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1 Introduction: ANEC and ETH

Kovtun, Son, and Starinets conjectured a lower bound on shear viscosity, suggesting that

fundamental principles of quantum statistical mechanics could usefully constrain the dy-

namics of strongly interacting, non-quasiparticle systems [1]. The recent proof of a bound

on chaos realizes this intuition to an extent [2], although Lyapunov growth is not directly

related to physical observables such as transport coefficients. Transport is instead con-

trolled by local thermalization. A lower bound on the viscosity has yet to be established,

and the status of such a bound remains inconclusive [3], but the shear viscosity was recently

found to have an upper bound set by the thermalization timescale [4]. That bound follows

from requiring diffusion to be causal, in the spirit of earlier observations [5].

The use of fundamental constraints on quantum field theories (QFTs) to bound ob-

servables is at the core of the ‘bootstrap’ approach to conformal field theories [6]. As part

of this endeavour, the averaged null energy condition (ANEC) has been proven in unitary,

Lorentz invariant QFTs [7–9]. The ANEC constrains the extent to which energy density

can be negative in any state ψ of a quantum field theory:

〈E+〉ψ ≡
∫
dx+〈T++〉ψ ≥ 0 . (1.1)

Here T++ is a null component of the energy-momentum tensor, and the integral is over a

null ray. Historically, this integrated energy condition was found to be sufficient to prove
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Figure 1. Structure of the matrix 〈a|T++|b〉, in eigenstates with energy near some fixed E. The

diagonal elements are related to thermal expectation values 〈T++〉T , while the exponentially sup-

pressed, off-diagonal elements are related to the correlation functions 〈T++T++〉T . The ANEC

constrains the magnitude of the off-diagonal elements in terms of those along the diagonal.

several theorems in general relativity [10, 11]. More recently, applied to conformal field

theories, the ANEC has been shown to constrain stress tensor couplings [12], current-

energy couplings [13–15], other operator product expansion coefficients [16], and operator

dimensions [17]. The derivation of the ANEC from the monotonicity of relative entropy

in [8] also demonstrates a direct connection between the ANEC and the real-time dynamics

of quantum information.

In this work explore the extent to which the ANEC constrains nonzero temperature

transport physics. To apply the ANEC to transport, we consider the matrix elements of the

operator E+ in highly excited pure states. See figure 1. In a basis of eigenstates, the diagonal

elements of this matrix are set by equilibrium thermodynamics. The off-diagonal elements

are related to energy-momentum fluctuations. We will see that at long wavelengths these

control the hydrodynamic relaxation toward equilibrium. The ANEC requires this matrix

to be positive semi-definite, otherwise it would be possible to construct linear combinations

of eigenstates that violate the ANEC. Therefore, the off-diagonal elements (hydrodynamics)

will be constrained by the diagonal elements (equilibrium thermodynamics). This is a

nonzero temperature version of the interference effect described in [16].

In order to regulate the infinite null integral in the ANEC (1.1) it is essential to consider

a finite size, locally thermalized ‘fireball’ state. The smaller the region, the stronger the

thermal fluctuations. So long as the region is larger than the thermalization length, it can

remain in local thermal equilibrium. We will find that if the thermalization length becomes

too short or if the viscosity becomes too large, then thermal fluctuations allow a superposi-

tion of microstates to violate the ANEC. However, over most but not all of our parameter

space, saturation of the bound on thermalization length roughly coincides with the limit of

validity of our computation due to various finite size effects. We will describe these below.

To obtain quantitative constraints on hydrodynamics, we will employ the eigenstate

thermalization hypothesis (ETH). This is the expectation that highly excited energy eigen-

states in a quantum system are effectively thermal. The ETH determines the form of the

matrix elements of a local operator O(x) between two highly excited energy eigenstates |a〉
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and |b〉 [18–21]. In a translationally invariant system it is important to keep track of the

conserved momentum as well as the energy of these states [21]. We denote the 4-momentum

of the state |a〉 by pa = (Ea, ~pa) and write

〈a|O(0)|b〉 = 〈O(0)〉T δab + t(pa, pb)Rab . (1.2)

The first term on the right hand side is the expectation value of O in thermal equilibrium

with temperature T corresponding to the energy Ea. The states |a〉 are taken to be within

an energy window about some large reference energy E such that, in the large volume

limit, the temperature is the same for all the states considered. The second term describes

thermal fluctuations, with the independent random variables Rab having zero mean and

unit variance. The magnitude of the smooth function t and the distribution of the Rab is to

be determined by the requirement that the ansatz (1.2) recovers results for a thermal state.

The individual fluctuation terms will be exponentially suppressed in the thermal entropy

with respect to the diagonal contributions. However, the random matrix Rab exhibits

strong eigenvalue repulsion that can overcome the suppression of the individual entries.

Our use of the ETH will not require knowledge of the probability distribution from which

the Rab are drawn, beyond their independence.

Inserting T++ into the ETH ansatz (1.2), and being careful to regularize the total

volume, will allow us to bound hydrodynamic fluctuations by thermal expectation values,

as outlined above. The explicit form of the hydrodynamic fluctuations — contained in

t(pa, pb) — will be consistent with conservation of the total energy and momentum, so that

the non-randomness of these special quantities is properly accounted for.

Our final result bounds a complicated function of transport coefficients and thermaliza-

tion length and time. For moderate values of these quantities, the bound is schematically

s`3th & 1 . (1.3)

Here s is the entropy density and `th is the thermalization length. It is therefore a lower

bound on the total entropy in a thermal volume. From a microscopic perspective, equa-

tion (1.3) is tautological to a degree (that said, we have not seen this simple point made

elsewhere). It expresses the fact that in order for a region of extent `th to in fact be ther-

mal, it must contain sufficiently many degrees of freedom. Furthermore, in order to use the

ETH a sufficiently large number of degrees of freedom are needed, precisely along the lines

of (1.3).1 This means that in regimes where (1.3) is violated, our derivation of the bound

is likely invalid. Such regions of parameter space remain excluded, but for the thermody-

namic reason just described rather than the ANEC. Nonetheless, our result in (4.5) below

is more fine-grained than (1.3), with a nontrivial function of the viscosities, sound speed

and thermalization length and time appearing on the right hand side. In particular, in the

limits of small sound speed or large viscosities, the right hand side will be seen to become

parametrically large, establishing bounds from the ANEC within the regime of validity of

the computation. Furthermore, if certain finite size boundary effects are small — a fact we

1However, the s in (1.3) arises in our computation as a thermal expectation value, rather than directly

as the size of the ETH random matrix. The latter quantity in fact cancels out of our final answer.
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cannot ascertain in the current approach — then for order one values of the parameters

the bound is more accurately s`3th & 500. See the left hand plot in figure 2 below. This

may be stronger than needed for local thermalization, and hence a nontrivial consequence

of the ANEC.

