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1 Introduction

In [1] Lukyanov constructed a novel four-parameter integrable deformation of the SU(2)

principal chiral model (PCM), which preserves a U(1) × U(1) subgroup of the original

SU(2)× SU(2) global symmetry. This four-parameter model generalises [1, 2] a number of

previously well-known theories:

• Fateev’s two-parameter deformation of the SU(2) PCM [3]. This identification of the

Fateev model as a special case of the Lukyanov model resolved the long-standing

question of the integrability of the Fateev model.

• The SU(2) PCM plus the Wess-Zumino (WZ) term with arbitrary coefficient [4].

For a special value of this arbitrary coefficient one finds the conformal SU(2) Wess-

Zumino-Witten (WZW) model.

• The TsT transformation of the SU(2) WZW model, which can also be realised as a

gauged WZW model for (SU(2)×U(1))/U(1) [5, 6].

Lukyanov’s model is defined by a metric and B-field. In the undeformed limit, the B-field

vanishes and the metric is the one of the three-sphere. One may then ask if the full four-

parameter deformation can be written as an action for a group-valued field g ∈ SU(2), and

in turn generalised to arbitrary Lie group G.

Our aim in this paper is to answer these questions. To do this we will draw on a

number of recent developments, many of which can trace their origins to Klimč́ık’s Yang-

Baxter σ-model [7, 8], a one-parameter integrable deformation of the PCM for a general

group G, whose appellation reflects its dependence on a solution of the modified classical

Yang-Baxter equation for g = Lie(G).
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The Yang-Baxter σ-model can be generalised to a two-parameter integrable defor-

mation of the PCM, the bi-Yang-Baxter σ-model [8, 9], which also incorporates the one-

parameter Yang-Baxter deformation of the symmetric space σ-model [10] for cosets of the

type (G × G)/Gdiag. Algebraically the two parameters manifest as q-deformations of the

G×G symmetry, with an independent deformation parameter for each factor of the group

G [11] (see also [12, 10, 13]).

In [2] it was shown that the bi-Yang-Baxter σ-model for G = SU(2) is equivalent to

Fateev’s two-parameter deformation. This model does not have a non-trivial coupling to

the B-field. In contrast the Lukyanov model does have such a coupling. As discussed above,

for a certain choice of parameters this B-field corresponds to a WZ term. In [14] it was

understood how to introduce such an anti-symmetric term for the Yang-Baxter σ-model

while preserving classical integrability. This construction of the Yang-Baxter deformation

of the PCM plus WZ term has been achieved for any Lie group G and generalises the SU(2)

case [15, 16].

The Yang-Baxter deformations of [7, 8, 10] depend on a solution of the modified clas-

sical Yang-Baxter equation. However, they can also be defined in terms of a solution of

the classical Yang-Baxter equation [17]. One of the simplest such solutions is when the

R-matrix is abelian (i.e. when the generators from which it is built commute). In this case

the homogeneous Yang-Baxter σ-model is equivalent to a TsT transformation [18–24].

In this paper we present a multi-parameter deformation of the PCM for a general group

G that incorporates each of the models introduced above. We furthermore construct a Lax

pair that encodes its equations of motion, thereby demonstrating the classical integrability

of the model. The number of deformation parameters depends on the group G. For

G = SU(2) there are four parameters and in this case we explicitly demonstrate equivalence

with Lukyanov’s model [1]. Therefore, in this sense, the model is the generalisation of

Lukyanov’s model to arbitrary group G.

The construction of the model is split into two stages. In section 2 we consider a

three-parameter integrable model: the bi-Yang-Baxter deformation of the PCM plus WZ

term, generalising the construction of [14]. Generically this breaks the symmetry of the

model from G × G to U(1)rankG × U(1)rankG, i.e. the Cartan subgroup. We arrive at the

Lagrangian and Lax pair for the multi-parameter deformation of the PCM in section 3 by

implementing a general TsT transformation that mixes the Cartan generators of the two

copies of G, which provides (rankG)2 additional parameters. For G = SU(2) the Cartan

subgroup is one-dimensional and therefore there is one additional parameter. In section 4

we demonstrate the equivalence to Lukyanov’s model. Finally we conclude in section 5

with comments and open questions.

2 Bi-Yang-Baxter σ-model plus WZ term

In this section we construct a three-parameter integrable deformation of the PCM. Two of

these parameters correspond to those of the bi-Yang-Baxter σ-model while the third is the

coupling to the WZ term. To obtain this integrable deformation of the PCM we employ

on the following strategy. First of all, we shall view the PCM for a Lie group G as the
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(G×G)/Gdiag symmetric space σ-model, where Gdiag is the diagonal subgroup of G×G.

In the framework of integrable deformations, this perspective has been previously used

in [25, 11]. Secondly, the Gdiag gauge invariance will be realised by introducing a gauge

field. In subsection 2.1 we start from an ansatz for the action with five free parameters and

derive the corresponding equations of motion. We then determine the conditions for this

action to define an integrable field theory in subsection 2.2. We show that a Lax pair exists

provided the five parameters are fixed in terms of desired three deformation parameters.

