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1 Introduction and summary

Soft theorems, that relate an amplitude with soft photons or gravitons to amplitudes with-

out any soft particle [1–12], have been investigated intensively in recent years [13–60],

partly due to their connection to asymptotic symmetries [61–84]. Much of the discussion

that relates soft theorem to asymptotic symmetries has been in the context of four dimen-

sional theories, although there are some exceptions. However in four space-time dimensions

the S-matrix suffers from infrared divergences and is ill-defined. Therefore it is not obvi-

ous what soft theorem means in four space-time dimensions beyond tree level. Indeed,

in the case of gravity and abelian gauge theory, it has been shown that the leading soft

factors are universal and are insensitive to infrared loop effects [2, 8], but the subleading

soft factors are infra-red divergent and can only be defined with appropriate regularization

schemes [17, 20, 75]. For Yang-Mills theory, even the leading order soft factor is not uni-

versal once loop effects are taken into account and becomes regularization dependent [17].

In [85] it was shown that in generic space-time dimensions, by taking classical limit of

multiple soft theorem, where we take the energies / charges of the finite energy external

states to be large, one can relate soft factors to the power spectrum of low frequency

classical radiation during a scattering process. Since the latter can also be expressed in

terms of the radiative components of the electromagnetic and gravitational fields, this

analysis yields a relation between the soft factors and the radiative components of low

frequency electromagnetic and gravitational fields. If we take this relationship between
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classical radiation and soft theorem as the definition of the classical soft factor,1 it opens up

the possibility of computing the soft factor unambiguously by examining purely classical

processes, even in four dimensions. More precisely, in four space-time dimensions, the

radiative components of the electromagnetic or gravitational field is given in terms of the

soft factor S as

− i 1

4πR
eiωR S . (1.1)

Thus for gravitational and electromagnetic fields, knowledge of the classical radiative

field at the subleading order defines for us the corresponding soft factor at subleading

order. We can then use this to explore the effect of infrared divergences. This is the task

we undertake in this paper. We find that while the radiative part of classical fields is well

defined in a classical scattering process, the problem appears when we try to carry out a

Taylor (more precisely Laurent) series expansion in the frequency ω of the soft radiation.

The leading term of order ω−1 is well defined but at the subleading order there is a term

proportional to lnω in four dimensions. This dominates the order unity term that is usually

the subleading soft factor in higher dimensions.

One can in fact find a trace of such logarithmic corrections in the standard soft theo-

rem itself. Both for electromagnetism and gravity, the subleading soft theorem has terms

proportional to the angular momentum jµν of the incoming and outgoing finite energy ob-

jects. For a classical particle with trajectory rµ(τ), where τ is the proper time, the orbital

part of jµν is given by rµpν−rνpµ, where pµ = mdrµ/dτ and m is the mass of the particle.

In dimensions higher than four, rµ grows as V µτ + cµ for large |τ |, where V µ and cµ are

constants. It is easy to see that jµν computed using this expression is τ independent and

therefore has a finite τ → ±∞ limit. However in four space-time dimensions, in the large

|τ | limit, rµ(τ) will have an additional term proportional to ln |τ | due to the long range

attractive force due to other particles involved in the scattering. It is easy to verify that

jµν now acquires terms proportional to ln |τ | which do not have finite limit as τ → ±∞.

Therefore the soft theorem itself shows that it breaks down in four space-time dimensions.

A naive guess would be that the logarithmic terms at the subleading order may be

given simply by replacing ln |τ | by lnω−1 in the usual soft theorem. We set out to test this

by examining the explicit formula for radiative fields during classical scattering processes.

We find that this is indeed true for all cases for which we carry out the analysis.

We now give a summary of our results. The first scattering we analyze is that of a

probe of a charge q and mass m from a heavy scatterer of charge Q and mass M0 via

electromagnetic interaction, and compute the radiative part of the electromagnetic field

of polarization ε and frequency ω along the direction n̂. By comparing this with (1.1) we

extract the soft factor in four dimensions. The result takes the form

S̃em = − q
ω

[
~ε.~β+

1− n̂.~β+
− ~ε.~β−

1− n̂.~β−

]
− i q lnω−1

[
C+

~ε.~β+

1− n̂.~β+
− C−

~ε.~β−

1− n̂.~β−

]
+ finite ,

(1.2)

1As soft factor beyond the leading order is a function of angular momenta of external states represented

as differential operators, by classical soft factor we mean replacing these differential operators by classical

angular momenta of external particles.
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where ~β± denotes the velocities d~r/dt of the probe as t→ ±∞, and

C± = ± q Q

4πm |~β±|3
(1− ~β2±)3/2 . (1.3)

(1.2) agrees with what we would get by replacing the ln |τ | factor in the soft theorem

by lnω−1.

Next we analyze a similar scattering, but instead of computing emission of electromag-

netic wave, we compute the emission of gravitational wave. However we ignore the effect

of gravitational force on the scattering, treating gravity at the linearized level sourced by

the energy density carried by the probe and the electromagnetic field. By comparing this

with (1.1) we extract the following form of the soft graviton factor:

Sgr = −m
ω
εij

 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j


− im lnω−1 εij

 1√
1− ~β2+

β+iβ+jC+
1

1− n̂.~β+
− 1√

1− ~β2−

β−iβ−j C−
1

1− n̂.~β−


+ finite , (1.4)

with C± given by (1.3). This also agrees with what one would get from the soft theorem

by replacing the ln |τ | factor by lnω−1.

Our final example involves scattering of a neutral probe of mass m from a massive

scatterer of mass M0 via gravitational force in the limit of large impact parameter. For

this analysis we take into account the non-linear effects of gravity, e.g. the gravitational

field produced by the probe and the scatterer acts as the source of gravity. The soft

graviton factor extracted from this analysis takes the same form as (1.4) where now, in the

8πG = 1 unit,

C± = ∓
M0(1− 3~β2±)

8π|~β±|3
. (1.5)

This again agrees with what we would get by replacing ln |τ | by lnω−1 in the usual soft

theorem.

In the last example there is an additional subtlety that needs some discussion. Since

the long range gravitational force acts on the soft graviton as well, the trajectory of the

soft graviton far away from the scatterer takes the form t = R + (4π)−1M0 lnR. For this

reason the radiative component of the gravitational field will be proportional to exp[iω{R+

(4π)−1M0 lnR−t}]/R instead of the usual factor exp[iω(R−t)]/R. Therefore (1.1) should

contain an infrared divergent phase factor of exp
[
iω M0

4π lnR
]
. To this end we would like to

remind the reader that the procedure for taking the classical limit, as described in [85], does

not fix the overall phase in (1.1); this must be fixed by comparison with explicit results.

Comparison with the results of explicit calculation shows that the additional factor is

exp

[
iω
M0

4π
ln(ωR)

]
. (1.6)
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This phase factor, although present, is harmless since this does not affect the flux of soft

gravitons, although it can affect the shape of the gravitational wave-form. We expect this

to be related to the infrared divergent corrections to the soft factor found in [17], and the

classical counterpart of this calculation given in [86–88]. The term proportional to lnR

represents the time delay of a gravitational wave to reach its target at distance R due to

the long range gravitational force of the mass M0.

Physically the corrections to the soft theorem associated with the ln |τ | terms in jµν

may be understood as the effect of the early and late time acceleration and deceleration of

the finite energy particles due to the long range force that they exert on each other. Due

to this effect the particles continue to radiate even at large time, producing soft radiation

that is responsible for the lnω−1 contribution. This interpretation also tells us what the

natural scale of the problem is: it is the time-scale beyond which the particle trajectory

settles down to the form xµ = cµ + V µτ + aµ ln |τ | due to long range electromagnetic or

gravitational force. For particle scattering in a Schwarzschild metric this is of the order of

the impact parameter b, therefore lnω−1 stands for ln(ω−1b−1).

