This is known to factorize as

Z5d = Zpert
5d Z inst

5d ; (A.1)

here Zpert
5d contains the perturbative (classical + 1-loop) contribution to the partition func-

tion whose explicit form will not be needed in the following, while Z inst
5d contains non-

perturbative corrections due to instantons. The instanton part of the partition function

takes the form of a series expansion in the instanton fugacity Q = e−t:

Z inst
5d = 1 +

∑
k>1

QkZ
inst,(k)
5d , (A.2)

where Z
inst,(k)
5d is the partition function of the N = (0, 4) ADHM quantum mechanics for k

instantons. This reduces to the contour integral

Z
inst,(k)
5d =

1

k!

∮ [ k∏
s=1

dφs
2πi

]
Z(k)

vecZ
(k)
fundZ

(k)
CS , (A.3)

with (defining sh(x) = 2 sinh(x2 ))

Z(k)
vec =

(
− sh(2ε+)

sh(ε1)sh(ε2)

)k k∏
s 6=t

sh(φs − φt)sh(φs − φt + 2ε+)

sh(φs − φt + ε1)sh(φs − φt + ε2)

k∏
s=1

N∏
r=1

1

sh(φs − ar + ε+)sh(−φs + ar + ε+)
,

Z
(k)
fund =

k∏
s=1

Nf∏
b=1

sh(−φs +mb) , Z
(k)
CS =

k∏
s=1

e−κφs .

(A.4)

In this expression ε1,2 are the Omega background deformation parameters of R4
ε1,2 × S

1,

and we define ε± = ε1±ε2
2 , while diag(a1, a2, · · · , aN ) correspond to the Cartan VEV of

the real scalar in the 5d vector multiplet, and mb are the masses of the 5d fundamental

matter multiplets. In terms of SQM symmetries, ε+ is the SU(2) = diag(SU(2)2×SU(2)R)

R-symmetry equivariant parameter, while ε− is a flavor symmetry parameter. The above

factors combine contributions from various 1d N = (0, 4) multiplets of the ADHM SQM.

Z
(k)
vec contains the contributions of a U(k) vector multiplet with an adjoint hypermultiplet,

and N fundamental hypermultiplets, Z
(k)
fund matches the contribution of Nf fundamental

Fermi multiplets with single complex fermion, and Z
(k)
CS is only the classical contribution

from a 1d supersymmetric Chern-Simons term at level −κ.26

The integral (A.3) is evaluated by residues, and the contour choice is dictated by the

Jeffrey-Kirwan prescription. For the case at hand, the poles selected by this prescription

26For references on 1d N = (0, 4) multiplets see footnote 14.
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are classified by N -tuples of Young tableaux ~Y = {Y1, . . . , YN} with total number of boxes

|~Y | =
∑N

r=1 |Yr| = k. Practically, this corresponds to taking residues at

φs = ar + ε+ + (i− 1)ε1 + (j − 1)ε2 , (A.5)

with (i, j) box in the tableau Yr. As explained in [12, 36], the SU(N)κ partition function (or

SU(2) partition function with some discrete θ-angle for N = 2) is obtained from the U(N)κ
one after we impose the traceless condition

∑N
r=1 ar = 0, redefine Q → (−1)κ+Nf/2Q and

remove (by hand) additional U(1) factors if parallel external NS5 branes are present [37, 38].

These results are modified by the presence of the SQM loop realized by the addition of

n D3 branes in the brane setup. The half-index Z5d-1d computes the partition function of

a 5d N = 1 U(N)κ theory with Nf flavors coupled to the 1d N = (0, 4) SQM by gauging

1d flavor symmetries with 5d fields. It factorizes as

Z5d-1d = Zpert
5d Z inst

5d-1d ; (A.6)

here Zpert
5d is as in (A.1), while Z inst

5d-1d contains the non-perturbative instanton corrections

to the 5d-1d system. The instanton part can again be written as a series expansion in Q,

Z inst
5d-1d =

∑
k>0

QkZ
inst,(k)
5d-1d , (A.7)

where this time Z
inst,(k)
5d-1d is the partition function of a modified (0,4) ADHM quantum

mechanics for k instantons, the modifications being due to additional matter multiplets

arising from strings stretched between D3 and D1 or D5 branes. This takes the contour

integral form

Z
inst,(k)
5d-1d =

1

k!

