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1 Introduction

Since the discovery of a scalar boson in 2012 [1–3], the high energy physics community is

focused in determining whether it corresponds to the long sought standard model (SM)

Higgs boson [4–6], or if it might provide the first hint for new physics beyond the SM (BSM).

Great improvement was achieved during the last few years, both from the theoretical

side –by providing more precise results for a number of observables– and from the experi-

mental measurements, in order to extract the couplings between the Higgs boson and the

third generation of quarks and leptons. Besides these important results, it is also crucial

to study the Higgs self-couplings, which provide a way to explore the potential that thrives

electroweak symmetry breaking. In the SM, the Higgs self-couplings are uniquely fixed

via enforcing the preservation of the corresponding gauge symmetries and renormalizabil-

ity [7, 8], and any deviation would be a sign of BSM physics.

The production of Higgs boson pairs provides a direct way to test the Higgs trilinear

coupling (see also refs. [9–11] for an alternative approach), and as it happens for the single

Higgs boson production cross section, the dominant production channel proceeds at hadron

colliders via gluon fusion, mediated by heavy-quark loops [12–14]. This means that BSM

physics can be realized in two distinct ways, either through a resonance due to a reasonably

light field that acts as a mediator, or through heavier fields that participate in the loop thus

modifying the effective couplings between the SM particles. In the former, a direct detection

can be achieved by looking at the invariant mass spectrum of the final state, but in the

latter a precision measurement has to be performed in order to search for deviations from

the SM. A model-independent approach to parametrize BSM effects consists in considering
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the low energy effective field theory (EFT) that remains after integrating out the heavy

fields of new physics (NP), introducing higher dimensional operators suppressed by the

mass of these heavy particles (Λ). In principle one could consider to add all possible higher

order operators to the SM Lagrangian that are compatible with its symmetries, up to

some power of Λ [15–18]. Expanding up to dimension 6 (Λ−2), 2499 of such operators are

found [19]. However, if we consider only those that vanish in the absence of the Higgs

boson, and therefore, those that only contribute to observables when at least one Higgs

boson participates in the process, the number reduces to 5, which can be written in several

different basis.

Given that the leading order (LO) contribution to Higgs pair production occurs at

loop level, higher orders in QCD perturbation theory are extremely difficult to calculate.

Recently, a complete next-to-leading order (NLO) computation became available [20] that

evaluates numerically the integrals of the required multi-scale two-loop amplitudes. In the

heavy-top limit (HTL), where the top quark is considered heavy and the rest massless, NLO

corrections have been presented in ref. [21] and a rescaling with the exact Born cross section

was performed. The NLO corrections represent an increase of about 100%, and the HTL

result is only about 14% bigger than the exact result from ref. [20]. While the computation

of the three-loop virtual corrections is presently out of reach, working within the HTL

it is possible to compute corrections beyond NLO, like the ones derived in refs. [22, 23],

which allowed for the next-to-next-to-leading order (NNLO) result presented in ref. [24].

This calculation allows to compute not only the inclusive cross section (resulting in an

increase of about 20% at this order), but also the differential invariant mass distribution

of the produced pair of Higgs bosons. Within the same heavy-top limit, a fully exclusive

calculation at NNLO was recently presented in ref. [25]. With respect to computations

that include dimension 6 operators in the SM EFT approach [26], bounds for the Wilson

coefficients of the new operators have been obtained from the data collected by the LHC

and earlier experiments by different groups [27–32], and a NLO calculation for Higgs pair

production in the HTL was performed in ref. [33].

In this work we present the computation of the Higgs bosons pair production cross

section at NNLO in QCD, including the relevant dimension 6 operators of the SM EFT.

The paper is organized as follows: in section 2 we provide the details of the calculation,

including two popular basis for the EFT. In section 3 we present the phenomenological

results, discussing the dependence of the K-factor on the higher dimensional couplings and

the degeneracy of the inclusive cross section on them. Finally, in section 4 we present

our conclusions.

2 Details of the calculation

2.1 EFT basis

Heavy states of NP can be integrated out to obtain a low energy effective Lagrangian,

with new contact interactions that would be otherwise mediated by the NP states. The

coupling constant of the effective interaction is therefore suppressed by the mass scale Λ of
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the new heavy state, making the operator of dimension higher than four, and therefore non-

renormalizable. In this context, in order to parametrize all possible BSM theories that are

free of new light states, one should include in the SM Lagrangian all higher dimensional

terms that are consistent with the SM symmetries. There are 1350 CP-even and 1149

CP-odd of such dimension 6 (O(Λ−2)) operators [19]. Nevertheless, we will focus only on

the operators that vanish in the absence of the scalar boson, as the others can be better

constrained by other observables. This includes for instance the chromomagnetic operator,

that introduces a coupling between gluons, the top quark and the Higgs doublet, which in

recent studies [34] has been shown to mix with other operators. Nevertheless, the effects

arising from this operator also appear in the absence of the Higgs boson (from the term

proportional to the Higgs vacuum expectation value) and therefore introduce corrections

to pure QCD processes, in particular to the top pair production cross section that can set

a better constraint on the corresponding anomalous coupling [35]. Formally, this operator

introduces corrections of order O(y2
t ) to the results of this work, where yt is the top Yukawa

coupling, and therefore is not considered herein.

In this work we will neglect the mass of all fermions (thus their couplings to the

Higgs) except for the top quark, since their contributions to Higgs pair production through

gluon fusion accounts for less than 1% of the LO cross section in the SM [36]. Due to

this suppression, these contributions were not considered in the present work, although in

principle they could be enhanced in some BSM scenarios.

If one considers the Higgs boson h as a singlet of the custodial symmetry, and not

necessarily part of an SU(2)L doublet, the relevant dimension 6 operators can be written

as [37]

Lnon-lin ⊃ −Mt t̄t

(
ct
h

v
+ ctt

h2

2v2

)
−c3

1

6

(
3M3

h

v

)
h3+

αs
π
GaµνGaµν

(
cg
h

v
+ cgg

h2

2v2

)
, (2.1)

where αs = g2
s/(4π), gs is the strong coupling constant, t represents the top quark with

mass Mt, v ≈ 246 GeV is the SM Higgs field vacuum expectation value, Mh is the mass of

the Higgs boson h, Gaµν is the gluon field strength tensor, and ci=t,tt,3,g,gg are the Wilson

coefficients, after a canonical normalization of the Lagrangian. The operators parametrized

by ct and c3 modify the ones already present in the SM, namely the coupling between the

Higgs boson and the top, and the Higgs boson self-coupling, respectively. The rest of

the operators are new, cg and cgg parametrizing the contact interaction between gluons

and one and two Higgs bosons, respectively, and ctt the one between the top quark and a

pair of Higgs bosons. In this Lagrangian, the SU(2)L × U(1)Y symmetry is non-linearly

realized, and the SM corresponds to the point in parameter space given by c3 = ct = 1 and

ctt = cg = cgg = 0.