Hydrodynamics is the effective theory of long wavelength excitations of a thermal

medium, and holds below a momentum cutoff Λ ≡ `−1
th . The result (1.3) is therefore an

upper bound on the cutoff, Λ . Ts
1/3
o . Here so ≡ s/T 3 is a dimensionless measure of

degrees of freedom. In large N theories, so is large and hence the bound becomes weak.

We proceed to apply our bound to the strongly interacting quark-gluon plasma. Combined

with a previous upper bound on the shear viscosity, η/s . T`th [4], the quark-gluon plasma

lies close to a ‘kink’ in an exclusion plot in the plane of allowed values of η/s and T`th.

See figure 3 below.

2 Hydrodynamic contribution to fluctuations

The function t(pa, pb) in the ETH (1.2) can be directly related to the momentum-space

thermal Wightman function as follows. For the state |a〉 to describe thermal equilibrium

we must have

〈a|O(x)O(0)|a〉 = 〈O(x)O(0)〉T . (2.1)

We will take |a〉 to be at rest in the ‘lab frame’ so that the spatial components ~pa = 0.

Now insert a complete set of energy eigenstates on the left hand side of this relation, and

Fourier transform both sides. This gives

GOO(p) =
∑
b

δ4(p+ pa − pb)|〈a|O(0)|b〉|2 . (2.2)

Here GOO(p) is the momentum-space thermal Wightman function at temperature T . We

next evaluate the matrix elements using the ETH ansatz (1.2). The local operator O(0)

cannot change the energy density of the state |a〉 and therefore the only |b〉 states that

contribute to the sum in (2.2) are within the energy window to which the ETH can be

applied. We will be interested in a nonzero external 4-momentum p and hence the diagonal

term in (1.2) does not contribute. The fluctuation terms give

GOO(p) =
∑
b

δ4(p+ pa − pb)|t(pa, pb)|2|Rab|2 (2.3)

=
∑
b

δ4(p+ pa − pb)|t(pa, pb)|2 . (2.4)

In the second line we have performed the average over the Rab variables. Finally, to in-

vert (2.4), introduce the density of states Ω(pb), dependent on both energy and momentum,

such that ∑
b

→
∫
dpbΩ(pb) . (2.5)

Inverting (2.4) gives

|t(pa, pb)|2 =
GOO(pb − pa)

Ω(pb)
. (2.6)
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See [22–24] for recent discussions of this formula in 1 + 1 dimensional conformal field

theories.

The momentum space Wightman function can be related to the thermal retarded

Green’s function GROO using the fluctuation-dissipation theorem:

GOO(p) =
2 ImGROO(p)

1− e−p0/T
. (2.7)

The imaginary part of the retarded Green’s function is a spectral function that can be

directly related to the on-shell excitations in the system, as we see shortly. Using the

above expression we can write (2.6) as

|t(pa, pb)|2 =
2 ImGROO(pb − pa)

Ω(pb)− Ω(pa)
. (2.8)

Here we used the fact that for small excitations about equilibrium, pµ = (E + ω,~k),

Ω(p) = Ω(E) eω/T . (2.9)

This follows from Ω ∼ eS , with S the entropy, together with ∆S = ∆E ∂S
∂E = ∆E/T . The

expression (2.9) is exact at large volume so long as ω,~k are not extensive (i.e. correspond

to a vanishing energy and moment density at large volume). In general, a shift ∆ ~P in the

total spatial momentum also leads to an additional change in entropy ∆S = ~v · ∆~P/T ,

with ~v the velocity. However, because we are considering thermal and near-thermal states

with non-extensive momentum, then ~v itself will be zero at large volume. Therefore this

shift in the entropy is subleading compared to the ∆E/T shift.

The imaginary part of the retarded Green’s function is an important physical quantity

that determines the rate of heating if the system is driven by a source for the operator O.

In particular, in hydrodynamic regimes where the system is probed at low energies and

long wavelengths, the retarded Green’s functions for conserved densities and their currents

can be determined systematically. Specifically, the hydrodynamic regime is

ω .
2π

τth
, k .

2π

`th
. (2.10)

The thermalization time τth and length `th will be discussed in more detail below. In

appendix A we obtain the hydrodynamic limit of GRT++T++
in a general relativistic quantum

field theory. We assume a thermal state with zero density of charge for any internal global

symmetries of the theory, otherwise the hydrodynamic modes are more complicated. To

be precise about notation, the light-cone coordinates and momenta are defined in terms of

the Minkowski variables xµ = (t, ~x) and pµ = (p0, kx, k⊥) as

x± = t± x , k± =
1

2
(−p0 ± kx) , T++ =

1

4
Ttt +

1

2
Ttx +

1

4
Txx , (2.11)

with the transverse momenta k⊥ = (ky, kz). In order to connect with the ANEC opera-

tor (1.1), we restrict attention to the ++,++ components of the Green’s function in the

hydrodynamic limit. The result from appendix A is then:

ρ(p) ≡ ImGRT++T++
(p) =

F (p)

ω2 +D2
⊥k

4
+

G(p)

(ω2 − c2
sk

2)2 + Γ2
sω

2k4
, (2.12)
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where k = |~k|. Here we have shown explicitly the singular behavior due to the diffusive

and sound modes. These are respectively [25]

ω = −iD⊥k2 , D⊥ =
η

ε+ P
, (2.13)

where ε+ P is the enthalpy density (ε is the energy density and P the pressure) and η is

the shear viscosity, and

ω = ±csk − i
Γs
2
k2 + · · · , Γs =

ζ + 4
3η

ε+ P
. (2.14)

Here cs is the sound speed and ζ is the bulk viscosity. Throughout we will work in 3+1

spacetime dimensions. In 2+1 dimensions hydrodynamic fluctuations can be very strong

and the physics is likely more subtle [26]. In 1+1 dimensions the kinematics is markedly

different, for example in a 1+1 conformal field theory there is no hydrodynamic regime [27].

The functions F and G in (2.12) are given in appendix A.

