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tries that have the same charges as three-charge five-dimensional black holes with a

macroscopically-large horizon area and an arbitrarily-small angular momentum. There are

two routes through which such solutions can be constructed: using multi-center Gibbons-

Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-

sponding to microstate geometries for black holes with no angular momentum have been

obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed

to give rise only to microstate geometries of BMPV black holes with a large angular mo-

mentum [2]. We perform a thorough search throughout the parameter space of smooth

horizonless solutions with four GH centers and find that these have an angular momentum

that is generally larger than 80% of the cosmic censorship bound. However, we find that

solutions with three GH centers and one supertube (which are smooth in six-dimensional

supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives

a recipe to build large classes of microstate geometries for zero-angular-momentum black

holes without resorting to superstratum technology.
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1 Introduction

At zero gravitational coupling, String Theory can identify and count the microstates that

give rise to the Bekenstein-Hawking entropy of black holes [3]. However, the description

of all these microstates at finite gravitational coupling, in the regime of parameters where

the classical black hole exists, and in particular whether these microstates have a horizon

or are horizonless remains an open problem. The latter possibility, which was proposed by

Mathur in 2003,1 has been reinforced by recent information-theory based fuzzball/firewall

1See [4–6] for reviews.
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arguments2 that establish that the only way a black hole can release information without

a violation of Quantum Mechanics is if there exists a structure that modifies the physics

at the scale of the horizon.

The only construction of such a structure when gravity is present has been done in

the context of the “microstate geometries programme” that aims to construct horizonless

solutions with black hole charges purely within supergravity. Since supersymmetry signif-

icantly simplifies the equations governing the solutions, most microstate geometries that

have been constructed so far correspond to supersymmetric black holes [1, 2, 9, 10].3

We will focus on the rotating three-charge BPS black hole in five dimensions, known

as the BMPV black hole, which has two equal angular momenta satisfying the cosmic

censorship bound J1 = J2 ≤
√
Q1Q2Q3. This solution can be embedded in string theory as

a black hole with three M2 brane charges, corresponding to M2 branes wrapping three 2-

tori inside a 6-torus. In another duality frame, the three charges correspond to D1 and D5

branes that share a common direction, and momentum, P, along this direction. In the later

duality frame one of the charges gives rise to a nontrivial fibration of an internal direction

over spacetime, so the black hole and microstate geometries thereof are asymptotically

R4,1 × S1 solutions of six-dimensional supergravity.

Most supersymmetric microstate solutions for this five-dimensional black hole have a

hyper-Kähler base space, and are obtained by resolving the black hole singularity via the

blow-up of topologically-nontrivial bubbles that are supported against collapse by fluxes.

Seen from this perspective, the microstate geometries programme is nothing but another

example of the way in which most singularities are resolved in String Theory [17–19]. The

resulting solutions are smooth and horizonless.

A convenient choice of four-dimensional base space is given by the Gibbons-Hawking

family of spaces, whose tri-holomorphic U(1) isometry implies that all solutions are deter-

mined by harmonic functions in R3 [20–22]. To obtain singularity-free horizonless solutions

the poles of the harmonic functions must satisfy certain relations [23–25], and the sizes and

positions of the bubbles are also constrained by the absence of closed timelike curves via

the so-called bubble equations [23, 26].

Only a few explicit examples of smooth horizonless solutions which have the same

charges an angular momenta as a BMPV black hole with a macroscopically-large horizon

area are known [1, 2, 9, 10], and this is because most solutions one can construct by putting

fluxes on a multi-center Gibbons-Hawking base have an angular momentum larger than

the black hole cosmic censorship (cc) bound. This was first discovered in [27], where it

was pointed out that smooth multi-center BPS solutions with a GH base with a large

number of centers have angular momenta at and slightly above the cosmic censorship

bound. Furthermore, in [2], a generic recipe was given to construct solutions with four GH

centers that have angular momenta below the c.c. bound; however, when the aspect ratios

of the distances between the centers are of the same order, all these solutions were found to

2See, for instance, [7, 8].
3However, one can also construct microstate geometries corresponding to extremal non-supersymmetric

black holes [11–13] and to non-supersymmetric and non-extremal black holes [14–16].
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have J at 99% of the cc bound. Thus, trying to find multi-GH-center microstate geometries

with low angular momentum appears to resemble searching for a needle in a haystack.

The first obstacle is to find an appropriate class of multi-center solutions with no closed

timelike curves (ctc’s). Since all bubbling solutions have charges dissolved in fluxes, and

since these fluxes have different signs, the most likely outcome of trying to obtain a solution

by putting random values of fluxes on various cycles is a solution with regions of positive

and negative charge densities. Such solutions are not supersymmetric, and imposing a

supersymmetric ansatz on them gives in general a solution with ctc’s. Furthermore, since

the flux on every cycle interacts with the flux on every other cycle, making sure there are no

regions of negative charge density is a very complicated problem, that has not been solved

yet.4 To bypass this problem, one of the authors proposed a recipe to construct generic ctc-

free solutions with four centers, starting from ctc-free solutions describing three supertubes

in Taub-NUT, going to a scaling limit, and performing a combination of spectral flows and

gauge transformations to transform the supertube centers into smooth GH centers without

introducing ctc’s [29]. One can then use the fact that the solutions have a scaling limit to

remove certain constants in the harmonic functions and obtain asymptotically-R4,1 smooth

horizonless solutions with four GH centers and BH charges [2].

This recipe is efficient because it is relatively easy to obtain ctc-free solutions with

three supertubes of different kinds and a GH center: unlike solutions with GH centers, the

charges of these solutions come from the supertubes themselves, and hence by ensuring

that the supertube charges are positive one avoids ctc’s. Furthermore, since any solution

with four GH centers can be transformed via spectral flows into a solution with three

supertubes and a GH center, the method of [2] is guaranteed to yield the most generic ctc-

free solutions with four GH centers. Moreover, if one performs this procedure and uses only

two spectral flows, one obtains the most generic ctc-free solution with three GH centers and

a single supertube, which is singular in the M2-M2-M2 (five-dimensional) duality frame but

is smooth in the D1-D5-P (six-dimensional) duality frame.

The second obstacle is to implement a filter for solutions with angular momentum at a

finite fraction of the cc bound. Indeed, starting from generic three-supertube solutions will

almost always produce solutions with J slightly below this bound, and hunting for solutions

with a parametrically-lower J is challenging. To do this one has to find physical quantities

which will discriminate three-supertube solutions that will produce near-maximally spin-

ning 4-GH-center solutions from those that will produce 4-GH-center solutions with lower

angular momentum. To do this, it is useful to follow the procedure of [2] and introduce

the so-called entropy parameter :

H ≡ Q1Q2Q3 − J2

Q1Q2Q3
, (1.1)

which measures how far the microstate angular momentum is below the cosmic censorship

bound of the black hole with the same charges.5

4In [28] a strategy to solve this problem will be proposed.
5Of course, microstate geometries have no horizons and their angular momentum can easily be above

the cosmic censorship bound [27], so the name “entropy parameter” is a bit of a misnomer. We use it
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We overpass these two obstacles and are able to construct the largest known classes of

scaling BPS smooth horizonless four-center solutions that have the same charges as BMPV

black holes with a finite H parameter (typically 0.4 with a maximum around 0.6).6 The key

difference between the geometries with four GH centers we construct and those of [2], which

have H < 10−2, is that the aspects ratios of the new geometries are parametrically larger

than one. Given that the only other known method for constructing finite-H multi-GH-

center microstate geometries, via mergers of clusters of bubbles [9] also produces solutions

with parametrically-large aspect ratios, this appears to be a universal feature of multi-GH-

center solutions with angular momenta significantly below the cc bound. It would be very

interesting to find a deeper physical reason for this.

Our technology can also be used to produce solutions with three GH centers and a

supertube, that have zero or very small angular momentum. So far, the only method to

obtain such BTZ microstate geometries has been to use superstratum technology [1, 30],

which is technically much more difficult than the construction of solutions with a GH base

space. Furthermore, this technology produces asymptotically-AdS3 × S3 geometries [1],

and extending these solutions to obtain asymptotically-flat D1-D5-P microstates is quite

nontrivial [31]. In contrast, our technology produce very easily large classes of smooth

asymptotically-flat zero-angular-momentum black-hole microstate geometries.

The trade-off is that the CFT dual of superstratum solutions is exactly

known [1, 30, 32, 33] (which makes superstrata amenable to precise holographic investi-

gations), while the CFT dual of any solution with more than two GH centers is not known.