∮ [ k∏
s=1

dφs
2πi

]
Z(k)

vecZ
(k)
fundZ

(k)
CSZ

(k)
SQM , (A.8)

which is the same as (A.3) apart from the additional contribution

Z
(k)
SQM =

N∏
r=1

n∏
l=1

sh(Ml − ar)
k∏
s=1

n∏
l=1

sh(φs −Ml + ε−)sh(−φs +Ml + ε−)

sh(φs −Ml + ε+)sh(−φs +Ml + ε+)
, (A.9)

corresponding to nN Fermi multiplets with a single fermion (n multiplets in the fundamen-

tal representation of the SU(N) global symmetry, gauged with 5d fields), n fundamental

twisted hypermultiplets and n fundamental Fermi multiplets with two fermions. Here Ml

are the masses of the Fermi multiplets, associated to the U(n) global symmetry of the

ADHM SQM. The contour choice for (A.8) is still dictated by the Jeffrey-Kirwan prescrip-

tion: in this case, apart from the N -tuples of Young tableaux (A.5), additional poles of

the form

φs = Ml − ε+ (A.10)

contribute, where however at most only one pole of the form (A.10) can be selected for

each l = 1, . . . , n; for example, in the N = n = k = 2 case there are five new poles given by{
φ1 = a1,2 + ε+,

φ2 = M1,2 − ε+,
or

{
φ1 = M1 − ε+,
φ2 = M2 − ε+.

(A.11)
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As before, SU(N)κ results can be obtained from U(N)κ ones after imposing the traceless

condition
∑N

r=1 ar = 0, redefining Q→ (−1)κ+Nf/2Q and removing additional U(1) factors

if parallel external NS5 branes are present. However, in the main text we always work with

the normalized VEV of the SQM loop observable

〈LSQM〉 =
Z5d-1d

Z5d
=
Z inst

5d-1d

Z inst
5d

, (A.12)

where we divided by the partition function of the 5d theory. In addition to removing the

Zpert
5d factor, this procedure also eliminates extra U(1) factors due to parallel external NS5

branes; the normalized SU(N)κ observable is therefore obtained from the U(N)κ one (A.12)

simply by imposing the traceless conditions and redefining Q→ (−1)κ+Nf/2Q.

A.2 Linear quiver case

We can now move to the half-index Z5d for a 5d N = 1
∏p
I=1 U(NI)κI linear quiver gauge

theory with p nodes and bifundamental fields (without SQM loop). This is simply the

partition function of the 5d quiver theory on R4
ε1,2 × S

1, which factorizes as

Z5d = Zpert
5d Z inst

5d . (A.13)

We will only be interested in the instanton part, which takes the form of a series expansion

in the instanton fugacities Qi = e−ti , i = 1, . . . , p, of the p gauge groups:

Z inst
5d =

∑
k1,...,kp>0

Qk1
1 . . . Q

kp
p Z

inst,(~k)
5d , (A.14)

where we denoted ~k = {k1, . . . , kp}. Here Z
inst,(~k)
5d is the partition function for a generalized

quiver ADHM quantum mechanics of ~k instantons, which reduces to the contour integral

Z
inst,(~k)
5d =

1

k1! . . . kp!

∮ [ p∏
I=1

kI∏
s=1

dφ
(I)
s

2πi

]
Z(~k)

vecZ
(~k)
bif Z

(~k)
CS , (A.15)

with the various factors entering the integrand given by

Z(~k)
vec =

p∏
I=1

(
− sh(2ε+)

sh(ε1)sh(ε2)

)kI p∏
I=1

kI∏
s 6=t

sh(φ
(I)
s − φ(I)

t )sh(φ
(I)
s − φ(I)

t + 2ε+)

sh(φ
(I)
s − φ(I)

t + ε1)sh(φ
(I)
s − φ(I)

t + ε2)

p∏
I=1

kI∏
s=1

NI∏
r=1

1

sh(φ
(I)
s − a(I)

r + ε+)sh(−φ(I)
s + a

(I)
r + ε+)

,

(A.16)

