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1 Introduction

The hierarchy problem — the quantum instability of the weak scale (∼ 103 GeV) with

respect to the Planck scale (∼ 1019 GeV) — is a long-standing stumbling block in particle

physics. One interesting class of models, based on the Randall-Sundrum (RS) model [1],

uses a warped extra dimension in order to generate a stable hierarchy of scales. In these

models, two 3-branes, the UV and IR branes, are embedded in anti-de Sitter (AdS) space:

ds2 = e−2kyηµνdx
µdxν − dy2 , (1.1)

where the UV brane is located at y = 0 and the IR brane is located at y = πrc, where

rc is the “radius of compactification”, k is the inverse of the AdS curvature radius and an

S1/Z2 symmetry is assumed so that both branes are stable. The electroweak scale (set

by the location of the IR brane) is thus suppressed relative to the Planck scale or UV

scale through the exponential warping of the metric. The RS model provides a simple
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escape from the hierarchy problem, however, the original model contained two fine-tunings

that relate the energy densities on the branes to the bulk cosmological constant. One

fine-tuning is required to arrange for the correct separation of the two branes, while a

second fine-tuning is needed to ensure a vanishing 4D cosmological constant. One could

easily over-look the fine-tuning of the cosmological constant, since currently all models of

particle physics make the same fine-tuning, but fine-tuning of the IR brane energy density

is problematic for the following reason: it plays a direct role in determining the hierarchy

between the electroweak and UV scales, and if the effective potential is really independent

of the brane separation it means that the AdS space is unstable to fluctuations in the size

of the extra dimension [2, 3], corresponding to a massless particle, the radion. A massless

radion produces a long range force that couples to the trace of the stress-energy tensor.

To overcome this issue, Goldberger and Wise (GW) [4] proposed a mechanism to sta-

bilize the size of the extra dimension, thus generating a mass for the radion. In the GW

mechanism, a bulk scalar sector is added, and the competition between the scalar’s extra

dimensional gradient and the conflicting boundary conditions produces an effective poten-

tial that stabilizes the size of the extra dimension. In the RS model, the radion plays

the role of the Goldstone boson associated with Spontaneous Breaking of Scale Invariance

(SBSI), aka the dilaton. The GW mechanism provides an explicit breaking of scale in-

variance and thus the radion generically becomes a Pseudo-Nambu-Goldstone Boson. The

Goldstone nature of the radion/dilaton partially determines its coupling to standard model

fields, resulting in interesting phenomenological signatures [5–14].

In general, obtaining a light dilaton requires keeping any explicit breaking of scale

invariance small, so β functions associated with the approximately scale invariant sector

must remain small over a range of scales. This is due to the fact that scale invariance

allows for a non-derivative self-interaction quartic term for the dilaton, which can actually

prevent SBSI [15]. In the context of the RS model, a negative quartic effective potential

would result in an unbounded negative energy and a runaway vacuum state, while a positive

quartic effective potential would result in a vanishing vacuum expectation value (VEV),

so that scale invariance is not broken at all. These two disasters can be avoided if the

quartic coupling has additional dependence on the radion, which can arise through slowly

running couplings [15–21]. This is the Contino-Pomarol-Rattazzi mechanism [16, 17]. In

this scenario, a small quartic is present, but there is a non-trivial minimum due to a small

amount of running. One can work out how this can lead to the potential being almost zero

at its minimum.

More specifically, classically the effective potential of a dilaton is [22]

Veff = Λχ4 , (1.2)

where χ is a dimensionless field which parameterizes a non-linear realization of the dilaton,

σ by:

χ = eσ/f . (1.3)

Under a scale transformation, and operator O of dimension ∆ transforms by

O(x)→ ρ∆O(ρx) , (1.4)
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while

σ(x)→ σ(ρx) + f ln ρ . (1.5)

Classically, in order for SBSI to occur, one needs to tune Λ, a contribution to the

vacuum energy, to zero. However, if a slowly-running perturbing operator is introduced,

then the running can lead to a dependence of Λ on χ, and a suppressed value of Veff at a

non-trivial minimum that corresponds to SBSI:

dΛ(λ(χ))

dχ
χ+ 4Λ(λ(χ)) = 0. (1.6)

As shown in [15, 18], this can be achieved by the introduction of an almost marginal

operator with dimension 4 − ε that explicitly breaks scale invariance. The running of the

coupling, λ, of this operator satisfies

β(µ) = ε b(λ(µ))� 1 (1.7)

which means that the first term in eq. (1.6) is of order ε, so at the minimum, with σ = 0,

we also have Veff of order ε. This gives a mass squared for the dilaton of order εf2 ∼ εΛ1/2.

Explicit 5D [15, 18] and 4D models [19] that incorporate the Contino-Pomarol-Rattazzi

mechanism have been constructed. In this paper, we investigate this class of models fo-

cussing on the case when the radion mass is between 100 keV and 10 GeV. Somewhat

surprisingly, there is an open window that is not currently ruled out. These models have

the additional interesting property that if the Electroweak sector of the standard model

is part of the approximately conformal sector that gives rise to the dilaton, as happens in

RS models, then the Electroweak contribution to the vacuum energy can be suppressed

by orders of magnitude; it can even be of the order the QCD contribution to the vacuum

energy [15].

The goals of this paper are to discuss a range of realistic models and to examine the

phenomenological constraints. It will prove helpful to frame the discussion in terms of

how the well-known bounds on Axion-Like-Particles (ALPs) are modified in the case of

light radions.

A brief outline of the paper is as follows. We construct a realistic 5D model in section 2

and show that it can predict a radion mass far below 10 GeV in section 3. We calculate

the coupling of the radion to standard model particles in section 4. Special attention is

given to the coupling to massless gauge bosons, and we review how this coupling is actually

model-dependent [23, 24]. This model dependence can drastically modify the light radion

search limits. The couplings to photons and gluons are important since they can lead to

large nucleon couplings [25–29]. Readers only interested in the phenomenological aspects

can skip directly to section 5 where we discuss the experimental constraints on very light

radions, particularly from astrophysical observations. We close out by presenting some brief

conclusions and give a summary plot of the open window in section 6. We also provide a

brief review of 5D theories with bulk gauge bosons in appendix B, and provide examples

of benchmark 5D models with parameter values consistent with a very light radion in

appendix C.
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2 A light radion via a small β-function

We begin by quickly reviewing the model of ref. [15]. The 5D action is given by:

S =

∫
dx5√g

(
− 1

2κ2
R+

1

2
gMN∂Mφ∂Nφ− V (φ)

)
−
∑
i=0,1

∫
dx4√giVi(φ) , (2.1)

where φ is a bulk scalar, κ2 is the 5D Newton constant and g0,1 are the induced metrics on

the UV and IR branes respectively. The brane localized potentials V0,1 are chosen to be:

Vi(φ) = Ti + λi(φ− vi)2. (2.2)

A 4D Lorentz invariant solution to the Einstein equations can be found, and we take the

metric to be:

ds2 = e−2A(y)ηµνdx
µdxν − dy2 , (2.3)

where e−A(y) is the general warp factor and the UV (IR) brane is placed at y0(y1). Greek

indices only run over ordinary 4 dimensional spacetime throughout this paper. The solution

of the Einstein equations,

Rab = κ2T̃ab = κ2

(
Tab −

1

3
gabg

cdTcd

)
, (2.4)

gives the following equations of motion for the warp factor and scalar field:

4A′
2 −A′′ = −2κ2

3
V (φ) , (2.5)

A′
2

=
κ2φ′2

12
− κ2

6
V (φ) , (2.6)

φ′′ = 4A′φ′ +
∂V

∂φ
, (2.7)

and boundary conditions:

2A′|y0,1 = ±κ
2

3
V1(φ)|y0,1 , (2.8)

2φ′|y0,1 = ±∂V1

∂φ
|y0,1 , (2.9)

where the + sign is for the UV brane and the − sign is for the IR brane.