2.1 Action

Let G be a semi-simple real Lie group. We shall start from the action

S[gL,R, A] = −
∫
d2σ

∑
a,b=L,R

tr
[
(ja+ −A+)Oab(j

b
− −A−)

]
+ SWZ,k[gL]− SWZ,k[gR]− k

∫
d2σ tr

[
A−(jL+ − jR+)−A+(jL− − jR−)

]
, (2.1)

where σ± are light-cone coordinates. The fields gL and gR take values in the Lie group G

while the gauge field A± takes values in Lie algebra g. The left-invariant one-forms jL and

jR are defined as ja = g−1a dga (a = L,R). The operators Oab are given by

OLL = Ad−1gL

[
(1 + η2L)

1 +ALR

1− η2LR2

]
AdgL ,

ORR = Ad−1gR

[
(1 + η2R)

1 +ARR

1− η2RR2

]
AdgR ,

OLR = ORL = 0, (2.2)

with Adg(x) = gxg−1 for x ∈ g. The operator R is a non-split R-matrix on g. It is skew-

symmetric and solves the modified classical Yang-Baxter equation on g, which means that

for x and y in g we have

tr(xRy
)

= −tr(Rxy), (2.3a)

[Rx,Ry] = R
(
[Rx, y] + [x,Ry]

)
+ [x, y]. (2.3b)

Furthermore, we take R to be a standard R-matrix, which implies that

R3 = −R, (2.4)

and that its non-trivial kernel is the Cartan subalgebra h of g, i.e.

Rx = 0, ∀x ∈ h. (2.5)

The term SWZ,k in (2.1) denotes the standard Wess-Zumino term,

SWZ,k[g] = −k
∫
d2σdξ tr

[
g−1∂ξg[g−1∂+g, g

−1∂−g]
]
. (2.6)
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The presence of the WZ term indicates that the associated coupling should be quantised

in the quantum theory. However, let us note that, in a mild abuse of notation, what we

call k is not the standard integer-valued level.

The action (2.1) is invariant under Gdiag gauge transformations,

gL,R → gL,Rg0, A± → g−10 ∂±g0 + g−10 A±g0, (2.7)

with g0(σ
±) taking values in G. This is so because Oab transforms as Oab → Ad−1g0 OabAdg0

while jL± − jR± and jL,R

± −A± have the homogeneous transformations x→ Ad−1g0 x.

For the moment the coefficients AL,R are free. The way they depend on ηL,R and k

shall be fixed by imposing the existence of a Lax pair. The resulting dependence coincides

with the analogous expressions in [15, 16, 14].

Before we proceed to construct the Lax pair let us briefly illustrate the motivation for

using a gauge field. To determine a Lax pair, we will have to explicitly invert operators such

as Oab. Without introducing a gauge field, the Gdiag gauge invariance would be ensured by

making use of the projector onto the orthogonal complement of the diagonal subalgebra of

g⊕ g (see e.g. [25] for the bi-Yang-Baxter case). Such insertions of the projector operator

make inverting the relevant operators in a tractable way substantially more difficult. As

we shall see in the next subsection, the presence of the gauge field thus allows the inversion

to be done in a simple way.

To construct a Lax pair we follow the method of [14] and start by determining the

equations of motion. The equations of motion for the gauge field read

JL
± + JR

± = 0, (2.8)

where

JL
− = (OLL + k)(jL− −A−), JL

+ = (OtLL − k)(jL+ −A+), (2.9a)

JR
− = (ORR − k)(jR− −A−), JR

+ = (OtRR + k)(jR+ −A+). (2.9b)

In these expressions, the operators OtLL and OtRR are obtained by taking the transpose of

OLL and ORR respectively. This corresponds to flipping the sign of R.

The equations of motion for gL and gR are respectively given by

D+J
L
− +D−J

L
+ − 2kF−+ = 0, (2.10a)

D+J
R
− +D−J

R
+ + 2kF−+ = 0. (2.10b)

Here we have introduced covariant derivatives D±x = ∂±x + [A±, x] and F−+ is the field

strength of the gauge field,

F−+ = ∂−A+ − ∂+A− + [A−, A+].

2.2 Lax pair

To proceed we treat the equations of motion for the gauge field (2.8) separately to those

for ga. In particular, as is typical for constraint equations, they will not be determined by

the zero curvature condition for the Lax pair.
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The currents JR
± can be obtained from the equations of motion for the gauge field (2.8),

and are, on-shell, just the negative of JL
±. We shall therefore focus on the currents JL

±,

their equation of motion (2.10a) and the Maurer-Cartan equation,

∂−j
L
+ − ∂+jL− + [jL−, j

L
+] = 0. (2.11)

From now on, we explicitly use the relation R3 = −R in order to write all operators, such

as OLL, as a linear combination of Π = 1 +R2, R and R2. The operator Π is the projector

on the Cartan subalgebra h. To do this one can use the relations

Π = 1 +R2, Π2 = Π, ΠR = RΠ = 0, (2.12a)

(aΠ + bR+ cR2)−1 = a−1Π +
1

b2 + c2
(−bR+ cR2). (2.12b)

Now expressing the currents jL± in terms of JL
± and A using (2.9a) and (2.12b) leads to

jL± =
(
a±ΠLL + b±RLL + d±R

2
LL

)
JL
± +A±, (2.13)

where we make use of a general notation for operators dressed by the adjoint action, e.g.