Even though the analysis of the paper is restricted to the case of scattering of a light

particle by a heavy particle, there is a natural generalization of our result for generic

scattering involving multiple initial and final states. Each initial state particle will have

early acceleration due to the long range force of the other initial state particles. Similarly

each final state particle will have late acceleration due to the long range force of the other

final state particles. This will produce terms proportional to ln |τ | in the expression for

the angular momenta of the particles. The natural generalization of our conjecture will be

that in the expression for the subleading soft factor the factors of ln |τ | will be replaced

by lnω−1.

It is natural to ask what these results mean for the quantum theory. As already pointed

out, since the S-matrix itself is divergent, in general the soft factor is ambiguous unless

the divergences cancel from both sides. The correct approach to studying soft theorem

in four space-time dimensions would be to work with finite quantities like inclusive cross

section [89–91] or Fadeev-Kulish formalism [92–94], and then see how cross sections /

amplitudes with and without soft external states are related. Presumably by taking the

classical limit of such modified multiple soft graviton theorem as in [85] we shall reproduce

the results of this paper. Furthermore in that analysis the terms proportional to ln ω−1

would appear directly as lnω−1 and there will be no need to make an ad hoc replacement

of ln |t| by lnω−1. However derivation of soft theorem in the Faddeev-Kulish formalism is

still in its infancy, and even the leading single soft theorem has not been fully understood

in this formalism [95]. Therefore derivation of subleading multiple soft theorem, needed for

deriving the subleading correction to the classical soft theorem, may not be forthcoming

in the near future.

We end this section with a few remarks.

1. The soft factors given in (1.2), (1.4) have finite |~β±| → 1 limit if we keep the ener-

gies E± = m/
√

1− ~β2± fixed in this limit. Therefore the results are also valid for

massless probes.
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2. The leading terms in the soft factors have the property that they vanish in the limit

when the deflection goes to zero. This can be seen by setting ~β+ = ~β−. This is

also the property of the usual subleading factors that arise in higher dimensions. In

contrast, the logarithmic terms in (1.2), (1.4) do not vanish in the limit ~β+ → ~β−
since C± have opposite signs. This is a reflection of the fact that the logarithmic

terms come from the early and late time acceleration due to the long range force,

and this persists even in the absence of any scattering.

3. For real polarizations, the terms proportional to ln ω−1 in (1.2) and (1.4) are purely

imaginary. Therefore they do not contribute to the power spectrum — proportional

to |S|2 — to subleading order. However for circular polarizations, for which the ε’s

are complex, there may be non-vanishing contribution to the power spectrum at the

subleading order, since the tensors that are contracted with the polarizations at the

leading and subleading orders are different, and the subleading contribution cannot

be factored out as a pure phase.

4. Our analysis also suggests a regime in parameter space where the usual soft ex-

pansion may dominate the logarithmic terms. For definiteness let us focus on soft

graviton emission. If the scattering takes place via some interaction of range b that is

large compared to the Schwarzschild radius M0/(4π) of the scatterer, then for impact

parameter of order b and sufficiently large interaction strength — e.g. hard elastic

scattering — we can produce appreciable deflection. This would give a leading con-

tribution to Sgr of order m/ω and the usual subleading soft factor of order mb since

the soft expansion parameter is of order ω b. On the other hand the logarithmic term

is of order mM0 lnω−1. Therefore for b� M0 we can choose a range of ω in which

the soft expansion parameter ω b is small, but b�M0 lnω−1. In this range the usual

soft terms will dominate the logarithmic term. Examples of such scattering can be

found in sections 7.2.1 and 7.2.2 of [85].

2 Logarithmic corrections from soft factors

In this section we shall see that even the usual soft theorems — valid in dimensions

larger than four — develop logarithmic factors when extrapolated to four space-time di-

mensions. We shall begin by reviewing the results of [85] that relates the soft factor to

the radiative component of electromagnetic and gravitational fields. The general relation

in D-dimensions takes the following form for the gravitational field h̃αβ(ω, ~x), related to

hαβ(t, ~x) = (gαβ − ηαβ)/2 by Fourier transform in the time variable:

h̃αβ(ω, ~x) = ẽαβ(ω, ~x)− 1

D − 2
ηαβ ẽ

γ
γ (ω, ~x) ,

εαβ ẽαβ(ω, ~x) = N ′ Sgr(ε, k) ,

R ≡ |~x|, N ′ ≡ eiωR
( ω

2πiR

)(D−2)/2 1

2ω
, k ≡ −ω(1, n̂), n̂ =

~x

|~x|
. (2.1)
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Here ε is any arbitrary rank two polarization tensor and Sgr is the soft factor for gravity

whose expression will be given in (2.4). A similar formula exists for electromagnetism.

The radiative component of the gauge field Ãα(ω, ~x), related to the gauge field Aα(t, ~x) by

Fourier transformation in the time variable, is given by

εαÃα(ω, ~x) = N ′ Sem(ε, k) . (2.2)

We shall now write down the explicit form of Sem(ε, k) and Sgr(ε, k) to subleading

order. For simplicity we shall consider the scattering of a pair of particles and work in the

probe approximation where one of the objects (the probe) has mass much larger than the

other (the scatterer). In this case we have

Sem(ε, k) = q
2∑

a=1

(−1)a−1
ε.p(a)

k.p(a)
+ i

2∑
a=1

(−1)a−1 q
ενkρ
p(a).k

jρν(a) + non-universal , (2.3)

Sgr(ε, k) =
2∑

a=1

[
εµνp

µ
(a)p

ν
(a)

p(a).k
+ ε00

p(a).k

(k0)2
+ 2 ε0ν

pν(a)

k0

]
(2.4)

+ i

2∑
a=1

[{
εµνp

µ
(a)kρ

p(a).k
+
εν0kρ
k0

}
jρν(a) +

Jji

M0

{
εi0 kj p(a).k

(k0)2
+
εiν p

ν
(a) kj

k0

}]
.

Here p(1) and p(2) are the momenta of the probe before and after the scattering and q is

the charge of the probe. The scatterer is initially taken to be at rest, with mass M0 and

angular momentum J. The indices i, j, · · · run over spatial coordinates and the indices

µ, ν, · · · run over all space-time coordinates. j(1) and j(2) are the angular momenta of

the probe before and after the scattering, measured with respect to the space-time point

describing the location of the center of momentum of the scatterer at some particular

instant of time before the scattering. All momenta and angular momenta are measured

with the convention that they are counted with positive sign for ingoing and negative sign

for outgoing particles; for charges this is accounted for by the explicit (−1)a factors in (2.3).

The indices are raised and lowered by flat metric ηµν and ηµν with mostly plus signature.

The non-universal terms in the soft photon theorem appear at the subleading order but

they will not affect our analysis below.

For electromagnetic radiation the radiative part of the field satisfies the constraint

equation kαÃα = 0. This is reflected in the invariance of Sem(ε, k) under εµ → εµ + kµ.