Inserting the hydrodynamic Green’s function (2.12) into the expression (2.8) for the

fluctuations in the ETH ansatz, it is clear the viscosities η and ζ directly control the long

wavelength fluctuations of the local operator T++(0). From (2.11) we see that T++ in-

volves the energy, momentum and pressure. Conservation of total energy and momentum

implies that these quantities do not fluctuate strongly on long wavelengths. The dominant

contribution to the Green’s function (2.12) at the longest wavelengths instead comes from

pressure fluctuations; the pressure is of course not a conserved quantity. This is important

for our use of the ETH for the ANEC operator. However, a direct use of the ETH expres-

sion (1.2) to evaluate the ANEC operator (1.1) leads to long distance divergences because

of the integral over a null ray in the homogeneous equilibrium state. Fortunately, the

structure of thermal equilibrium itself can regulate these divergences, as we now explain.

3 Local thermalization

We have already introduced the thermalization length `th. This generalizes the notion of

a mean free path and is the statement that generic (non-hydrodynamic) static correlation

functions in a thermal state decay exponentially with spatial distance: 〈O(~x)O(0)〉c ∼
e−|~x|/`th . It follows that thermal equilibrium can be self-consistently established within

a region of spatial extent `th. Indeed, in relaxing to equilibrium, a system will first lo-

cally thermalize, so that regions of size `th each have their own temperatures T1, T2, T3, . . .

and their own velocities v1, v2, v3 . . . (in a minimal relativistic theory where the only con-

served quantities are energy and momentum). At this point hydrodynamics takes over and

describes the slow global equilibration of temperature and velocity. Hydrodynamics is a

coarse-grained description valid on wavelengths 2π/k & `th. The hydrodynamic variables

are precisely the modes that have survived local thermalization, the local temperature and

velocity fields, T (x) and v(x), as well as the associated thermal current and stress tensor. In

short, the fact of local thermalization is essential for the very existence of hydrodynamics.

Given that thermal equilibrium can be established locally in any region A of size

L & `th, we can apply the ETH to this region directly. In particular we can regulate the

– 6 –
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long distance divergence by restricting to states that are thermalized in A but in the vacuum

outside. This could be an expanding thermal ‘fireball’ or else a spatially confined thermal

region (a ‘fireplace’). To construct such states we introduce a projection operator PA that

acts as the identity inside A and gradually projects the complement into the vacuum over

scales of order `th. This smoothness ensures that the expansion of a fireball state is itself

described by hydrodynamics and is hence subluminal. Smoothness is also necessary for the

projector to be a well-defined QFT operator. Acting on such states, the ANEC operator

E+ ≡
∫
dx+T++(x+, x− = 0, x⊥ = 0) , (3.1)

will be equivalent to the projection PAE+P
†
A, that only acts in the fireball. Positivity of

E+ implies that PAE+P
†
A is again a positive operator.

Local thermalization implies that for operators that only act in the region A, we can

write a new ETH ansatz in terms of a basis of states |i〉 also supported in A, obtained by

|i〉 = PA|a〉. There are many fewer such states than eigenstates of the full system. An

operator a distance `th or more from the boundary of the region cannot distinguish these

states from full energy eigenstates.2 Therefore, up to edge effects, these states behave as

energy and momentum eigenstates of the full system. The decoupling of spatial regions on

the scale `th means that in the limit L � `th edge effects are parametrically suppressed.

This is in contrast to e.g. the Casimir effect, where edge effects are important in order to

see that the ANEC is obeyed [30]. Even with L & `th, the discussion of local thermal-

ization above means that the ETH ansatz will hold, with eigenstates that are now weakly

inhomogeneous over the scale of the fireball, and eigenvalue repulsion will again lead to

the tendency for fluctuations to produce states that can violate the ANEC. We proceed

to mostly neglect edge effects in the following. However, as we will discuss in more detail

below equation (4.5), we cannot strictly exclude the (interesting) possibility that edge ef-

fects conspire to always overcome the effects of fluctuations, such that the ANEC is obeyed

across all of parameter space. We will also neglect any subluminal growth of the fireball as

it is traversed by the null ray, which leads to at most an order one change in the effective

length L of the region.

The matrix elements of the projected ANEC operator between fireball states |i〉 and

|j〉 can therefore be written

EA+ij ≡
1

2L
〈i|PAE+P

†
A|j〉 =

1

2L

∫ L

−L
e−i(p

i
+−p

j
+)x+

dx+〈i|T++(0)|j〉 (3.2)

= 〈T++(0)〉T δij +
sin
(
L(pi+ − p

j
+)
)

L(pi+ − p
j
+)

t(pi, pj)Rij . (3.3)

In the first line we have used the fact that |i〉 and |j〉 behave to an excellent approximation

like eigenstates of P+, when probed by simple, local operators located more than `th from

the boundary of the fireball. The second line used the ETH ansatz for T++(0), restricted

2Local versions of ETH have also been discussed in e.g. [28, 29]. The key difference in the construction

here is that the exterior region is in vacuum.
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to the fireball states |i〉, as described above. The result of the x+ integral is to set pi+ ≈ p
j
+,

up to corrections of order L−1.

With the explicit matrix EA+ij at hand, we are finally in a position to obtain constraints

from the positivity of this matrix.

4 Constraints on thermalization and transport

A positive operator is positive in any subspace. That is, the matrix

Mij ≡ Θ(pi)EA+ijΘ(pj) , (4.1)

is positive for any projection Θ(p) = Θ(p0, ~k) equal to one in some range and zero elsewhere.

We will choose Θ to be supported in a window defined by

|p0 − E| < 1
2∆ω and kx = ky = kz =

π

L
. (4.2)

In this way, by choosing L & `th and ∆ω . 2π/τth we restrict to excitations that are

described by hydrodynamics. We have put the momenta equal to the smallest values that

are possible given the finite extent L of the fireball, as this choice is found to lead to the

strongest bounds. The positive matrix M then has rank

N ≡
∫
dpi Ω(pi)Θ(pi) =

(π
L

)3
∫ E+

1
2 ∆ω

E−1
2 ∆ω

dp0Ω(p0)

= 2Ω(E)(π/L)3T sinh
∆ω

2T
,

(4.3)

where
∫
dp ≡

∫
dp0(π/L)3

∑
~k
, and we used the expression (2.9) for the density of states.

The matrix M is a sum of diagonal and off-diagonal terms. From (3.3), the diagonal

terms are large and effectively constant within the subspace, given by 〈T++(0)〉T = 1
4(ε+P ).