The multi-center solutions we obtain do have a scaling limit, so they have a throat that

can resemble a black hole throat to arbitrary accuracy; hence one can argue that they are

dual to CFT states that have long effective strings [9] and therefore live in the same CFT

sector as the states that count the black hole entropy. However, identifying these states

precisely remains a challenging open problem.

The method we employ reveals itself as a very powerful tool to study the spectrum of

four-center microstate geometries. It will be interesting to be able to perform similar studies

for even more general solutions, with an arbitrary number of centers or with the inclusion

of non-Abelian fields [25]. We plan to adress these questions in future work [28, 34].

In section 2 we summarize the structure of the two classes of four-center solutions we

study: solutions with four GH centers or with three GH centers and one supertube, and we

explain how to generate them using generalized spectral flows and gauge transformations

on solutions with three supertubes in Taub-NUT. In section 3 we present an exhaustive

analysis of solutions with four GH centers. We show that imposing a hierarchy of scales

between the inter-center distances is a necessary ingredient to construct solutions with an

angular momentum significantly below the cc bound. In section 4 we apply the same kind

of analysis on solutions with three GH centers and one supertube and construct microstate

geometries for black holes with arbitrarily-small angular momentum.

nonetheless because it facilitates the comparison between the microstate geometry and the corresponding

black hole.
6The only other known microstate geometry with multiple GH centers and low angular momentum [9]

has H ∼ 0.28.
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2 Supertubes and microstate geometries

2.1 Supersymmetric solutions with a Gibbons-Hawking base

We work in the context of five dimensional N = 1 Supergravity coupled to two vector multi-

plets in the STU model.7 This theory has been shown to be obtained from compactification

of eleven dimensional Supergravity on a Calabi-Yau threefold [37].8 Its supersymmetric

solutions with a compact spatial isometry are completely specified in terms of a set of 8

harmonic functions in R3, which we take of the form

V = q∞ +
∑
a

qa
ra
, KI = kI∞ +

∑
a

kIa
ra
, M = m∞ +

∑
a

ma

ra
, LI = lI∞ +

∑
a

lIa
ra
, (2.1)

where ra is the Euclidean three-dimensional distance measured from the center with coor-

dinates ~xa, and with I = 1, 2, 3. It is convenient to introduce a vector with the harmonic

functions Γ ≡ (V,KI , LI ,M), which implicitly defines a set of vectors of asymptotic con-

stants Γ∞ and charges Γa,
9 such that

Γ = Γ∞ +
Γa
ra
. (2.2)

In this article we are mostly interested in the spacetime metric and its properties, so

we shall focus on this aspect of the solution. We refer the reader to the appendix A for

a description of the complete field content and the solving of the BPS equations. The

five-dimensional metric is given by

ds25 = − (Z1Z2Z3)
−2/3 (dt+ k)2 + (Z1Z2Z3)

1/3 ds24, (2.3)

where ds24 is a four-dimensional ambipolar Gibbons-Hawking space [41, 42]

ds24 = V −1 (dψ + χ)2 + V
(
dx2 + dy2 + dz2

)
, ?(3)dV = dχ , (2.4)

The warp factors ZI and the 1-form k are given by

ZI = LI +
1

2
CIJK

KJKK

V
,

k = µ (dψ+χ) + ω , (2.5)

with CIJK = |εIJK | and

µ =
1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI +M , (2.6)

?(3)dω = 〈Γ, dΓ〉 . (2.7)

7Our conventions mostly coincide with those of [5]. See [35, 36] for information about the theory and

the STU model.
8Alternatively, it can be obtained from the compactification of Heterotic Supergravity on T 5 followed

by a truncation [38–40].
9For instance, Γa =

(
qa, k

1
a, k

2
a, k

3
a, l

1
a, l

2
a, l

3
a,ma

)
.
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In the last expression 〈 , 〉 is a symplectic product of vectors A =
(
A0, AI , AI , A0

)
de-

fined as10

〈A,B〉 ≡ A0B0 −A0B
0 +

1

2

(
AIBI −AIBI

)
. (2.8)

The charges of the harmonic functions are usually constrained by the properties of the

solution that is being described. While we will review specific restrictions for supertubes

and microstate geometries later, we emphasize here that all physically sensible solutions

need to be free of closed timelike curves and Dirac-Misner strings. The first condition

requires the positivity of the quartic invariant I4 (see appendix A),

I4 ≡ Z1Z2Z3V − µ2V 2 > 0 . (2.9)

while the second restricts the position of the centers [26],∑
b

〈Γa,Γb〉
rab

= 〈Γ∞,Γa〉 , where Γ ≡ Γ∞ +
∑
a

Γa
ra
, (2.10)

where rab is the distance between the pair of centers located at ~xa and ~xb. These are known

as the bubble equations and impose strong constraints on the space of parameters leading

to physically sensible configurations. Solving those equations is usually the hardest step

when building multi-center solutions.

2.2 Symplectic transformations

Any vector of harmonic functions defines a solution, and any linear transformation, Γ′ = gΓ

with g ∈ GL(8,R), maps a solution to another solution. A special subgroup of these trans-

formations is Sp(8,R), corresponding to linear transformations that preserve the symplectic

product and, therefore, leave the bubble equations invariant. Among all possible Sp(8,R)

transformations, the most attractive are those that also leave the function I4 invariant.

We are interested in two subgroups with these characteristics [43]:

• Generalized spectral flows. These transformations can be understood as simple

changes of coordinates when the five dimensional solution is embedded in six dimen-

sional Supergravity [29], and correspond to a subgroup of the E7(7) duality transfor-

mations from the eleven dimensional perspective [13]. Generalized spectral flows are

generated by three real parameters γI

M ′ = M, L′I = LI − 2 γIM,

KI ′
= KI − CIJK γJLK + CIJK γ

JγKM,

V ′ = V + γIKI − 1

2
CIJK γ

IγJLK +
1

3
CIJK γ

IγJγKM.

(2.11)

Even though they act non-trivially on ZI and µ, one can check that I4 and the bubble

equations remain invariant under the action of (2.11).

10Another more symmetric convention where the harmonic function M is twice the one we use here is

also used in the literature.
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• Gauge transformations. These transformations leave the physical properties of the

solution unchanged and their sole effect is a gauge transformation of the vector fields.

They are just a reflection of the fact that the construction of solutions in terms of

8 harmonic functions contains redundancies. There are three independent gauge

transformations (one for each vector) parametrized by gI , acting as

V ′ = V, KI ′
= KI + gIV,

L′I = LI − CIJK gJKK − 1

2
CIJK g

JgKV,

M ′ = M − 1

2
gILI +

1

4
CIJK g

IgJKK +
1

12
CIJK g

IgJgKV,

(2.12)

As shown in [2, 29], performing a generalized spectral flows of type I transforms a su-

pertube of species I to a Gibbons-Hawking center. The gauge transformations enable

to get rid of the constant terms appearing after spectral flows in the functions KI ,

since these introduce singularities for five dimensional asymptotically-flat solutions.

Consequently, generalized spectral flows and gauge transformations can be used to

generate smooth horizonless geometries starting from a three-supertube solution in

a Taub-NUT hyper-Kähler space. This plays a central role in our study.

There is one additional subgroup of Sp(8,R) that leaves I4 invariant that involves

rescalings of the harmonic functions, but since we are not going to make use of this type

of transformations we refer the interested reader to [43].

2.3 Three-supertube scaling BPS solutions in Taub-NUT

Our starting point is a system of three two-charge supertubes of different species in which

the 4-dimensional hyper-Kähler metric is the Euclidean Taub-NUT solution [44, 45]. This

is a multi-supertube generalization [46] of the configuration constructed in [47]. However,

since the supertubes are of different kinds, this configuration is not smooth in the D1-D5-P

duality frame.