Therefore Ãi determines Ã0 and we can focus on the spatial components Ãi. Consequently

we can restrict εα to have only spatial components. On the other hand the radiative part

of the gravitational field satisfies the constraint kµẽµν = 0, reflected in the invariance of

Sgr(ε, k) under εµν → εµν + ξµkν + ξνkµ. This allows us to determine ẽ0µ in terms of the

spatial components ẽij and we can focus on the spatial components ẽij . Consequently we

can choose εµν to have only transverse components εij . These may be summarized as:

ε0 = 0, ε0ρ = 0. (2.5)

Since both electrodynamics and gravity has gauge symmetries, we can determine the

field configurations only up to a choice of gauge. Consequently (2.1) and (2.2) are valid
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only up to gauge transformations:

δh̃µν = kµξν + ξµkν ⇒ δẽµν = kµξν + ξµkν − ξ.k ηµν
δÃµ = ξ kµ , (2.6)

for arbitrary parameters ξµ and ξ. Using these in (2.1) and (2.2) we see that the physical

part of Sgr(ε, k) and Sem(ε, k) are contained in those choices of polarization tensor / vector

that satisfy

kµ ε
µν − 1

2
kνερρ = 0, kρ ε

ρ = 0 . (2.7)

Combining these with (2.5) we get

ε0ρ = 0, kiε
ij = 0, εii = 0, ε0 = 0, kiε

i = 0 . (2.8)

Let m be the mass of the probe particle and ~β− and ~β+ be its initial and final velocities.

Then we have

p(1) =
m√

1− ~β2−

(1, ~β−), p(2) = − m√
1− ~β2+

(1, ~β+) . (2.9)

The minus sign in the expression for p(2) is a reflection of the fact that it is an outgoing

momentum. Of special interest will be the initial and final trajectories r(1)(t) and r(2)(t).

In dimensions D > 4 these can be taken to be of the form

r0(1) = t, r0(2) = t, ~r(1) = ~β−t+ ~c−, ~r(2) = ~β+t+ ~c+ , (2.10)

for constant vectors ~c±. Therefore we have

jij(1) = ri(1)p
j
(1) − r

j
(1)p

i
(1) =

m√
1− ~β2−

(ci−β
j
− − c

j
−β

i
−),

j0i(1) = r0(1)p
i
(1) − r

i
(1)p

0
(1) = − m√

1− ~β2−

ci− ,

jij(2) = ri(2)p
j
(2) − r

j
(2)p

i
(2) = − m√

1− ~β2+

(ci+β
j
+ − c

j
+β

i
+),

j0i(2) = r0(2)p
i
(2) − r

i
(2)p

0
(2) =

m√
1− ~β2+

ci+ . (2.11)

In particular these approach finite limit as t → ±∞. However in D = 4 there is a long

range force on the incoming and outgoing probe that falls off according to inverse square

law. It is easy to verify that in this case the particle trajectories (2.10) are modified to

r0(1) = t, r0(2) = t, ~r(1) = ~β−t+~c−−C− ~β− ln |t|, ~r(2) = ~β+t+~c+−C+
~β+ ln |t| , (2.12)

for appropriate constants C±. This modifies the expressions for jµν(i) to

jij(1) =
m√

1− ~β2−

(ci−β
j
− − c

j
−β

i
−), j0i(1) = − m√

1− ~β2−

{
ci− − C− βi− ln |t|

}
,

jij(2) = − m√
1− ~β2+

(ci+β
j
+ − c

j
+β

i
+), j0i(2) =

m√
1− ~β2+

{
ci+ − C+ β

i
+ ln |t|

}
. (2.13)
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Note in particular that j0j(a) diverges as |t| → ∞, making the expressions ill-defined. Ignoring

this for the time being, for the particle kinematics described above we can express the soft

factors given in (2.3) and (2.4) as

Sem = − q
ω

[
~ε.~β+

1− n̂.~β+
− ~ε.~β−

1− n̂.~β−

]
− i q ln |t|

[
C+

~ε.~β+

1− n̂.~β+
− C−

~ε.~β−

1− n̂.~β−

]
+ finite ,

(2.14)

and

Sgr = −m
ω
εij

 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j


− im ln |t| εij

 1√
1− ~β2+

β+iβ+jC+
1

1− n̂.~β+
− 1√

1− ~β2−

β−iβ−j C−
1

1− n̂.~β−


+ finite , (2.15)

where ‘finite’ refers to terms which remain finite as ω → 0, |t| → ∞.

A natural guess is that the presence of ln |t| term implies the breakdown of the ex-

pansion of the soft factor in power series in ω. Naively one might expect that the correct

expression is given by replacing the ln |t| factors by lnω−1. In the following we shall verify

this by explicit computation in several examples.

3 Some relevant integrals

In our analysis we shall often encounter integrals of the form

I =

∫
dt eiωg(t)F (t) + boundary terms , (3.1)

where g(t) and F (t) are functions of t and the integration over t runs from −∞ to +∞. As

will be discussed shortly, the ‘boundary terms’ need to be adjusted to make the integral

well-defined. In all the examples considered, g(t) will grow as a± t as t → ±∞ for some

constants a±, with possible corrections of order ln |t|. F (t) will typically either approach a

constant or fall off as some negative power of t, again with possible subleading corrections

involving ln |t|. If F (t) ∼ |t|−α for α > 0, then the integral is well defined, and can be

evaluated by taking the limits to be from −T to T and taking the T → ∞ limit. If on

the other hand F (t) ∼ |t|−α with −1 < α ≤ 0, then we have to define the integral by first

performing an integration by parts:

I =

∫
dt

{
d

dt
eiωg(t)

}
1

iω g′(t)
F (t) + boundary terms = − 1

iω

∫
dt eiωg(t)

d

dt

{
F (t)

g′(t)

}
,

(3.2)

where the boundary terms have been chosen to cancel the boundary terms arising from

integration by parts. Since g′(t) → a± as t → ±∞ and F (t) ∼ |t|−α as t → ±∞, the

integrand in (3.2) falls off as t−α−1 and therefore for α > −1 this can be defined by putting

– 8 –
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limits ±T on the t integral and then taking the limit T →∞. This makes the integral well-

defined without boundary terms. If α ≤ −1 then we need to carry out more integration by

parts but we shall not encounter such a situation.

Once we have defined the integral so that it can be evaluated as limits of an integral

with finite range, we are free to go back to the original form by integration by parts, but

now we have to keep track of the boundary terms. This reduces the integral to

I = lim
T→∞

{∫ T

−T
dt eiωg(t)F (t)− 1

iω

[
eiωg(t)

F (t)

g′(t)

]T
−T

}
. (3.3)

We can use either the right hand side of (3.2) or (3.3) as the proper definition of (3.1) after

taking the T → ∞ limit. The first term in (3.3) has less powers of ω in the denominator

compared to the right hand side of (3.2), but the boundary terms carry powers of ω in the

denominator and provide the missing terms. Therefore (3.3) is convenient for carrying out

a small ω expansion. This can be done by first carrying out the small ω expansion of (3.3)

and then taking the limit T → ∞. This is the strategy that was used in [85] for checking

soft theorems in dimensions D > 4.

This procedure is useful if the expansion does not have terms of order ln ω−1, but runs

into difficulty if there are lnω−1 terms in the expansion. To see how this happens, note that

the right hand side of (3.2) is well defined as integral over a finite range (−T, T ) and also

in the limit T → ∞. Therefore (3.3) is also well-defined for T → ±∞. However suppose

that we take the form given in (3.3) and carry out the expansion in ω before taking the

T → ∞ limit, and then in each term in the expansion take the T → ∞ limit. Since this

will always produce power series in ω, the only way we can see the presence of the lnω−1

term is that the expansion coefficients will now fail to have finite limit as T → ∞ even

though the original expressions (3.2) and (3.3) have well defined T →∞ limit.

We shall analyze the logarithmic terms in the soft factor by always working with the

convergent form of the integral as in the right hand side of (3.2) without explicit boundary

terms and then analyzing the behavior of the integral in the ω → 0 limit without first

naively expanding the integrand in powers of ω. Below we write down the expressions of

five different types of integrals that we shall need for our analysis and the values of the

integrals for small ω. The derivation can be found in appendix A.