The bulk scalar potential includes a constant term that represents the bulk cosmo-

logical constant, and a mass term, which parametrizes the small renormalization group

running ε of the 4D CFT. Thus the potential is given by:

V (φ) = −6k2

κ2
− 2εk2φ2 , (2.10)
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where k is the asymptotic AdS curvature scale. The approximate solution of the equations

of motion is:

A(y) = −1

4
log

[
sinh(4k(y − yc))

sinh(−4kyc)

]
, (2.11)

φ(y) = v0e
εk(y−y0) −

√
3

2
log(tanh(2k(yc − y))) , (2.12)

where yc parameterizes the scale of the condensate developed by the running of the perturb-

ing operator. This condensate is shielded by the IR brane, so yc > y1. The effective dilaton

potential can be found by using the solutions to integrate out the bulk scalar in favor of

its boundary values. The effective potential receives contributions from both boundaries:

VUV/IR = e−4A(y0,1)

[
V0,1(φ(y0,1))∓ 6

κ2
A′(y0,1)

]
. (2.13)

If we rewrite (2.13) in term of the dilaton field [15]

χ = e−A(y1) , (2.14)

we find that the IR effective potential has the form:

VIR = χ4

[
V1

(
φ(A−1(− logχ))

)
+

6

κ2
A′
(
A−1(− logχ)

)]
(2.15)

which has the required form of (1.2). Comparing (2.15) with (1.2), we immediately identify

the coefficient of the radion quartic term (i.e. the contribution to vacuum energy) as:

Λ = V1 +
6

κ2
A′. (2.16)

The effective potential is obtained by substituting the bulk solutions into the bulk action

and integrating over the extra dimension. In the λ0,1 →∞ limit, this yields two boundary

terms:

VUV = µ4
0

[
T0 −

6k

κ2

]
, (2.17)

VIR = χ4

[
T1 +

6k

κ2
cosh

(
2κ√

3
(v1 − v0(µ0/χ)ε)

)]
sech2

(
κ√
3

(v1 − v0(µ0/χ)ε)

)
, (2.18)

where µ0 = e−ky0 and χ = e−ky1 parameterize the locations of the UV and IR branes

respectively. The UV brane potential is just a constant that is tuned to zero, this is just

the usual UV RS tuning. On the other hand, the IR potential has a nontrivial minimum

which determines the size of the extra dimension, and the scale of SBSI. The vacuum of

IR potential is obtained from (2.18). It reads

V min
IR = −ε6

√
3kv0

κ
tanh

(
κ√
3

(v1 − v0(µ0/χ)ε) 〈χ〉4 (µ0/χ)ε
)
, (2.19)

where we can explicitly see the suppression factor ε.
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3 The radion mass

In order to canonically normalize the dilaton, we need to properly include the metric

fluctuations that mix with the Goldberger-Wise field φ. For a general ansatz to describe

the fluctuations, we will follow the derivation and conventions in refs. [30] and [31]. The

fluctuating metric is

ds2 = e−2A(y)−2F (x,y)ηµν(x)dxµdxν − (1 +G(x, y))2dy2 , (3.1)

where F (x, y) and G(x, y) are the small fluctuations. We decompose the scalar into a

background profile and fluctuations as

φ(x, y) = φ0(y) + ϕ(x, y) , (3.2)

where φ0 is the bulk solution (2.12). The linearized Einstein equations are

δRab = κ2δT̃ab. (3.3)

First, the linearized equation for δRµν gives G(x, y) = 2F (x, y) (see ref. [30]). Then the

linearized Einstein equation for each δRµν , δRµ5, and δR55 are

δRµν = ηµ�F + e−2Aηµν(−F ′′ + 10A′F ′ + 6A′′F − 24A′2F ) , (3.4)

δRµ5 = 3∂µF
′ − 6A′∂µF , (3.5)

δR55 = 2e2A�F + 4F ′′ − 16A′F ′ (3.6)

and the source terms are

δT̃µν = −2

3
e−2Aηµν(V ′(φ0)ϕ− 2V (φ)F )

− 1

3
e−2Aηµ

∑
i

(
V ′i (φ0)ϕ− 4Vi(φ)F

)
δ(y − yi) , (3.7)

δT̃µ5 = φ′0∂µϕ , (3.8)

δT̃55 = 2φ′0ϕ
′ +

2

3
V ′(φ0)ϕ+

8

3
V (φ0)F

+
4

3

∑
i

(
V ′i (φ0)ϕ+ 2Vi(φ0)F

)
δ(y − yi) . (3.9)

The linearized equation of motion for the scalar field is

e2A�ϕ− ϕ′′ + 4A′ϕ′ + V ′′(φ0)ϕ = −6φ′0F
′ − 4

∂V

∂φ
F

−
∑
i

(
V ′′i (φ0)ϕ+ 2V ′i (φ0)F

)
δ(y − yi) . (3.10)

The Einstein equation for δRµ5 can be immediately integrated to give the coupled equation

φ′0ϕ =
3

κ2
(F ′ − 2A′F ) . (3.11)
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The boundary equation from Einstein equation that is non-redundant is [30]

[ϕ′]|i = V ′′i (φ0)ϕ+ V ′i (φ0)F , (3.12)

where i = 0, 1 again corresponds to UV, IR branes respectively. Considering the

combination

1

4
e2AηµνδRµν + δR55 (3.13)

gives

e2A�F + F ′′ − 2A′F ′ =
2κ2

3
φ′0ϕ

′, (3.14)

and using the equation (3.11), we get the bulk equation which only involves the fluctuation

F and the background solution of the metric and the scalar field, (2.11)–(2.12):

F ′′ − 2A′F ′ − 4A′′F − 2
φ′′0
φ′0
F ′ + 4A′

φ′′0
φ′0
F = e2A�F . (3.15)

Together with the boundary condition (3.12), we can use this equation to determine the

Kaluza-Klein (KK) eigenmodes and mass eigenvalues for F , since the eigenmodes satisfy

�F = −m2F . (3.16)

The equation for the mass eigenvalue of the equation (3.15) can be solved numerically.

In [15], the mass squared of the radion was found to be linear in ε, to the leading order in

ε, which our numerical solutions confirm. As discussed later in section 5 we are interested

mostly in the 100 keV to 10 GeV mass range of radion which corresponds to ε in the range

of 10−17 to 10−11. Examples of benchmark parameter values that yield such a light radion

are given in appendix C.

Thus the mass of the radion/dilaton can be made small as long as the explicit scale

invariance breaking ε, is kept small, which corresponds to a very slow running of the

coupling. In addition, the value of the IR potential at the minimum, which represents a

contribution to vacuum energy, is also suppressed by ε, so the Electroweak vacuum energy

can be significantly reduced, even to be roughly the same size as the QCD contribution.