Each supertube carries a dipole charge kI and two electric charges Q
(I)
a at the centers

a 6= I. Consequently, the 8 harmonic functions that characterize such a field configuration

are given by

V = q∞ +
q0
r0
, (2.13)

KI = αI +

3∑
a=1

ka
ra
δIa , (2.14)

LI = 1 +
3∑

a=1

Q
(I)
a

4ra

(
1− δIa

)
, (2.15)

M = m∞ +

3∑
a=0

ma

ra
. (2.16)

In these expressions ra is the three-dimensional Euclidean distance measured from the ath

center. We consider axisymmetric supertube configurations. The positions of the supertube

– 7 –
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centers are given by the distances z1, z2 and z3 on the z-axis of the three-dimensional base

space of the solution in the following order

z1 > z2 > z3 > z0 = 0. (2.17)

Therefore,

ra ≡
√
x2+y2+(z − za)2 , (2.18)

In the analysis performed in [2, 12, 46] it was derived that regularity at the centers and

the absence of asymptotic Dirac-Misner strings requires fixing the following parameters

m1 =
Q

(2)
1 Q

(3)
1

32k
(1)
1

, m2 =
Q

(1)
2 Q

(3)
2

32k
(2)
2

, m3 =
Q

(2)
3 Q

(1)
3

32k
(3)
3

, (2.19)

m0 = 0, m∞ = −
3∑

a=1

ma

za
, α1 = −2q∞m∞ , α2 = α3 = 0 .

This set of harmonic functions produces a physically sensible configuration when there

are no Dirac-Misner strings between centers and no ctc’s in the spacetime metric. This is

achieved imposing the four bubble equations (2.10), which fix the positions of the centers,

and the global bound (2.9). The bubble equations can be conveniently written as

Γ12

r12
+

Γ13

r13
− 8q0

m1

z1
= 8m1q∞ − 4k1 ,

Γ21

r12
+

Γ23

r23
− 8q0

m2

z2
= 8m2q∞ − 4k2 − 2Q

(1)
2 q∞m∞ ,

Γ32

r23
+

Γ31

r13
− 8q0

m3

z3
= 8m3q∞ − 4k3 − 2Q

(1)
3 q∞m∞ ,

(2.20)

where Γab = 〈Γa,Γb〉 and rab is the distance between the centers a and b. Provided

those conditions are satisfied, we have a family of regular solutions free of ctc’s labeled

by eight parameters; kIa, Q
I
a, q∞ and q0. However, one should not expect the whole space

of parameters to be compatible with (2.9) and (2.20). Moreover, experience shows that

finding a set of appropriate parameters can involve a vast exploration.

Among all possible physical solutions, the most interesting correspond to scaling ge-

ometries. These are configurations in which the distances between the supertubes and

the GH center can be made arbitrarily small while preserving the value of the asymptotic

charges practically constant. If one defines the aspect ratios dI as zI = λdI with d3 of order

one, this is achieved in practice for configurations in which the terms on the left-hand side

of (2.20) are almost vanishing when we replace the inter-center distances by the aspect ra-

tios. Thus, scaling solutions of three supertubes and a GH center must satisfy the scaling

conditions :

Γ12

d12
+

Γ13

d13
− 8q0

m1

d1
≈ 0

Γ21

d12
+

Γ23

d23
− 8q0

m2

d2
≈ 0

Γ32

d23
+

Γ31

d13
− 8q0

m3

d3
≈ 0,

(2.21)
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with zIJ = λ dIJ . When these relations are satisfied, the limit λ � 1 in the bubble

equations is well-defined at first order in λ. By summing the three equations (2.21) we see

that m1, m2 and m3 cannot be all of the same sign. Since all Q
(I)
J are taken positive to

avoid ctc’s one of the dipole charges k1, k2 and k3 must have different sign from the other

two. The warp factors of the solution (2.5) have a term quadratic in the dipole charges,

and when the kI have opposite signs this term is negative and can be problematic. However

we avoid this by choosing the kI to be smaller than the square roots of the charges.

As one approaches the scaling limit, the AdS2 × S3 throat of the solution becomes

longer, and the solution resembles more and more the near-horizon geometry of an extremal

black hole. Therefore after the application of spectral flow transformations that render the

metric smooth at the centers we will construct a completely regular, horizonless solution

with near-horizon-like throat of large but finite depth that caps off smoothly.

2.4 Microstate geometries from three-supertube configurations

Several classes of smooth BPS solutions can be generated through the application of two or

three generalized spectral flows and gauge transformations on a system of three-supertubes

in a Taub-NUT space, see for instance [2, 29, 46]. In this manner we can investigate large

classes of regular supersymmetric solutions with multiple Gibbons-Hawking centers, which

are usually difficult to generate otherwise. As we explained in section 2.2, no closed timelike

curves or Dirac-Misner strings are generated in this process.

However, this method to generate smooth microstate geometries presents a drawback.

It has been recently argued that generalized spectral flows result in a significant increase

of the angular momentum, at least when the inter-center distances are of the same order

of magnitude for four-center solutions [2]. Actually, when all the distances between the

centers are of the same order the solutions are near-maximally spinning. In particular,

while spectral flows do not modify the quartic invariant, it seems that they simultaneously

increase the value of the two terms in its defining expression (2.9).

To be more precise, recall that we defined the entropy parameter H in (1.1) as:

H ≡ Q1Q2Q3 − J2

Q1Q2Q3
,

where QI and J are the asymptotic charges and angular momentum. For classical black

holes the entropy is proportional to horizon area, given by the square root of the numerator.

The numerator can also be read off from the coefficient of the 1/r4 in the quartic invariant.

If the numerator is negative, the black hole solution will be singular. Thus, H is 0 when

rotation is maximal, while it is 1 when there is no rotation at all.

Within this construction scheme, there are two possible strategies that we are going

to explore in order to avoid angular momenta near the cosmic censorship bound. The first

possibility is to look for configurations in which there is a hierarchy in the distances between

centers. The second option simply consists in applying two spectral flows instead of three.

Both approaches involve a large exploration of the parameter space, since there is no way,

in principle, to know how the input parameters should be chosen to produce a high value

– 9 –
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of the entropy parameter. On the bright side, the procedures to generate smooth solutions

can be systematized, as we will briefly explain, and therefore such an exploration is feasible.

• 1. Four smooth Gibbons-Hawking centers.

If one applies the three possible generalized spectral flow transformations to an initial

solution with three supertubes in Taub-NUT, one obtains a four-GH-center configuration

described by a set of harmonic functions with

lIa = −1

2
CIJK

kJa k
K
a

qa
, a ∈ {0, . . . , 3} ,

ma =
1

12
CIJK

kIak
J
a k

K
a

q2a
a ∈ {0, . . . , 3} .

(2.22)

This guarantees that the resulting solution is horizonless and smooth [5, 23, 24].

• 2. One supertube and three smooth Gibbons-Hawking centers.

Let us consider the application of two types of generalized spectral flows (2.11) to an initial

system of three supertubes in Taub-NUT. For instance let us denote by the index J the

spectral flow transformation which is not applied, so γJ = 0. Then it is straightforward

to check that the set of four-center harmonic functions obtained satisfy

lIa = −1

2
CIKL

kKa k
L
a

qa
a 6= J ,

ma =
1

12
CIKL

kIak
K
a k

L
a

q2a
a 6= J ,

kIJ = 0 I 6= J ,

lJJ = 0 ,

mJ =
1

4
CJKL

lKJ l
L
J

kJJ
,

(2.23)

where the notation is that of (2.1). This configuration describes a supertube in the

presence of three smooth Gibbons-Hawking centers. Much like vanilla two-charge super-

tubes [48–52], these solutions are not smooth in the M2-M2-M2 duality frame where they

are described by five-dimensional supergravity. However, they become smooth once one

dualizes them to a D1-D5-P duality frame where the supertube charges correspond to D1

and D5 branes, and the solution can be described by a six-dimensional supergravity [53].

3 Four-GH-center solutions with a hierarchy of scales

In this section we explore the possibility of constructing smooth geometries with four

Gibbons-Hawking centers with an angular momentum far below the cosmic censorship

bound. We will see that when the analysis technique of [2] is applied to solutions in which

the inter-center distances have a hierarchic structure, it is possible to build solutions with

small angular momentum. The particular five-center solution found in [9] provides the

motivation to study this type of configurations in detail, since it is characterized by a

hierarchic distribution of the centers and its entropy parameter is H = 0.28.
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3.1 Exploration of the parameter space

The details of the numerical analysis we perform are contained in appendix B. Here we

give a qualitative description of the procedure pioneered in [2] and explain our results.

The program is based on the automation of the method to build four-center microstate

geometries described in the previous section. This allows us to scan the space of parameters

and look for the maximization of the entropy parameter H.

3.1.1 Systematic generation of solutions

Let us discuss how the solution generating technique is automatized. Before proceeding, we

point out some generalities about this construction scheme. In first place, we are interested

in configurations that present a hierarchy of scales, which at the beginning we take to be

z1
z2
≈ 102 ,

z2
z3
≈ 102 .