Z
(~k)
bif =

p−1∏
I=1

kI∏
s=1

NI+1∏
r=1

sh(−φ(I)
s + a(I+1)

r +m(I))

p−1∏
I=1

kI+1∏
s=1

NI∏
r=1

sh(φ(I+1)
s − a(I)

r −m(I))

p−1∏
I=1

kI∏
s=1

kI+1∏
t=1

sh(−φ(I)
s + φ

(I+1)
t +m(I) + ε−)sh(φ

(I)
s − φ(I+1)

t −m(I) + ε−)

sh(−φ(I)
s + φ

(I+1)
t +m(I) + ε+)sh(φ

(I)
s − φ(I+1)

t −m(I) + ε+)
,

(A.17)
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Z
(~k)
CS =

p∏
I=1

kI∏
s=1

e−κIφ
(I)
s . (A.18)

Z
(~k)
bif is also a combination of factors arising from (0,4) SQM multiplets in the ADHM

quiver. In this expression a
(I)
r are the VEV of the real scalar field in the 5d U(NI)κI vector

multiplet, while m(I) can be identified with the mass of the I-th 5d bifundamental matter

multiplet, because of constraints from potentials coupling ADHM and 5d matter fields. The

integration contour for (A.15) is determined by the Jeffrey-Kirwan prescription; similarly to

the single gauge node case, the relevant poles to be considered for the integration variables

φ
(I)
s are classified in terms of NI -tuples of Young tableaux ~Y (I) = {Y (I)

1 , . . . , Y
(I)
NI
} with

total number of boxes |~Y (I)| =
∑NI

r=1 |Y
(I)
r | = kI , that is

φ(I)
s = a(I)

r + ε+ + (i− 1)ε1 + (j − 1)ε2 (A.19)

with (i, j) box in the tableau Y
(I)
r . As before, the partition function for the

∏p
I=1 SU(NI)κI

quiver theory is obtained from the
∏p
I=1 U(NI)κI one by imposing the traceless condition∑NI

r=1 a
(I)
r = 0 for all gauge nodes I = 1, . . . , p, redefining QI → (−1)κI+NI+1/2+NI−1/2QI

(here N0 = Np+1 = 1) and removing extra U(1) factors if the 5-brane web involves parallel

external NS5 branes.

The computation is modified by the insertion of the SQM loop, associated with the presence

of nI D3 branes for each set of NI D5 branes. The half-index Z5d-1d computes the partition

function of a 5dN = 1
∏p
I=1 U(NI)κI linear quiver gauge theory with bifundamental matter

fields coupled to a 1d SQM, which lives at the intersection of the D3 and D5-branes, in the

usual way. The half-index factorizes as

Z5d-1d = Zpert
5d Z inst

5d-1d . (A.20)

Z inst
5d-1d is expressed as a series expansion in the instanton fugacities Q1, . . . , Qp of the 5d

gauge groups,

Z inst
5d-1d =

∑
k1,...,kp>0

Qk1
1 . . . Q

kp
p Z

inst,(~k)
5d-1d , (A.21)

where Z
inst,(~k)
5d-1d is the partition function for a quiver (0,4) ADHM quantum mechanics of

~k instantons modified by additional matter multiplets sourced by strings between D3 and

D5 or D1 branes; this can be written as the contour integral

Z
inst,(~k)
5d-1d =

1

k1! . . . kp!

∮ [ p∏
I=1

kI∏
s=1

dφ
(I)
s

2πi

]
Z(~k)

vecZ
(~k)
bif Z

(~k)
CSZ

(~k)
SQM , (A.22)

which is similar to (A.15) modulo the additional contribution to the integrand

Z
(~k)
SQM =

p∏
I=1

NI∏
r=1

nI∏
l=1

sh(M
(I)
l − a

(I)
r )

p∏
I=1

kI∏
s=1

nI∏
l=1

sh(φ
(I)
s −M (I)

l + ε−)sh(−φ(I)
s +M

(I)
l + ε−)

sh(φ
(I)
s −M (I)

l + ε+)sh(−φ(I)
s +M

(I)
l + ε+)

,

(A.23)
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with M
(I)
l the masses of Fermi multiplets and twisted hypermultiplets, associated to the∏p

I=1 U(nI) global symmetry of the ADHM SQM.