Let f, g, h and r be functions of t with the following asymptotic behavior:

f(t)→ f± +
k±
t
, g(t)→ a±t+ b± ln |t|,

h(t)→ p±t+ q± ln |t|, r(t)→ c± t+ d± ln |t|, as t→ ±∞ . (3.4)

In appendix A we prove the following results for arbitrary constant R:

I1 ≡
1

ω

∫ ∞
−∞

dt e−i ω g(t)f ′(t) = ω−1(f+ − f−) + i (a+k+ − a−k−) lnω−1 + finite ,

I2 ≡
∫ ∞
−∞

dt e−i ω g(t)
d

dt

[
f(t)

{
ln
h(t)

R
+

∫ ∞
h(t)

ei ω u
du

u

}]
= −(f+ − f−) ln(Rω) + finite ,
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I3 ≡
∫ ∞
−∞

dt
1

r(t)
f(t)

[
e−i ω g(t) − e−i ω h(t)

]
= finite ,

I4 ≡
1

ω

∫ ∞
−∞

dt
1

r(t)2
f(t)

[
e−i ω g(t) − e−i ω h(t)

]
= −i {f+ c−2+ (a+ − p+)− f− c−2− (a− − p−)} ln ω−1 + finite ,

I5 ≡
∫ ∞
−∞

dt
1

r(t)
f(t) e−i ω g(t) = (f+c

−1
+ − f−c−1− ) lnω−1 + finite . (3.5)

4 Electromagnetic radiation

In this section we shall analyze the electromagnetic radiation due to the scattering of a

charged probe from a charged scatterer. This is given by [85]

Ãα(ω, ~x) = iN ′
∫
dσeiω{r

0(σ)−n̂.~r(σ)} q Vα(σ) + boundary terms , (4.1)

where the ‘boundary terms’ are determined using the principle described in section 3,

n̂ = ~x/|~x|, σ denotes the proper time along the particle trajectory r(σ) and V α is the

four velocity

V α(σ) =
drα

dσ
. (4.2)

It can be shown that [85] in four space-time dimensions (4.1) reduces to the standard

formula for electromagnetic radiation from an accelerated particle described e.g. in [96].

By a change of variables from σ to t = r0 and an integration by parts, we can bring this

expression into the form

Ãi(ω, ~x) = −q ω−1N ′
∫
dt eiω{t−n̂.~r(t)}

d

dt

{
1

1− n̂.~v(t)
vi(t)

}
, (4.3)

where we have focussed on the spatial components of Ã. Since it follows from (2.12) that

~v(t) = d~r/dt approaches a constant plus terms of order 1/|t| for large t, the integrand

in (4.3) falls off as 1/t2 and therefore we do not need to add boundary terms in this rep-

resentation.

Comparing (4.3) with (2.2) we can identify the prediction for the soft factor from

classical analysis:

S̃em(ε, k) = − q
ω

∫ ∞
−∞

dt eiω(t−n̂.~r(t))
d

dt

[
~ε.~v

1− n̂.~v

]
, (4.4)

assuming that ε has only spatial components. Now as t→ ±∞, we have

~r(t)→ ~β±t− C±~β± ln |t|+ finite, ~v(t) ≡ d~r(t)

dt
→ ~β±(1− C±t−1). (4.5)

Therefore the integral in (4.4) has the form of I1 given in (3.5) with

g(t) ≡ n̂.~r(t)− t ' (n̂.~β± − 1) t− C± n̂.~β± ln |t|+ finite,

f(t) ≡ −q
[

~ε.~v(t)

1− n̂.~v(t)

]
= −q ~ε.~β±

1− n̂.~β±

[
1− C±

1− n̂.~β±
t−1 + · · ·

]
, as t→ ±∞ . (4.6)
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Comparing (4.6) with (3.4) we get

a± = (n̂.β± − 1), f± = −q ~ε.~β±

1− n̂.~β±
, k± = q C±

~ε.~β±

(1− n̂.~β±)2
. (4.7)

Therefore we get from (3.5)

S̃em = − q
ω

[
~ε.~β+

1− n̂.~β+
− ~ε.~β−

1− n̂.~β−

]
− i q lnω−1

[
C+

~ε.~β+

1− n̂.~β+
− C−

~ε.~β−

1− n̂.~β−

]
+ finite .

(4.8)

This agrees with Sem given in (2.14) if we replace ln |t| by lnω−1.

For completeness let us compute C±. Asymptotically we can regard the velocity carried

by the probe to be in the radial direction. If Q denotes the charge carried by the scatterer,

then energy conservation gives

m√
1− ~v(t)2

+
q Q

4π|~r(t)|
= constant . (4.9)

Substituting (4.5) into this equation and setting the coefficient of the 1/|t| term for large

|t| to zero, we get

C± = ± q Q

4πm |~β±|3
(1− ~β2±)3/2 . (4.10)

5 Gravitational radiation

In this section we shall analyze the logarithmic correction to the soft factor for gravitational

radiation. We shall analyze two examples. In the first the scattering takes place via

electromagnetic interaction and the energy momentum tensor during the scattering is used

as a source for gravitational radiation. Assuming that the electromagnetic interaction

is much stronger than the gravitational interaction during the scattering, we ignore the

effect of gravity on the motion of the probe. Therefore for this problem, the non-linear

effects of gravity are suppressed. The second example involves the scattering of a neutral

probe off a massive object via gravitational interaction. For this problem the non-linear

effects of gravity become important since the gravitational field itself acts as a source of

gravitational radiation.

5.1 Gravitational radiation from scattering via electromagnetic interaction

The set up here is as follows. The probe has mass m and charge q and the scatterer

has mass M0 � m and charge Q � q. We assume that the distance of closest approach

between the probe and the scatterer is large compared to the Schwarzschild radius of the

scatterer so that the effect of gravity on the scattering can be ignored, but that Q and q are

sufficiently large so that there is appreciable scattering due to the electromagnetic force. In

this case the energy momentum tensor, that acts as the source of gravitational radiation,

receives contribution from two sources — the probe and the electromagnetic field. As long

as we focus on the spacial components of ẽij whose source is the spatial component of the
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energy momentum tensor, we can ignore the contribution due to the scatterer due to the

smallness of its velocity during the scattering. Consequently the result for ẽij is given by

the sum of two terms: ẽ
(1)
ij due to the probe and ẽ

(2)
ij due to the electromagnetic field. We

shall now analyze each component separately.

The radiative part of the gravitational field due to the probe is given by [85]

ẽ
(1)
ij = iN ′

∫
dσ eik.r(σ) Pi(σ)Vj(σ) + boundary terms , (5.1)

where the integral runs over the proper time σ along the world-line r(σ) of the probe,

V α = drα/dσ is the D-velocity of the probe and Pα = mV α is the momentum of the

probe. We now change the integration variable from σ to t = r0 to express (5.1) as

ẽ
(1)
ij = iN ′

∫
dt eik.r

(
dt

dσ

)−1
Pi Vj + boundary terms . (5.2)

Using

(k0, ~k) = −ω(1, ~n) , (5.3)

V 0 =
dr0

dσ
=
dt

dσ
=

1√
1− ~v2

, ~v(t) ≡ d~r

dt
, (5.4)

~V =
d~r

dσ
=
dt

dσ

d~r

dt
=

1√
1− ~v2

~v(t) , (5.5)

and
~P = m ~V =

m√
1− ~v2

~v , (5.6)

we can express (5.2) as

ẽ
(1)
ij = iN ′m

∫
dt eiω(t−~n.~r(t))