(3.1)

The Gibbons-Hawking metric (2.4) is fully determined by the function V . Although it

might seem that this metric becomes singular at the centers, it can be easily checked that

this is not true as long as the coefficients qa are integer numbers.11 Then, we need to

take care of that fact and impose that all Gibbons-Hawking charges are integer numbers.

Moreover their sum has to be necessarily 1, since we want this space to asymptote to R4.

On the other hand, the application of spectral flow transformations to a system of

supertubes does not guarantee a good asymptotic behaviour. In particular we are interested

in asymptotically-flat 5-dimensional spacetimes. However this type of configurations will

never be obtained directly if we start from a system of supertubes in a Taub-NUT base

space, since one cannot eliminate simultaneously all constant factors in the functions V

and KI . The best one can do is to perform three gauge transformations (2.12) to eliminate

the integration constants in KI , and remove by hand the constant in V afterwards, hoping

that this does not generate ctc’s.

The initial system of supertubes is specified by seven parameters: k1, k2, k3, q0,
Q

(1)
2

Q
(3)
1

,

Q
(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

. The solution also depends on q∞, but the value of this parameter is not

essential when looking for scaling solutions. Our recipe is the following:

1. Choose a value for the seven degrees of freedom of the three-supertube solution, k1,

k2, k3, q0,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

. Recall that we can only obtain scaling solutions if one of

the k’s has a sign different from the other two. We also give a non-vanishing value

to q∞, which is necessary in order to be able to cancel the constant terms of all KI

in a later step. Therefore, the base space is Taub-NUT.

11This fact becomes evident performing a local coordinate transformation ra =
ρ2a
4

. The local metric

describes the orbifold space R4/Z|qa|, which is harmless in the context of string theory.
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2. Using (3.1) as an equality, we impose the scaling condition (2.21) as three exact

equations from which we obtain the precise value of all the Q
(I)
a parameters. After-

wards, we round these values to some close rational numbers and solve the bubble

equations (2.20) to determine the positions of the centers z1, z2 and z3. Thus, (3.1)

and (2.21) cease to be equalities and become approximations, as intended. This step

ensures that we construct a scaling three-supertube solution free of ctc’s.

3. We perform three generalized spectral flows and three gauge transformations. We fix

the values of the spectral flow parameters γI by imposing some particular, integer

values of the Gibbons-Hawking charges q1, q2 and q3 such that
∑
qa = 1. The values

of the gauge parameters gI are found requiring that the constant terms in all the

functions KI are zero.

At this stage, we have a BPS scaling solution with four Gibbons-Hawking centers.

However, there are still two problems that need to be solved. First, the harmonic

function V still has a constant term. This means that the four-dimensional base space

of the solution is asymptotically R3 × S1 instead of flat R4. Second, because all the

parameters of the transformations γI and gI are fixed by polynomial equations, the

resulting charges and dipole charges of the solution are general real numbers. Since

those are expected to be quantized when interpreted in the full context of string

theory, it is desirable that they take integer values.

For the numerical analysis of the entropy parameter, we do not apply the next three

steps because they do not significantly change the value of the charges and the an-

gular momentum. They are just technical steps to build proper asymptotically-5-

dimensional solutions.

4. It is not possible to remove the constant of V using transformations that preserve the

bubble equations. Thus we remove it by hand. The impact of this removal on the

solution takes place mainly on the bubble equations. Changing the right hand side of

the bubble equations (2.10) necessarily results in a change of the inter-center distances

in the left hand side. In the scaling limit, when all these distances are very small, one

may think that a change of constant terms can be compensated by an infinitesimally

small change of distances. However, this it is not necessarily true for axisymmetric

configurations [54]. In our construction we will carefully select the solutions for

which it is possible to perform this truncation preserving the axisymmetry of the

center configuration.

5. Since we want the monopole and dipole charges to be integer numbers, we proceed

in two steps. The first step consists in obtaining solutions whose harmonic functions

have rational poles. For that purpose, we round the values of the parameters kIa to

be rational and obtain all the other charges lIa and ma using (2.22). Since one can

find rational numbers arbitrarily close to any irrational number, this procedure is

guaranteed not to change significantly the properties of the solution. Hence, we have

a fair bit of freedom in rounding the irrational numbers to rational ones, and we can
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use it to obtain kIa that have the same denominator. This rounding does not leave

the bubble equations invariant, and we need to solve them again and check again the

absence of ctc’s. The second step is to obtain solutions whose harmonic functions

have integer poles. To do this we use the following transformations parametrized by

any real numbers {s1, s2, s3},

M → 1

6
CIJKsIsJsKM, LI → 1

2
CIJKsJsKL

I ,

V → V, KI → sI K
I , {s1, s2, s3} ∈ R3. (3.2)

They preserve the regularity of the solution. Indeed, all the horizonless condi-

tions (2.22) are still satisfied and the bubble equations and the quartic invariant

are multiplied by an overall factor s1s2s3 and (s1s2s3)
2 respectively while H does not

change. Thus, one chooses the three sI to be the smallest integers needed to obtain

integer charges from the rational charges.

6. The factors sI are usually large numbers, so multiplying the harmonic functions LI

and M by them makes their constant terms very large. Asymptotic flatness of the

five-dimensional metric (2.3) demands having the constant terms of all LI equal to

one.12 To obtain such solutions one again has to change by hand the constant terms

of all the LI . As explained in [54], such a change can always be done for scaling

solutions, and results in a global dilatation of the multicenter configuration. To

make the inter-center distances small again, we simply fine-tune the value of some of

the dipole charges (keeping them integer) to make the solution scale [9].

This method produces asymptotically-flat, scaling solutions with four Gibbons-

Hawking centers that have integer charges. Using this systematic procedure we can build a

huge number of four-GH-center solutions and obtain the variation of the entropy parameter

H as one moves in the parameter space spanned by k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and q2.

3.1.2 Main results of the analysis

We divided our analysis in three parts, considering the effect of modifying three sets

of parameters: the Gibbons-Hawking charges (q0, q1, q2), the supertube dipole charges

(k1, k2, k3) and the supertube charge ratios (
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

). We reach the following con-

clusions:

• The entropy parameter approaches zero drastically when the absolute value of the

Gibbons-Hawking charges is large. The optimal value we observed for the Gibbons-

Hawking charges is 1,1,1 and -2.

• For the initial supertube dipole charges, we observed that configurations with k2
negative and k1 and k3 positive are the optimal ones. With the two other sign

configurations, we did not find domains of charge ratios with an entropy parameter

12Actually only their product has to be equal to one, but this subtlety is not particularly relevant.
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Figure 1. The entropy parameter H as a function of
Q

(3)
2

Q
(1)
3

and the initial hierarchy parameter m =

log10

[
z1
z2

]
= log10

[
z2
z3

]
. The other parameters are fixed to the following values q0 = q1 = q2 = 1,

k1 = −k2 = k3 = 1,
Q

(1)
2

Q
(3)
1

= 0.9 and
Q

(2)
3

Q
(2)
1

= 2.

bigger than 0.1. We also noticed that the entropy parameter does not depend signifi-

cantly on k2 and it depends essentially on k1
k3

. Furthermore, we observed that for any

charge ratios one can find a particular dipole ratio k1
k3

where the entropy parameter

is maximal and the upper bound seems to be H ∼ 0.3.

• With the optimal configuration of dipole charge signs and Gibbons-Hawking charges,

we have found several domains of charge ratios where the entropy parameter is

above 0.2.

Moreover, we performed an analysis to study the impact of the hierarchy of scales. In

figure 1, we show one of the main results of the analysis. It illustrates how the entropy

parameter can significantly increase with the aspect ratios. The entropy parameter is rep-

resented with respect to two variables, one of the charge ratios and the order of magnitude

of the hierarchy m, which is defined as

z1
z2

= 10m

z2
z3

= 10m.
(3.3)

The rest of parameters are chosen to optimize the entropy parameter, according to the nu-

meric results just presented (see appendix B for more details). The graph shows that when

m is around 0 the solutions are near-maximally spinning, with H very close to 0, recovering

the results of [2]. Furthermore, in all the solutions we examined the entropy parameter

increases as the hierarchy between the distances gets more pronounced, converging toward

a value below one. We have confirmed that this is a general behavior for several other

domains of the parameter space.