The contour of integration is dictated once more by the Jeffrey-Kirwan prescription:

apart from the NI -tuples of Young tableaux (A.19) there are additional poles contributing,

some of the form (A.10), i.e.

φ(I)
s = M

(I)
l − ε+ , (A.24)

and some other of the form

φ
(I+1)
t = φ(I)

s −m(I) − ε+ , φ
(I−1)
t = φ(I)

s +m(I−1) − ε+ , (A.25)

for φ
(I)
s as in (A.24); we are however not able to write them in full generality, therefore we

find these additional poles with a case by case analysis. Results for
∏p
I=1 SU(NI)κI quiver

theories are as usual recovered by imposing the traceless condition
∑NI

r=1 a
(I)
r = 0 for all

I = 1, . . . , p, redefining QI → (−1)κI+NI+1/2+NI−1/2QI and normalizing by the 5d partition

function Z5d (this removes additional U(1) factors arising if parallel external NS5 branes

are present).

B SU(2) theory with Nf = 3, 4

In this appendix we extend the computations of Wilson loop VEVs and we express the

S-duality map for the SU(2) theory with Nf = 3 and Nf = 4 flavors.

B.1 Nf = 3

The brane realization of the SU(2) theory with Nf = 3 flavors is shown in figure 15. We

can regard the theory as arising from the U(2) theory with Nf = 3 with Chern-Simons

term κ = −1
2 , by ungauging the diagonal U(1). We denote m1,m2,m3 the masses of the

flavor hypermultiplets. With a1 = −a2 = a, we define the fugacities

α = ea , µi = emi . (B.1)

The Wilson loops W2⊗n are evaluated from the residue formula (3.7) with the SQM loop

LnSQM associated to the k-instanton ADHM SQM shown in figure 15-b. 〈LnSQM〉 is evaluated

following the recipe of appendix A, taking into account the corrections due to the U(2) →
SU(2) projection and the presence of parallel external NS5 branes. We find

〈W2〉 =α+ α−1 +Q

√
q1q2

µ1µ2µ3

(1 + q1q2)(µ1 + µ2 + µ3 + µ1µ2µ3)

(1− α2q1q2)(1− α−2q1q2)

−Q q1q2√
µ1µ2µ3

(α+ α−1)(1 + µ1µ2 + µ1µ3 + µ2µ3)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) ,

〈W2⊗2〉 =α2 + 2 + α−2

+Q
1 + µ1µ2 + µ1µ3 + µ2µ3√

µ1µ2µ3

(1− q1)(1− q2)(1 + q1q2)− 2q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)

+Q
µ1µ2µ3 + µ1 + µ2 + µ3√

µ1µ2µ3

√
q1q2(1 + q1)(1 + q2)(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

(B.2)
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Figure 15. Brane realization of the SU(2) theory with Nf = 3 and brane setup ADHM quiver

SQM for the k-instanton sector.

To exhibit the E4 = SU(5) enhanced flavor symmetry we introduce the fugacities

A = e−
2t
5
−a , y1 = e

4t
5 , y2 = e−

t
5

+
m1−m2+m3

2 ,

y3 = e−
t
5
−m1−m2−m3

2 , y4 = e−
t
5
−m1+m2+m3

2 , y5 = e−
t
5

+
m1+m2−m3

2 , (B.3)

where yi are the SU(5) fugacities satisfying
∏
i yi = 1. In terms of the new parameters, the

S action is

S-duality : y1 ↔ y2 , y3 ↔ y4 . (B.4)

It is a Weyl transformation in SU(5). It does not commute with the Weyl flavor symmetries

given by permutations of m1,m2,m3, which correspond to the permutations of y2, y3, y5 in

the SU(5) Weyl group.