ΠLL = Ad−1gL ΠAdgL . The coefficients a±, b± and d± are given by

a± =
1

1 + η2L ∓ k
, b± =

±AL

A2
L + (1∓ k)2

, d± = − 1∓ k
A2

L + (1∓ k)2
. (2.14)

These coefficients satisfy the relations

− b+d− − b−d+ =
1

2
(b+ + b−), b+b− − d+d− =

1

2
(d+ + d−). (2.15)

Note that the analogous expressions for the right currents are obtained from the left ones

by the replacement rule (L, ηL,AL, k)→ (R, ηR,AR,−k).

Let us denote the left-hand side of the Maurer-Cartan equation (2.11) as MCL. Starting

from (2.13) we may rewrite MCL as

MCL =

(
a+ − a−

2
ΠLL +

b+ − b−
2

RLL +
d+ − d−

2
R2

LL

)
(D−J

L
+ +D+J

L
−) + F−+

+

(
a+ + a−

2
ΠLL +

b+ + b−
2

RLL +
d+ + d−

2
R2

LL

)
(D−J

L
+ −D+J

L
−)

+
(
− (b+b− + d+d− + d+a− + a+d−)ΠLL

− (b+d− + d+b−)RLL + (b+b− − d+d−)R2
LL

)
[JL
−, J

L
+]

+ b+(a− + d−)ΠLL[JL
−, RLLJ

L
+] + b−(a+ + d+)ΠLL[RLLJ

L
−, J

L
+]. (2.16)

If we choose AL as in [15, 16, 14],

A2
L = η2L

(
1− k2

1 + η2L

)
, (2.17)
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then the coefficients a±, b± and d± satisfy the following relations

b+(a− + d−) = b−(a+ + d+), (2.18a)

−(b+b− + d+d− + d+a− + a+d−) =
1

2
(a+ + a−). (2.18b)

This choice has the following consequences. Let us start with (2.18a). Since the standard

R-matrix satisfies (see for instance [14])

Π
(
[Rx, y] + [x,Ry]

)
= 0 ∀x, y ∈ g, (2.19)

the last line in (2.16) vanishes. The next step is to use (2.18b) and (2.15) to combine the

third line of (2.16) with the second one. Finally, we use the equation of motion (2.10a) in

the first line of (2.16). Following these steps we obtain

MCL =
(

[1 + k(a+ − a−)] ΠLL + k(b+ − b−)RLL + [−1 + k(d+ − d−)]R2
LL

)
F−+

+

(
a++a−

2
ΠLL+

b++b−
2

RLL+
d++d−

2
R2

LL

)
(D−J

L
+−D+J

L
−+[JL

−, J
L
+]). (2.20)

The condition (2.17) implies that the operators appearing in the first and second lines

of (2.20) are proportional, with the relative coefficient being equal to (1 + k2 +A2
L). Fur-

thermore, these operators are invertible. Therefore, on-shell, the equation MCL = 0 is

equivalent to

D−J
L
+ −D+J

L
− + [JL

−, J
L
+] + (1 + k2 +A2

L)F−+ = 0. (2.21)

Proceeding in the same way for the right currents, choosing in particular

A2
R = η2R

(
1− k2

1 + η2R

)
, (2.22)

one similarly arrives at

D−J
R
+ −D+J

R
− + [JR

−, J
R
+] + (1 + k2 +A2

R)F−+ = 0. (2.23)

We now take the sum of (2.21) and (2.23) and use the equations of motion for the

gauge field (2.8) to express the field strength F−+ in terms of [JL
−, J

L
+]. We then use this

expression for F−+ in (2.10a) and (2.21) to obtain

F−+ −
1

2k
(α+ − α−)[JL

−, J
L
+] = 0, (2.24a)

D+J
L
− +D−J

L
+ − (α+ − α−)[JL

−, J
L
+] = 0, (2.24b)

D+J
L
− −D−JL

+ − (α+ + α−)[JL
−, J

L
+] = 0, (2.24c)

with

α+ =
−A2

L +A2
R − 4k

2(2(1 + k2) +A2
L +A2

R)
, α− =

−A2
L +A2

R + 4k

2(2(1 + k2) +A2
L +A2

R)
. (2.25)

– 6 –



J
H
E
P
1
0
(
2
0
1
7
)
2
1
2

To construct a Lax pair let us redefine the gauge field as

Â± = A± + α±J
L
±. (2.26)

The equations (2.24) are then equivalent to

F̂−+ = F−+ − α+α−[JL
−, J

L
+] = −G2[JL

−, J
L
+], (2.27a)

D̂+J
L
− + D̂−J

L
+ = 0, (2.27b)

D̂+J
L
− − D̂−JL

+ = 0, (2.27c)

where D̂ are covariant derivatives with respect to Â and

G2 =
(4 + (AL +AR)2)(4 + (AL −AR)2)

4(2(1 + k2) +A2
L +A2

R)2
. (2.28)

The equations (2.27) are equivalent to the flatness of the Lax pair

L±(λ) = Â± +Gλ±1JL
±, (2.29)

where λ is a spectral parameter. We have therefore shown that the action (2.1) defines an

integrable model with AL,R given by (2.17) and (2.22).