The analysis performed supports the conclusion that microstate geometries with an

angular momentum that is at a finite fraction of the cc bound must have a difference in

scale between their inter-center distances.
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3.2 A particular solution

Here we give the explicit form of the harmonic functions characterizing a BPS scaling

microstate geometry with four Gibbons-Hawking centers. The solution has been found

following the recipe detailed in section 3.1.1, taking the initial parameters from the region

that optimizes the value of the entropy parameter according to the results of the numerical

analysis.

The solution is determined by the following harmonic functions,

V =
1

r0
+

1

r1
− 2

r2
+

1

r3

K1 = −36

r0
+

100

r1
+

18

r2
− 38

r3

K2 =
278

r0
− 4997

r1
− 1702

r2
+

220

r3

K3 =
344

r0
+

342

r1
− 2154

r2
+

1644

r3

L1 = 1− 95632

r0
+

1708974

r1
+

1833054

r2
− 361680

r3

L2 = 1 +
12384

r0
− 34200

r1
− 19386

r2
+

62472

r3

L3 = 1 +
10008

r0
+

499700

r1
− 15318

r2
+

8360

r3

M = 2990.5− 1721376

r0
− 85448700

r1
+

8248743

r2
− 6871920

r3
.

(3.4)

The bubble equations can be solved numerically for the location of the centers,

z1 = 5.9600 . . .× 10−1 , z2 = 1.1367 . . .× 10−3 , z3 = 7.5586 . . .× 10−6 . (3.5)

Performing an asymptotic expansion of ZI and µ we can obtain the three electric charges

and the angular momentum of the solution, which can be read from the O(r−1) coeffi-

cients [9, 24]

Q1 = 1993340

Q2 = 29014

Q3 = 229906

J = −87655680.

(3.6)

For these values of asymptotic charges the entropy parameter is

H = 0.42 . . . (3.7)

While this value is not close to 1, we can definitely affirm that it is far from 0. Thus,

this microstate geometry corresponds to a rotating black hole whose angular momentum

is significantly below the cc bound.
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Sol k12 z1
z1
z2

z2
z3

1 100.00046 5.0152× 10−3 524.33 150.38

2 100.0004639 4.6445× 10−6 524.33 150.38

3 100.0004639036 1.9403× 10−8 524.33 150.38

4 100.000463903615 1.3199× 10−10 524.33 150.38

5 100.0004639036151 3.5190× 10−12 524.33 150.38

Table 1. Scaling process of the four Gibbons-Hawking centers solution.

3.2.1 Scaling the solution

In general, one might need to break the axisymmetry of the configuration to scale the

solutions. However, as it was proposed in [9], axisymmetry can be preserved in the scaling

process by slightly modifying the values of one of the parameters in the KI functions. Here,

we choose to dial the value of k12 but any other dipole charges could have worked. At each

step one can check the bubble equations and the absence of ctc’s. The scaling process is

summed up in table 1.

As explained in [9], in the scaling process the microstate geometry develops a “throat”

that resembles the near-horizon geometry of an extremal black hole to increasing accuracy.

The depth of this throat gets larger and larger as the cluster of centers shrinks. Since

a BPS black hole has an infinite throat, during the scaling process the bubbling solution

becomes more and more similar to the exterior of the black hole solution. Therefore, we

have found a specific example of an asymptotically flat, scaling microstate geometry with

four Gibbons-Hawking centers that corresponds to a microstate of a BMPV black hole with

H = 0.42.

4 A supertube with three Gibbons-Hawking centers

As we already mentioned in section 2.4, BPS scaling solutions with one supertube and

three Gibbons-Hawking centers can be generated from three-supertube solutions in Taub-

NUT. These configurations are interesting because they correspond to smooth horizonless

microstate geometries in the D1-D5-P frame. We follow the same approach as in previous

section. First, we explain how such solutions can be systematically generated and we

perform a numerical analysis of the dependence of the entropy parameter on the initial

parameters. Second, we present explicit examples of solutions with and without scale

differences between the four centers.

To obtain our solutions one only needs to apply two generalized spectral flows to the

original system of three supertubes. As we have seen, spectral flow transformations are

responsible for decreasing the entropy parameter, so one may hope to find solutions with

low angular momentum even without imposing a hierarchy of scales in the inter-center

distances.
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4.1 Exploration of the parameter space

4.1.1 Systematic generation of solutions

We start from solutions that do not have a hierarchy of scales:

z1 − z2
z3

≈ 1,

z2 − z3
z3

≈ 1.
(4.1)

The technique to generate these configurations is very similar to the method of [2],

reviewed in detail in section 3.1.1. The only difference is that one of the generalized spectral

flows is not applied. In a nutshell, the starting point is a three-supertube configuration

with a Taub-NUT base space satisfying (4.1), which is characterized by seven parameters

k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

and q0. Then, we apply any two generalized spectral flows. The

corresponding parameters, say γJ and γK , are fixed by imposing a particular value for the

Gibbons-Hawking integer charges generated in the process qJ and qK which are free as long

as
∑
qa = 1. Then, we apply three gauge transformations to cancel the constant terms

of the KI . Finally, we truncate the constant term of the harmonic function V to obtain

a base space asymptotic to R4 and we round to integers all the charges in the harmonic

functions. By systematizing this procedure it is possible to scan vast classes of solutions,

parameterized by k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0 and qJ .

The same procedure can also be applied to solutions with a hierarchy of scales. As

we saw in previous section, increasing the scale difference has a significant impact on the

entropy parameter of four-GH-center solutions, which can reach values of the order of

H ∼ 0.5. It is natural to ask how large this parameter can be for solutions with three

Gibbons-Hawking centers and one supertube.

4.1.2 Main results of the analysis

The details of the numerical analysis are contained in appendix C. After scanning relevant

domains of the space of parameters, we have reached the following conclusions when looking

for the best value of H:

• The optimal location of the supertube is the outermost one: (0, 0, z1).

• The Gibbons-Hawking charges qa should have the smallest possible absolute value,

|q2| = |q3| = |q0| = 1, in agreement with what we found in section 3.1.2.

• All sign configurations for the initial dipole charges ka appear to be equally favored.

We find that, when k2 is taken negative, the entropy parameter reaches a maximum

for a particular value of k1
k3

, regardless of the values of the other parameters.

• For aspect ratios satisfying (4.1), the maximal value of H is around 0.25.

The analysis confirms what we anticipated: when only two generalized spectral flows

are performed, the resulting solutions have lower angular momentum. Thus, one can reach

a finite value of H even without a hierarchy of scales.
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Figure 2. Representation of the entropy parameter H as a function of the charge ratio
Q

(2)
3

Q
(2)
1

and

the order of magnitude of the inter-center distance ratio. The other parameters are q0 = q2 = 1,

k1 = −k2 = k3 = 1,
Q

(1)
2

Q
(3)
1

= 0.85 and
Q

(3)
2

Q
(1)
3

= 0.009.

Of course, we just found in the previous section that hierarchic configurations can

improve the value of the entropy parameter, at least for four GH centers. So we would like

to investigate how adding a hierarchy of scales affects the angular momentum of solutions

with one supertube. For that purpose, let us define the variable m as we did in the previous

section,

z1
z2
≈ 10m

z2
z3
≈ 10m.

(4.2)

We can then evaluate the value of the entropy parameter for a large set of solutions with

different values of m and the charge ratio
Q

(2)
3

Q
(2)
1

. The other parameters are fixed to optimal

values according to the analysis performed for m ≈ 0. The result is very surprising. As

the value of m increases the value of the entropy parameter improves significantly and can

stay arbitrarily close to H = 1 in a large region of the moduli space. This maximal value

is obtained for m ∼ 1.5, so the hierarchy of scales is not too pronounced. Unexpectedly,

the value of the entropy parameter decreases if we go beyond that optimal hierarchy, see

figure 2.

Solutions with m ∼ 1.5 are non-spinning. Indeed, one can find ctc-free scaling solu-

tions with one supertube and three Gibbons-Hawking centers for which the spectral flow

transformations completely annihilate the original angular momentum. However, those

solutions typically have irrational charges.