Using a different approach, one could assume that the Higgs boson is part of an SU(2)L
doublet H. This particular extension of the SM is included in the so-called SILH basis [38],

and is given by the operators

LSILH
6 ⊃ c̄H

2v2
∂µ(H†H)∂µ(H†H) +

c̄u
v2
yt(H

†Hq̄LH
ctR + h.c.)

− c̄6

6v2

3M2
h

v2
(H†H)3 + c̄g

g2
s

M2
W

H†HGaµνGaµν , (2.2)
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where MW is the mass of the W boson, and c̄i=H,u,6,g are 4 free parameters (the SM

corresponding to c̄i = 0 for all i). Expanding H around v in the physical gauge, one finds

that it corresponds to Lnon-lin with

ct = 1− c̄H
2
− c̄u, ctt = −1

2
(c̄H + 3c̄u),

c3 = 1− 3

2
c̄H + c̄6, cg = cgg = c̄g

(
4π2v2

M2
W

)
. (2.3)

Bounds for the SILH coefficients can be found in ref. [39]. In this work we will use the

more general extension of the SM, Lnon-lin.

2.2 NNLO results

Performing higher order QCD calculations for Higgs boson pair production has been probed

to be quite complicated. Even within the SM, the NLO computation could be obtained

only very recently [20]. Therefore, an approach that is widely used consists in integrating

out the top quark of the SM Lagrangian and work with the remaining effective theory that

is valid for energy scales smaller than ∼ 2Mt, in what is called the heavy-top limit (HTL).

In recent higher order calculations [24], the QCD corrections were computed in the

HTL, and then multiplied by the LO exact result, providing a rescaling (known as Born-

improved HTL or simply B-i. HTL) that improves the accuracy of this approach [21].

The exact NLO order calculation has shown that –despite the fact that the bulk of the

cross section comes from di-Higgs invariant masses larger than the threshold 2Mt– this

procedure is a rather good approximation at NLO, being the exact result for the inclusive

cross section at NLO only a 14% smaller than the B-i. HTL one [40], to be compared

to the radiative correction of about 100%. Of course, the situation is in general different

for kinematic distributions, finding –for some of them– large discrepancies between the

full NLO and the aforementioned approximation (see ref. [20] for a detailed comparison).

However, the differences in the shape of the Higgs-pair invariant mass distribution, which

is the only one considered in this work, are moderate, being always below 25% in the whole

mass range under analysis for the SM. It is worth to mention, though, that the size of the

NNLO corrections in the HTL is of the same magnitude of the top-mass effects at NLO.

Therefore, an EFT analysis combining both the full NLO and the HTL NNLO corrections,

which is beyond the scope of this work, is highly desirable.

In this work we follow a similar scheme as in ref. [24]: we compute the QCD corrections

within the effective theory where the top quark has been integrated out, and then we rescale

the result in such a way that the exact LO cross section is recovered.

After integrating the top quark field in eq. (2.1), the effective Lagrangian reads

LHTL
non-lin ⊃

αs
π
GaµνGaµν

{
h

v

[ ct
12
CH + cg

]
+

h2

2v2

[
− c

2
t

12
CHH +

ctt
12
CH + cgg

]}
−c3

1

6

(
3M3

h

v

)
h3, (2.4)
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where CH and CHH are the coefficients that arise from matching the heavy-top effective

theory to the full theory at NNLO. These are given by [23, 41–43]

CH = 1 +
11

4

αs
π

+

(
αs
π

)2 [2777

288
+

19

16
log

µ2
R

M2
t

+Nf

(
−67

96
+

1

3
log

µ2
R

M2
t

)]
+O(α3

s) , (2.5)

CHH = CH +
(αs
π

)2
∆C

(2)
HH +O(α3

s) , (2.6)

∆C
(2)
HH =

35

24
+

2

3
Nf . (2.7)

We can see in eq. (2.4) that the coefficients ci only modify the effective couplings

between the Higgs and gluons present in the SM. This simplification provides a straight-

forward way of generalizing the SM result to the EFT that includes dimension 6 operators.

We follow the approach described in ref. [24], where we distinguish between (a) contri-

butions to the squared matrix element that have only two effective vertices between Higgs

boson(s) and gluons (σa), and (b) those with more than two effective vertices (σb). Thus

the partonic cross section, differential in the invariant mass of the di-Higgs system Q, can

be written as

Q2 dσ̂

dQ2
= σ̂a + σ̂b, (2.8)

where σ̂a receives the same corrections than those for single Higgs production, due to

the similarity of the amplitudes involved. We found that for each partonic subprocess

ij → HH+X, and for factorization and renormalization scales µR = µF = Q, the result is

σ̂aij = σ̂LO

[
η

(0)
ij +

(αS
2π

)
2η

(1)
ij +

(αS
2π

)2
4η

(2)
ij

]
−
∫ t+

t−

dt
G2
F α

2
S

512(2π)3

{(αS
2π

)
δig δjgδ(1− x)4C

(1)
H Re(A∗CLO)

+
(αS

2π

)2
δig δjgδ(1− x) 4

[
2 Re(C∗LO F�) c2

t ∆C
(2)
HH (2.9)

−(C
(1)
H )2|A|2 + C

(2)
H 2 Re(A∗CLO)

]
+
(αS

2π

)2
8Re(A∗CLO)C

(1)
H η

(1)
ij

}
,

where the coefficients ηij are those expressed in ref. [44] (which also agree with the results

presented in refs. [45, 46]), A and CLO are defined as

A =
2

3
[c3C4 12 cg + 12 cgg] , (2.10)

CLO = c3C4

(
ct F4 +

2

3
12 cg

)
+ c2

t F� + ctt F4 +
2

3
12 cgg , (2.11)

F4, F� and G� are the usual triangle and box form factors and can be found in ref. [14],

C4 includes the Higgs propagator

C4 =
3M2

H

Q2 −M2
H + iMHΓH

(2.12)
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where ΓH is the Higgs total width, and σ̂LO is the LO partonic cross section for gg → HH

σ̂LO =

∫ t+

t−

dt
G2
F α

2
S

512(2π)3

{
|CLO|2 +

∣∣c2
tG�

∣∣2} . (2.13)

The integration variable is

t = −1

2

(
Q2 − 2M2

H −Q
√
Q2 − 4M2

H cos θ1

)
, (2.14)

where θ1 is the scattering angle in the Higgs center-of-mass system. The limits of integration

correspond to t± = t (cos θ1 = ±1).