3 TsT transformation

The three-parameter deformation of the PCM constructed in section 2 breaks the global

G×G symmetry of the action. As a consequence of the property (2.5) the symmetry that

remains is the Cartan subgroup specified by the kernel of the operator R. By implementing

TsT transformations [26, 5, 6] on the corresponding shift isometries we are able to introduce

additional deformation parameters while preserving integrability [27–29]. In this section

we perform a general TsT transformation with each of the two shift isometries coming from

a different copy of G.

3.1 On the action

Our starting point is the action (2.1). As shown in subsection 2.2 the equations of motion

for gL and gR and the Maurer-Cartan equations follow from a Lax pair if AL and AR are

fixed in terms of ηL, ηR and k as

A2
L = η2L

(
1− k2

1 + η2L

)
, A2

R = η2R

(
1− k2

1 + η2R

)
. (3.1)

For ηL = ηR = 0 the symmetry of the action is G × G, which is broken to the Cartan

subgroup U(1)rankG × U(1)rankG for generic values of the deformation parameters. To

implement the TsT transformations in the Cartan directions we start by making the cor-

responding shift isometries manifest. To this end we parameterise (a = L,R)

ga = exp(xa)g̃a, g̃a ∈ G, xa ∈ h, (3.2)

– 7 –
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such that

ja± = ̃a± + Ad−1g̃a ∂±xa, (3.3)

where ̃a is the left-invariant one-form associated with g̃a, i.e. ̃a = g̃−1a dg̃a. It is important

to note that the parameterisation (3.2) introduces a new left-acting Cartan gauge symmetry

xa → xa + ξa, g̃a → exp(−ξa)g̃a. (3.4)

As we will see this symmetry survives the TsT transformation (up to potential total deriva-

tives). Therefore for now we leave it unfixed, using the xa coordinates to implement the

deformation, and fix it only at the end.

Defining the combinations

la± = Adg̃a(̃a± −A±), (3.5)

which are invariant under the original Gdiag gauge transformations (2.7), and the rescaled

projections of la± onto the Cartan subalgebra (recall that Π = 1+R2 is the projector onto h)

LL
± = (1 + η2L ± k) Π lL±, LR

± = (1 + η2R ∓ k) Π lR±, (3.6)

we use (2.4) and (2.5) to rewrite the action (2.1) in the form

S[g̃L,R, xL,R, A] = −
∫
d2σ tr

[
lL+OL l

L
− + LL

−∂+xL + LL
+∂−xL + (1 + η2L)∂+xL∂−xL

]
−
∫
d2σ tr

[
lR+OR l

R
− + LR

−∂+xR + LR
+∂−xR + (1 + η2R)∂+xR∂−xR

]
+ SWZ,k[g̃L]−SWZ,k[g̃R]−k

∫
d2σ tr

[
A−(̃L+−̃R+)−A+(̃L−−̃R−)

]
, (3.7)

where the operators OL,R are given by

OL,R = 1 +AL,RR+ η2L,RΠ. (3.8)

To implement the TsT transformation we first T-dualise xL → x̃L, then perform the shift

xR = x̂R +ωx̃L, where ω is a constant linear operator on the Cartan subalgebra h contain-

ing (rankG)2 additional parameters, and finally implement the reverse T-duality x̃L → x̂L.

Eventually we arrive at the action

Sω[g̃L,R, x̂L,R, A] = −
∫
d2σ tr

[
lL+OL l

L
− − (1 + η2R)LL

+ω
tÕ−1ωLL

−

+ LL
+O−1∂−x̂L + LL

−O−1∂+x̂L + (1 + η2L)∂+x̂LO−1∂−x̂L

]
−
∫
d2σ tr

[
lR+OR l

R
− − (1 + η2L)LR

+ωO−1ωtLR
−

+ LR
+Õ−1∂−x̂R + LR

−Õ−1∂+x̂R + (1 + η2R)∂+x̂RÕ−1∂−x̂R

]
+

∫
d2σ tr

[
(LL

+ + (1 + η2L)∂+x̂L)O−1ωt(LR
− + (1 + η2R)∂−x̂R)

− (LR
+ + (1 + η2R)∂+x̂R)Õ−1ω(LL

− + (1 + η2L)∂−x̂L)
]

+ SWZ,k[g̃L]−SWZ,k[g̃R]−k
∫
d2σ tr

[
A−(̃L+−̃R+)−A+(̃L−−̃R−)

]
, (3.9)
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with

O = 1 + (1 + η2L)(1 + η2R)ωtω, Õ = 1 + (1 + η2L)(1 + η2R)ωωt. (3.10)

Note that O and Õ are related as follows

ωtÕ−1ω = (ωtÕ−1ω)t = O−1ωtω, ωO−1ωt = (ωO−1ωt)t = Õ−1ωωt.