The desired hierarchy and the effective potential minimum are obtained by controlling

v0 and v1, which are the UV and IR values of the scalar field in the λ0,1 → ∞ limit. We

give the detailed results in appendix C. Typically the ratio, v0/v1, is O(10−1) for all the

parameter range we study.

We also note that the coupling to SM fermions can give rise to radiative corrections

to the radion mass. We can estimate this correction through Naive Dimensional Analysis

(NDA) to be approximately δm2 ∼ 1
16π2m

2
fg

2
σffΛ2. With cutoff scale Λ ∼TeV, this corre-

sponds mfgσff < 10−2(mσ/GeV) for the radiative mass correction to be negligible. For ex-

ample, the (g−2)e constraints which we will discuss in section 5.3 gives gσee < 10−2 GeV−1

for mσ = 1 MeV. Then we have 10−2(mσ/GeV) ∼ 10−5 whereas megσee < 5× 10−6, so the

radiative corrections can be small.

– 7 –
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Contino, Pomarol, and Rattazzi originally suggested [16, 17] that φ could be a 5D

Goldstone boson and that ε could be an arbitrary parameter that breaks the corresponding

symmetry. However, without a complete model in hand, the low-energy theory certainly

seems to be fine-tuned. We will nevertheless proceed to examine the phenomenology of

this model in spite of the fine-tuning issues, as one does for the standard model.

4 Radion couplings to matter

4.1 Coupling to brane localized fields

For the metric (3.1) with the solution F (x, y) = 2G(x, y), the perturbed term at linear

order in F is [30, 31]

δ(ds2) = −2F (e2Aηµνdx
µdxν + 2dy2). (4.1)

Then the linear term in the action is

Sradion = −1

2

∫
d5x
√
g

(
−2

1
√
g

δL
δgMN

)
δgMN (4.2)

= −1

2

∫
d5x
√
gTMNδgMN , (4.3)

where δgMN is given by (4.1) and for fields localized on the UV/IR brane,

Sradion ⊃
∫
d4x
√
g1F (x, y0,1)TrTµν ,

where y = y0,1 corresponds to the UV/IR brane respectively. Thus, we get a tree level

radion coupling to fields on the brane:

F̃ (y0,1)σ(x)Tr Tµν ≡
1

ΛUV/IR
σ(x)Tr Tµν , (4.4)

where we have factored the fluctuation as F (x, y) = F̃ (y)σ(x), where F̃ (y) is the lightest

KK eigenmode from (3.15) and σ(x) is a canonically normalized 4D radion field. The fluctu-

ations F (x, y) and ϕ(x, y) are related by equation (3.11), which implies the decomposition

of ϕ with the same 4D radion field σ(x),

ϕ(x, y) = ϕ̃(y)σ(x),

where

ϕ̃ =
3

κ2

(F̃ ′ − 2A′F̃ )

φ′0
. (4.5)

While the solution F (x, y) is obtained from (3.15), its overall normalization depends

on the canonical normalization of the radion kinetic term which has two contributions,

namely from the metric fluctuation and from the bulk scalar field. Expanding the Ricci

scalar up to the second order in F ,

− 1

κ2

∫ y1

y0

dy
√
gR =

1

κ2

∫ y1

y0

dy e−2A(y)
(
6(∂F )2 +O(F 3)

)
, (4.6)
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where the orbifolding factor of 2 is included, so the gravity contribution is

L(kin)
eff ⊃ 1

κ2

∫ y1

y0

dy e−2A(y)
(
6(∂F )2

)
. (4.7)

From the bulk scalar kinetic term we find∫ y1

y0

dy e−2A(y)(∂(φ+ ϕ))2 , (4.8)

and the orbifolding factor of 2 is also included, so the bulk scalar contribution is

L(kin)
eff ⊃

∫ y1

y0

dy e−2A(y)(∂ϕ)2. (4.9)

To canonically normalize the radion field σ(x), the bulk wave functions F̃ and ϕ̃ should

satisfy ∫ y1

y0

dy

(
e−2A(y) 6

κ2
(F̃ (y))2 + e−2A(y)(ϕ̃(y))2

)
=

1

2
. (4.10)

With this normalization the action is:

S(eff)
radion =

∫
d4x

(
1

2
∂µσ∂µσ − Veff(σ) +

√
g1
σ(x)

ΛIR
Tµ(IR)µ +

√
g0
σ(x)

ΛUV
Tµ(UV)µ

)
. (4.11)

As expected the coupling of the radion to fields on the UV brane is suppressed by ΛUV

while the coupling to the IR brane is suppressed by ΛIR.

4.2 Coupling to massless gauge bosons

The coupling of the radion to massless gauge bosons is loop-induced and is quite model-

dependent. The radion coupling to gauge fields in the bulk includes, in addition to the

overlap between the wavefunctions of the radion and gauge boson, a contribution from the

trace anomaly. To see how the radion couples to the massless bulk gauge fields [23, 24, 31],

it is simplest to look at the full matching of the gauge coupling, renormalized at a scale µ:

1

g2(µ)
=
R log(µ0f )

g2
5

− bIR
8π2

log

(
f

µ

)
− belem

8π2
log

(
µ0

µ

)
, (4.12)

where R = 2/k is the AdS curvature with the orbifolding included, while µ0 and f represent

the energy scales of the UV and IR branes. The first term comes from the bulk tree-level

contribution which corresponds to the CFT contribution to the running (see appendix B),

so we can identify

bCFT = −8π2R

g2
5

. (4.13)

The second term in (4.12), bIR, is the β function coefficient due to IR localized fields which

are lighter than µ. The third term, belem, is the β function coefficient due to UV localized

fields which correspond to elementary fields weakly coupled to the CFT.1

1In [31] this contribution is denoted as bUV.
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We can find the radion coupling by looking at the effective gauge action:

LAA = − 1

4 g2(µ)
GaµνG

aµν . (4.14)

The radion field can be thought of as the fluctuation of the IR brane, therefore the radion

coupling to the gauge field can be obtained [23, 24, 31] by substituting f → feσ/f . So we

find the coupling:

LσAA =
g2

32π2
(bIR − bCFT)

σ

f
GaµνG

aµν , (4.15)

where we have returned to canonically normalized gauge fields.

Thus the coupling of the radion to a gauge field is a completely model-dependent

parameter. For example, consider the coupling to the gluon; the two β function coefficients

in (4.15) depend on which colored fields are composites of the approximate conformal sector.

An important special case is when all of the colored fields are elementary, i.e. localized on

the UV brane. In this case there is no direct coupling of the radion to gluons.

4.3 Coupling to nucleons through gluons

The contribution to the effective coupling to nucleons comes from quarks and gluons. This

calculation has been done for the Higgs [25–29], and we can follow a similar argument.