In fact there are variations in this expectation value between the different eigenstates due

to the finite volume, we will discuss these later. Positivity of the matrix therefore requires

that the most negative eigenvalue of the off-diagonal part of the matrix in (3.3), restricted

to the subspace, have absolute value smaller than 1
4(ε + P ). The minimal eigenvalue (of

the off-diagonal part of the matrix) obeys

λ2
min ≥

1

N

∑
i,j

sin2
(
L(pi+ − p

j
+)
)

L2(pi+ − p
j
+)2

|t(pi, pj)|2Θ(pi)Θ(pj) . (4.4)

This result follows from the fact that for a general symmetric matrix A, the eigenvalue with

the largest magnitude has λ2 ≥ 1
N

∑
i,j,k AijAjk. Using (3.3) and (4.1) in this expression,

together with the randomness of Rij — specifically the fact that the different components

are independently random and have unit variance — leads to (4.4). We are also assum-

ing that the eigenvalue distribution of Rij is symmetric, so that the largest and smallest

eigenvalues have the same magnitude. A closely related expression has recently been used

in [31]. Note that we do not need to know the higher moments of the distribution of the

– 8 –
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Rij . These moments contain information about higher point thermal correlation functions.

Because we have only used the variance of the Rij , only the two point thermal correlation

function, contained in |t(pi, pj)|2 via (2.8), enters our inequality.

We can now use the explicit form (2.8) for |t(pi, pj)|2 in the inequality (4.4), with the

null energy spectral function given by (2.12). The constraint that λmin ≤ 1
4(ε + P ) then

becomes

(ε+ P )2 ≥ 32

N

∫
dpi

∫
dpj

Ω(pi)Ω(pj)

Ω(pi)− Ω(pj)

sin2 L(pi+ − p
j
+)

L2(pi+ − p
j
+)2

ρ(pi − pj)

=
64π3

TL3 sinh ∆ω
2T

∫ ∆ω
2

−∆ω
2

dωi

∫ ∆ω
2

−∆ω
2

dωj
sin2 L

2 (ωi − ωj)
L2(ωi − ωj)2

ρ(ωi − ωj , kmin)

e−ωj/T − e−ωi/T

=
64π3

L3 sinh ∆ω
2T

∫ ∆ω

−∆ω
dω

sin2 Lω
2

L2ω2

sinh 1
2T (∆ω − |ω|)
sinh ω

2T

ρ(ω, kmin) .

(4.5)

In the second line we set p0
i,j = E + ωi,j . In the last line we performed the integral

over ωi + ωj . The sin2 Lω
2 term in the final expression comes from the geometric integral

in (3.3) and has nothing to do with random matrices. The momenta are restricted to the

single value given in (4.2), so that ~ki − ~kj = 0. However, in the spectral density ρ the

momentum difference cannot be set to be strictly zero. We are using the infinite volume

Green’s function in ρ instead of the finite volume Green’s function. The two will agree

on scales k & kmin ≡ π/L, the smallest momentum that can be resolved by the finite

volume Green’s function, up to boundary effects. Boundary effects in the Green’s function

arise on timescales such as the Thouless time, over which diffusion propagates across the

entire system and hence hydrodynamic modes becomes sensitive to the edges of the fireball.

We need to worry about such effects because contributions to the integral in (4.5) from

frequencies below the inverse Thouless time will be important for our more interesting

bounds. In appendix B we argue that extra terms in the Green’s function due to finite size

effects at most change our results by an overall order one number when L� `th. The role

of the Thouless time in eigenstate thermalization has recently been discussed in [32].

Expectation values also differ between infinite and finite volume systems. We are

aiming to make a statement involving infinite volume expectation values, but it is the

finite volume expectation value that appears in our derivation. Finite volume corrections

are concerning because even a small correction of order 1/L3 to the left hand side of (4.5)

competes with the right hand side, for any size of the fireball. In appendix B we argue that

such terms are not expected to dominate the fluctuation contribution, at least when the

fluctuations become large. If the finite-size corrections are also parametrically enhanced

when the fluctuations become large, then there is still a nontrivial bound, but the left-hand

size of (4.5) should be interpreted to include these corrections.

It is instructive to write the bound (4.5) in terms of dimensionless variables. Because we

are considering quantum field theories at zero charge density, the thermodynamic relation

ε + P = sT holds, where s is the entropy density. We can furthermore write s = soT
3,

where so is dimensionless (but can be temperature dependent in general). It is clear from

the overall inverse powers of L in (4.5), that the smaller we can make the size of the fireball,
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Figure 2. Contours of constant FCFT (η/s, `thT ). For a given ‘dimensionless entropy’ so regions

with FCFT ≥ so are inconsistent with the ANEC. The plot on the left is for a fireball of size L = `th.

The plot on the right is for size L = 3`th. Taking a larger fireball weakens the bound numerically

but does not qualitatively change the exclusion regions.

the stronger the bound we will obtain. However, we also require L & `th, both in order for

the fireball to be locally thermalized and also for the longest wavelength modes inside the

fireball to be described by hydrodynamics. Therefore, to get the strongest possible bound

we set L = `th. Of course, to safely neglect edge effects, as we have done in several places,

one should set L to be a multiple of `th. An explicit hierarchy between L and `th can

easily be re-inserted — as we will see shortly — and weakens the constraints by numerical

factors but does not remove them. Similarly, the bound is strongest if we integrate over

the largest possible range of frequencies ∆ω that are compatible with hydrodynamics.

Therefore we set ∆ω = 2π/τth. Putting all of this together, the inequality (4.5) then takes

the functional form

so ≥ F
(
η

s
,
ζ

s
, cs, `thT, τthT

)
. (4.6)

All of the quantities appearing in the function F — to be obtained by performing the

integral in (4.5) — are dimensionless in units with ~ = c = kB = 1. The inequality (4.6)

therefore amounts to a constraint on the viscosities, sound speed and thermalization time

and length, given the dimensionless entropy so.

5 Results

To get a sense of the consequences of (4.6), consider first the case of a conformal field theory

in which ζ = 0 and c2
s = 1/3. For simplicity in this case, let us further temporarily set τth =

`th. This leaves a constraint in a two dimensional parameter space so ≥ FCFT (η/s, `thT ).

A contour plot showing the parameter regions excluded for different values of so is shown

in figure 2. We have made two plots, one with L = `th and one with L = 3`th. A hierarchy
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between L and `th is necessary in order to strictly neglect boundary effects due to the finite

size of the fireball. The qualitative form of the excluded regions is seen to be the same in

both cases. For some given so, the figure shows that for at any fixed η/s there is a lower

bound on `thT , and that at any fixed `thT , there is a (somewhat weak) upper bound on

η/s. We now proceed to understand these main features in figure 2 analytically, working

with general — not necessarily conformal — theories. The function F in (4.6) simplifies

in several important limits.