In order to recast the action (3.9) in a form generalising (2.1) we parameterise

g̃a = exp(ya)ĝa, ĝa ∈ G, ya ∈ h. (3.11)

Setting

yL = −(1− k2ωtω)−1(x̂L + kωtx̂R), yR = −(1− k2ωωt)−1(x̂R + kωx̂L), (3.12)

we find that the x̂a dependence drops out of the action up to the total derivative

−k2
[
∂+x̂L(1− k2ωtω)−1ωt∂−x̂R − ∂−x̂L(1− k2ωtω)−1ωt∂+x̂R

]
, (3.13)

which we also drop. We expect to be able to remove the dependence on x̂a in this way as

a consequence of the left-acting Cartan gauge invariance (3.4). As foreseen this symmetry

survives the TsT transformation up to potential total derivatives that we ignored in the

T-dualisations.

Renaming ĝa as ga, we are finally left with the action

Sω[gL,R, A] = −
∫
d2σ

∑
a,b=L,R

tr
[
(ja+ −A+)Oab,ω(jb− −A−)

]
+ SWZ,k[gL]− SWZ,k[gR]− k

∫
d2σ tr

[
A−(jL+−jR+)−A+(jL−−jR−)

]
, (3.14)

where the dressed operators are now given by

OLL,ω = Ad−1gL
[
1 +ALR+

(
η2L − (1 + η2R)(1 + η2L + k)(1 + η2L − k)(ωtÕ−1ω)

)
Π
]
AdgL ,

ORR,ω = Ad−1gR
[
1 +ARR+

(
η2R − (1 + η2L)(1 + η2R + k)(1 + η2R − k)(ωO−1ωt)

)
Π
]
AdgR ,

OLR,ω = Ad−1gL
[
(1 + η2L + k)(1 + η2R + k)(O−1ωt)Π

]
AdgR ,

ORL,ω = −Ad−1gR
[
(1 + η2L − k)(1 + η2R − k)(Õ−1ω)Π

]
AdgL , (3.15)

with AL,R defined in terms of ηL,R and k in (3.1), O and Õ given in (3.10) and we recall

that ω is an arbitrary constant linear operator on h. As we will shortly demonstrate via

the existence of a Lax pair this multi-parameter deformation of the PCM is integrable.

Before we do so, let us briefly consider various limits of (3.14) in order to gain a better

understanding of the model. First we note that, as expected, upon setting ω = 0 we

recover the three-parameter deformation of section 2, i.e. the bi-Yang-Baxter deformation

of the PCM plus WZ term. Additionally setting either ηL or ηR to zero we expect to

find the one-parameter Yang-Baxter deformation of the PCM plus WZ term constructed

in [14]. The model of [14] depends on a single field g ∈ G and hence to explicitly check this

– 9 –



J
H
E
P
1
0
(
2
0
1
7
)
2
1
2

relation we integrate out the gauge field. This is done in section 3.3 for the multi-parameter

deformation (3.14), with the resulting action given in (3.36). The latter only depends on gL
and gR through the combination g = gLg

−1
R as a consequence of the gauge symmetry (2.7),

and indeed setting ω = ηR = 0 we recover the model of [14].

It is also interesting to consider the limit k = 0, that is when the WZ term is no longer

present. In this case we can rewrite the deformed action in a form familiar in the context

of Yang-Baxter deformations

Sω[gL,R, A]
∣∣∣
k=0

= −
∫
d2σ tr

[ (
jL+ −A+, j

R
+ −A+

)
· O ·

(
jL− −A−, jR− −A−

)t ]
, (3.16)

where the operator O is given by

O =

(√
1 + η2L 0

0
√

1 + η2R

)
· 1

1−RgL,R

·

(√
1 + η2L 0

0
√

1 + η2R

)
, (3.17)

which in turn is defined in terms of a linear operator R acting on g⊕ g

RgL,R =

(
Ad−1gL 0

0 Ad−1gR

)
·R ·

(
AdgL 0

0 AdgR

)
,

R =

(
ηLR

√
(1 + η2L)(1 + η2R)ωtΠ

−
√

(1 + η2L)(1 + η2R)ωΠ ηRR

)
. (3.18)

For all X = (xL, xR)t and Y = (yL, yR)t in g ⊕ g the operator R satisfies the modified

classical Yang-Baxter equation

[RX,RY ]−R[RX,Y ]−R[X,RY ] =

(
η2L[xL, yL]

η2R[xR, yR]

)
. (3.19)

Note that the right-hand side of (3.19) is independent of ω and hence if we additionally

set ηL = ηR = 0 the operator R satisfies the classical Yang-Baxter equation. In this case

we are left with the homogeneous Yang-Baxter deformation of the PCM with an abelian

R-matrix, which is equivalent to a series of TsT transformations [18–24]. Alternatively we

may set ω = 0, in which case we recover the bi-Yang-Baxter sigma model of [8, 9, 25, 11].