1√
1− v2

vivj + boundary terms

= iN ′m
∫
dt

1

iω(1− ~n.~v)

d

dt

(
eiω(t−~n.~r(t))

) 1√
1− v2

vivj + boundary terms

= −N ′ mω−1
∫
dt eiω(t−~n.~r(t))

d

dt

{
1

(1− ~n.~v)

1√
1− v2

vivj

}
. (5.7)

Note that since ~v approaches a constant plus terms of order 1/|t| for large t, the integral

in the last line is convergent and we do not need to add any boundary terms. In this

case ~r(t) has the form given in (4.5) as t → ±∞, with C± given by (4.10), since in

our approximation the long range force between the probe and the scatterer is purely

electromagnetic. Therefore in these limits,

1

1− n̂.~v(t)

1√
1− ~v2

vivj

' 1

1− n̂.~β±
1√

1− ~β2±

β±iβ±j

[
1− 1

t

{
C±

n̂.~β±

1− n̂.~β±
+ C±

~β2±

1− ~β2±
+ 2C±

}]
,

t− n̂.~r(t)) ' t(1− n̂.~β±) + C±n̂.~β± ln |t| . (5.8)
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Therefore we can use the formula for I1 to express ẽ
(1)
ij given in (5.7) as

ẽ
(1)
ij = −ω−1mN ′

 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j


− imN ′ lnω−1

 1√
1− ~β2+

β+iβ+j

{
C+

1

1− n̂.~β+
+ C+

1

1− ~β2+

}

− 1√
1− ~β2−

β−iβ−j

{
C−

1

1− n̂.~β−
+ C−

1

1− ~β2−

} . (5.9)

We now turn to the contribution ẽ(2) produced by the electromagnetic field. The

dominant part of the stress tensor comes from the term proportional to Q2, but since the

electric field produced by the scatterer is stationary, it does not generate any radiative

component. Therefore we focus on the next term proportional to q Q. Denoting by FPµν(x)

and FSµν(x) the field strengths produced by the probe and scatterer respectively, and by

F̃Pµν(ω, ~̀) and F̃Sµν(ω, ~̀) their Fourier transform in the space and time variables, we have [85]

F̃Si0(`) = −i `iQ
1

~̀2
2π δ(`0) , (5.10)

and

F̃Pi0 (−`) = −q 1

(`0 − iε)2 − ~̀2

∫
dσ ei`.r(σ)

{
−i `i

dr0
dσ

+ i `0
dri
dσ

}
. (5.11)

Then in D dimensions ẽ
(2)
ij is given by [85]

ẽ
(2)
ij = iN ′

∫
dDx′ eik.x

′ [−FPi0 (x′)FSj0(x
′)−FPj0(x′)FSi0(x′)+δij F

S
k0(x

′)FPk0(x
′)
]

(5.12)

= iN ′
∫

dD`

(2π)D

[
−F̃Pi0 (−`−k) F̃Sj0(`)−F̃Pj0(−`−k) F̃Si0(`)+δij F̃

P
k0(−`−k) F̃Sk0(`)

]
.

Using (5.10), (5.11) this may be rewritten as

ẽ
(2)
ij = iN ′

∫
dσ

∫
dD−1`

(2π)D−1
ei
~̀.~r(σ)+ik.r(σ) qQ

1

(~̀2)(~̀2+2~̀.~k)[{
2`i`j+`ikj+`jki−(~̀2+~̀.~k)δij

} dr0
dσ

+

{
−k0`j

dri
dσ
−k0 `i

drj
dσ

+k0 `m
drm
dσ

δij

}]
= iN ′

∫
dσ

∫
dD−1`

(2π)D−1
ei
~̀.~r(σ)+ik.r(σ) qQ

1

(~̀2)2
{2`i`j−~̀2 δij}

dr0
dσ

+f̃ij , (5.13)
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f̃ij ≡ iN ′
∫
dσ

∫
dD−1`

(2π)D−1
ei
~̀.~r(σ)+ik.r(σ) qQ

1

(~̀2)2(~̀2+2~̀.~k){
−4`i`j ~̀.~k+~̀2(`ikj+`jki)+~̀.~k ~̀2 δij

} dr0
dσ

+ iN ′
∫
dσ

∫
dD−1`

(2π)D−1
ei
~̀.~r(σ)+ik.r(σ) qQ

1

(~̀2)(~̀2+2~̀.~k){
−k0`j

dri
dσ
−k0 `i

drj
dσ

+k0 `m
drm
dσ

δij

}
. (5.14)

In the expression for f̃ij the integration over ` is free from infrared divergence for D ≥ 4

even after we factor out a power of ω and then take the k → 0 limit. Furthermore dr0/dσ

and dri/dσ approach finite values as σ → ±∞. Taking into account the explicit factor of

k in all the terms in f̃ij , we have

f̃ij = ω

∫
dteik.r(t) f(t) + boundary terms (5.15)

where f(t) approaches a finite value as t→ ±∞. Rewriting this as

−
∫
dt eik.r(t)

d

dt

{
1

i(1− n̂.~v)
f(t)

}
, (5.16)

we see that this has the form ωI1. Therefore it does not have any divergent contribution

in the ω → 0 limit and we can focus on the contribution to ẽ
(2)
ij from the first term on the

right hand side of (5.13).

Using
1

(~̀2)2
{2 `i`j − ~̀2 δij} = −1

2

[
∂

∂`i

(
`j
~̀2

)
+

∂

∂`j

(
`i
~̀2

)]
, (5.17)

and integration by parts, we can express (5.13) as

ẽ2ij '
i

2
N ′
∫
dσ

∫
dD−1`

(2π)D−1
ei
~̀.~r(σ)+ik.r(σ) q Q

1

~̀2
{i`irj + i`jri}

dr0
dσ

= − i
2
N ′
∫
dσ

∫
dD`

(2π)D
ei`.r(σ)+ik.r(σ) {q F̃Si0(`) rj + q F̃Sj0(`) ri}

dr0
dσ

= − i
2
N ′
∫
dσ eik.r(σ) {q FSi0(r(σ)) rj(σ) + q FSj0(r(σ)) ri(σ)}dr0

dσ
, (5.18)

where in the second step we have used (5.10). Using equations of motion

dPα
dσ

= q FSαρ(r(σ))
drρ

dσ
, (5.19)

and the identification r0 = −r0 = −t, we can express (5.18) as

ẽ
(2)
ij =

i

2
N ′
∫
dσ eik.r(σ)

{
dPi
dσ

rj(σ) +
dPj
dσ

ri(σ)

}
= i

m

2
N ′
∫
dt eik.r

[
d

dt

{
vi√

1− ~v2

}
rj +

d

dt

{
vj√

1− ~v2

}
ri

]
. (5.20)
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Now specializing to the case D = 4 and using (4.5) we see that the term inside the square

bracket behaves in the limit t→ ±∞, as

2 t−1C± β±i β±j
1

(1− ~β2±)3/2
+O(t−2 ln |t|) . (5.21)

Therefore the integral has the structure of I5 and can be evaluated as

ẽ
(2)
ij = imN ′ lnω−1

[
C+ β+i β+j

1

(1− ~β2+)3/2
− C− β−i β−j

1

(1− ~β2−)3/2

]
. (5.22)

Adding (5.9) and (5.22) we get

ẽij = ẽ
(1)
ij + ẽ

(2)
ij (5.23)

= −ω−1mN ′
 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j


− imN ′ lnω−1

 1√
1− ~β2+

β+iβ+jC+
1

1− n̂.~β+
− 1√

1− ~β2−

β−iβ−j C−
1

1− n̂.~β−

 .
Comparing this with (2.1) we see that the soft graviton factor S̃gr, extracted from classical

radiation, is given by

S̃gr(ε,k) =−ω−1mεij

 1

1−n̂.~β+
1√

1−~β2+
β+iβ+j−

1

1−n̂.~β−
1√

1−~β2−
β−iβ−j

 (5.24)

−imεij lnω−1

 1√
1−~β2+

β+iβ+jC+
1

1−n̂.~β+
− 1√

1−~β2−
β−iβ−jC−

1

1−n̂.~β−

 ,
for transverse polarization tensor ε. This agrees with Sgr given in (2.15) upon replacing

ln |t| by lnω−1.