To obtain solutions with integer charges and fluxes, one has to first round these charges

to nearby rational ones, and this typically brings back some angular momentum. However,

the value of this angular momentum is proportional to the rounding, and hence can be

made arbitrarily small by tightening the rounding. Hence, one can find regular scaling

solutions with an entropy parameter infinitesimally close to one. In section 4.3 we give an

explicit example of such solutions.
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4.2 An example of a solution without scale differences

Following the procedure outlined in section 4.1.1 we can easily construct solutions with one

supertube and three GH centers. For example:

V =
1

r0
+

1

r2
− 1

r3

K1 = −184

r0
− 60

r1
+

27

r2
+

361

r3

K2 = −145

r0
+

10909

r2
+

5308

r3

K3 =
1

r0
− 68

r2
+

67

r3

L1 = 1 +
145

r0
+

741812

r2
+

355636

r3

L2 = 1 +
184

r0
− 1300

r1
+

1836

r2
+

24187

r3

L3 = 1− 26680

r0
+

2194116

r1
− 294543

r2
+

1916188

r3

M = −8108 +
13340

r0
+

23769590

r1
− 10014462

r2
+

64192298

r3
.

(4.3)

where ra are Euclidean three-dimensional distances measured from the centers at (0, 0, za).

These locations are obtained solving numerically the bubble equations, which yield

z1 = 1.0635 . . .× 10−2 , z2 = 7.1863 . . .× 10−3 , z3 = 3.5109 . . .× 10−3. (4.4)

The three global electric charges and the angular momentum are

Q1 = 1097593

Q2 = 24907

Q3 = 6103449

J = 357140114.

(4.5)

The entropy parameter of this solution is

H ≈ 0.24, (4.6)

which means that the angular momentum, J , is at 87% of its maximal value for those

electric charges.

4.2.1 Scaling solutions

Following the procedure outlined in section 3.2.1, we scale the solution by fine-tuning the

value of k12. At each step in the scaling process, we solve the bubble equations and check

for the absence of ctc’s. The results are summed up in table 2.
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Sol k12 z1
z1−z2
z3

z2−z3
z3

1 -184.00003 1.2834× 10−3 0.98237 1.0469

2 -184.000034 3.6513× 10−5 0.98236 1.0469

3 -184.00003411 2.2225× 10−6 0.98236 1.0469

4 -184.000034117 4.0366× 10−8 0.98236 1.0469

5 -184.000034117128 4.6524× 10−10 0.98236 1.0469

6 -184.00003411712949 7.6773× 10−13 0.98236 1.0469

Table 2. Scaling process of the solution with one supertube and three Gibbons-Hawking centers

with aspect ratios of order one.

4.3 A solution with very small angular momentum

Here we build a solution with one supertube and three Gibbons-Hawking centers which has

an entropy parameter H ∼ 1. For this purpose, we choose appropriately the scale difference

between the inter-center distances and the values of the initial charges and dipole charges

of the three supertubes to maximize the entropy parameter. Our procedure allows us to

fine-tune the parameters to have H infinitesimally close to 1, and we present an example

with H = 0.999997:

V =
1

r0
+

1

r2
− 1

r3

K1 = −114

r0
− 5

r1
− 110

r2
+

115

r3

K2 = −111

r0
+

4698

r2
+

642

r3

K3 =
3

r0
− 87

r2
+

84

r3

L1 = 1 +
333

r0
+

408726

r2
+

53928

r3

L2 = 1 +
342

r0
+

10

r1
− 9570

r2
+

9660

r3

L3 = 1− 12654

r0
+

381142

r1
+

516780

r2
+

73830

r3

M = −2557.5 +
18981

r0
− 381142

r1
+

22479930

r2
+

3100860

r3
.

(4.7)

The bubble equations give the positions of the centers:

z1 = 7.3189 . . .× 10−2 , z2 = 3.6046 . . .× 10−3 , z3 = 9.7241 . . .× 10−5. (4.8)

The three charges and the angular momentum are:

Q1 = 462987

Q2 = 442

Q3 = 362992

J = −16021,

(4.9)
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Sol k12 z1
z1
z2

z2
z3

1 -113.999996 3.0729× 10−3 20.304 37.068

2 -113.99999583 9.2980× 10−5 20.304 37.068

3 -113.999995825 5.3346× 10−6 20.304 37.068

4 -113.9999958247 7.5857× 10−8 20.304 37.068

5 -113.9999958246957 4.8195× 10−10 20.304 37.068

Table 3. Scaling process of the solution with one supertube and three Gibbons-Hawking centers

with parametrically-large aspect ratios.

giving, as advertised, an entropy parameter

H = 0.999997 . . . . (4.10)

Thus, the angular momentum is at 0.17% of the cc bound.

4.3.1 Scaling solutions

We scale the solution by fine-tuning the value of k12. At each step, we solve the bubble

equations and check the absence of closed timelike curves. The scaling process is summed

up in table 3.
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A Solving the BPS equations

The action of the STU model of N = 1, d = 5 supergravity is completely determined

by the constant symmetric tensor CIJK = |εIJK |. All the timelike-supersymmetric-field

configurations of this theory have a conformastationary metric [55]

ds2 = − (Z1Z2Z3)
−2/3 (dt+ k)2 + (Z1Z2Z3)

1/3 hmndx
mdxn , (A.1)

where hmndx
mdxn is the metric of a hyper-Kähler manifold, while ZI and k are respectively

three functions and a 1-form taking values in this four-dimensional space. The remaining

bosonic content consists of three vector fields satisfying

AI = − 1

ZI
(dt+ k) +BI , (A.2)
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and two scalars that can be conveniently parametrized as

e2φ = e2φ∞
Z0

Z1
, e2k = e2k∞

(
Z2
3

Z1Z2

)1/2

, (A.3)

where BI is a 1-form in the hyper-Kähler space. These field configurations become solutions

when the following set of BPS equations, defined on the four-dimensional manifold, is

satisfied

dBI = ?(4)dB
I , (A.4)

∇2
(4)ZI = CIJK ?(4)

(
dBJ ∧ dBK

)
, (A.5)

dk + ?(4)dk = ZIdB
I , (A.6)

Therefore, the requirement that the solution is supersymmetric drastically simplifies

the equations of motion of the theory to a linear system of PDE’s on a manifold with

Euclidean signature. Still, for general hyper-Kähler spaces this problem is a hard nut to

crack. This is why, in order to make further progress, one usually chooses a specific, yet

very general family of hyper-Kähler manifolds admitting a triholomorphic isometry. These

are Gibbons-Hawking spaces [56], whose metric is given by

hmndx
mdxn = V −1 (dψ + χ)2 + V

(
dx2 + dy2 + dz2

)
, ?(3)dV = dχ . (A.7)

The integrability condition of the equation above implies that V is harmonic in R3. We

can make further progress if we assume that all matter fields are also independent of the

isometric coordinate ψ. Then the functions and forms that characterize the solution can

be further decomposed,

BI = −V −1KI(dψ + χ) + ĂI , (A.8)

k = µ(dψ + χ) + ω . (A.9)

Upon substitution in the system of BPS equations we find a set of differential equations

for the three-dimensional seeds

?(3)dK
I = dĂI , (A.10)

?(3)dω = V dM −MdV +
1

2

(
KIdLI − LIdKI

)
=< Γ, dΓ > , (A.11)

and the following algebraic expressions for the building blocks that make up the solution,

µ = M +
1

2
V −1LIK

I +
1

6
V −2CIJKK

IKJKK , (A.12)

ZI = LI +
1

2
V −1CIJKK

JKK . (A.13)

where LI and M are harmonic functions in R3, ∇2
(3)LI = ∇2

(3)M = 0. Therefore, su-

persymmetric solutions admitting a spacelike isometry are completely specified in terms

– 22 –



J
H
E
P
1
0
(
2
0
1
7
)
2
1
7

of 8 harmonic functions, Γ = (V,KI , LI ,M). Notice that the integrability condition of

equation (A.11) yields the bubble equations∑
b

〈Γa,Γb〉
rab

= 〈Γ∞,Γa〉 . (A.14)

It is convenient to define the quartic invariant I4 which must satisfy the following

inequality to avoid the presence of closed timelike curves [23, 24]

I4 ≡ Z1Z2Z3V − µ2V 2 > 0 . (A.15)

This condition can be understood from the fact that the metric can be written as

ds2 = −f2dt2 − 2f2dtk +
I4

f−2V 2

(
dψ + χ− µV 2

I4
ω

)2

+ f−1V

(
d~x · d~x− ω2

I4

)
, (A.16)

where we write f−3 ≡ Z1Z2Z3.

B Numerical analysis of the entropy parameter of four-GH-center solu-

tions

The aspect ratios of the solutions are fixed to:

z1
z2
≈ 102

z2
z3
≈ 102.