Short thermalization lengths

In the limit of small `thT and τthT — with other quantities held fixed — then F ∼ 1/`3th,

with no singular dependence on τth. This limit is responsible for the lower bound on `thT

visible in figure 2. Simplifying the final integral in (4.5), in this limit the bound becomes

S|`th ≡ s`
3
th ≥ 4π3

∫ ∞
0

y(c1 + c2y
2)

(ey − 1)(c3 + c4y2)
dy . (5.1)

Here the left hand side is the total entropy in a region of size `3th. This is indeed the natural

quantity that controls the effects of thermal fluctuations. The constants

c1 =

(
ζ

s
+

4

3

(
1 + 2c2

s +
4

3
c4
s

)
η

s

)
, c3 = c4

s , (5.2)

c2 =
16

9

η

s

(
ζ

s
+

1

3

η

s

)(
ζ

s
+

4

3

η

s

)
, c4 =

(
ζ

s
+

4

3

η

s

)2

. (5.3)

The most important corollary of (5.1) is that `th is necessarily lower bounded for any

fixed values of the viscosities, sound speed and entropy density. The bound becomes weak

in large N theories, where thermodynamic fluctuations are suppressed. For example, if

s ∼ N2 then `th & N−2/3. Finally, in the ‘non-relativistic limit’ cs � 1, this bound

simplifies to s`3th ≥ π4/(4c2
s). In this limit the bound becomes parametrically strong —

recall the discussion below (1.3) above.

Large viscosities

The expression (5.1) does not correctly capture the limits of small or large viscosities.

These limits on the viscosity do not commute with the small `th limit. At large viscosities,

η/s� 1 and ζ/s� 1, with other quantites held fixed, the bound becomes

s`3th ≥
128π3

9

η

s

ζ + 1
3η

ζ + 4
3η
f(`thT, τthT ) , (5.4)

where the function

f(`thT, τthT ) =

∫ π/(τthT )

0

dx

x

sin2 (`thTx)

(`thT )2

(
cothx− coth

π

τthT

)
. (5.5)

Because the right hand side of (5.4) grows at large η/s, it amounts to an upper bound

on η/s at fixed thermalization length and time. Correspondingly, the lower bound on
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s`3th becomes parametrically strong in the limit where η/s � 1, again see the discussion

below (1.3) above.

Taking `th ∼ τth, the function in (5.5) scales as f ∼ 1/(`thT ) at large `thT and

goes to a constant at small `thT . In particular, at large `thT the bound becomes η/s .
10−2so(`thT )4, which determines the asymptotic behavior of the contours in the left hand

plot of figure 2. In this limit, the upper bound (5.4) on η/s is therefore weaker than the

upper bound η/s . τthT obtained from causality in [4], assuming that `th ∼ τth. This

latter bound saturates in weakly coupled theories, which is furthermore the circumstance

under which η/s is expected to be large. However, if `thT is small, then the bound (5.4) is

stronger for 1/(`thT )3 � so � 1/(`thT )2. We will include both bounds in our discussion

of the quark-gluon plasma below.

Small viscosities

The bound (5.1) becomes weak at small viscosities, while in fact the lower bound on `th
survives in the limit η = ζ = 0. The only contribution to the integral (4.5) in this limit

comes from the diffusive and sound poles in the spectral density. With vanishing viscosities,

the integral can be done exactly, and the bound takes the form

s`3th ≥
16π4

3
+

c5

`thT

(
coth

√
3πcs

2`thT
− coth

π

τthT

)
. (5.6)

The term in brackets should be set to zero if it becomes negative. This occurs when the

sound pole is above the energy cutoff 2π/τth when evaluated at the momentum cutoff π/`th.

Here the coefficient

c5 =
4(3 + c2

s)(1 + 3c2
s)π

3 sin2
√

3csπ
2

3
√

3c3
s

. (5.7)

Of course the limit of vanishing viscosity is unlikely to be physical. The point is that

a lower bound on the thermalization length survives in this limit. This fact establishes

that the lower bound on thermalization length does not become small for any value of the

viscosity. Furthermore, the fact that the bound remains finite rather than diverging as the

shear viscosity becomes small (with, for example, the bulk viscosity set to zero) shows that

we do not obtain an absolute lower bound on the shear viscosity.

The limit of small viscosities, however, has an additional subtlety: if the bare viscosity

becomes too small, the classical hydrodynamic expansion breaks down [33]. We now address

this point.

Loop corrections within hydrodynamics

We have assumed throughout that the hydrodynamic Green’s function (2.12) holds for all

frequencies and wavevectors ω . 2π/τth and k . π/`th. While it is always true that only the

hydrodynamic modes are present over these scales, their dynamics becomes strongly cou-

pled if the viscosity becomes small. In such regimes, hydrodynamic loop corrections are im-

portant and the Green’s function no longer takes the ‘classical’ hydrodynamic form (2.12).

In 3+1 dimensions, the most dangerous nonanalytic correction is a ‘late time tail’ that
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invalidates the hydrodynamic expansion beyond first order, so that in the k = 0 Green’s

function [33]

η → η + 0.012(i− 1)ω1/2 (sT )3/2

η3/2
+ · · · . (5.8)

The nonanalytic correction is large for small viscosities. In order to neglect this term —

and hence for the classical hydrodynamic Green’s function to remain valid — we must

restrict to frequencies

ω . Λ ≈ 7000 s2
oT
(η
s

)5
. (5.9)

This additional constraint means that our answer will change in the region of parameter

space where the new cutoff is stronger than our previous one, i.e. where Λ < 2π/τth. That

is, for 1/(τthT ) . 103s2
o(η/s)

5 we cannot trust our answer. While this formally excludes

both the interesting limits of parametrically fast thermalization and parametrically small

viscosities, in fact, because of the large numerical factor of order 103s2
o, it will have no

impact in our discussion of the quark-gluon plasma below (where so ≈ 20). Specifically, this

region of parameter space is entirely outside of the exclusion plot shown in figure 3 below.

Loop corrections also renormalize the viscosity. We are working with the physical,

renormalized viscosity throughout. While the leading order renormalization tends to push

the viscosity away from zero [33], the effects of high order loops are not known.