The gluon and quark mass terms in the trace of the 4D energy momentum tensor are

Θµ
µ = muūu+mdd̄d+mss̄s+

∑
Q=c,b,t

mQQ̄Q+
β(g)

2g
GaGa + . . . . (4.16)

The low-energy β-function of the gauge field can be obtained directly from (4.12):

β(g)

2g
GaµνG

aµν =
1

2g

∂g

∂ log µ
GG = −

(b
(3)
elem + b

(3)
IR )

32π2
g2GaµνG

aµν . (4.17)

The heavy quark expansion [32],

∑
Q=c,b,t

mQQ̄Q→ 3×
(
−2

3

g2

32π2
GaµνG

aµν

)
+O

(
1

m2
Q

)
, (4.18)

means that at leading order the stress tensor is independent of the c, b, t quark terms, so

Θµ
µ = muūu+mdd̄d+mss̄s−

b
(3)
light

32π2
g2GaµνG

aµν + . . . , (4.19)

where the β function coefficient b
(3)
light includes only the u, d, s quarks and the gluon which

we assume are all elementary. From (4.17) and (4.18) it is

b
(3)
light =

(
b
(3)
elem + b

(3)
IR

)
+ 2. (4.20)
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The nucleon mass is effectively given by the matrix element of the trace of the energy

momentum tensor at vanishing momentum transfer,

mN N̄N =
〈
N
∣∣Θµ

µ

∣∣N〉 . (4.21)

The radion couples to the nucleons through the gluon coupling (4.15), and neglecting the

contributions from the light quarks’ masses we find the radion-nucleon coupling to be

gσNNmNσN̄N ≡
〈
N

∣∣∣∣ g2

32π2

(
b
(3)
IR − b

(3)
CFT

) σ
f
GaµνG

aµν

∣∣∣∣N〉 =
b
(3)
CFT − b

(3)
IR

b
(3)
light

mN

f
σN̄N.

(4.22)

Notice that if the gluon and quarks are elementary, i.e. localized on the UV brane,

then this leading contribution vanishes, and the radion coupling is suppressed by the scale

of the UV brane (as seen from (4.4) rather than by f). When the radion coupling to both

quarks and gluons is negligible, the radion can still couple to nucleons through photons,

i.e. through the photon term in the stress tensor:

Θµ
µ ⊃ −

bEM
elem + bEM

IR

32π2
e2FµνF

µν , (4.23)

where e represents the electromagnetic gauge coupling. Lattice calculations provide the

best estimate of the QED contribution to the nucleon mass and up to NNNLO. The QED

correction to neutron mass is calculated to be [33],

(δmN )QED

mN
' 10−5. (4.24)

Then we deduce〈
N

∣∣∣∣−bEM
elem + bEM

IR

32π2
e2FµνF

µν

∣∣∣∣N〉 ' 10−5

〈
N

∣∣∣∣∣∣−b
(3)
light

32π2
g2GaµνG

aµν

∣∣∣∣∣∣N
〉
, (4.25)

and radion coupling to neutrons through the photon coupling, (4.15) is

gσNNmNσN̄N =

〈
N

∣∣∣∣ e2

32π2

(
bEM
IR − bEM

CFT

) σ
f
F aµνF

aµν

∣∣∣∣N〉 (4.26)

'
(
bEM
CFT − bEM

IR

)(
bEM
elem + bEM

IR

)10−5

〈
N

∣∣∣∣ g2

32π2

(
−b(3)

light

) σ
f
GaµνG

aµν

∣∣∣∣N〉 (4.27)

'
(
bEM
CFT − bEM

IR

)(
bEM
elem + bEM

IR

)10−5mN

f
σN̄N, (4.28)

where we used (4.25) and (4.21) in the second and third lines. Writing the photon coupling

term from (4.15) as

LσAA = −1

4
gσγγ σ FµνF

µν , (4.29)

the correlation between coupling to photons and the coupling to nucleona reads

gσγγ ' 105 e
2(bEM

elem + bEM
IR )

8π2
gσNN (4.30)

' 1.16× 102 (bEM
elem + bEM

IR ) gσNN . (4.31)

The phenomenology of this scenario is discussed further in subsection 5.1.
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4.4 Radion decay to massive particles

Before we discuss the experimental bounds on the radion’s parameter space, we need to

investigate the possibility of its decay into lighter particles, since this can also affect these

bounds. In this subsection, we focus primarily on the radion decay to massive particles,

since the decay to photons has been extensively studied for the case of ALPs. If the radion

decays quickly enough, then some of the experimental constraints are invalidated. For ex-

ample if the radion decays in less than 1 second, the beginning of Big Bang Nucleosynthesis

(BBN), then the constraints from cosmology will be lifted [34].

For the mass range of interest (mσ . 10 GeV), the radion can decay to fermions or

mesons if the decay is kinematically allowed. The radion decay to two fermions is given by:

Γ(σ → ff̄) =
1

8π
mσm

2
fg

2
σff

[
1−

4m2
f

m2
σ

]3/2

, (4.32)

where gσff is the radion’s low-energy, effective coupling to fermions:

Lσff = gσffmfσff . (4.33)

Thus gσff has units of inverse mass.

The radion’s coupling to mesons through quarks and gluons is similar to the case of

nucleons. Focusing on decays to two pions, and denoting the invariant mass squared of two

pions by q2, the coupling to pions can be calculated as follows [35, 36]:〈
π+π−

∣∣Θµ
µ

∣∣ 0〉 = q2 + 2m2
π , (4.34)〈

π+π−
∣∣muūu+mdd̄d+mss̄s

∣∣ 0〉 = m2
π , (4.35)

which implies 〈
π+π−

∣∣∣∣∣∣−b
(3)
light

32π2
g2G2

∣∣∣∣∣∣ 0
〉

= q2 +m2
π . (4.36)

Using (4.15) one obtains σ → ππ decay amplitude,

A(σ → ππ) =

(
b
(3)
IR − b

(3)
CFT

)
f

〈
π+π−

∣∣∣∣ g2

32π2
GaµνG

aµν

∣∣∣∣ 0〉 , (4.37)

= −

(
b
(3)
IR − b

(3)
CFT

)
b
(3)
light

m2
σ +m2

π

f
. (4.38)

Using (4.22) one obtains the decay width,

Γ(σ → ππ) =
1

8πm2
σ

(
m2
σ

4
−m2

π

) 1
2

|A|2 (4.39)

=
g2
σNN

16π
m3
σ

(
1− 4m2

π

m2
σ

) 1
2
(

1 +
m2
π

m2
σ

)2

, (4.40)

– 12 –



J
H
E
P
1
0
(
2
0
1
8
)
0
5
0

where gσNN is given by (4.22). Using low-energy effective theory with a coupling

Lσππ = gσππm
2
π σππ, (4.41)

where gσππ has units of inverse mass, one gets a decay width,

Γ(σ → ππ) =
g2
σππm

4
π

16πmσ

(
1− 4m2

π

m2
σ

) 1
2

. (4.42)

Comparing to (4.40) we find that

gσππ = gσNN
m2
σ +m2

π

m2
π

. (4.43)

5 Limits

When the radion’s coupling to photons gσγγ , dominates over all other couplings to standard

model particles, the constraints can be recast from ALP searches whose results are usually

displayed in the mass-coupling plane [37–41], as in figure 1. In this section we examine

how these limits change when other couplings are turned on. We are primarily interested

in the region constrained by the limits from Supernova2 (SN) 1987a, cosmology, Horizontal

Branch stars, and beam dump experiments [42–44]. These bounds constrain masses in

the range keV to 10 GeV, and couplings smaller than TeV−1. These limits can be directly

applied to a radion (with no other couplings) given that scalars and pseudoscalars have very

similar amplitudes3 for interacting with massless gauge bosons. We note that for ALPs

the triangular region between beam dumps, SN 1987a, and HB stars may or may not be

closed by BBN constraints, depending on further model-dependent assumptions [45]. In

the following, we will assume that this region is open, but will show in subsection 5.3 that

for masses above 1 MeV, there is a range of couplings where these additional assumptions

are not needed to open this part of the window.