The effective vertex between gluons and Higgs is proportional to αs, which implies that

σ̂b is NLO at tree-level, and at NNLO there are one-loop virtual and single real emission

corrections. In the SM result from ref. [22], σb is split into different pieces, making it

possible to keep track of the different amplitudes contributing to each of them, and thus to

adapt this result to our EFT by inserting the appropriate factors. The renormalized result

(for µF = µR = Q) can be written for the different channels as

σ̂bgg = σ̂(sv)
gg +

(
σ̂(c+)
gg + σ̂(c−)

gg + σ̂(f)
gg

)
, (2.15)

σ̂(sv)
gg =

∫ t+

t−

dt
G2
F α

2
S

512(2π)3
δ(1− x)

{(αS

2π

) 4

3
Re
(
C∗LO V

2
eff

)
+
(αS

2π

)2
[
Re
(
C∗LO V

2
eff

) (8π2

3
+R(2) − 8 ∆C

(2)
HH

)
+ Im

(
C∗LO V

2
eff

)
I(2)

+ |Veff|4 V(2) − 22

3

(
2 Re (C∗LOVeff)

2

3
12 cg + Re

(
A∗V 2

eff

))]}
, (2.16)

σ̂bqg = σ̂(c+)
qg + σ̂(f)

qg , (2.17)

σ̂bgq = σ̂(c−)
gq + σ̂(f)

gq , (2.18)

σ̂bqq̄ = σ̂
(f)
qq̄ , (2.19)

where the expressions for R(2), I(2), and V(2) can be found in ref. [22]. The factor Veff

accounts for the effective vertex between gluons and the (on-shell) Higgs boson appearing

in σ̂b, and is given by

Veff = ct F4(Q/2) +
2

3
12 cg, (2.20)

where the form factor F4 is evaluated at half the invariant mass of the produced Higgs

pair (Q/2). At variance with all other contributions, where F4 arises from the triangle

diagram originated (at LO) from on-shell gluons and, therefore, is evaluated at the off-shell

Higgs (invariant) mass Q, in this effective vertex the outgoing Higgs is on-shell while the

exchanged gluon is off-shell. As a consequence, evaluating this vertex either at the fixed

scale Mh or the invariant mass Q is not fully satisfactory, and a dynamical scale appears

as a more sensible choice. We use the same scale as the one chosen for the renormalization

and factorization scales, Q/2, which also takes the value Mh at the production threshold.
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The expressions for σ
(c+)
ij , σ

(c−)
ij and σ

(f)
ij are given in appendix A, and correspond

to the renormalized real emission corrections defined in ref. [24], with a modification to

properly account for the Veff contribution.

Replacing these expressions into eq. (2.8) provides the result for the differential cross

section for Higgs pair production in the EFT as a function of the invariant mass of the

pair, including the radiative corrections up to NNLO in QCD.

A comment is in order regarding the rescaling of the HTL result with the exact LO

result. In previous work [24], the final result has been reweighted with the quotient between

the Born cross sections, schematically

dσ =
dσExact

LO

dσHTL
LO

dσHTL. (2.21)

However, this method can fail if at some point of the phase space the Born cross section

in the HTL vanishes and the exact does not. This is not a problem in the SM, for which

the LO partonic cross section in the HTL only vanishes at the production threshold, but it

is in the EFT, where particular combinations of the coefficients ci can produce vanishing

cross sections in the HTL for certain values of Q > 2Mh, while they remain different from

zero for the exact result (as seen in section 3.3 of ref. [40]). In order to surpass this issue,

in this work we directly rescale the individual vertices that appear at the amplitude level.

To be precise, in those matrix elements for which the QCD corrections factorize from the

Born cross section, the full LO cross section is introduced by using the exact expression

for CLO. This is the case for the amplitudes that contribute to σ(a). In the terms arising

from the new topology that appears at NLO, the reweighting of the two corresponding

gluon-Higgs effective vertices is taken into account by the factor Veff defined in eq. (2.20).

This factor is introduced in the terms extracted from ref. [22] either as its square modulus,

or as the real and imaginary parts of C∗LO V
2

eff in the interference terms. In particular, in

the real emission contributions presented in appendix A, it is the real part of C∗LO V
2

eff that

is taken into account.

As mentioned before, this prescription for rescaling the HTL result is different from

the one used in ref. [24], and it allows to generalize it to BSM scenarios in which the HTL

Born cross section can vanish for a certain invariant mass of the Higgs boson pair. The

difference in the inclusive cross section at NNLO between these two prescriptions is less than

0.4% (compared to the scale uncertainties of the order of 8%-10%). In ref. [33] a similar

prescription was tacitly used, but the effective vertex for the new topology amplitudes Veff

was introduced in the HTL, as 2
3(ct + 12cg). The difference between the rescaling used

in ref. [33] and the one presented herein, results in a slightly stronger dependence of the

K-factor on the anomalous couplings ci when using the latter, as we will see in section 3.1.

3 Phenomenology

We present here the numerical predictions for the Higgs boson pair production cross section

at the LHC, based on the results presented in the previous section. For parton densities and

strong coupling constant scaling we used the PDF4LHC15 distribution [47–52] interpolated

– 7 –
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Figure 1. Total cross section for Higgs boson pair production at LO as a function of cgg, both for

the linearised and non-linearised cases.

with the LHAPDF package [53]. The integration was performed using the CUBA imple-

mentation of the VEGAS algorithm [54]. We fixed the collider c.m. energy to
√
s = 14 TeV,

the mass of the Higgs and of the top quark were set to the values Mh = 125 GeV and

Mt = 172.5 GeV respectively, and the Higgs width Γh = 4.07 MeV. The factorization and

renormalization scales are set to µR = µF = Q/2 where Q is the invariant mass of the

Higgs boson pair.