5.2 Gravitational radiation from scattering via gravitational interaction

We shall now consider the scattering of a probe of mass m by a massive scatterer of mass

M0 due to gravitational interaction. We shall assume that the impact parameter (the

distance of closest approach) is large compared to the Schwarzschild radius of the scatterer

and work to first order in the ratio of the Schwarzschild radius M0/(4π) and the impact

parameter. The radiative part of the gravitational field during such scattering was analyzed

in [97]. After making appropriate changes in the signs and normalization factors described

in [85], it is given by a sum of four terms:

ẽij = ẽ
(1)
ij + ẽ

(2)
ij + ẽ

(3)
ij + ẽ

(4)
ij . (5.25)

ẽ(1) is given by

ẽ
(1)
ij (ω, ~x) =

meiωR

4π R

∫
dt

1 + 2ϕ(~r(t))

dt

dσ
vivj e

iω(t−n̂.~r(t)) + boundary terms , (5.26)
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where ~r(t) denotes the trajectory of the particle,

R ≡ |~x|, n̂ ≡ ~x

|~x|
, (5.27)

and ϕ(~r) is the gravitational potential:

ϕ(~r) = − M0

8π|~r|
, (5.28)

in the 8πG = 1 unit. The other ẽ(i)’s are given by

ẽ
(2)
ij (ω, ~x) = i

M0m

32π2ω

eiωR

R

∫
dt
dt

dσ
(1 + ~v2)

(
∂′i∂
′
j −

1

2
δij ∂

′
k∂
′
k

) {
ln
|~r ′|+ n̂.~r ′

R
eiω(t−n̂.~r

′)

+

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r

′+u)

}∣∣∣∣
~r ′=~r(t)

, ∂′i ≡
∂

∂r′i
, (5.29)

ẽ
(3)
ij (ω, ~x) = −i M0m

16π2
ω
eiωR

R

∫
dt
dt

dσ
vi vj

{
ln
|~r(t)|+ n̂.~r(t)

R
eiω(t−n̂.~r(t))

+

∫ ∞
|~r(t)|+n̂.~r(t)

du

u
eiω(t−n̂.~r(t)+u)

}
, (5.30)

and

ẽ
(4)
ij (ω, ~x) = −M0m

16π2
eiωR

R

∫
dt
dt

dσ

(
vi∂
′
j + vj∂

′
i

) {
ln
|~r ′|+ n̂.~r ′

R
eiω(t−n̂.~r

′)

+

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r

′+u)

}∣∣∣∣
~r ′=~r(t)

, (5.31)

where

dt

dσ
=

{(
1− M0

4π|~r(t)|

)
−
(

1− M0

4π|~r(t)|

)−1
~v(t)2

}−1/2
' 1√

1− ~v(t)2

{
1 +

M0

8π|~r(t)|
1 + ~v(t)2

1− ~v(t)2

}
for large |~r(t)| . (5.32)

We begin with the evaluation of ẽ
(1)
ij . We have

eiω(t−n̂.~r(t)) =
1

iω

1

1− n̂.~v(t)

d

dt
eiω(t−n̂.~r(t)) . (5.33)

Substituting this into (5.26) and integrating by parts we get

ẽ
(1)
ij (ω, ~x) = − m

4π R
eiωR

1

iω

∫
dt eiω(t−n̂.~r(t))

d

dt

[
1

1− n̂.~v(t)

1

1 + 2ϕ(~r(t))

dt

dσ
vivj

]
. (5.34)

Parametrizing ~r(t) for large |t| as in (4.5) and using (5.32) we get, as t→ ±∞,

1

1− n̂.~v(t)

1

1 + 2ϕ(~r(t))

dt

dσ
vivj =

1

1− n̂.~v(t)

1

1−M0/(4π|~r(t)|)
dt

dσ
vivj

=
1

1− n̂.~β±
1√

1− ~β2±

β±iβ±j

[
1− 1

t

{
C±

1

1− n̂.~β±
∓ M0

8π |~β±|
3− ~β2±

1− ~β2±
+ C±

1

1− ~β2±

}]
,

(t− n̂.~r(t)) = t(1− n̂.~β±) + C±n̂.~β± ln |t| . (5.35)
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Comparing (5.34) with (3.5) and (5.35) with (3.4) we see that (5.34) takes the form of the

integral I1 with

f± = i
m

4π R
eiωR

1

1− n̂.~β±
1√

1− ~β2±

β±iβ±j ,

k± = −i m

4π R
eiωR

1

1− n̂.~β±
1√

1− ~β2±

β±iβ±j

{
C±

1

1− n̂.~β±
∓ M0

8π |~β±|
3− ~β2±

1− ~β2±
+ C±

1

1− ~β2±

}
,

a± = −(1− n̂.~β±) . (5.36)

Therefore (3.5) gives

ẽ
(1)
ij = iω−1

m

4πR
eiωR

 1

1−n̂.~β+
1√

1−~β2+
β+iβ+j−

1

1−n̂.~β−
1√

1−~β2−
β−iβ−j


− m

4πR
eiωR lnω−1

 1√
1−~β2+

β+iβ+j

{
C+

1

1−n̂.~β+
− M0

8π |~β+|
3−~β2+
1−~β2+

+C+
1

1−~β2+

}

− 1√
1−~β2−

β−iβ−j

{
C−

1

1−n̂.~β−
+

M0

8π|~β−|
3−~β2−
1−~β2−

+C−
1

1−~β2−

} . (5.37)

Next we turn to ẽ
(3)
ij given in (5.30). Using (5.33) and doing an integration by parts,

we can express ẽ
(3)
ij as

ẽ
(3)
ij (ω, ~x) =

M0m

16π2
eiωR

R

∫
dt eiω(t−n̂.~r(t))

d

dt

[
1

1− n̂.~v(t)

dt

dσ
vi vj{

ln(|~r(t)|+ n̂.~r(t)) +

∫ ∞
|~r(t)|+n̂.~r(t)

du

u
eiωu

}]
. (5.38)

This integral is of the form I2 given in (3.5) and therefore gives the result:2

ẽ
(3)
ij = −M0m

16π2
ln(ωR)

eiωR

R

 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j

 .

(5.39)

This term can be understood as arising from multiplication of the first line of (5.37) by the

phase factor exp[iωM0 ln(ωR)/(4π)]. This is precisely the additional phase factor (1.6)

arising due to gravitational drag and backscattering experienced by the emitted radiation

due to the gravitational field of the mass M0.

2This term was ignored in [97] since at large impact parameter ~β+ ' ~β−, and the term inside the curly

bracket of (5.39) is small. However we can easily conceive a slightly different situation where a pair of

particles undergo an elastic collision in the black hole background, causing a change of order unity in each

of their velocities. In this case ~β+ − ~β− will be of order unity for each of these particles. The gravitational

field produced during this process will be given by the sum of the contributions due to these two particles,

each of which can be evaluated using the result given in this section.
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Next we consider ẽ
(4)
ij given in (5.31). It can be expressed as

ẽ
(4)
ij (ω,~x) =−M0m

16π2
eiωR

R

∫
dt
dt

dσ
eiω(t−n̂.~r(t)) (5.40)[

(−iω) (vinj+vjni)

{
ln(|~r ′|+n̂.~r ′)+

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiωu

}

+
1

|~r ′|+n̂.~r ′

{
vi

(
r′j
|~r ′|

+n̂j

)
+vj

(
r′i
|~r ′|

+n̂i

)}{
1−eiω(|~r ′|+n̂.~r ′)

}]∣∣∣∣∣
~r ′=~r(t)

.