In subsections 5.1 and 5.2 we investigate the effects of gσNN on the light radion window.

In subsection 5.3 we will discuss the effects of couplings to other particles.

5.1 SN 1987a

Astrophysical objects provide a powerful natural laboratory in elementary particle physics,

and stars are the best sources of weakly interacting particles such as neutrinos, gravitons,

and probably radions. SN 1987a is one of the most important astrophysical sources due to

its high density, high temperature, and proximity.

The light green region in figure 1 shows a constraint on the coupling to photons from

SN 1987a when other couplings are all neglected [46]. This excluded limit covers the radion

mass near MeV or less, with a coupling to photons suppressed by a scale between 103 TeV

and 106 TeV.

Through the coupling gσNN , the radion is produced by nucleon-nucleon bremsstrahlung

through an one pion exchange process. One of the eight diagrams is shown in figure 2.

2Throughout this paper we mean by SN 1987a limit the light green region in figure 1 rather than the

dark green γ-burst limit.
3Scalars couple to ~E2 − ~B2 while pseudoscalars couple to ~E · ~B.
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Figure 1. Limits on ALP coupling and mass parameters space compiled by Jaeckel, Jankowiak

and Spannowsky [41] and the references therein.

Figure 2. Nucleon-nucleon bremsstrahlung with one pion exchange.

An approximate analytic constraint on the energy loss for SN 1987a is set by the

neutrino burst duration [47] detected by IMB and Kamiokande II. From the measured

cooling rate, the energy loss rate due to beyond-the-standard-model particles should not

exceed the energy loss rate through neutrinos [48]:

Ėnew . 5× 1052 erg/s. (5.1)

We will assume that the matter in the core of SN 1987a is mostly non-relativistic

nucleons, i.e., T � 1 GeV. The energy loss rate per unit volume from nucleon-nucleon

bremsstrahlung (NN → NNσ) and the inverse mean free path of a radion in the nu-

cleon medium due to absorption (NNσ → NN) are given by phase space integrals of the
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squared amplitudes

ε̇ =

∫
dΠ1dΠ2dΠ3dΠ4dΠσ(2π)4δ4(p1 + p2 − p3 − p4 − pσ)Eσ

× S|Mb|2f1f2(1− f3)(1− f4), (5.2)

λ−1 =
1

2Eσ

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ4(pσ + p1 + p2 − p3 − p4)

× S|Ma|2f1f2(1− f3)(1− f4), (5.3)

where p1, p2, p3, p4, and pσ are the nucleon and radion four-momenta with the subscripts

1 and 2 (3 and 4) for the incoming (outgoing) nucleons;

dΠi = d3pi/(2π)32Ei (5.4)

is the Lorentz invariant phase-space volume element; fi are the nucleon phase-space dis-

tribution functions; and S is a symmetry factor. The spin-averaged matrix element for

a radion production through nucleon-nucleon bremsstrahlung in the non-relativistic limit

was calculated by Ishizuka and Yoshimura [49].4

The estimate for ε̇ in (5.2) assumes that the mean free path is much larger than the

size of the region of high nuclear density. When the mean free path becomes smaller than

this size, some of the radions produced in the SN will be absorbed before escaping. We can

give an improved estimate of the energy loss rate due to radions that takes into account

radion absorption by the following formula

Ė =
∑
i

[∫ ri

ri−1

4πr2dr ε̇i(T, ρ) exp[−(ri − r)/λi]

]∏
j>i

exp

[
− lj
λj

]
erg s−1, (5.5)

where i corresponds to dividing the SN into a sequence of layers; li is the thickness of layer

i; ri is the distance from the center to the outmost surface of layer i (i.e. ri ≡
∑

j≤i lj)

with the center at r0 = 0; ε̇i are the energy loss rate per volume (5.2) in layer i; and λi is

the mean free path (5.3) in layer i. The typical radion energy, Eσ, for λi is chosen to be

the relativistic average energy of a boson

〈E〉 =
π4

30ζ(3)
T ≈ 2.701× T (5.6)

in the core (T ≥ 20 MeV) and 2.701 × 20 MeV for outside of the core, given that the

production of radions in the core dominates over the production in the outer layers.

For simplicity we assume that SN 1987a consisted of a central nucleon-rich region of

four layers, with an inner core (5 km thick), an outer core (3 km), an inner mantle (10

km) and an outer mantle (10 km), surrounded by dense gas (∼1000 km) which blows off.

4For the free streaming limit, [49] obtains simplified expressions for the dilaton emissivity. We note that

we and the authors of [49] agree that some of these equations were incorrect, and corrected equations are

provided in appendix A. We thank Naruhito Ishizuka for providing the corrections.
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Following the simple model in [50] where the temperature dependence is given as a function

of the mass density:

T (r) = (20 MeV)(ρ(r)/1014 g cm−3)1/3 , (5.7)

we approximate each layer in the nucleon-rich region with a constant average nucleon mass

density of 3 × 1014 g cm−3, 1014 g cm−3, 1012 g cm−3, and 1010 g cm−3 with correspond-

ing temperatures of 30 MeV, 20 MeV, 4 MeV, and 1 MeV respectively. We numerically

checked that effects from the surrounding dense gas are negligible due to its low density

(� 108 g cm−3) and low temperature (� 1 MeV).

The mass density is encoded in the calculation through the chemical potential in the

nucleon phase-space distribution functions. In the hot supernova core, the nucleons are

partially degenerate but close to a nondegenerate state, which needs to be carefully treated.

The chemical potential, µ, is related to the density and temperature as [51]

ρ

1014 g cm−3
' 9.0× 10−3g(y)

T

MeV
, (5.8)

where y ≡ (µ−mn)/T , g(y) in the nondegenerate (y � −1) and degenerate limits (y � −1)

is approximated by

g(y) '

{
π1/2

2 ey, y � −1,
2
3y

3/2, y � 1,
(5.9)

and in intermediate regime is approximated by the Taylor expansion

g(y) ' 0.678 + 0.536y + 0.1685y2 + 0.0175y3 − 3.24× 10−3y4. (5.10)

We find g(y) = 0.3 is a good point to divide the nondegenerate regime and the intermediate

regime.

The radion energy loss rate (5.5) is plotted in figure 3 along with the bound (5.1). The

bump at gσNN = 1.5× 10−8 GeV−1 is due to the discontinuity between the inner core and

the outer core, and the bump at gσNN = 2×10−6 GeV−1 is due to the discontinuity between

the outer core and the inner mantle. These features would, of course, be smoothed out with

a more sophisticated model of the interior. There are two regimes where the energy loss

rate via radion production does not exceed the bound (5.1). The first regime is where the

coupling is so weak that the radions are produced too slowly to have a significant impact.

The second regime is when the coupling is large enough that the radions cannot easily

escape the SN [52], this is the trapping regime where the radions only slowly diffuse out

of the SN. Note that when the radion mass is comparable to the typical core temperature

(∼ 20 MeV), the boundary of each regime is sensitive to the inner structure which is only

approximately understood.