The anomalous couplings c3 and ct belong to operators already present in the SM. In

fact, c3 modifies the Higgs boson self-coupling and can take values ranging from c3 = −10

to 10 [55], and ct modifies the top Yukawa coupling, with allowed values in the interval

0.65 ≤ ct ≤ 1.15 [56]. The normalization is such that the SM corresponds to c3 = ct = 1,

with all the other new couplings set to zero. The rest of the couplings are not present in

the SM and only arise due to BSM effects. The parameter ctt corresponds to a new contact

interaction between a top-anti-top pair and two Higgs bosons, and is varied from −1.5

to 1.5 [55]. New contact interactions between gluons and one and two Higgs bosons are

parametrized through the cg and cgg couplings, respectively, and both were varied in the

range [−0.15, 0.15] [55]. This interval was chosen mostly for illustrative purposes, despite

the fact that the current experimental limit obtained for cg under certain assumptions is

smaller [55, 56].

A comment on the validity of the result is in order. The Lagrangian used here is a low

energy expansion in powers of Λ, so the new couplings ci are expected to show deviations

from the SM of order (v/Λ)2. With this into account, we can notice that only interferences

between the BSM and the SM are of order Λ−2, whilst quadratic terms in ci, together with

the interference between the SM and dimension 8 operators (not considered here), are of

order Λ−4. In principle, one should expand the result linearly in the anomalous couplings

and constrain their values to the region where this linear approximation is valid.

In this paper we vary the coefficients ci in the whole range so far experimentally

allowed, far beyond the region where the linear approximation is valid. This is illustrated

– 8 –
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in figure 1, where we show the LO total cross section for Higgs pair production as a function

of cgg, both for the linearised and non-linearised cases. It is clear that we are exploring

regions which are far beyond the linear regime; in particular we can observe that the linear

approximation vanishes at cgg ≈ 0.08 and continues to negative values. Nevertheless, in

the absence of results for operators up to dimension 8, it has been shown that in some

cases it is better to keep the non linear terms [57]. In particular, in scenarios where the

dimension 8 operators do not interfere with the SM (e.g. due to different total helicity) or

where the dimension 6 couplings are enhanced (e.g. strongly coupled theories) the current

analysis is justified.

3.1 K-factors

We compute the K-factors, as the ratios between the NNLO and LO cross sections. It

is interesting to see if the change introduced by the new couplings factorizes from the

radiative corrections or if, on the contrary, there is a significant dependence of the K-factors

on the anomalous couplings. To compare dependencies of the K-factor as a function of

the different anomalous couplings, we parametrize their departure from the SM with the

variable ξ. In this computation only one anomalous coupling at a time is left free, and the

rest are set to their SM values (ξ = 0). The coefficients ci are parametrized as follow (note

that for illustrative purposes, c3 is varied from −9 to 11),

c3 = 1 + 10 ξ , (3.1)

ct = 1 + 0.35 ξ , (3.2)

ctt = 1.5 ξ , (3.3)

cg = 0.15 ξ , (3.4)

cgg = 0.15 ξ . (3.5)

We can observe from figure 2 that the dependence of the K-factor on each anomalous

coupling, aside for a small bump in some cases, is rather flat. The origin of the bump can be

understood on a simple basis: the dependence of the cross section (both at LO as NNLO)

on the anomalous couplings is shaped as a parabola with a minimum near the SM. The

K-factor is then a quotient of two parabola-like functions, thus has a single extreme (either

a maximum or a minimum) in ξ0 if the parabolas share a minimum in ξ0, or a maximum

next to a minimum if the minima of the parabolas are separated from one another (as is

the case of c3). From this kind of analysis, we see that the radiative corrections change

the position of the minimnum of the cross section as a function of c3. In the case of ct, the

minimum lies outside the allowed values for the anomalous coupling, resulting in a rather

flat dependence of the K-factor.

The maximum deviation of the K-factor from the SM case, when varying one anoma-

lous coupling at a time, is achieved by cgg with a departure of

∆Kcgg =
max |K(cgg)−KSM|

KSM
≈ 15.8% at cgg = 0.15 . (3.6)
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Figure 2. K-factor for total production of Higgs boson pairs as a function of each anomalous

coupling, whilst leaving the others set to their SM value. The SM corresponds to ξ = 0 in all cases,

and the parametrization in terms of ξ is given by eqs. (3.1)–(3.5).

The rest of the parameters show the following maximum departure:

∆Kc3 ≈ 7.2% at c3 = 4.20 , (3.7)

∆Kctt ≈ 5.7% at ctt = 0.66 , (3.8)

∆Kcg ≈ 3.4% at cg = −0.15 , (3.9)

∆Kct ≈ 0.5% at ct = 0.65 . (3.10)

Nevertheless, when we allow the five anomalous couplings to vary at the same time,

larger deviations from the SM K-factor can be found. When sampling the five dimensional

parameter space,1 the maximum deviation observed is

∆Kmax ≈ 84% (3.11)

at the point of parameter space c3 = 7.0, ct = 1.15, ctt = 0.1, cg = −0.09, cgg = 0.02. At

this point, the K-factor is as high as 4.07, and if we modify the value of cg to cg = −0.11

we get a value as low as 0.80 (36% of the SM value). This shows a strong dependence on

cg on this region of parameter space, with a similar shape as the dependence shown for

c3 in figure 2. The reason is also clear: at the maximum K-factor, the LO cross section

has a minimum of 2.46 fb (12.5% of the SM value), whilst at the minimum of the K-factor

(lowering cg) it is the NNLO cross section that gets minimized to 4.84 fb (10.7% of the

SM value). Because the cross section is near a minimum, any variation in the radiative

corrections amounts for a significant relative change, resulting in this behaviour of the

K-factor. It is also worth noting that in this region of parameter space where the K-

factor reaches a minimum of 0.76, the radiative corrections are negative, thus resulting in

1Clustering algorithms that are sensitive to the kinematics of the process have been derived in [58] that

could improve the choice of the benchmark points when sampling high-dimensional parameter spaces.
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Figure 3. Heatmaps showing the total cross section in a coloured logarithmic scale as a function

of pairs of anomalous couplings. The degenerate directions are drawn in green lines, in particular

the black region of the heatmaps shows some combination of parameters degenerate with the SM.

The points mark the grid in which the cross section was computed, and a cubic interpolation was

done elsewhere for illustrative purposes.

a decrease of the total cross section with respect to the LO one. Also, the NLO K-factor

at that point is 1.01, still greater than one, which means that the negative corrections that

decrease the cross section below its LO value are a purely NNLO effect. The change of

sign of the NNLO corrections while varying the value cg from −0.09 to −0.11 at this point

of parameter space is driven by the sign of the contributions proportional to Re (A∗CLO)

in σ̂a (eq. (2.9)), which happen to be dominant in this particular region.