(B.1)

By generating such solutions using numerics, we want to describe the evolution of the

entropy parameter H as a function of the nine degrees of freedom of the solutions k1, k2,

k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and q2. We decompose our analysis in three parts. We first

analyze the entropy parameter by varying the initial supertube charges
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

,

with all the other parameters fixed. Then, we analyze the entropy parameter when varying

q0, q1 and q2. Finally, we analyze the entropy parameter as we vary the three initial dipole

charges k1, k2 and k3.

Each of the graphs is made by generating 2500 solutions following the procedure de-

tailed in section 3.1.1. Because a configuration of parameters k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0,

q1 and q2 can give different four-GH-center solutions, we take the final solution with the

highest entropy parameter. Moreover, for readability reason, we smooth all the discrete

graphs we initially obtained to have at the end a continuous curve.

• The graphs in figure 3 show the variations of the entropy parameter with the three

ratios of supertube charges. The other parameters have been fixed to

k1 = −k2 = k3 = 1,

q0 = q1 = q2 = 1.
(B.2)

The entropy parameters can be greater than 15% in many domains of charge ratios

and more than 25% in some small others.
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(a)
Q

(1)
2

Q
(3)
1

= 0.1 (b)
Q

(1)
2

Q
(3)
1

= 0.5

(c)
Q

(1)
2

Q
(3)
1

= 1 (e)
Q

(1)
2

Q
(3)
1

= 5

Figure 3. The entropy parameter H as a function of the charge ratios with q, q1, q2, k1, −k2 and

k3 equal to 1.

• The graphs in figure 4 illustrate the variation of the entropy parameter as a function

of q0, q1 and q2. We suppressed the values zero in the graphs. They correspond to

three-GH-center and one-supertube solutions. The six other parameters have been

fixed to

k1 = −k2 = k3 = 1,

9
Q

(1)
2

Q
(3)
1

=
1

2

Q
(2)
3

Q
(2)
1

=
Q

(3)
2

Q
(1)
3

= 1.
(B.3)

However, we observed the same features for different values of charge ratios and

dipole charges. The graphs show that for any value of q0 the entropy is maximum

when the absolute values of the charges are close to one. Furthermore the minimal

Gibbons-Hawking charges (1,1,1 and -2) are the best choice to obtain four-GH-center

solutions with low angular momentum. This is an unexpected feature. Indeed, in

the five-center solution of [9], the GH charges are close to each other and large. Our

solutions do not share this feature.
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(a) q0 = 1 (b) q0 = 9

(c) q0 = 13 (d) q0 = 20

Figure 4. The entropy parameter H as a function of the charges of V, q0, q1 and q2 with k1, −k2,

k3 are equal to 1 and
Q

(2)
3

Q
(2)
1

= 2,
Q

(3)
2

Q
(1)
3

= 1 and
Q

(1)
2

Q
(3)
1

= 0.9.

• For the initial supertube dipole charges, we observed that the sign configuration given

by (B.2) (k2 negative, k1 and k3 positive) is the optimal one. With the two other sign

configurations, we did not find domains of charges where the entropy parameter is

above 0.1. For the rest of the analysis we focus on configurations with k2 negative and

k1 and k3 positive. By doing a quick analysis, we observed that the entropy parameter

does not depend on the absolute value of k2. The graphs in figure 5 illustrate how

the entropy parameter depends on the absolute value of the dipole charges k1 and

k3. We vary also one charge ratio,
Q

(1)
2

Q
(3)
1

, keeping the other parameters fixed:

q0 = q1 = q2 = 1,

1

2

Q
(2)
3

Q
(2)
1

=
Q

(3)
2

Q
(1)
3

= 1.
(B.4)

We remark that the entropy parameter depends essentially on the ratio k1
k3

and the

entropy is maximum and far from 0 for one particular value of k1
k3

. We observed the

same kind of graph for different values of charge ratios. If one varies the value of
Q

(1)
2

Q
(3)
1

,
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(a)
Q

(1)
2

Q
(3)
1

= 0.45 (b)
Q

(1)
2

Q
(3)
1

= 0.9

(c)
Q

(1)
2

Q
(3)
1

= 1.8 (d)
Q

(1)
2

Q
(3)
1

= 3.6

Figure 5. The entropy parameter H as a function of the dipole charges k1 and k3 and one charge

ratio
Q

(1)
2

Q
(3)
1

with q0, q1, q2 equal to 1 and
Q

(2)
3

Q
(2)
1

= 2,
Q

(3)
2

Q
(1)
3

= 1.

the particular value of k1
k3

changes but the maximum value of the entropy parameter

remains the same whereas if one varies the two other charge ratios both change. The

maximum value of entropy parameter we observed is 0.3.

To conclude, the numerical analysis shows that there exist large domains of supertube-

charge ratios and supertube dipole charges where the entropy parameter of solutions satis-

fying (C.1) is maximal and around 0.3. The only necessary conditions to have an angular

momentum significantly below the cc bound is that the Gibbons-Hawking charges must

be minimal and the dipole charge configuration of the generating three-supertube solution

must be k1 and k3 positive and k2 negative. Moreover, increasing the difference in scale

between the inter-center distances does not affect how the entropy parameter varies with

k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and q2. It affects only the maximal value reachable as it

was detailed in section 3.1.2.
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C Numerical analysis of the entropy parameter of solutions with one

supertube and three Gibbons-Hawking centers

We proceed the same way to analyse the entropy parameter of solutions with three Gibbons-

Hawking centers and one supertube. We focus on solutions without scale differences be-

tween the inter-center distances:

z1 − z2
z3

≈ 1

z2 − z3
z3

≈ 1.
(C.1)

According to the method used to generate them (see section 4.1.1), the solutions depends

on eight free parameters and the aspect ratios (C.1). We will also decompose our analysis

in three parts. We first vary the initial supertube charges
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

, with all the

other parameters fixed. Then, we analyze the entropy parameter as a function of q0 and

qJ , where J is 1, 2 or 3 depending on which center is the supertube. Finally, we vary the

three initial dipole charges k1, k2 and k3. All the graphs have been generated as explained

in the previous section.

• First of all, we noticed that the localization of the supertube center compared to the

three Gibbons-Hawking centers has a significant impact on the entropy parameter.

The best configuration is when the supertube is not located between the Gibbons-

Hawking centers. With our conventions, this means that the supertube center is

the first center given by (0, 0, z1). Indeed, we have found several domains of charges

and dipole charges where the entropy parameter is above 0.15 for the three possible

supertube locations. However, we have found that H has much higher values when

the supertube is located at the first center.

• The graphs in figure 6 give the variations of the entropy parameter with the three

initial charge ratios when the supertube is located at the first center. We have fixed

the other parameters to be

k1 = −k2 = k3 = 1,

q0 = −q3 = 1.
(C.2)

We observe that when the initial charge ratio
Q

(1)
2

Q
(3)
1

is between 0.4 and 1 and when
Q

(3)
2

Q
(1)
3

is small, the entropy parameter can reach 0.25. This is the upper bound we found

for a configuration which satisfies (C.2) and (C.1).

• Regarding the variation of the entropy parameter as a function of q0 and q3 (q2 is

fixed to satisfy Σ qa = 1), we have observed the same features as in solutions with

four Gibbons-Hawking centers: the higher the absolute value of the Gibbons-Hawking

charges is, the lower is the entropy parameter. The graph in figure 7 shows the varia-

tion of the entropy parameter as a function of q0 and q3 for solutions satisfying (C.1)
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2
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1

= 1 (e)
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2

Q
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Figure 6. The entropy parameter H as a function of the charge ratios with q0, q2, k1, −k2 and k3
equal to 1.

and with

k1 = −k2 = k3 = 1,

5
Q

(1)
2

Q
(3)
1

= 60
Q

(3)
2

Q
(1)
3

=
1

4

Q
(2)
3

Q
(2)
1

= 1.
(C.3)

We have observed similar variations for different initial charge ratios and dipole

charges. Thus, q0 = 1, q2 = 1 and q3 = −1 is the best configuration to optimize

the entropy parameter.

• Varying the initial supertube dipole charges, we have again observed exactly the

same features as in solutions with four Gibbons-Hawking centers. The best sign

configuration is when k2 is negative and when k1 and k3 are positive. Moreover, the

entropy parameter does not depend significantly on the absolute value of k2 and it

only depends on k1
k3

. It also reaches a maximum for a particular value of the ratio k1
k3

.