For radions lighter than � 1 MeV, the trapping regime can be treated in another

way [48]: by calculating the luminosity of radions from a “radionsphere” (analogous to

the “axionsphere” [50]) which approximates the emission by a radion blackbody. The

luminosity is given in terms of the radius R of the “radionsphere” by

L = 4πR2σT 4(R) , (5.11)
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Figure 3. The energy loss rate via radions assuming they only interact with nucleons. The

red-dotted line represents a radion mass mσ = 1 MeV, the orange-dashed mσ = 10 MeV and the

blue-dot-dashed mσ = 50 MeV. The solid black horizontal line marks the bound (5.1).

where σ is the Stefan-Boltzmann constant and not to be confused with the radion field.

The bound on the energy loss rate (5.1) directly translates to a bound on the luminosity;

for example for R =10 km, the temperature at that radius is bounded by T (R) < 8 MeV.

We can numerically calculate the “radion depth” (analogous to the optical depth) from

τ(r) =

∫ ∞
R

λ−1dr′ , (5.12)

and the radius of the “radionsphere” is defined [48] by τ(R) = 2
3 . We checked that for the

layer model described above, and for gσNN > 10−6 GeV−1, R lies in the inner mantle where

the temperature is ∼ 4 MeV, which is consistent with the more sophisticated treatment

using eq. (5.5). We also checked that for the inner core (5.3) yields

λ ∼ 10−16 km

(gσNN mN )2
(5.13)

for mσ < 50 MeV in the core. This means that in the trapping regime, the mean free

path is orders of magnitude smaller than the size of the core, and radions do not alter the

transfer of energy from the core.

Next we consider the case where the coupling to photons also comes into play. In

figure 4 the energy loss rate [46] is shown, assuming an interaction strength with photons

given by gσγγ = 2 × 10−9 GeV−1. We used the same layered model of densities and tem-

peratures as above. A trapping region still remains for sufficiently large nucleon couplings.

The limit on the coupling to photons is re-plotted for the case gσNN & 2 × 10−6 GeV−1

in figure 55 where the energy loss rate goes below the bound (5.1). In figure 6 we provide

the exclusion region in gσγγ − gσNN coupling space for radion masses 1 MeV, 10 MeV and

50 MeV along with a band of contours of eq. (4.31) for 0.01 < |bEM
elem + bEM

IR | < 10 which

5We note that radion production through nucleon bremsstrahlung with a large nucleon coupling will

modify the confidence level of the beam dump limits on the photon coupling. The specific modification is

not covered in this paper. We thank Thomas Flacke for pointing this out.
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Figure 4. The energy loss rate via radions with gσγγ = 2 × 10−9 GeV−1. See details in the text.

The red-dotted line represents the radion mass mσ, of 1 MeV, the orange-dashed mσ = 10 MeV,

the blue-dot-dashed mσ = 50 MeV and the solid black horizontal line marks the bound, (5.1).
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Figure 5. Limits of the coupling and the mass of the radion when gσNN & 2 × 10−6 GeV−1,

modified from figure 1.

applies when the coupling to photons gives the dominant contribution to gσNN . We note

that although there exist bounds from exotic meson decays [53] on the coupling to top

quarks generated radiatively from the coupling to gluons, its translation to the limit on

the coupling to nucleons can be weaker depending on b
(3)
light which determines a ratio of the

gluon coupling (4.15) to the nucleon coupling (4.22). We assume these exotic meson decay

bounds do not affect the range we are interested in.
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Figure 6. Exclusion region by SN 1987a in the gσγγ − gσNN space. The bound on gσγγ are

obtained approximately from figure 1. In the case that gσγγ provides the dominant contribution to

gσNN the relation in eq. (4.31), is plotted for 0.01 < |bEM
elem + bEM

IR | < 10 as a grey band.

5.2 The Horizontal Branch stars

Radion emission also affects the helium-burning lifetime of Horizontal Branch (HB) stars.

Helium ignition can be delayed by radion cooling and this implies that the HB stars can

be brighter than otherwise allowed [48, 54]. Detailed studies [48, 54] impose the following

limit on the energy loss rate per unit mass produced by a new particle in the core,

ε̇HB . 10 erg g−1 s−1. (5.14)

A plot of the energy loss due to radion bremsstrahlung (figure 2) with a typical core density

of ρ = 104 g cm−3 and a temperature T = 8.3 keV corresponding to HB stars is shown in

figure 7 for the free streaming regime.

Constraints on radions come from requiring that the energy transfer by radion trapping

be smaller than the radiative energy transfer [38, 55]. However as the dominant contribution

of the energy transfer in the core of the HB stars is by convection, not by radiative transfer,

this constraint should be considered conservative bound.

Taking the typical relativistic energy (5.6) for mσ . T or the typical non-relativistic

energy, Eσ ' mσ + 3
2T , for mσ � T , we numerically find that in HB stars

λ ∼ 108 km

(gσNN mn)2
, (5.15)

up to mσ ∼ 100 keV, so we see that there is no possibility of a trapping regime in HB

stars whose typical core radius is 104 km. If the mean free path by nucleon-nucleon

bremsstrahlung could be comparable to the thickness of beam dump targets, the beam

dump constraints on the two-photon coupling will be modified as radions will be trapped
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Figure 7. The energy loss rate by radions including only the interaction with nucleons. The

red-dotted line represents mσ = 1 keV, orange-dashed mσ = 10 keV and blue-dot-dashed for mσ =

100 keV. The black-solid horizontal line marks the bound (5.14).
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Figure 8. Exclusion region by HB in the gσγγ − gσNN space on the top of SN 1987a limit for

mσ < 1 MeV. The bound on gσγγ are obtained approximately from figure 1. In the case gσγγ gives

dominant contribution to gσNN the relation, (4.31) is plotted for 0.01 < |bEM
elem + bEM

IR | < 10 as a

grey band.

inside the target. Obviously, since beam dumps involve even smaller sizes, trapping will not

happen and there is no change to the beam dump constraints on the two-photon coupling.

In figure 8 the exclusion region in gσγγ−gσNN plane from HB stars is shown for radion

masses of 1 keV and 100 keV on the top of the SN limit for mσ < 1 MeV, again along with

a band of contours of eq. (4.31) for 0.01 < |bEM
elem + bEM

IR | < 10 which applies when the

coupling to photons gives dominant contribution to gσNN . There are two open windows,
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Figure 9. (Top Left) The region in gσii − mσ parameter space where the SN 1987a bounds

are affected by the radion decay to e−e−, µ+µ−, and π+π−. Here we have assumed the SN has an

effective radius of 15 km and a temperature of 30 MeV. (Top Right) The regions where bounds from

beam dump experiments are affected by radion decay. (Bottom) The region where the constraints

from cosmological bounds are eliminated. We take the upper limit on the radion lifetime for decays

to e’s and µ’s to be 10 s, and for decays to π’s, τ ’s and nucleons to be 1 s [34]. (All) The gray(black)

regions show the excluded region from g − 2 experiments for the muon(electron). The exclusion

regions from gσee and gσµµ are set at 99% confidence level, and the ±1σ flavored band for aµ is

shown as a yellow band.

one at the bottom-left weak coupling limit and one at the bottom-right trapping regime

where gσNN bound depends on a radion mass.