We then expand further the Wilson loop VEVs at small A,

Ay
1/2
1 〈W2〉 = 1 + χA4

5 (~y)A2 − χA1
2 (q+)χA4

5
(~y)A3 + χA1

3 (q+)χA4
10(~y)A4

− χA1
4 (q+)χA4

24(~y)A5 −
(
χA1
4 (q+) + χA1

2 (q+) + χA1
5 (q+)χA1

2 (q−)
)
A5

+
(
χA1
5 (q+) + χA1

3 (q+) + χA1
6 (q+)χA1

2 (q−)
)
χA4

10
(~y)A6

+ χA1
5 (q+)χA4

40
(~y)A6 + χA1

5 (q+)χA4

15
(~y)A6 + . . . ,

(B.5)
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A2y1〈W2⊗2〉 = 1 + 2χA4
5 (~y)A2 −

(
χA1
2 (q+) + χA1

2 (q−)
)
χA4

5
(~y)A3

+ χA4
15(~y)A4 +

(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−)

)
χA4
10(~y)A4

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
3 (q+)χA1

2 (q−)
)
χA4
24(~y)A5

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
3 (q+)χA1

2 (q−)

+ χA1
5 (q+)χA1

2 (q−) + χA1
4 (q+)χA1

3 (q−) + χA1
2 (q−)

)
A5

+
(
χA1
5 (q+) + 2χA1

3 (q+) + χA1
6 (q+)χA1

2 (q−) + χA1
5 (q+)χA1

3 (q−)

+ χA1
4 (q+)χA1

2 (q−) + χA1
2 (q+)χA1

2 (q−)
)
χA4

10
(~y)A6

+
(
χA1
5 (q+) + χA1

4 (q+)χA1
2 (q−) + 1

)
χA4

15
(~y)A6

+
(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
χA4

40
(~y)A6 + . . . .

(B.6)

The expansions exhibit the expected SU(5)(∼ A4) characters.

Under S-duality, we have

S.W2⊗n(A, y1, y2, y3, y4, y5) =

(
y1

y2

)−n
2

W2⊗n(A, y2, y1, y4, y3, y5) , (B.7)

with the multiplicative parameter (y1/y2)
1
2 = e

t
2
−m1−m2+m3

4 .

B.2 Nf = 4

The brane realization of the SU(2) theory with Nf = 4 flavors is shown in figure 16.

We can regard the theory as arising from the U(2) theory with Nf = 4 (without Chern-

Simons term), by ungauging the diagonal U(1). We denote mi the masses of the flavor

hypermultiplets, with fugacities µi = emi .

The Wilson loops W2⊗n are evaluated from the residue formula (3.7) with the SQM

loop LnSQM associated to the k-instanton ADHM SQM shown in figure 16-b. 〈LnSQM〉 is

evaluated following the recipe of appendix A, taking into account the corrections due to

the U(2)→ SU(2) projection and the presence of parallel external NS5 branes. We find

〈W2〉 =α+ α−1 +Q

√
q1q2∏
i µi

(1 + q1q2)(
∑

i µi +
∑

i<j<k µiµjµk)

(1− α2q1q2)(1− α−2q1q2)

−Q q1q2√∏
i µi

(α+ α−1)(1 +
∑

i<j µiµj +
∏
i µi)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) ,

〈W2⊗2〉 =α2 + 2 + α−2

+Q
1 +

∑
i<j µiµj +

∏
i µi√∏

i µi

(1− q1)(1− q2)(1 + q1q2)− 2q1q2(α2 + 2 + α−2)

(1− α2q1q2)(1− α−2q1q2)

+Q

∑
i µi +

∑
i<j<k µiµjµk√∏
i µi

√
q1q2(1 + q1)(1 + q2)(α+ α−1)

(1− α2q1q2)(1− α−2q1q2)
+O(Q2) .

(B.8)
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Figure 16. Brane realization of the SU(2) theory with Nf = 4 and brane setup ADHM quiver

SQM for the k-instanton sector.

To exhibit the E5 =Spin(10) enhanced flavor symmetry we introduce the fugacities

A = e−
t
2
−a , y1 = et , y2 = e

m1−m2+m3−m4
2 ,

y3 = e
−m1+m2+m3−m4

2 , y4 = e−
m1+m2+m3+m4

2 , y5 = e
m1+m2−m3−m4

2 , (B.9)

where yi are the so(10) fugacities. In terms of the new parameters, the S action is

S-duality : y1 ↔ y2 , y3 ↔ y4 . (B.10)

We then expand further the Wilson loop VEVs at small A,

Ay
1/2
1 〈W2〉 = 1 + χE5

10(~y)A2 − χA1
2 (q+)χE5

16
(~y)A3

+ χA1
3 (q+)χE5

45(~y)A4 +
(
χA1
3 (q+) + χA1

4 (q+)χA1
2 (q−) + 1

)
A4

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
5 (q+)χA1

2 (q−)
)
χE5
16(~y)A5

− χA1
4 (q+)χE5

144(~y)A5 + . . . ,

(B.11)