The value and the location of the maximum depends on the values of the supertube

charge ratios. The graphs in figure 8 illustrate these conclusions. We built solutions

and computed their entropy as a function of the absolute value of the dipole charges
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Figure 7. The entropy parameter H as a function of the charges of V, q0 and q3 with k1, −k2, k3

are equal to 1 and
Q

(2)
3

Q
(2)
1

= 4,
Q

(3)
2

Q
(1)
3

= 0.06 and
Q

(1)
2

Q
(3)
1

= 0.5.

(a)
Q

(1)
2

Q
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= 0.25 (b)
Q
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= 0.5

(c)
Q
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= 1 (d)
Q
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Q
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1

= 1.5

Figure 8. The entropy parameter H as a function of the dipole charges k1 and k3 and one charge

ratio
Q

(1)
2

Q
(3)
1

with q0, q1, q2 equal to 1 and
Q

(2)
3

Q
(2)
1

= 4,
Q

(3)
2

Q
(1)
3

= 0.06.
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k1 and k3 and one charge ratio
Q

(1)
2

Q
(3)
1

. The other parameters have been fixed to

q0 = q1 = q2 = 1.

1

4

Q
(2)
3

Q
(2)
1

= 60
Q

(3)
2

Q
(1)
3

= 1.
(C.4)

We have analyzed the entropy parameter for charge ratios different from the one

above. The upper bound of all the maxima we observed is 0.25.

The numerical analysis shows that solutions with one supertube and three Gibbons-

Hawking centers do not need to have a scale difference between the inter-center distances

to have an entropy parameter above 0.1. If one chooses minimal Gibbons-Hawking charges

and k2 negative, k1 and k3 positive, one can find domains of parameters where the entropy

is around 0.2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev.

Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

[2] P. Heidmann, Four-center bubbled BPS solutions with a Gibbons-Hawking base, JHEP 10

(2017) 009 [arXiv:1703.10095] [INSPIRE].

[3] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys.

Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[4] S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53

(2005) 793 [hep-th/0502050] [INSPIRE].

[5] I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.

755 (2008) 1 [hep-th/0701216] [INSPIRE].

[6] S.D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures,

arXiv:0810.4525 [INSPIRE].

[7] S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26

(2009) 224001 [arXiv:0909.1038] [INSPIRE].

[8] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or

Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[9] I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11

(2006) 042 [hep-th/0608217] [INSPIRE].

[10] I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An Infinite-Dimensional Family of

Black-Hole Microstate Geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059]

[arXiv:1006.3497] [INSPIRE].

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.117.201601
https://doi.org/10.1103/PhysRevLett.117.201601
https://arxiv.org/abs/1607.03908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03908
https://doi.org/10.1007/JHEP10(2017)009
https://doi.org/10.1007/JHEP10(2017)009
https://arxiv.org/abs/1703.10095
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.10095
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
https://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1002/prop.200410203
https://arxiv.org/abs/hep-th/0502050
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502050
https://doi.org/10.1007/978-3-540-79523-0_1
https://doi.org/10.1007/978-3-540-79523-0_1
https://arxiv.org/abs/hep-th/0701216
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701216
https://arxiv.org/abs/0810.4525
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.4525
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1088/0264-9381/26/22/224001
https://arxiv.org/abs/0909.1038
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1038
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
https://doi.org/10.1088/1126-6708/2006/11/042
https://doi.org/10.1088/1126-6708/2006/11/042
https://arxiv.org/abs/hep-th/0608217
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608217
https://doi.org/10.1007/JHEP03(2011)022
https://arxiv.org/abs/1006.3497
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3497


J
H
E
P
1
0
(
2
0
1
7
)
2
1
7

[11] K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058

[arXiv:0812.4183] [INSPIRE].

[12] I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-Center non-BPS Black Holes: the

Solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [INSPIRE].

[13] G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011)

074 [arXiv:1012.4803] [INSPIRE].

[14] G. Bossard and S. Katmadas, A bubbling bolt, JHEP 07 (2014) 118 [arXiv:1405.4325]

[INSPIRE].

[15] I. Bena, G. Bossard, S. Katmadas and D. Turton, Non-BPS multi-bubble microstate

geometries, JHEP 02 (2016) 073 [arXiv:1511.03669] [INSPIRE].

[16] I. Bena, G. Bossard, S. Katmadas and D. Turton, Bolting Multicenter Solutions, JHEP 01

(2017) 127 [arXiv:1611.03500] [INSPIRE].

[17] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality

cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052

[hep-th/0007191] [INSPIRE].

[18] J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge

theory, hep-th/0003136 [INSPIRE].

[19] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174] [INSPIRE].

[20] J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric

solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587

[hep-th/0209114] [INSPIRE].

[21] J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005)

045002 [hep-th/0408122] [INSPIRE].

[22] I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005)

084019 [hep-th/0504142] [INSPIRE].

[23] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74

(2006) 066001 [hep-th/0505166] [INSPIRE].

[24] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

[25] P.F. Ramirez, Non-Abelian bubbles in microstate geometries, JHEP 11 (2016) 152

[arXiv:1608.01330] [INSPIRE].

[26] F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049]

[INSPIRE].

[27] I. Bena, C.-W. Wang and N.P. Warner, The Foaming three-charge black hole, Phys. Rev. D

75 (2007) 124026 [hep-th/0604110] [INSPIRE].

[28] J. Avila, P.F. Ramirez and A. Ruiperez, One Thousand and One Bubbles,

arXiv:1709.03985 [INSPIRE].

[29] I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center

Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].

– 31 –

https://doi.org/10.1088/1126-6708/2009/05/058
https://arxiv.org/abs/0812.4183
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4183
https://doi.org/10.1088/1126-6708/2009/11/032
https://arxiv.org/abs/0908.2121
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2121
https://doi.org/10.1007/JHEP02(2011)074
https://doi.org/10.1007/JHEP02(2011)074
https://arxiv.org/abs/1012.4803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4803
https://doi.org/10.1007/JHEP07(2014)118
https://arxiv.org/abs/1405.4325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4325
https://doi.org/10.1007/JHEP02(2016)073
https://arxiv.org/abs/1511.03669
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03669
https://doi.org/10.1007/JHEP01(2017)127
https://doi.org/10.1007/JHEP01(2017)127
https://arxiv.org/abs/1611.03500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03500
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007191
https://arxiv.org/abs/hep-th/0003136
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003136
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2004/10/025
https://arxiv.org/abs/hep-th/0409174
https://inspirehep.net/search?p=find+EPRINT+hep-th/0409174
https://doi.org/10.1088/0264-9381/20/21/005
https://arxiv.org/abs/hep-th/0209114
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209114
https://doi.org/10.1103/PhysRevD.71.045002
https://doi.org/10.1103/PhysRevD.71.045002
https://arxiv.org/abs/hep-th/0408122
https://inspirehep.net/search?p=find+EPRINT+hep-th/0408122
https://doi.org/10.1103/PhysRevD.72.084019
https://doi.org/10.1103/PhysRevD.72.084019
https://arxiv.org/abs/hep-th/0504142
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504142
https://doi.org/10.1103/PhysRevD.74.066001
https://doi.org/10.1103/PhysRevD.74.066001
https://arxiv.org/abs/hep-th/0505166
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505166
https://doi.org/10.1088/1126-6708/2006/06/007
https://arxiv.org/abs/hep-th/0505167
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505167
https://doi.org/10.1007/JHEP11(2016)152
https://arxiv.org/abs/1608.01330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01330
https://doi.org/10.1088/1126-6708/2000/08/050
https://arxiv.org/abs/hep-th/0005049
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005049
https://doi.org/10.1103/PhysRevD.75.124026
https://doi.org/10.1103/PhysRevD.75.124026
https://arxiv.org/abs/hep-th/0604110
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604110
https://arxiv.org/abs/1709.03985
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.03985
https://doi.org/10.1103/PhysRevD.77.125025
https://arxiv.org/abs/0803.1203
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1203


J
H
E
P
1
0
(
2
0
1
7
)
2
1
7

[30] I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A

constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463]

[INSPIRE].

[31] I. Bena et al., Asymptotically-flat supergravity solitons deep inside the black-hole regime, to

appear.

[32] I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata,

JHEP 05 (2016) 064 [arXiv:1601.05805] [INSPIRE].

[33] S. Giusto, E. Moscato and R. Russo, AdS3 holography for 1/4 and 1/8 BPS geometries,

JHEP 11 (2015) 004 [arXiv:1507.00945] [INSPIRE].
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