From this analysis we conclude that, while the K-factor can be approximated by a

constant (up to a 16% variation) when moving one coupling at a time away from its SM

value, that no longer holds true if we allow a general deviation from the SM. When

considering situations in which the cross section is small, the shape of the K-factor plays

an important role and should be taken into account. Of course, the dependence of the

K-factor on the EFT parameters presented here may be subject to modifications once the

full top-mass effects are included at NLO.
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3.2 Degeneracy of the parameters

One important question that arises when considering several parameters is that of their

degeneracy. The partonic cross section at LO in the HTL can be written as

dσLO

dQ
=

dσSM

dQ

∣∣[c3(ct + 12 cg)]C4 +
[
−c2

t + ctt + 12 cgg
]∣∣2

|C4 − 1|2
, (3.12)

where C4 is defined in eq. (2.12) and does not depend on the anomalous couplings. We

see that the total cross section depends only on two linear combinations of the couplings,

the ones inside the squared brackets.

In order to see the structure of the degeneracy at NNLO, we present in figure 3

heatmaps of the relative deviation of the total Higgs pair production cross section from

its SM value in four different two-dimensional slices of the parameter space. These slices

correspond to the variation of the anomalous Higgs boson self-coupling together with the

other four anomalous couplings separately.

We can see in figure 3 that the structure of the degeneracy presented at LO in the HTL

is preserved after including radiative corrections and reweighting by the exact Born cross

section. In the two lower plots we see an elliptic pattern of degeneracies, which is related

to the fact that the two couplings varied (c3 and the couplings of gluons and top quarks to

a pair of Higgs bosons) modify two different topologies of diagrams (triangle and box-like)

and thus enter in two different terms in the amplitude. If we expand the square in eq. (3.12)

setting all other couplings to their SM values, we see that the expression is quadratic in

the previously mentioned couplings, leading to an elliptic pattern of degeneracies. In the

two upper plots, the two couplings varied modify the same diagram and enter in the

final expression multiplicatively, resulting in a deformed pattern with respect to the two

lower plots. It is easy, for example, to recognize in the first plot the family of parameters

degenerated with the SM arising from the relation c3(1 + 12 cg) = 1.

A consequence of the present degeneracies on the anomalous couplings is that, even in

the case of a measurement for the total cross section compatible with the SM prediction, it

would be possible to accommodate significant departures from the SM couplings (the dark

bands on the heatmaps of figure 3) without affecting the corresponding theoretical predic-

tion. This means that the total cross section is not enough to distinguish between different

scenarios and more observables are needed, e.g. differential distributions (see refs. [59, 60]).

3.3 Invariant mass distributions

As we could see from section 3.2, the total cross section is not enough to discriminate

between the effects of the different EFT parameters, and therefore differential distributions

are needed. Our calculation allows us to compute the invariant mass distribution of the

produced Higgs boson pair, thus providing a tool for breaking these degeneracies. In fact,

because of the scalar character of the Higgs boson, there is no reason to expect strong

angular dependencies and most of the information of the process can be extracted from

the invariant mass and transverse-momentum distributions (see ref. [59]).

In the SM, an almost exact destructive interference between the box and triangle

diagrams occurs at the production threshold [61], resulting in an overall small cross section.
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Figure 4. Invariant mass distribution of the produced Higgs boson pair plotted for (a) different

values of its self-coupling, and (b) different combinations of anomalous couplings that are degenerate

with the SM. The relative deviation from the SM of the total cross section in (b) is specified between

brackets on the label.

At tree-level in the SM, because the triangle and box amplitudes are independently gauge

invariant, we can write the cross section in terms of their contributions M4 and M� as

dσSM ∝ |M4|2 + |M�|2 + 2Re
(
M∗4M�

)
(3.13)

When changing the Higgs boson triple self-coupling, the cancellation is still destructive [62]

but the balance between the triangle (which is affected by the self-coupling) and box

(independent of the self-coupling) contributions changes, resulting in a fast increase in the

cross section [61]. Also, when new (scalar or vector-like fermions) particles that couple to

the Higgs boson are taken into account inside the loop (which corresponds to modifications

of cg and cgg in the EFT), the cancellation between contributions also breaks down and the

cross section grows [61]. This makes the threshold region very sensitive to BSM physics.

In figure 4(a) we show the invariant mass distributions for different values of the Higgs

boson anomalous self-coupling (c3). As mentioned before, varying the self-coupling changes

the balance between amplitudes in eq. (3.13), resulting in more involved escenarios. When

the self-coupling runs to large values, either positive or negative, the triangle amplitude

dominates and we observe a boost of the cross section at threshold due to the Higgs boson

propagator in the triangle contribution.

In figure 4(b) we show combinations of anomalous couplings that render inclusive cross

sections similar to the one of the SM (their relative deviations from the SM are shown

between brackets on the label). They correspond to points of parameter space inside the

black bands in figure 3. Nevertheless, we can identify rather different behaviours for each

of their invariant mass distributions. For instance for the green curve in figure 4(b), when

choosing cg = −0.8 ≈ − 1
12 , there is an almost exact cancelation between this term and

the one proportional to F4 at LO in the HTL (see eq. (2.11)), and thus M4 ≈ 0. The

resulting invariant mass distribution is given mostly by the box contribution (|M�(Q)|2).

In the other case, for the red curve, the value ctt = 1 setsM� to zero in the HTL, and this
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results in a distribution given primary by the triangle contribution ( |M4(Q)|2), which

shows the two peaks that arise from the pole on the Higgs propagator, the first one, and

from the maximum of |F4(Q)|, the second one.

The substantial differences that we observe for these particular points in the parameter

space in the shape of the invariant mass distributions shown in figure 4 illustrate the fact

that this observable can definitely help to disentangle the contributions from different

operators which otherwise would be degenerated.

4 Conclusions

Although BSM physics might not be available for direct detection through resonances

in the near future, physics at a higher energy scale can be accessed through precision

measurements of the Higgs boson couplings. The triple Higgs boson coupling is of particular

interest because it provides insight into the electroweak symmetry breaking mechanism,

and Higgs boson pair production results in a sensitive channel for these studies. The EFT

approach supplies a model independent way of addressing these issues, by the addition

of higher dimensional effective operators. In order to be consistent one must include all

operators that modify the Higgs boson couplings relevant for the process, and for Higgs

boson pair production through gluon fusion there are five relevant dimension 6 operators.

Then, the Wilson coefficients of these operators can be fitted to experimental data.

In this work we have computed the cross section for Higgs boson pair production, both

inclusive and differential in the invariant mass of the produced pair, including all terms

up to O(α4
S) (NNLO in QCD) and considering all relevant dimension 6 operators. These

modify the coupling between the Higgs boson and the top quark, as well as the Higgs triple

self-coupling, and they add new contact interactions between the Higgs and the gluon field.