Large thermalization lengths

At large thermalization lengths and times, i.e. taking `thT ∼ τthT � 1 with other quantities

held fixed, the dominant contribution to the integral (4.5) is again from the diffusive and

sound poles in the spectral density. We obtain

s`3th ≥
16π4

3
+

c5

πcs

(
2√
3
− cs

τth

`th

)
. (5.10)

The coefficient c5 was defined in (5.7). As in (5.6), the term in brackets should be set

to zero when it is negative. In fact, (5.10) is just the small viscosity result (5.6), addi-

tionally expanded for large thermalization length and time. This is because the viscosities

appear in our bound through combinations such as ηk2
min ∼ η/`2th, so that small viscos-

ity behaves similarly to large thermalization length. Weakly coupled theories with a large

thermalization length would, in fact, typically be expected to have a large viscosity η ∼ `th.

Taking (5.10) together with the result (5.1) for small thermalization lengths we see that,

for fixed values of the viscosities and sound speed, the bound indeed takes the schematic

form s`3th & 1 for all values of the thermalization length. In the discussion below (1.3) we

noted the large numerical factor of 16π4/3 ≈ 520. This factor may help to make this bound

stronger than the statement that local thermalization requires sufficiently many degrees of

freedom in a region of size the thermalization length.

The quark-gluon plasma

It is instructive to compare our bounds to the experimental values measured for the strongly

interacting quark-gluon plasma. Some characteristic values of the relevant parameters

for the quark-gluon plasma are T ∼ 330 MeV, τth ∼ 1 fm/c, s ∼ 85 fm−3 [34] and η/s ∼
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Figure 3. Exclusion plot in the η/s and `thT plane for the strongly interacting quark-gluon plasma.

The blue exclusion region is from our result (4.5), where we have set L = 3`th. See main text for

values of the thermodynamic and transport quantities used. The red exclusion region is from the

upper bound on viscosity obtained in [4]. The black point shows representative experimental values

of η/s and `thT .

0.15 ~/kB [35, 36]. Assuming the thermalization time is related to the thermalization

length by a factor of the speed of light, this means that `th ≈ 1 fm. It follows that our

dimensionless quantities so ∼ 20 and `thT ∼ 1.6, as well as the value of η/s ∼ 0.15 quoted

above. In figure 3 we have shown these experimental values together with the corresponding

exclusion region, taking L = 3`th for illustrative purposes. We furthermore used the

values cs = 1/
√

3 and ζ = 0 — the strongly coupled quark-gluon plasma is approximately

conformal [37, 38] and has correspondingly small bulk viscosity [39]. In figure 3 we have

also included the upper bound on viscosity, η/s . τthT , obtained in [4]. We see that the

strongly coupled quark-gluon plasma lies fairly close to a ‘kink’ in the exclusion plot, arising

from the intersection of the two different constraints. While all of the quantities shown have

uncertainties in numerical factors, they are not expected to change by orders of magnitude

and therefore the proximity of the data to the kink in the exclusion plot is robust.

6 Final comments

Challenges

The essential physical content of our argument is the following. Take a thermalized but

finite volume region. As the volume is decreased, thermal fluctuations become more im-

portant. If transport coefficients are too large, or if the thermalization length is too small,

then fluctuations of the pressure can become large enough — even while local thermal equi-

librium is maintained — that a certain superposition of microstates violates the ANEC.
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This argument is subtle for at least two reasons. Firstly, if the fluctuations get too large

then even local thermal equilibrium will not be established. This is the point discussed

around (1.3) above. Secondly, in order for fluctuations to be described by hydrodynamics,

and also in order to neglect edge effects, the extent of the region cannot get too close to

the thermalization length. If the region is forced to become too big, e.g. if L � `th, then

the bounds become very weak. For both these reasons, our argument entails a delicate

balancing act that in some regimes depends on favorable numerical factors; as soon as the

bounds become nontrivial they are at risk of becoming invalid. For this reason it is clearly

of great interest to develop alternative approaches to this physics. We will end with some

comments in this direction.

We can first make two comments regarding the presence of edge effects and the break-

down of a hydrodynamic description of the Green’s function when L ∼ `th. In fact, our

inequality (4.5) holds for all frequencies and momenta, so long as the full Green’s function

is used for the spectral density ρ, rather than just the hydrodynamic limit of the Green’s

function. Furthermore, in appendix B we have outlined how the entire argument can be

phrased in a finite volume system from the start. This allows edge effects to be incorpo-

rated systematically. Using properties of the full finite volume Green’s function, it may be

possible to determine the numerical factors associated to edge effects. Alternatively, it is

possible that a more local energy condition — such as the QNEC [40–42] — could provide

sharper constraints.

Conformal bootstrap

In a conformal field theory (CFT), the conformal bootstrap can be used to constrain

correlation functions using only unitarity, symmetries, and locality [6]. The ANEC is a

subtle consequence of unitarity plus Lorentz invariance, so ultimately, our bound follows

from these same fundamental ingredients, together with the ETH ansatz. This suggests

that in the CFT case, it may be possible to reproduce our bounds using the bootstrap,

and perhaps to fix the numerical coefficients in the inequality.

There are some interesting parallels between the two approaches. One route to con-

nect them, at least in principle, is to formulate the bootstrap for the four-point functions

〈TµνTαβOiOj〉, where Oi and Oj are other local operators. By the state-operator corre-

spondence, this is identical to 〈i|TµνTαβ |j〉. Therefore, if the dimensions of Oi and Oj
are large enough, then this correlator must encode all of hydrodynamics. High-dimension

operators have been used to model thermal states in holographic 2d CFTs in e.g. [43–46].

In bootstrap language, the natural setup is to fix certain contributions to the correlator,

and then place upper bounds on the scale of ‘new physics’ controlled by higher dimension

operators. When Oi and Oj have small dimensions, this is the standard question addressed

by the numerical bootstrap. Our bound has a similar flavor, but applied to correlators with

high-dimension external operators Oi and Oj . To sharpen the comparison, in a small-N

CFT, we can restate our bound, combined with the diffusion bound in [4], as

Λ . min

(
1

D⊥
, T

)
. (6.1)
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The quantities on the right are the scales associated to hydrodynamics and thermal equi-

librium, and these place an upper bound on the scale Λ = `−1
th where corrections to hydro-

dynamics become important. As a function of the diffusion scale, (6.1) has an intriguing

similarity to the ‘kinks’ that appear in the conformal bootstrap [47]. In principle, it should

be possible to interpolate between existing bootstrap results (such as [48]) and (6.1) by

increasing the dimensions of the external operators, but in practice this limit is very dif-

ficult to implement numerically. Another approach to nonzero temperature bootstrap is

discussed in [49].