Finally, if η2L = η2R = η2 and (η + η−1)2ωωt = (η + η−1)2ωtω = 1 then the operator R

satisfies

η−2R2 = −1. (3.20)

Therefore, η−1R defines a complex structure on G×G. Yang-Baxter deformations based

on complex structures have been explored in [30] and typically give rise to particularly

simple models.

3.2 On the Lax pair

The Lax pair (2.29) for the three-parameter model described by the action (2.1) is given by

L±(λ) = A± + α±J
L
± +Gλ±1JL

±, (3.21)
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with the parameters α±, G given in (2.25) and (2.28) respectively. The zero-curvature equa-

tion for L±(λ) implies the equations of motion (2.10) and Maurer-Cartan equations, (2.21)

and (2.23). Furthermore, it should be supplemented with the equations of motion for

the gauge field (2.8), which are constraint equations fixing the gauge field in terms of the

group fields.

The Lax pair (3.21) and the constraint equations (2.8) are written in terms of the

currents Ja± and the gauge field A±, where the dependence on ga is contained within

the former. Therefore, to determine the Lax pair and constraint equations for the TsT

transformed model we just implement the transformation on Ja±, which gives the TsT

transformed currents. It then follows that the Lax pair for the model described by the TsT

transformed action (3.14) has the same form (3.21) as it had before transformation, only

now with Ja± given by TsT transformed expressions for the currents. The same holds for

the constraint equations (2.8).

To construct the currents of the TsT transformed model we start from those of the

three-parameter model defined by (2.9). Using the parameterisation (3.2) these can be

written as

JL
± = J̃L

± +Ad−1g̃L (1∓ k + η2L)∂±xL, JR
± = J̃R

± +Ad−1g̃R (1± k + η2R)∂±xR, (3.22)

where the J̃a± are simply obtained from Ja± by the replacement ga → g̃a. The currents Ja±,

and thus the Lax pair, equations of motion and Maurer-Cartan equations, only depend on

derivatives of the Cartan subalgebra valued fields xa. Then, following, for example, [28],

we track the fate of the derivatives ∂±xa through the TsT transformation.

In the first step, that is under the T-duality xL → x̃L, one has

∂±xL = − 1

1 + η2L
(LL
± ∓ ∂±x̃L), (3.23)

where La± are defined in (3.6). The second step is a translation of xR and implies

x̂R = xR − ωx̃L ⇒ ∂±xR = ∂±x̂R + ω∂±x̃L. (3.24)

Finally, the second T-duality, x̃L → x̂L, gives

∂±x̃L = O−1
(
±LL
± − (1 + η2L)(ωt(LR

± + (1 + η2R)∂±x̂R)± ∂±x̂L)
)
, (3.25)

where O is defined in (3.10). Once the TsT transformation is performed, we fix the gauge

x̂L = x̂R = 0 using the gauge symmetry (3.4). Recall that, as discussed in subsection 3.1,

this symmetry survives the TsT transformation up to total derivatives, which do not con-

tribute to the equations of motion. For this gauge choice the expressions for ∂±xa in (3.23)

and (3.24) become

∂±xL = −(1 + η2R)O−1ωtωLL
± ∓O−1ωtLR

±,

∂±xR = −(1 + η2L)Õ−1ωωtLR
± ± Õ−1ωLL

±.
(3.26)

Substituting into (3.22) we find expressions for TsT transformed currents Ja± as a function

of the field g̃a ∈ G. Finally, to match with the action (3.14) we rename g̃a as ga, after
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which these currents are expressed as follows

JL
− = (OLL,ω + k)(jL− −A−) +OLR,ω(jR− −A−),

JL
+ = (OtLL,ω − k)(jL+ −A+) +OtRL,ω(jR+ −A+),

JR
− = (ORR,ω − k)(jR− −A−) +ORL,ω(jL− −A−),

JR
+ = (OtRR,ω + k)(jR+ −A+) +OtLR,ω(jL+ −A+), (3.27)

where the various operators are defined in (3.15). Therefore, the Lax pair of the TsT

transformed model (3.14) takes the form (3.21) with Ja± now given by (3.27). As before,

this Lax pair should be supplemented by constraint equations of the form (2.8), again with

Ja± given by (3.27). Note that these results also follow from direct computation, in the

spirit of subsection 2.2, starting from the action (3.14).

3.3 Elimination of the gauge field

Let us now eliminate the gauge field from the action (3.14). The resulting action will be

the starting point in the next section for the comparison with Lukyanov’s model.