The calculation was performed in the HTL and a proper rescaling prescription was used to

approximate the effects of the finite top quark mass on the result. Then, a comprehensive

study of the phenomenology introduced by the anomalous couplings was carried out, from

which we would like to emphasize the following points:

• The K-factor as a function of the couplings was found to be rather flat, within a 16%

deviation from its SM value. The exception is in regions of the anomalous couplings

space where the cross section is minimized and radiative corrections turn out to be

significant, reaching values for the K-factor as high as 4.07 (84% higher than the SM)

and as low as 0.76 (34% of the SM value).

• The degeneracies of the inclusive cross section with respect to the anomalous cou-

plings were studied, showing that radiative corrections do not substantially alter its

shape. Also, it was shown that even in the case of a measurement compatible with

the SM inclusive cross section expectation, it is possible to have large deviations from

the SM couplings that render the same value.

• The differential invariant mass distribution of the produced Higgs boson pair was

studied, showing that it encodes enough information to disentangle between combi-

nations of anomalous couplings that are degenerate in the inclusive cross section. The
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reason for this high sensitivity is the destructive interference between triangle and

box diagrams, that renders a small cross section near threshold in the SM. This can-

cellation, and the corresponding large deviation from it in BSM scenarios, provides a

powerful tool for the discovery of new heavy physics that couples to the Higgs boson.

Some final comments must be held about the limitations of the present calculation, in

which we are including the contributions from amplitudes mediated by dimension 6 oper-

ators, both from their interference with the SM as well as from their square modulus. The

latter is a priori expected to be of the same order as the interference between amplitudes

originated from dimension 8 operators and the SM. While in some cases (e.g. strongly

coupled theories) the dimension 8 operators can be ignored, in general one should either

perform a global analysis including them, or restrict the validity of the calculation to de-

viations from the SM far smaller than the current experimental bounds. Regarding the

dimension 6 operators included (or not) in this analysis, some dimension 6 QCD operators

such as the chromomagnetic dipole-moment, despite being constrained by top quark pair

production and representing a higher order correction on the top quark Yukawa coupling,

could still result in a significant contribution to the Higgs boson pair production cross

section. In order to consistently include this operator into the analysis one should consider

several other QCD operators that are mixed with it through Renormalization Group flow

(see ref. [34]). The inclusion of such operators, as well as higher dimensional ones, is left

for future work.
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A Real emission corrections

In the following section we present the expressions for the renormalized real emission

contributions to the NNLO cross section. Namely σ̂
(c+)
ij , σ̂

(c−)
ij and σ̂

(f)
ij , that appear in

eqs. (2.15) –(2.19) for the different partonic subprocesses ij → HH +X.

The expressions for the SM are presented in ref. [24] and are calculated in the HTL

and then reweighted by the Born cross section following eq. (2.21). For the contributions

under consideration, this implies that the HTL real correction is multiplied by the factor
Re(CLO)

|CHTL
LO |2 . As discussed at the end of section 2.2, we use a different prescription to avoid the

numerically dangerous division by |CHTLLO |2 and directly introduce the exact LO amplitude

as Re(C∗LOV
2

eff), also taking into account the reweighting of the effective vertex between

gluons and the Higgs of eq. (2.20). The results are the same as the presented in ref. [24],
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but making the following replacements

∆LO → 1 , (A.1)

Re(CLO) → Re
(
C∗LOV

2
eff

)
, (A.2)

σ̂LO

|CLO|2
→
∫ t+

t−

dt
G2
F α

2
S

512(2π)3
, (A.3)

and then using the definition for CLO given in eq. (2.11).

For completeness, we present the resulting expressions once these replacements are

performed. These can be written (for µR = µF = Q) as

σ̂(c+)
gg = σ̂(c−)

gg =

∫ t+

t−

dt
G2
F α

2
S

512(2π)3

(αS

2π

)2
8 [1− (1− x)x]2

×
[
2

(
log(1− x)

1− x

)
+

− log x

1− x

]
Re
(
C∗LOV

2
eff

)
,

σ̂(f)
gg =

∫
d cos θ1 dθ2 dy

√
x(x− 4M2

H/Q
2)

1024π4

(
1

1− x

)
+

×
[(

1

1− y

)
+

+

(
1

1 + y

)
+

]
fgg(x, y, θ1, θ2) ,

σ̂(c+)
qg = σ̂(c−)

gq =

∫ t+

t−

dt
G2
F α

2
S

512(2π)3

(αS

2π

)2 16

9

{ [
1 + (1− x)2

]
× [2 log(1− x)− log x] + x2

}
Re
(
C∗LOV

2
eff

)
,

σ̂(f)
qg =

∫
d cos θ1 dθ2 dy

√
x(x− 4M2

H/Q
2)

512π4

(
1

1− y

)
+

fqg(x, y, θ1, θ2) ,

σ̂(f)
gq =

∫
d cos θ1 dθ2 dy

√
x(x− 4M2

H/Q
2)

512π4

(
1

1 + y

)
+

fgq(x, y, θ1, θ2) ,

σ̂
(f)
qq̄ =

∫
d cos θ1 dθ2 dy

√
x(x− 4M2

H/Q
2)

512π4
fqq̄(x, y, θ1, θ2) , (A.4)

where the integration variable t is defined in eq. (2.14) with limits t± = t (cos θ1 = ±1),

GF is the Fermi coupling, and the plus distributions are defined as∫ 1

0
dxG+(x) f(x) =

∫ 1

0
dxG(x) [f(x)− f(1)] , (A.5)∫ 1

−1
dy f(y)

(
1

1± y

)
+

=

∫ 1

−1
dy

f(y)− f(∓1)

1± y
. (A.6)

The functions fij(x, y, θ1, θ2) are defined as

fgg(x, y, θ1, θ2) =
α4

SG
2
FRe

(
C∗LOV

2
eff

)
576π2s

s(1− x)2(1− y2)

×
[
F (s, q1, q2, tk, uk) + F (s, q̂1, q̂2, tk, uk) + F (s, q2, q1, uk, tk)

+F (s, q̂2, q̂1, uk, tk) + F (tk, q1, w2, s, uk) + F (tk, q̂1, w1, s, uk)
]
,
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fqg(x, y, θ1, θ2) =
α4

SG
2
FRe

(
C∗LOV

2
eff

)
648π2s

s(1− x)(1− y)