5.3 Limits and radion decays

Finally, we investigate the effect of radion decays on the SN 1987a, beam dump, and

cosmological bounds. If the radion decays inside the SN or the beam dump, or before BBN,

then the limits no longer apply. We consider radion decays to e+e−, µ+µ−, π+π−, τ+τ−,

and two nucleons, and present the results in terms of the low-energy, effective couplings

in (4.33) and (4.41). In the top left panel of figure 9 we use eqs. (4.32) and (4.42) to show

the region of the mσ − gσii parameter space where the decay length becomes smaller than

the radius of the core of SN 1987a.

In the top right panel of figure 9, we show the regions where the radion decays inside

the target/absorber of various beam dump experiments. We show the experiments which

give the most stringent limit for each mass range. Note that SLAC 137 contains a hill

which is an unusually long absorber [42, 44].
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Figure 10. LO (leftmost diagram) and NLO radion contributions to the lepton anomalous mag-

netic moment.

Ref. [34] provides upper bounds on lifetimes (for various decay modes) that leave BBN

unaffected. For electron and muon final states, the upper bound on the radion lifetime

is 10 s, whereas the bound drops to 1 s for τ ’s and π’s. We show the regions where the

cosmology bounds disappear in the bottom panel of figure 9. In this case even weaker

couplings can eliminate the bounds.

For radion masses larger than 2me ≈ 1 MeV, the bounds from SN 1987a can be modified

for couplings suppressed by scales less than 10 TeV, while the cosmology bounds can be re-

moved with suppressions less than 100 TeV. For radion masses larger than 2mµ ≈ 210 MeV,

the beam dump bounds are relaxed with coupling suppression scales less than 1000 TeV.

The latest experimental results of the muon anomalous magnetic moment, aµ ≡ (gµ−
2)/2, show a 3.5σ discrepancy [56–58]:

∆aµ ≡ aexp
µ − aSM

µ = 273(80)× 10−11. (5.16)

The latest experimental results of the electron anomalous magnetic moment, ae, shows a

2.4σ discrepancy [59]:

∆ae ≡ aexp
e − aSM

e = −88(36)× 10−14. (5.17)

Notice that since the radion is CP-conserving, it will have no effect on the Electric Dipole

Moments (EDM) of the muon and electron. Therefore EDM constraints are irrelevant in

this model. The leading order (LO) and next-to-leading-order (NLO) contributions to the

∆aµ,e are shown in figure 10. The LO contribution was calculated in [56]:

al =
m2
l g

2
σll

8π2
r−2

∫ 1

0
dz

(1 + z)(1− z)2

r−2(1− z)2 + z
, (5.18)

where r ≡ mσ/ml for each l = e, µ. On the other hand, the NLO contributions include

the Barr-Zee (BZ) contribution (second diagram in figure 10), the two-loop Light-by-Light

(LBL) contribution (third diagram in figure 10), and the Vacuum Polarization (VP) con-

tribution (the last diagram in figure 10). All these contributions were calculated in [57]

and are given by:

aBZ
l '

(
m2
l

4π2

)
gσγγgσll ln

Λ

mσ
, (5.19)

aLBL
l ' 3α

π

(mlgσγγ
4π

)2
ln2 Λ

mσ
, (5.20)

aVP
l ' α

π

(mlgσγγ
12π

)2
ln

Λ

mσ
, (5.21)
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Figure 11. The open light radion window in white. The radion masses indicated by vertical

lines correspond to vacuum energy contributions of −(10 MeV)4 (dotted), −(100 MeV)4 (dashed),

−(1 GeV)4 (solid) and −(10 GeV)4 (dot-dashed) in a benchmark model.

where Λ is a UV cutoff. In our calculation, we set Λ = 1 TeV. Assuming gσiigσγγ positive,

a radion gives positive contributions to lepton g − 2. These new contributions could be

a potential solution to ∆aµ discrepancy; on the other hand, radion contributions increase

∆ae discrepancy.6 Using these results, we can find the excluded region in the mσ − gσii
parameter space. We add the excluded regions corresponding to the electron and the

muon to figure 9 for the benchmark value of gσγγ = 2× 10−9 GeV−1, with the upper 2.58σ

deviation (99% confidence level) from the central values of ∆aµ,e, (5.16)–(5.17), as the

limit. Below the muon exclusion regions, the muon flavored regions are shown as a band

which makes ∆aµ within 1σ deviation from the measured value.

6 Conclusions

While ALPs have interesting, unconstrained regions in the mass-photon coupling plane, we

have seen that radions can have either essentially the same unconstrained regions or much

larger regions depending on the size of the radion coupling to other particles, especially

electrons and nucleons. In models that realize the Contino-Pomarol-Rattazzi mechanism,

the radion mass is connected to the vacuum energy of the electroweak sector, therefore

measuring the radion mass would give us indirect information about this contribution to

vacuum energy. The possibility of measuring an individual sector’s contribution to the

total vacuum energy is unique (at the present time) to this class of models.

As an example of the kind of information one might obtain, we have overlain some

radion masses that are correlated to a variety of different vacuum energies in a benchmark

model7 on top of the final exclusion regions in figure 11. We have assumed that gσNN is large

6If gσiigσγγ < 0, the radion contribution can be negative, hence an opposite scenario [57]. For figure 9

we assume gσiigσγγ > 0.
7For the details of the benchmark model, see the end of appendix C.
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enough for the radion to be in the SN trapping regime, as discussed in section 5.1, so there is

no constraint on the radion coupling to photons from SN 1987a. We have also assumed that

gσee is large enough (see figure 9) so there is no constraint from cosmology for masses above

1 MeV and that gσµµ is large enough that there is no constraint from beam dump experi-

ments when for masses above 210 MeV. We have indicated the radion mass corresponding

to electroweak vacuum energies of −(10 MeV)4, −(100 MeV)4, −(1 GeV)4 and −(10 GeV)4.

An interesting future direction would be to determine the complete range of electroweak

vacuum energies that are consistent with the radion bounds in the entire class of models.
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A Corrected formulas for [49]

The corresponding equation numbers in [49] are shown on the left in italics.

(18) εD =

√
2

15 · 32π7
· g2
D

(
f

mπ

)4

·m5/2
n · T 13/2 · J, (A.1)

(19) J =

∫ ∞
0

(
4∏
i=1

dxi

)
θ(x5) · x2

5 · S(xi, y) · FD(xi) (A.2)

where x5 = x1 + x2 − x3 − x4,

(B.2) HD(x) = 86
√
x+

4

x2
5

·
[
(3 · c(x)− 6ε2) · x1/2 + (d(x)− 4ε) · x3/2 − 3

5
· x5/3

]
+
√
ε · arctan(

√
x/ε) ·

[
−142 +

4ε

x2
5

·
{

5ε+ 7 · d(x)− 5 · c(x)/ε
}]

+ ε

√
x

x+ ε
·
[
30− 4ε/x2

5 ·
{
ε+ d(x)− c(x)/ε

}]
+ I(x) ·

{
13ε2 + 4ε4/x2

5 − 31/4 · x2
5

}
, (A.3)

where c(x) = (x4 − x2)(x3 − x1), d(x) = x1 + x2 + x3 + x4, and

I(x) =
θ(Z)√
Z
· · ·

(same function as
{
θ(Z)√
Z
· ln · · ·+ θ(−Z)√

−Z · arcsin · · ·
}

appeared in 2nd and 3rd line in (A.17) of [49]). (A.4)