A2y1〈W2⊗2〉 = 1 + 2χE5
10(~y)A2 −

(
χA1
2 (q+) + χA1

2 (q−)
)
χE5

16
(~y)A3

+ χE5
54(~y)A4 +

(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−)

)
χE5
45(~y)A4

+
(
χA1
3 (q+) + χA1

4 (q+)χA1
2 (q−) + χA1

3 (q+)χA1
3 (q−)

+ χA1
2 (q+)χA1

2 (q−) + 1
)
A4

−
(
χA1
2 (q+) + χA1

2 (q−)
)(
χA1
4 (q+)χA1

2 (q−) + 1
)
χE5
16(~y)A5

−
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
3 (q+)χE5

144(~y)A5 + . . . .

(B.12)

The expansions exhibit the expected Spin(10) characters.
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Under S-duality, we have

S.W2⊗n(A, y1, y2, y3, y4, y5) =

(
y1

y2

)−n
2

W2⊗n(A, y2, y1, y4, y3, y5) , (B.13)

with the multiplicative parameter (y1/y2)
1
2 = e

t
2
−m1−m2+m3−m4

4 .

C Results

In this appendix we collect various results which are too long to be presented in the

main text.

C.1 Wilson loops in SU(3), Nf = 2 theory

Using the notations of the main text, we have

Q
2/3
F1
Q

1/3
F2
〈W3〉

= 1 +QF1 +QB1 +QF1QF2 +QF1QB2 + χA1
3 (q+)QF1QB1

− χA1
2 (q+)χA1

2 (Qm)QF1

√
QB1QB2 − χ

A1
2 (q+)χA1

2 (Qm)QF1QF2

√
QB1QB2

− χA1
4 (q+)χA1

2 (Qm)QF1(QF1 +QB1)
√
QB1QB2

+QF1QF2QB1 + χA1
5 (q+)QF1QB1(QF1 +QB1)

+ χA1
3 (q+)QF1(QB1QB2 +QF1QB2 +QF2QB1 +QF2QB2) + . . . ,

(C.1)

Q
4/3
F1
Q

2/3
F2
〈W3⊗3〉

= 1 + 2(QF1 +QB1) +Q2
F1

+Q2
B1

+ 2QF1QF2 + 2QF1QB2

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
QF1QB1

−
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (Qm)QF1

√
QB1QB2

+ 2Q2
F1
QF2 +

(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
QF1QB1(QF1 +QB1)

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
QF1QB2(QF1 +QB1)

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 3

)
QF1QF2QB1 + 2χA1

3 (q+)QF1QF2QB2

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
3 (q+)χA1

2 (q−)
)
χA1
2 (Qm)QF1(QF1 +QB1)

√
QB1QB2

− 2χA1
2 (q+)χA1

2 (Qm)QF1QF2

√
QB1QB2 + . . . ,

(C.2)
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QF1QF2〈W3⊗3〉
= 1 +QF1 +QF2 +QB1 +QB2

+ 3QF1QF2 + 2QF1QB2 + 2QF2QB1 +QB1QB2 + χA1
3 (q+)(QF1QB1 +QF2QB2)

− χA1
2 (q+)χA1

2 (Qm)(QF1 +QF2)
√
QB1QB2 +Q2

F1
QF2 +QF1Q

2
F2

+QF1Q
2
B2

+QF2Q
2
B1

+ χA1
5 (q+)(QF1Q

2
B1

+Q2
F1
QB1 +QF2Q

2
B2

+Q2
F2
QB2)

+ χA1
3 (q+)(Q2

F1
QB2 +Q2

F2
QB1 + 2QF1QB1QB2 + 2QF2QB1QB2)

+
(

2χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 2

)
QF1QF2(QB1 +QB2)

− χA1
4 (q+)χA1

2 (Qm)(QF1QB1 +QF2QB2 +Q2
F1

+Q2
F2

)
√
QB1QB2

− χA1
2 (q+)χA1

2 (Qm)(QF1QB2 +QF2QB1)
√
QB1QB2

−
(

3χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (Qm)QF1QF2

√
QB1QB2 + . . . .