The physical origin of numerical bootstrap constraints is still mysterious. On the

other hand, both of the bounds in (6.1) come from causality of the 4-point function, in two

different kinematic limits. To describe these limits, insert the stress tensors symmetrically

about the origin,

〈i|Tµν(x+, x−)Tαβ(−x+,−x−)|j〉 . (6.2)

The diffusion bound Λ . 1
D⊥

comes from causality in the regime x+ ∼ x− ∼ `th [4]. The

ANEC was derived from causality in a different double limit, x+ � `2th/x
− � `th [9], so

this is the limit responsible for Λ . T .

Nonrelativistic systems

Many strongly interacting thermal media are not Lorentz invariant. These include elec-

tronic condensed matter systems and trapped ultracold atomic gasses. To connect with

these systems our results should first be generalized to a nonzero charge or number density.

The nonrelativistic and low temperature limit then corresponds to taking ε + P → nmc2,

where n is the charge or number density, m is the effective mass and we have temporarily

re-inserted the speed of light c. Bounds on transport and thermalization have the potential

to shed light on the widespread unconventional behavior observed in strongly correlated

media, see e.g. [4]. It is possible that constraints on thermalization and transport similar to

those we have found above will survive in the non-relativistic limit. For these constraints

to be nontrivial, the speed of light would of course have to drop out upon taking the limit.

Independently of the ANEC, we noted that the bound (1.3) follows from the fact

that thermalization in a region of size `th requires sufficiently many degrees of freedom

in that region. That statement holds for nonrelativistic theories also. And indeed, the

‘thermalization bound’ (1.3) directly leads to a lower bound on quasiparticle (i.e. weakly

interacting) transport. The thermalization length is set by the quasiparticle mean free

path in this case, assuming that the dominant quasiparticle scattering is inelastic. In

such cases we can therefore express the diffusivity of any conserved density in terms of

the thermalization length and the quasiparticle velocity v. Combining with (1.3) we then

obtain

D ∼ v`th &
v

s1/d
. (6.3)

We trivially generalized to d spatial dimensions. For example, for degenerate fermions at

T < TF the entropy density s ∼ kdF T/TF . Here TF is the Fermi temperature and kF the

Fermi wavevector. In particular, writing the resistivity in terms of the charge diffusivity
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and charge compressibility

ρ =
1

χD
.

h

e2
k2−d
F

(
T

TF

)1/d

. (6.4)

At T < TF , this is stronger than the Mott-Ioffe-Regel bound on the resistivity (see for

example the discussion in [50]). Note, however, that the need for the dominant scattering

to be inelastic excludes disorder scattering, which would violate (6.4) at low temperatures.
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A Hydrodynamic derivation of the Greens’ functions

Relativistic hydrodynamics controls correlations functions of the stress tensor in the low

momentum limit. Although only the longitudinal parts of the currents Tµi are controlled by

the slow dynamics of the densities Tµ0 via Ward identities, Lorentz invariance is sufficiently

constraining to fix all components of the Green’s function. These can be found by coupling

the fluid to an external non-dynamical metric gµν . In this appendix only, we work in d

spatial dimensions. In the Landau frame, the constitutive relation up to first order in the

gradient expansion is [26]

〈Tµν〉 = εuµuν + P∆µν− η∆µα∆νβ

(
∇αuβ +∇βuα −

2

d
gαβ∇λuλ

)
− ζ∆µν∇λuλ +O(∇2) ,

(A.1)

where uµ is the fluid velocity 4-vector normalized as uµuµ = −1, and ∆µν ≡ gµν + uµuν .

In order to study linear response, (A.1) must be linearized around thermal equilibrium

gµν = ηµν + δhµν , ε = ε0 + δε , P = P0 + c2
sδε , uµ =

δµ0 + δµi δv
i

√
−g00

, (A.2)

where the speed of sound is c2
s = ∂P/∂ε. The conservation equations ∇µTµν = 0 are

then solved for the hydrodynamic variables δε, δvi in terms of the sources δhµν . Plugging

the solutions back into the constitutive relation (A.1) finally gives the retarded Green’s

functions

GRTµνTαβ (ω, k) = −2
δ〈Tµν〉
δhαβ

. (A.3)
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The spatial components are found to be

GRTijTkl(ω, k) =
ω2

k2
A‖(ω, k)KijKkl +

ω2

k2
A⊥(ω, k)

((
KikPjl + (i↔ j)

)
+ (k ↔ l)

)
+B1(ω, k)

(
KijPkl +KklPij

)
+B2(ω, k)PijPkl

+ C(ω, k)

(
PikPjl + PilPjk −

2

d− 1
PijPkl

)
,

(A.4)

where we defined the projectors Kij = kikj/k
2 and Pij = δij −Kij , and with

A‖(ω, k) = (ε+ P )
ω2

c2
sk

2 − ω2 − iΓsk2ω
, (A.5a)

A⊥(ω, k) = (ε+ P )
D⊥k

2

D⊥k2 − iω
, (A.5b)

B1(ω, k) = (ε+ P )
ω2(c2

s + iω(2D⊥ − Γs))

c2
sk

2 − ω2 − iΓsk2ω
, (A.5c)

B2(ω, k) = (ε+ P )
iω(2D⊥k

2 − iω)(c2
s − iω(Γs − 2D⊥))

c2
sk

2 − ω2 − iΓsk2ω
+

2

d− 1
iηω , (A.5d)

C(ω, k) = iηω . (A.5e)

The diffusion constant and sound attenuation rate are given by D⊥ = η/(ε + P ) and

Γs =
(
ζ + 2(d−1)

d η
)
/(ε+ P ) respectively. These expressions are correct up to real contact

terms which do not enter in the spectral densities ImGRTµνTαβ (ω, k) of interest. Other

components of the Green’s function (A.3) can be obtained from (A.4) with Ward identities.

For example one has, up to real contact terms,

GRT0iT0j
(ω, k) =

kkkl

ω2
GRTkiTlj (ω, k) = KijA‖(ω, k) + PijA⊥(ω, k) . (A.6)

The response function that is directly related to correlations of the ANEC operator is

GRT++T++
(p) = aµaνaαaβGRTµνTαβ (p) , (A.7)

with

aµ =
∂xµ

∂x+
=

1

2
(1, 1, 0, 0) . (A.8)

It can be computed using (A.4) and Ward identities, and is given by

4GRT++T++
=

(k2
x − kxω + k2

⊥)4

4ω2k6
A‖ +

k2
⊥(k2

x − kxω + k2
⊥)2

k6
A⊥ +

k2
⊥(k2

x − kxω + k2
⊥)2

2ω2k4
B1

+
k4
⊥

4k4
B2 +

d− 2

2(d− 1)

k4
⊥
k4
C ,

(A.9)

for any d ≥ 2. In the main text d = 3.
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B Finite volume effects

B.1 The bound at finite volume

Because the fireball has finite spatial extent, we should strictly work at finite volume from

the start. This affects both the diagonal and off-diagonal terms in the inequality, but we

will argue that it does not qualitatively change the results.