The equations of motion for the gauge field (2.8) and the definitions of Ja± given

in (3.27) can be used to write the left-invariant currents ja± as

jL− −A− = QLJ
L
−, jR− −A− = −QRJ

L
−,

jL+ −A+ = PtLJL
+, jR+ −A+ = −PtRJL

+, (3.28)

where QL, QR, PL and PR are the following operators

QL =
(
OLL,ω + k −OLR,ω(ORR,ω − k)−1ORL,ω

)−1(
1 +OLR,ω(ORR,ω − k)−1

)
,

QR =
(
ORR,ω − k −ORL,ω(OLL,ω + k)−1OLR,ω

)−1 (
1 +ORL,ω(OLL,ω + k)−1

)
,

PL =
(
1 + (ORR,ω + k)−1ORL,ω

) (
OLL,ω − k −OLR,ω(ORR,ω + k)−1ORL,ω

)−1
,

PR =
(
1 + (OLL,ω − k)−1OLR,ω

) (
ORR,ω + k −ORL,ω(OLL,ω − k)−1OLR,ω

)−1
. (3.29)

Inverting these relations it is then possible to express the gauge field as

A− =
1

2

[
jL− + jR− − (QL −QR) JL

−
]
, A+ =

1

2

[
jL+ + jR+ −

(
PtL − PtR

)
JL
+

]
. (3.30)

and the currents JL
± as

JL
− = (QL +QR)−1 j−, JL

+ =
(
PtL + PtR

)−1
j+, (3.31)

where

j± = jL± − jR±. (3.32)

These results enable us to rewrite the first term in the Lagrangian for the action (3.14) as

−
∑

a,b=L,R

tr
[
(ja+ −A+)Oab,ω(jb− −A−)

]
= −1

2
tr
[
j+ (QL +QR)−1 j− + j+ (PL + PR)−1 j−

]
. (3.33)
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The last term of (3.14) is proportional to the gauge field. We can therefore use the rela-

tion (3.30) to obtain

−k tr
[
A−(jL+ − jR+)−A+(jL− − jR−)

]
= −k tr

[
jL+j

R
− − jR+jL−

]
+

1

2
k tr

[
j+ (QL −QR) (QL +QR)−1 j−

]
− 1

2
k tr

[
j+ (PL + PR)−1 (PL − PR) j−

]
. (3.34)

The first term in (3.34) may be combined with the WZ terms associated with gL and gR
using the Polyakov-Wiegmann formula [31]

SWZ,k[gL]− SWZ,k[gR]− k
∫
d2σ tr

[
jL+j

R
− − jR+jL−

]
= SWZ,k[gLg

−1
R ]. (3.35)

Summing all these contributions gives

Sω[g = gLg
−1
R ] = SWZ,k[g]− 1

2

∫
d2σ tr

[
j+
(
1− k(QL −QR)

)
(QL +QR)−1j−

+ j+(PL + PR)−1
(
1 + k(PL − PR)

)
j−

]
, (3.36)

where the operators QL, QR, PL and PR are defined in (3.29). It is straightforward to

check that, as indicated, this action only depends on gL and gR through the combination

g = gLg
−1
R . This is expected as a consequence of the Gdiag gauge symmetry (2.7).

4 Equivalence with the Lukyanov model for G = SU(2)

In this section we prove that the action (3.14) corresponds to the Lukyanov model [1] for

G = SU(2). Let us start by noting that SU(2) has rank one. Therefore in this case the

operator ω, introduced in section 3, contains just a single parameter. In a slight abuse

of notation we will also call this parameter ω, with the operator given by multiplying by

the identity (acting on the Cartan subalgebra). For G = SU(2), the action (3.14) thus

defines a four-parameter integrable deformation of the SU(2) PCM. As a first order check

of equivalence we observe that this is the same number of deformation parameters as in

the Lukyanov model.

To demonstrate the full equivalence we shall start with the action (3.36), obtained

after eliminating the gauge field. Partial identification of this four-parameter deformation

with the Lukyanov model, that is to say with some deformation parameters set to zero, has

already been shown in [2]. For this reason we use the same parameterisation of g ∈ SU(2)

as in [2]. We then compute the corresponding metric and B-field and show that there

exists a coordinate transformation, and a map between the parameters AL, AR, k, ω and

Lukyanov’s parameters κ, p, h and h̄, such that this metric and B-field coincides with

those of [1].

Let us take the SU(2) group element

g(r, φ, ψ) = e−T
3(φ+ψ)

(
r 1l− 2

√
1− r2 T 1

)
e−T

3(φ−ψ). (4.1)
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Here T i are the generators of su(2) satisfying

[T i, T j ] = εijkT
k, tr(T iT j) = −1

2
δij , i, j, k = 1, 2, 3, (4.2)

where the totally anti-symmetric tensor εijk is normalised as ε123 = +1 and the su(2) indices

are raised and lowered by δij and its inverse. The R-matrix acts on the generators as

R(T+) = −iT+, R(T−) = iT−, R(T 3) = 0, (4.3)

where T± = 1√
2
(T 1 ± iT 2).