The contribution to the integral from the term in the second line vanishes after ẽ
(4)
ij is

contracted with the polarization tensor εij , since εijn̂
j = εijk

j/|~k| = 0. The contribution

from the last line has the same structure as I3 and therefore also does not generate any

term proportional to ω−1 or lnω−1.

We now turn to the computation of ẽ
(2)
ij given in (5.29). With the gauge condition

εii = 0 given in (2.8), the term proportional to δij does not contribute to εij ẽij . Now

we have

∂′j

{
ln(|~r ′|+ n̂.~r ′) eiω(t−n̂.~r

′) +

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r

′+u)

}
= −i ω n̂j

{
ln(|~r ′|+ n̂.~r ′) eiω(t−n̂.~r

′) +

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r

′+u)

}
+

1

|~r ′|+ n̂.~r ′

(
r′j
|~r ′|

+ n̂j

) {
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}
. (5.41)

Substituting this into (5.29) we see that the contribution from the term in the first line of

the right hand side of (5.41) will vanish after contraction with εij . This allows us to focus

on the term in the last line of (5.41). Now we have

∂′i

[
1

|~r ′|+ n̂.~r ′

(
r′j
|~r ′|

+ n̂j

) {
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}]

= − 1

(|~r ′|+ n̂.~r ′)2

(
r′i
|~r ′|

+ n̂i

) (
r′j
|~r ′|

+ n̂j

) {
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}

+
1

|~r ′|+ n̂.~r ′

{
δij
|~r ′|
−

r′ir
′
j

(|~r ′|)3

} {
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}

− i ω 1

|~r ′|+ n̂.~r ′

(
r′j
|~r ′|

+ n̂j

) {
eiω(t−n̂.~r

′) n̂i + eiω(t+|~r
′|) r′i
|~r ′|

}
. (5.42)

Before substituting this into (5.29) we note that the term proportional to δij does not

contribute to εij ẽij due to the εii = 0 condition. Also the terms proportional to n̂i and n̂j
can be dropped since n̂i = ki/|~k| and we have the kiε

ij = 0 condition in (2.8). Substituting
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this into (5.29) we see that the relevant part of ẽ
(2)
ij is given by

ẽ
(2)
ij (ω, ~x) = i

M0m

32π2ω

eiωR

R

∫
dt
dt

dσ
(1 + ~v2)[

− 1

(|~r ′|+ n̂.~r ′)2
r′ir
′
j

(|~r ′|)2
{
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}

− 1

|~r ′|(|~r ′|+ n̂.~r ′)

r′ir
′
j

(|~r ′|)2
{
eiω(t−n̂.~r

′) − eiω(t+|~r ′|)
}

− i ω 1

|~r ′|+ n̂.~r ′
r′i r
′
j

(|~r ′|)2
eiω(t+|~r

′|)

]
~r ′=~r(t)

. (5.43)

Using the asymptotic behavior (4.5) we see that the contribution from the second and third

line have the form I4 and the contribution from the last line has the form I5, both given

in (3.5). The result is

ẽ
(2)
ij (ω,~x) = lnω−1

M0m

32π2
eiωR

R

−(1+~β2)βiβj

~β2
√

1−~β2

{
1

(ε|~β|+n̂.~β)2
+

1

(ε|~β|+n̂.~β)ε|~β|

}
(ε|~β|+n̂.~β)

+
(1+~β2)βiβj

~β2
√

1−~β2
1

(ε|~β|+n̂.~β)

+

−

=− lnω−1
M0m

32π2
eiωR

R

 (1+~β2)βiβj

ε|~β|3
√

1−~β2

+

−

, (5.44)

where ε is +1 for outgoing states and −1 for ingoing states. This gives

ẽ
(2)
ij (ω, ~x) = − lnω−1

M0m

32π2
eiωR

R

(1 + ~β2+)β+iβ+j

|~β+|3
√

1− ~β2+

+
(1 + ~β2−)β−iβ−j

|~β−|3
√

1− ~β2−

 . (5.45)

Adding (5.37), (5.39) and (5.45), using (5.25) and comparing the result with (2.1)

with the extra phase factor (1.6) on the right hand side (which cancels (5.39)), we get the

following prediction for the soft factor from the classical scattering results:

S̃gr =−mω−1 εij

 1

1−n̂.~β+
1√

1−~β2+
β+iβ+j−

1

1−n̂.~β−
1√

1−~β2−
β−iβ−j

 (5.46)

−im lnω−1 εij

 1√
1−~β2+

β+iβ+j

{
C+

1

1−n̂.~β+
− M0

8π |~β+|3
3~β2+−1

1−~β2+
+C+

1

1−~β2+

}

− 1√
1−~β2−

β−iβ−j

{
C−

1

1−n̂.~β−
+

M0

8π |~β−|
3~β2−−1

1−~β2−
+C−

1

1−~β2−

} .
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In order to compare this to (2.15) we need to find the relation between M0 and C±.

Let ~v(t) be the velocity of the particle at large |t| when the particle is at a distance r from

the black hole and ~β be the velocity as |t| → ∞. The expression of the total energy of the

particle in the 8πG = 1 units is given by

E = m

(
1− M0

4π r

){(
1− M0

4π r

)
−
(

1− M0

4π r

)−1
~v2

}−1/2
, (5.47)

so that the conservation of energy gives(
1− M0

4π r

){(
1− M0

4π r

)
−
(

1− M0

4π r

)−1
~v2

}−1/2
= (1− ~β2)−1/2 . (5.48)

To first order in an expansion in powers of M0 this gives

~v(t) = ~β

(
1 +

M0

8π ~β2 r
(1− 3~β2)

)
= ~β

(
1 +

M0

8π |~β|3 |t|
(1− 3~β2)

)
(5.49)

where we have used r = |~β||t|. Comparing this with (4.5) we get

C± = ∓
M0(1− 3~β2±)

8π|~β±|3
. (5.50)

Using this we can express (5.46) as

S̃gr = −mω−1 εij

 1

1− n̂.~β+
1√

1− ~β2+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2−

β−iβ−j

 (5.51)

− im εij lnω−1

 1√
1− ~β2+

β+iβ+j C+
1

1− n̂.~β+
− 1√

1− ~β2−

β−iβ−j C−
1

1− n̂.~β−

 .
This agrees with (2.15) with ln |t| replaced by lnω−1.
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A Evaluation of some integrals

Our goal in this appendix will be to compute the 1/ω and lnω terms in the following

integrals in ω → 0 limit.

I1 ≡
1

ω

∫ ∞
−∞

dt e−i ω g(t)f ′(t) , (A.1)

I2 ≡
∫ ∞
−∞

dt e−i ω g(t)
d

dt

[
f(t)

{
ln
h(t)

R
+

∫ ∞
h(t)

ei ω u
du

u

}]
, (A.2)
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I3 ≡
∫ ∞
−∞

dt
1

r(t)
f(t)

[
e−i ω g(t) − e−i ω h(t)

]
, (A.3)

I4 ≡
1

ω

∫ ∞
−∞

dt
1

r(t)2
f(t)

[
e−i ω g(t) − e−i ω h(t)

]
, (A.4)

I5 =

∫ ∞
−∞

dt
1

r(t)
f(t) e−i ω g(t) , (A.5)

where, as described in (3.4), f(t), g(t), h(t) are smooth functions with the property

f(t) = f± +
k±
t
, g(t)→ a±t+ b± ln |t|,

h(t)→ p±t+ q± ln |t|, r(t)→ c± t+ d± ln |t|, as t→ ±∞ . (A.6)

We shall evaluate the integrals by separately estimating their contributions from the four

regions: |t| ∼ 1, 1� |t� ω−1, |t| ∼ ω−1 and |t| � ω−1.