× [h(s, q1, q2, tk, uk) + h(s, q̂1, q̂2, tk, uk)] ,

fgq(x, y, θ1, θ2) =
α4

SG
2
FRe

(
C∗LOV

2
eff

)
648π2s

s(1− x)(1 + y)

× [h(s, q̂2, q̂1, uk, tk) + h(s, q2, q1, uk, tk)] ,

fqq̄(x, y, θ1, θ2) = −
α4

SG
2
FRe

(
C∗LOV

2
eff

)
243π2s

s(1− x)

× [h(tk, q1, w2, s, uk) + h(tk, q̂1, w1, s, uk)] , (A.7)

and the function F is defined as follows

F (s, q1, q2, tk, uk) = f1(s, q1, q2, tk, uk) + f2(s, q1, q2, tk, uk) . (A.8)

The invariants used [63] are defined in terms of Q2, x, y, θ1 and θ2 as

s = Q2 ,

tk = −1

2
s(1− x)(1− y) ,

uk = −1

2
s(1− x)(1 + y) ,

q1 = M2
H −

1

2
(s+ tk)(1− βx cos θ1) ,

q2 = M2
H −

1

2
(s+ uk)(1 + βx cos θ2 sin θ1 sinψ + βx cos θ1 cosψ) ,

q̂1 = (p1 − k2)2 = 2M2
H − s− tk − q1 ,

q̂2 = (p2 − k1)2 = 2M2
H − s− uk − q2 ,

w1 = (k + k1)2 = M2
H − q1 + q2 − tk ,

w2 = (k + k2)2 = M2
H + q1 − q2 − uk , (A.9)

where the coefficients βx and ψ defined as

βx =

√
1−

4M2
H

x s
, (A.10)

cosψ = 1− 8x

(1 + x)2 − (1− x)2y2
.

Finally, the expressions for the functions f1, f2 and h that complete the presentation

of the real emission contributions are the following

f1(s, q1, q2, tk, uk) =
1

q1s tk(M
2
H + q1 − q2 − uk)uk

[
stk(−q2

2(2s− 3tk)(s+ tk)

+q1q2(6s2 + 3stk + 2t2k + q2(s+ tk))− q2
1(q2s+ 4(s2 + stk + t2k)))
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+(2(q1 − q2)s2(2q2
1 − 2q1q2 + q2

2 + s2) + s(−q2
1s+ q2(−3q2

2 + 2q2s− 8s2)

+q1(6q2
2 + 3q2s+ 14s2))tk + (−8q2

1s− q2(q2
2 − 3q2s+ 7s2)

+q1(q2
2 + 10q2s+ 17s2))t2k + (−4q2

1 + 6q1(q2 + s) + q2(q2 + 4s))t3k)uk

+(2s(2q3
1 − 2q2

1(q2 + s)− 2q2s(q2 + s) + q1(q2 + s)(q2 + 3s))

+(q1(q1 − q2)q2 + (11q1 − 6q2)q2s+ 2(11q1 − 3q2)s2 − 2s3)tk

+(−4q2
1 + 7q1q2 − 3q2

2 + 23q1s+ q2s− 6s2)t2k + (6q1 + 2q2 + s)t3k)u
2
k

+(−4s(q2
1 + q2s− q1(q2 + 2s))− (3q2

1 − 13q1s+ s(7q2 + 4s))tk

+(6q1 − 3q2 − 2s)t2k + t3k)u
3
k + (q1 − tk)(4s+ tk)u

4
k −M6

Hs(tk + uk)(tk + 2uk)

+M4
H(stk((−q1 + q2)s+ (q1 + 2q2 − 2s)tk + 3t2k)

+(2(q1 − q2)s2 + 3(2q1 + q2)stk + (q1 − q2 + 9s)t2k + 5t3k)uk + (q1(6s+ tk)

+tk(−q2 + 9s+ 6tk))u
2
k + tku

3
k) +M2

H(stk((q1 − q2)(q1 + q2 − 2s)s

+(−q2(2q1 + q2) + (q1 + q2)s)tk + 2(q1 − 3q2)t2k)− (4q1(q1 − q2)s2

+s(−3q2(−4q1+q2)+(q1+3q2)s−2s2)tk+2(−q2
2 + 6q2s− 4s2 + q1(q2 + s))t2k

+2(q1 + 3q2 + 2s)t3k)uk − (2s(4q2
1 − 2q1q2 + q2

2 + s2)

+(q2
1 − q2(q2 − 3s) + 11q1s)tk + (3(q1 + q2) + 8s)t2k + 6t3k)u

2
k

+(−4s(q2 + s)− 6stk − 5t2k + 2q1(2s+ tk))u
3
k − (4s+ tk)u

4
k)
]
, (A.11)

f2(s, q1, q2, tk, uk) =
1

q2s t2kuk

[
stk(4q2s

3 − s((M2
H + 3q1 − 4q2)(q1 − q2)

+(4M2
H + q1 − 11q2)s)tk − ((M2

H + 3q1 − 4q2)(M2
H − q2) + (7M2

H + 2q1

−11q2)s)t2k + 4(−M2
H + q2)t3k)− (4(q1 − q2)2s3 + s2(4(M2

H − q2)(q1 − q2)

+5(q1 − 3q2)s)tk + s(5M4
H + 6q2

1 + 5q2(q2 − 5s) + q1(−6q2 + s)

+M2
H(−6q1 − 4q2 + 4s))t2k + ((M2

H − q2)(4M2
H − 3q1 − q2)

+3(3M2
H + 2q1 − 5q2)s+ s2)t3k + (M2

H − q2 + 4s)t4k)uk

−(−8(M2
H − q1)(q1 − q2)s2 + s(4(M2

H − q1)(M2
H − q2)

+(−5M2
H + 8q1 − 15q2)s)tk + ((M2

H − q1)(4M2
H − 3q1 − q2) + (M2

H

−q1 − 20q2)s+ 5s2)t2k + 2(M2
H + 2q1 − 4q2)t3k + t4k)u

2
k + (−4(M2

H − q1)2s

+(3M2
H − 3q1 + 10q2)stk + (−5M2

H + q1 + 10q2 + s)t2k + t3k)u
3
k + 4q2tku

4
k

]
,

(A.12)

h(s, q1, q2, tk, uk) =
1

t2kq2

[
2(−M4

Ht
2
k − q2

2(s2 + stk + t2k) +M2
Htk(−M2

H + tk)uk

−(M2
H − tk)2u2

k − q2
1(s+ uk)

2 + q1(s(−M2
Htk + q2(2s+ tk)) + (2(M2

H + q2)s

+(M2
H − q2 − 2s)tk)uk + 2(M2

H − tk)u2
k) + q2(−tk(s2 + uk(tk + uk))

+M2
H(s(tk − 2uk) + tk(2tk + uk))))

]
. (A.13)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 18 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
1
7
)
2
1
5

References

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] ATLAS and CMS collaboration, Measurements of the Higgs boson production and decay

rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC

pp collision data at
√
s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

[4] P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964)

132 [INSPIRE].