The definitions not specified are the same as in [49].
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B Bulk gauge bosons

The action for a bulk gauge field is

Sgauge =

∫
d4xdy

√
ggMP gNQ

[
− 1

4g2
5

W a
MNW

a
PQ

+
v2

8

√
g1δ(y − y1)gMP

(
W a
MW

a
P

)]
, (B.1)

where v is localized Higgs VEV on the IR brane. Taking the KK decomposition

W a
µ (x, y) = W (n)

µ (x)f (n)(y) , (B.2)

where f (n)(y) satisfies the normalization condition

1

g2
5

∫
dyf (n)(y)f (m)(y) = δµν

1

g2
4

, (B.3)

the equation of motion is(
e−2A∂2

y − 2A′e−2A∂y +m2
n −

v2g2
5

4
e−2Aδ(y − y1)

)
Wµ(y) = 0, (B.4)

with a solution for the background metric A(y) as in (2.11). Fixing the mass of the lightest

mode, which corresponds to the W boson, determines the Higgs VEV v. The KK masses

are obtained as the eigenvalues mn, of the KK towers in (B.4).

The 4D effective gauge coupling is matched to the 5D gauge coupling by integrating

out the extra dimension at tree-level:

L ⊃
∫
dy
√
g

(
− 1

4g2
5

FMNF
MN

)
= 2

∫ y1

y0

dy(e−4A)

(
− 1

4g2
5

FµνF
µνe4A

)
≡ − 1

4g2
4

FµνF
µν ,

(B.5)

where for the massless zero mode ∂yAµ(x, y) = 0 and A5 = 0 are the gauge fixing conditions.

The fields is the third line are contracted with the Minkowski metric and the orbifolding

factor of 2 is explicitly included on the second line. As the F 2 term in the second line

doesn’t depend on y, we then have∫
dy

(
− 2

4g2
5

)
= − 1

4g2
4

2L

g2
5

=
1

g2
4

, (B.6)

where L ≡ y1 − y0 is the size of the extra dimension. The energy scale is given by µ =

ke−A(y), where k represents the curvature scale near the UV brane. In AdS we have

A(y) = ky, and

L = y1 − y0 =
1

k
log

(
Λ

f

)
. (B.7)
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a) y1 = 13.8, v1 = 3, T1 = −60

ε V IR
min ( GeV)4 mσ (MeV)

10−17 -0.0000130 0.00284

10−15 -0.00130 0.0284

10−13 -0.130 0.284

10−11 -13 2.84

b) y1 = 13.8, v1 = 5, T1 = −40

ε V IR
min ( GeV)4 mσ (MeV)

10−17 -0.000107 0.00828

10−15 -0.0107 0.0828

10−13 -1.07 0.828

10−11 -107 8.28

Table 1. The contribution to the vacuum energy and the radion mass for each benchmark pa-

rameter set, with α=1. Different values can be obtained by rescaling the values by α. The tuning

between UV and IR value of the field φ given by v0/v1, is equal to 0.095 for a) and 0.62 for b)

where the changes of v0 for different ε values take place at a high number of digits.

The CFT contribution to the β-function is parameterized in terms of bulk parameters as

β(g) =
∂g

∂ log µ
=

1

−2g−3

∂

∂ log µ

(
2
k log(Λ

µ )

g2
5

)
=

g3

kg2
5

≡ −bCFTg
3

2(8π2)
. (B.8)

C Model results

Here we will show some numerical values calculated with different benchmark parameter

sets. The minimum of the effective potential determines the hierarchy, so that k 〈χ〉 ∼TeV.

For numerical simulations we use a parameter α to specify the hierarchy between the UV

and IR:

k 〈χ〉 = αTeV . (C.1)

This sets the scale factor k and thus determines the masses in the model. We give the

masses in units of k (i.e. if the dimension is [mass]2 then it is given in units of k2, etc.)

for all other parameters unless otherwise specified. Throughout this paper we fix κ = 0.5,

λ0,1 = 1030 and µ0 = 1 (i.e. y0 = 0).

In table 1, we display the contribution to the vacuum energy (V IR
min) with the mass of

the radion for each ε for two different benchmark parameter sets. We can see that V IR
min

is proportional to ε and mradion is proportional to ε1/2 as expected. Numerically we also

check that the vacuum and the mass are not sensitive to the bulk parameter y1,8 whereas

they are sensitive to the IR brane parameters T1 and v1. This can be understood by noting

that the metric fluctuation peaks near the IR brane (figure 12).

In table 2, we provide the mass of the lightest KK mode of the W boson, mW ′ , and

f defined in (4.15) with two different parameter sets (see appendix B for a discussion of

mass of the KK gauge boson). We also check that the mass of the lightest KK W boson

and f are not sensitive to ε when ε is smaller than 10−1. This can be understood by the

8We note that y1 is controlled by v0 when the other parameters are fixed, and due to the large value of

λ, we are making y1 shifts through changes to a high number of digits of v0.
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Figure 12. The bulk profile of the (unnormalized) fluctuation of the metric F (y) in (3.1).

y1 = 13.8, v1 = 5, T1 = −60, ε = 10−13.

a) y1 = 13.8, v1 = 5, ε = 10−13

T1 mW ′ (TeV) f (TeV)

−60 2.5537 140.37

−50 2.5548 139.44

−40 2.5561 138.24

b) y1 = 16.1, v1 = 5, ε = 10−13

T1 mW ′ (TeV) f (TeV)

−60 2.5428 163.76

−50 2.5438 162.67

−40 2.5450 161.27

Table 2. The mass of the lightest KK mode of the W boson and the radion VEV for two benchmark

parameter sets, with α=1. The tuning v0/v1, for T1 = -60, -50 and -40 is 0.46, 0.53 and 0.62

respectively for both a) and b).

fact that the mass of the KK W boson mainly comes from the bulk gradient contribution,

while the Higgs mechanism on the IR brane contributes very little.

Special attention has to be paid to the scale factor α. If we change this scale factor,

then all the masses in table 1 are simply multiplied by α. The results in table 2, however,

are not obtained by simply multiplied by α because we need to set the W mass to 80 GeV.

However, due to the flatness of the bulk wavefunction, its mass comes mainly from the

Higgs VEV while the mass of the KK mode mainly comes from the bulk gradient. The

Higgs VEV has to be adjusted depending on the value of α. In figure 13 we show how

x ≡ v2g2
5/4 and mW ′ vary as α varies, where v is the Higgs VEV that arises on IR brane.

We can see that the proportionality between mW ′ and α is preserved and x gets smaller as

α increases to preserve the zero mode mass. This scale factor parameter allows the model to

easily escape a lower bound on the mass of the KK modes coming from the experiments as

long as the bound is not much larger than O(10) TeV if we want to keep k 〈χ〉 ∼ O(10) TeV

To make figure 11 we used T1 = −40, v1 = 5, y1 = 13.8, α = 0.5 with different values

of ε to achieve different vacuum energies.
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Figure 13. Plots of x = v2g25/4 (left) and mW ′ (right) versus α. y1 = 13.8, v1 = 5, T1 = −50,

ε = 10−13.
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