(C.3)

C.2 Wilson loops in SU(2)π × SU(2)π theory

Using the notations of the main text, we have

Q̃
1/2
F1
〈W(2,1)〉

= 1 + Q̃B1 + Q̃F1 + Q̃B1Q̃B2 + Q̃B1Q̃F2 + χA1
3 (q+)Q̃B1Q̃F1

− χA1
2 (q+)χA1

2 (Q̃m)Q̃B1

√
Q̃F1Q̃F2 − χ

A1
2 (q+)χA1

2 (Q̃m)Q̃B1Q̃B2

√
Q̃F1Q̃F2

− χA1
4 (q+)χA1

2 (Q̃m)Q̃B1(Q̃B1 + Q̃F1)

√
Q̃F1Q̃F2

+ Q̃B1Q̃B2Q̃F1 + χA1
5 (q+)Q̃B1Q̃F1(Q̃B1 + Q̃F1)

+ χA1
3 (q+)Q̃B1(Q̃F1Q̃F2 + Q̃B1Q̃F2 + Q̃B2Q̃F1 + Q̃B2Q̃F2) + . . . ,

(C.4)

Q̃F1〈W(2⊗2,1)〉

= 1 + 2(Q̃B1 + Q̃F1) + Q̃2
B1

+ Q̃2
F1

+ 2Q̃B1Q̃B2 + 2Q̃B1Q̃F2

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
Q̃B1Q̃F1

−
(
χA1
2 (q+) + χA1

2 (q−)
)
χA1
2 (Q̃m)Q̃B1

√
Q̃F1Q̃F2

+ 2Q̃2
B1
Q̃B2 +

(
χA1
5 (q+) + χA1

3 (q+) + χA1
4 (q+)χA1

2 (q−)
)
Q̃B1Q̃F1(Q̃B1 + Q̃F1)

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 1

)
Q̃B1Q̃F2(Q̃B1 + Q̃F1)

+
(
χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 3

)
Q̃B1Q̃B2Q̃F1 + 2χA1

3 (q+)Q̃B1Q̃B2Q̃F2

−
(
χA1
4 (q+) + χA1

2 (q+) + χA1
3 (q+)χA1

2 (q−)
)
χA1
2 (Q̃m)Q̃B1(Q̃B1 + Q̃F1)

√
Q̃F1Q̃F2

− 2χA1
2 (q+)χA1

2 (Q̃m)Q̃B1Q̃B2

√
Q̃F1Q̃F2 + . . . ,

(C.5)
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+ 3Q̃B1Q̃B2 + 2Q̃B1Q̃F2 + 2Q̃B2Q̃F1 + Q̃F1Q̃F2 + χA1
3 (q+)(Q̃B1Q̃F1 + Q̃B2Q̃F2)

− χA1
2 (q+)χA1

2 (Q̃m)(Q̃B1 + Q̃B2)

√
Q̃F1Q̃F2 + Q̃2
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Q̃B2 +Q̃B1Q̃

2
B2

+Q̃B1Q̃
2
F2

+Q̃B2Q̃
2
F1

+ χA1
5 (q+)(Q̃B1Q̃

2
F1

+ Q̃2
B1
Q̃F1 + Q̃B2Q̃

2
F2

+ Q̃2
B2
Q̃F2)

+ χA1
3 (q+)(Q̃2

B1
Q̃F2 + Q̃2

B2
Q̃F1 + 2Q̃B1Q̃F1Q̃F2 + 2Q̃B2Q̃F1Q̃F2)

+
(

2χA1
3 (q+) + χA1

2 (q+)χA1
2 (q−) + 2

)
Q̃B1Q̃B2(Q̃F1 + Q̃F2)

− χA1
4 (q+)χA1

2 (Q̃m)(Q̃B1Q̃F1 + Q̃B2Q̃F2 + Q̃2
B1

+ Q̃2
B2

)

√
Q̃F1Q̃F2

− χA1
2 (q+)χA1

2 (Q̃m)(Q̃B1Q̃F2 + Q̃B2Q̃F1)

√
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−
(

3χA1
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2 (q−)
)
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√
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