[5] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964)

508 [INSPIRE].

[6] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev.

Lett. 13 (1964) 321 [INSPIRE].

[7] G. ’t Hooft, Renormalizable Lagrangians for massive Yang-Mills fields, Nucl. Phys. B 35

(1971) 167 [INSPIRE].

[8] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[9] G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via

single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].

[10] W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs

coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07

(2017) 083 [arXiv:1610.05771] [INSPIRE].

[11] G. Degrassi, M. Fedele and P.P. Giardino, Constraints on the trilinear Higgs self coupling

from precision observables, JHEP 04 (2017) 155 [arXiv:1702.01737] [INSPIRE].

[12] E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl.

Phys. B 309 (1988) 282 [INSPIRE].

[13] O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production,

Phys. Lett. B 197 (1987) 269 [INSPIRE].

[14] T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in

gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655]

[hep-ph/9603205] [INSPIRE].

[15] C.J.C. Burges and H.J. Schnitzer, Virtual effects of excited quarks as probes of a possible new

hadronic mass scale, Nucl. Phys. B 228 (1983) 464 [INSPIRE].

[16] C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale:

operator analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].

[17] W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[18] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the

standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

– 19 –

https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
https://doi.org/10.1007/JHEP08(2016)045
https://arxiv.org/abs/1606.02266
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02266
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,12,132%22
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,13,508%22
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,13,321%22
https://doi.org/10.1016/0550-3213(71)90139-8
https://doi.org/10.1016/0550-3213(71)90139-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B35,167%22
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22
https://doi.org/10.1007/JHEP12(2016)080
https://arxiv.org/abs/1607.04251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04251
https://doi.org/10.1007/JHEP07(2017)083
https://doi.org/10.1007/JHEP07(2017)083
https://arxiv.org/abs/1610.05771
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05771
https://doi.org/10.1007/JHEP04(2017)155
https://arxiv.org/abs/1702.01737
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.01737
https://doi.org/10.1016/0550-3213(88)90083-1
https://doi.org/10.1016/0550-3213(88)90083-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B309,282%22
https://doi.org/10.1016/0370-2693(87)90381-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B197,269%22
https://doi.org/10.1016/0550-3213(96)00418-X
https://arxiv.org/abs/hep-ph/9603205
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9603205
https://doi.org/10.1016/0550-3213(83)90555-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B228,464%22
https://doi.org/10.1007/BF01588041
https://inspirehep.net/search?p=find+J+%22Z.Physik,C31,433%22
https://doi.org/10.1016/0550-3213(86)90262-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B268,621%22
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4884


J
H
E
P
1
0
(
2
0
1
7
)
2
1
5

[19] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of

the standard model dimension six operators III: gauge coupling dependence and

phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

[20] S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with

full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [arXiv:1604.06447]

[INSPIRE].

[21] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron

colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

[22] D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys.

Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].

[23] J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production

in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].

[24] D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order

in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

[25] D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order

in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].

[26] F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the

D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].

[27] A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01

(2014) 151 [arXiv:1308.2803] [INSPIRE].

[28] A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators,

JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

[29] J. Ellis, V. Sanz and T. You, The effective standard model after LHC Run I, JHEP 03

(2015) 157 [arXiv:1410.7703] [INSPIRE].

[30] B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher

dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].

[31] A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39

[arXiv:1505.00046] [INSPIRE].

[32] A. Butter et al., The gauge-Higgs legacy of the LHC Run I, JHEP 07 (2016) 152

[arXiv:1604.03105] [INSPIRE].

[33] R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair

production including dimension-6 operators, JHEP 09 (2015) 092 [arXiv:1504.06577]

[INSPIRE].

[34] F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop

pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123

[arXiv:1607.05330] [INSPIRE].

[35] D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at

next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841]

[INSPIRE].

[36] J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status,

JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

– 20 –

https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2014
https://doi.org/10.1103/PhysRevLett.117.079901
https://arxiv.org/abs/1604.06447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06447
https://doi.org/10.1103/PhysRevD.58.115012
https://arxiv.org/abs/hep-ph/9805244
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9805244
https://doi.org/10.1016/j.physletb.2013.06.046
https://doi.org/10.1016/j.physletb.2013.06.046
https://arxiv.org/abs/1305.5206
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5206
https://doi.org/10.1016/j.nuclphysb.2014.09.003
https://arxiv.org/abs/1408.2422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2422
https://doi.org/10.1103/PhysRevLett.111.201801
https://arxiv.org/abs/1309.6594
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6594
https://doi.org/10.1007/JHEP09(2016)151
https://arxiv.org/abs/1606.09519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09519
https://doi.org/10.1007/JHEP04(2015)167
https://arxiv.org/abs/1410.3471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3471
https://doi.org/10.1007/JHEP01(2014)151
https://doi.org/10.1007/JHEP01(2014)151
https://arxiv.org/abs/1308.2803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2803
https://doi.org/10.1007/JHEP02(2015)039
https://arxiv.org/abs/1411.0669
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0669
https://doi.org/10.1007/JHEP03(2015)157
https://doi.org/10.1007/JHEP03(2015)157
https://arxiv.org/abs/1410.7703
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7703
https://doi.org/10.1007/JHEP07(2013)065
https://arxiv.org/abs/1304.3369
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3369
https://doi.org/10.1007/s12043-016-1251-5
https://arxiv.org/abs/1505.00046
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00046
https://doi.org/10.1007/JHEP07(2016)152
https://arxiv.org/abs/1604.03105
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03105
https://doi.org/10.1007/JHEP09(2015)092
https://arxiv.org/abs/1504.06577
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06577
https://doi.org/10.1007/JHEP10(2016)123
https://arxiv.org/abs/1607.05330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05330
https://doi.org/10.1103/PhysRevD.91.114010
https://arxiv.org/abs/1503.08841
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08841
https://doi.org/10.1007/JHEP04(2013)151
https://arxiv.org/abs/1212.5581
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5581


J
H
E
P
1
0
(
2
0
1
7
)
2
1
5

[37] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs

production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

[38] G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs,

JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

[39] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a

light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

[40] S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO,

JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].
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