A.1 Evaluation of I1

We express I1 as

I1 =
1

ω

∫ ∞
−∞

dt f ′(t) +
1

ω

∫ ∞
−∞

dt
{
e−i ω g(t) − 1

}
f ′(t) . (A.7)

The first term gives ω−1(f+ − f−). The second term can be evaluated by dividing the

integration region into different segments. In the region t ∼ 1 the term inside the curly

bracket is of order ω and we get a finite contribution. In the region 1� |t| � ω−1 we can

approximate the integral as

− i
∫
1�|t|�ω−1

dt g(t) f ′(t) ' i
∫
1�|t|�ω−1

dt
a±k±
t
' i (a+k+ − a−k−) lnω−1 . (A.8)

The last step can be justified as follows. Let us fix the integration range to be [a, b ω−1]

where a and b some fixed numbers with a� 1 and b� 1. The right hand side of the above

equation can then be approximated as

i (a+k+ − a−k−)

[
lnω−1 + ln

b

a

]
. (A.9)

Even though b
a � 1, as ω−1 becomes large, we can ignore ln b

a compared to lnω−1, arriving

at the right hand side of (A.8).

In the region |t| ∼ ω−1 and |t| > ω−1 the magnitude of the integral is bounded by a

term of order

ω−1
∫
|t|>ω−1

2 {|k±| t−2} dt ∼ 2 |k±| . (A.10)

Therefore for small ω, I1 can be estimated to be

I1 = ω−1(f+ − f−) + i (a+k+ − a−k−) lnω−1 + finite . (A.11)
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A.2 Evaluation of I2

Let us express I2 as

I2 ≡
∫ ∞
−∞

dt e−i ω g(t)

[
f ′(t)

{
ln
h(t)

R
+

∫ ∞
h(t)

ei ω u
du

u

}
+ f(t)h′(t)h(t)−1

(
1− eiωh(t)

)]
.

(A.12)

While integrating over the region |t| ∼ 1, we can replace eiωt by 1. Also in this region the

integral inside the curly bracket can be evaluated by changing variable from u to v = ω u,

and yields lnω−1 plus a finite term. Therefore the term inside the curly bracket is given

by − ln(Rω) plus a finite term, and the integration over t produces a term

− ln(Rω)(f+ − f−) + finite . (A.13)

For 1 � |t| � ω−1 the term with the f ′(t) factor is of order t−2× logarithmic terms and

produces a finite result. On the other hand the f(t)h′(t)(h(t))−1(1−eiωh(t)) factor is of order

−i ω f±p± and gives negligible contribution to the integral from the 1 � |t| � ω−1 region.

For |t| ∼ ω−1 the integrand is of order t−1 and therefore gives a finite contribution to the

integral. Finally for t � ω−1 the term proportional to f ′(t) falls off as t−2× logarithmic

terms and its contribution to the integral is vanishes in the ω → 0 limit. In this range the

term proportional to f(t)h′(t) (h(t))−1 may be approximated as∫ ∞
ω−1

dt f± t
−1
{
e−ia±ωt − ei(1−a±)ωt

}
. (A.14)

After changing variable to u = −a±ωt in the first term and (1− a±)ωt in the second term,

each of the integrals can be converted to the form

f±

∫ ∞
duu−1 eiu , (A.15)

with finite lower limit of order unity. This gives a finite result. Therefore we get

I2 = − ln(Rω) (f+ − f−) + finite . (A.16)

A.3 Evaluation of I3 ≡
∫∞
−∞ dt (r(t))−1 f(t)

[
e−i ω g(t) − e−i ω h(t)

]
The region |t| ∼ 1 gives a finite contribution. For 1 � |t| � ω−1 the integrand may be

approximated as

(c±)−1 f± (−iω) (a± − p±) , (A.17)

and the integral receives negligible contribution from this region.

For |t| ∼ ω−1 the term in the square bracket is of order unity. But the rest of the

integrand is of order (c± t)
−1 f± and integration over t in the range |t| ∼ ω−1 produces

at most a term of order unity — there is no contribution proportional to ln ω. Finally

for |t| � ω−1 the integrand has the same form as (A.14) with (1 − a±) replaced by p±
in the second exponent, and an overall multiplicative factor (c±)−1. Therefore it gives a

finite result.
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A.4 Evaluation of I4 ≡ ω−1
∫∞
−∞ dt (r(t))−2 f(t)

[
e−i ω g(t) − e−i ω h(t)

]
We use

1

r(t)2
= − d

dt

{
1

r(t)

}
1

r′(t)
. (A.18)

Substituting this into the expression for I4 and doing an integration by parts we get the

following form of the integral for large |t|:

1

ω

∫
dt

1

r(t)

d

dt

(
f(t)

r′(t)

) [
e−iω g(t)−e−iωh(t)

]
−i
∫
dt

f(t)

r(t)r′(t)

[
g′(t)e−iω g(t)−h′(t)e−iωh(t)

]
.

(A.19)

For |t| ∼ 1 the integrands in both terms are finite in the ω → 0 limit and we get finite

contribution to the integral. Using (A.6) we see that in the first term, part of the integrand

outside the square bracket falls off as 1/|t|3 for |t| � 1. On the other hand, using the

inequality | sinu| ≤ |u|, we can see that the terms inside the square bracket of the first

term is bounded by ω|g(t) − h(t)| ∼ ω |t| |a± − p±|. Therefore integration over the region

|t| > 1 yields a finite result as ω → 0 for the first term.

The contribution from the second term can be evaluated by noting that for large |t|,
f(t)/{r(t) r′(t)} → f±c

−2
± t−1, g′(t)→ a± and h′(t)→ p±. Therefore in the 1 � |t| � ω−1

region the integrand behaves as −i f± c−2± t−1 (a± − p±) and the dominant contribution to

the integral is given by

− i {f+ c−2+ (a+ − p+)− f− c−2− (a− − p−)} ln ω−1 . (A.20)

For |t| ∼ ω−1 the integrand is of order t−1, producing a finite result for the integral. Finally

for |t| � ω−1 the integrand is proportional to t−1[g′(t)e−iωg(t)−h′(t)e−iωh(t)]. Each of these

produces a finite contribution in the ω → 0 limit.

Therefore we get

I4 ' −i {f+ c−2+ (a+ − p+)− f− c−2− (a− − p−)} ln ω−1 . (A.21)

A.5 Evaluation of I5 ≡
∫∞
−∞ dt (r(t))−1 f(t) e−i ω g(t)

The |t| ∼ 1 and |t| ∼ ω−1 regions give finite contributions. The region 1� |t| � ω−1 gives∫
1�|t|�ω−1

dt
f±
c±t
' ±f±

c±
lnω−1 . (A.22)

Finally in the region |t| � ω−1 the integral takes the form∫
|t|�ω−1

dt
f±
c±t

e−ia±ω t−ib±ω ln |t| . (A.23)

This is bounded by a finite number. Therefore the net contribution to I5 is given by

I5 ' (f+c
−1
+ − f−c−1− ) lnω−1 . (A.24)

Note that the result for I3 follows from this.
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