Regarding the diagonal terms, there are two sources of finite volume corrections to

expectation values. The first are statistical fluctuations among the different finite volume

energy eigenstates in the ETH energy window. Although these corrections are not small,

they will be negative — hence favoring violation of the ANEC — for half of the eigen-

states. The minimal eigenvalue of the off-diagonal part of the ETH matrix restricted to

this negative-correction subspace will be comparable to (4.4), because the eigenvectors of

the off-diagonal matrix are randomly related to the energy eigenstates. Therefore our argu-

ment goes through. The second are positive corrections to ε+P coming from, for example,

spatial gradients in the temperature due to the finite volume and the vacuum state outside

the fireball. These positive terms can in principle swamp out the fluctuation contribution

on the right hand side of (4.5), even at large L. However, we saw in the main text that

the fluctuation term becomes large at large viscosity or small sound speed. The finite size

correction to the static expectation value is not expected to depend on these transport

coefficients, and therefore there would seem to be no a priori reason why it should become

large in tandem with the fluctuations.

Now turning to the off-diagonal terms, we assume, as discussed in the main text, that

the ETH ansatz can be used for finite volume systems with size greater than the thermal-

ization length. We would then like to relate the off-diagonal terms in the ETH ansatz to

the finite volume Green’s function of the energy-momentum tensor. The first complication

that arises is that the Green’s function in position space now depends explicitly on two

distinct positions, not just on their separation. This can be written as GOO(t,∆x, xcm).

Here ∆x = x2 − x1 while xcm = (x1 + x2)/2. We can Fourier transform with respect to t

and ∆x to obtain GOO(ω, k;xcm). The essential new aspect of the finite volume problem

is the dependence on the ‘center of mass’ coordinate xcm, due to the absence of translation

invariance.

The argument in section 2 relating the off-diagonal ETH ansatz terms to the Green’s

function required translation invariance. This argument can only go through at finite

volume if the momentum is large: k � 1/L and k � 1/(L − xcm). This amounts to

considering pairs of points that are close relative to the scales over which finite size effects

are important. If we consider a large region so that L � `th, then for most points in the

region, that are not too close to the boundary, k ∼ 1/`th does the job. The ANEC involves

an integral over a null ray which necessarily includes some points that are close to the

boundary, but these are suppressed when L � `th. Translating both the positions to the

nearby center of mass position, positivity of the ETH matrix then requires

1

N

∑
ab

GOO(pb − pa;xcm)

Ω(pb)
≤ |〈O(xcm)〉T |2 . (B.1)
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It remains to show that xcm dependence of the Green’s function does not fundamentally

change the bound discussed in the main text. In particular, we need to check that the low

frequency region of the integral in (4.5) does not get modified, as this region is responsible

for the lower bound on thermalization length.

B.2 Finite volume Green’s function

The bound (B.1) involves the finite volume Green’s function. Throughout the main text

we have instead used the (more convenient) infinite volume Green’s function, derived in

appendix A. At large enough wavevectors kL � 1 and frequencies ωτL � 1, where τL is

the Thouless time,3 we expect both Green’s functions to match. In this section we will

show in fact that so long as kL � 1 the Green’s function also matches at all frequencies,

up to an overall nonsingular multiplicative number.

Retarded Green’s functions are solutions to linear differential equations and relate

expectation values of operators to sources

〈O(x, t)〉 =

∫
dt′ddx′GR(x, x′; t− t′)δφ(x′, t′) . (B.2)

Finite volume Greens functions are solutions to the same local differential equations, but are

subject to different boundary conditions. These can be obtained simply by the method of

images, namely by adding sources outside of the volume in order to satisfy automatically

the boundary conditions. We illustrate this procedure in 1 spatial dimension x ∈ V =

(−L/2, L/2), with (for illustrative purposes) Dirichlet boundary conditions

〈O(x, t)〉|x∈δV = 0 . (B.3)

Assuming parity invariance and focusing on parity-even operators (generalization to other

cases is straightforward), the boundary conditions are satisfied if the sources are mirrored as

δφ(x, t)→ δφ̃(x, t) =
∑
n

(−1)nδφ(nL+ (−1)nx, t) . (B.4)

The finite volume Green’s function G̃R is therefore related to the infinite volume one as

G̃R(x, x′;ω) =
∑
n

(−1)nGR(nL+ (−1)nx′ − x;ω) . (B.5)

Writing xcm = x′+x
2 and ∆x = x′ − x we have

G̃R(∆x, xcm;ω) =
∑
n even

GR(nL+ ∆x, ω) +
∑
n odd

GR(nL− 2xcm, ω) . (B.6)

Fourier transforming one finds after some algebra

G̃R(ω, k;xcm) ≡
∫ L−2|xcm|

−(L−2|xcm|)
d∆x ei∆xk G̃R(∆x, xcm;ω)

=
∑

qm=πm
L

[δqm,k + f(qm, k, xcm)]GR(ω, qm) ,
(B.7)

3This is the time it takes for modes to cross the whole volume. For diffusive modes τL = L2/D, whereas

for sound modes τL = L/cs. In general we will define τL to be the smallest such time scale.
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with

f(qm, k, xcm) = −2|xcm|
L

δqm,k− (1−δqm,k)
sin [2|xcm|(k − qm)]

L(k−qm)
+(−1)mei2qmxcm

sin 2k|xcm|
Lk

.

(B.8)

Equation (B.7) relates the finite volume Green’s function G̃R to the infinite volume

Green’s function GR. Firstly, note that the function f(qm, k, xcm) is order one and non-

singular for all values of its arguments, since | sin a| ≤ |a|. The remaining concern is that

the sum over the qm 6= k in (B.7) might lead to a large contribution to G̃R that is absent

from GR. However, the final two terms in (B.8), that can contribute for qm 6= k, are in fact

small in the limit kL� 1 that we have taken, unless |qm − k| . 1/L in the second to last

term. However, the scale 1/L is smaller than the scales appearing in the infinite volume

Green’s function, and therefore over this range of qm we have effectively qm ≈ k in GR.

This means that we end up with at most a function weakly dependent on xcm multiplying

the infinite volume Green’s function. Therefore, in the limit kL� 1, finite size effects can

alter the overall magnitude of the Green’s function, but do not lead to additional singular

behavior. The results in the main text will therefore survive.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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