The computation of the metric and B-field is rather lengthy but ultimately straight-

forward. In order to see the equivalence with the metric and B-field of Lukyanov’s model

one needs to perform the following coordinate transformations for the angle variables φ

and ψ

φ = χ1 +
f+L + f+R

4(1− kω)(1 + η2L)(1 + η2R)ALAR

log

[
4 + (AL −AR)2

4 + (AL −AR)2 + 4r2ALAR

]
,

ψ = −χ2 −
f−L − f−R

4(1 + kω)(1 + η2L)(1 + η2R)ALAR

log

[
4 + (AL −AR)2

4 + (AL −AR)2 + 4r2ALAR

]
, (4.4)

where f±L,R are given by

f±L = AL(1 + η2L)(kη2R ± (1 + η2R)(1 + η2R − k2)ω),

f±R = AR(1 + η2R)(kη2L ± (1 + η2L)(1 + η2L − k2)ω). (4.5)

The resulting metric becomes block diagonal, i.e. grχ1 = grχ2 = 0. We also introduce a

new radial coordinate z related to r by

r =

√
(1− κ)(1 + z)

2(1− κ z)
, (4.6)

and define Lukyanov’s parameters (κ, p, h, h̄) as

κ =

√
4 + (AL +AR)2 −

√
4 + (AL −AR)2√

4 + (AL +AR)2 +
√

4 + (AL −AR)2
, p2 = −η

2
L(1 + η2R)AR

η2R(1 + η2L)AL

,

h± = h± h̄ = − 4H±

(
√

4 + (AL +AR)2 +
√

4 + (AL −AR)2)H0

, (4.7)

where the quantities H0, H+ and H− are given by

H0 =
√

(1 + η2L)(1 + η2R)(1− k2ω2),

H+ = k
√
η2Lη

2
R + ω2(1 + η2L)(1 + η2R) (4 +A2

L +A2
R + ω2(1 + η2L − k2)(1 + η2R − k2)),

H− = ω(k2 + (1 + η2L)(1 + η2R)). (4.8)

With these identifications we indeed recover the metric and B-field of [1]. In particular,

up to a total derivative, the Lagrangian corresponding to (3.36) is [1, 2]

L = T
[
U(z) ∂+z ∂−z +D(z) ∂+χ1 ∂−χ1 + D̂(z) ∂+χ2 ∂−χ2

+ [C(z) +B(z)] ∂+χ1 ∂−χ2 + [C(z)−B(z)] ∂+χ2 ∂−χ1

]
, (4.9)
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where we have rewritten the Lukyanov background using new angle variables (χ1, χ2),

related to the original ones (v, w) through χ1 = 1
2R
−1(v − w), χ2 = 1

2(v + w) [2]. The

overall factor T is equal to

T =
2((1 + η2L)(1 + η2R) + k2)

2 + η2L + η2R
, (4.10)

while the components of (4.9) are

U(z) =
m2

4(1− z2)(1− κ2z2)
,

D(z) = R2(1 + z)
[
2 + κ(p2 + p−2)− κ(2κ+ p2 + p−2)z

]
Q(z),

D̂(z) = (1− z)
[
2 + κ(p2 + p−2) + κ(2κ+ p2 + p−2)z

]
Q(z),

C(z) = κ(p2 − p−2)R(1− z2)Q(z),

B(z) = −2Rm

c+ c̄

[
h(c2 − 1)(c̄− z)− h̄(c̄2 − 1)(c+ z)

]
Q(z), (4.11)

where Q(z) is given by

Q(z) =
(c+ 1)(c̄− 1)

4(1− κ2)(c+ z)(c̄− z)
. (4.12)

Finally, we recall the definitions of c, c̄, m and R,

c =

√
1 + h2

κ2 + h2
, c̄ =

√
1 + h̄2

κ2 + h̄2
,

m =
√

(κ+ p2)(κ+ p−2), R =

√
(c− 1)(c̄+ 1)

(c+ 1)(c̄− 1)
. (4.13)

The expressions of c, c̄ and m in terms of the parameters AL, AR, k and ω are cumber-

some. We shall therefore not reproduce them here. However, let us point out that the

relations (4.7) and (4.13) lead to a simple expression for R,

R =
1− kω
1 + kω

. (4.14)

This expression is interesting because it has simple limits. Indeed, we have R = 1 when

ω = 0 or k = 0. This result is consistent with those obtained previously in [2].

5 Conclusion

In this paper we have presented a new multi-parameter integrable deformation of the

PCM for a general group G. The first step of its construction was the derivation of the

integrable bi-Yang-Baxter deformation of the PCM plus WZ term. The second was the

implementation of a general TsT transformation mixing the Cartan generators of the two

copies of G.
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This multi-parameter integrable model generalises Lukyanov’s four-parameter defor-

mation of the SU(2) PCM [1] to arbitrary group G. Therefore the construction confirms

the proposal of [2] on the algebraic origin of the four parameters: two correspond to the

bi-Yang-Baxter deformation, one parameterises the coupling to the WZ term, and the final

parameter is generated by a TsT transformation.

There are a number of possible open questions whose investigation would further probe

the properties of this integrable σ-model. One of the most important is the study of

its classical Poisson structure, Hamiltonian integrability and twist function in the spirit

of [10, 11, 13, 32]. To determine the twist function, it is enough to consider the three-

parameter case. Indeed, the twist function is not changed under a TsT transformation [32].

One particular aim is to understand the q-deformed algebra of hidden charges. Further-

more, the extension to the affine algebra as considered in [33] for the Yang-Baxter σ-model

would be interesting to investigate (see also [34, 35, 16] for the SU(2) case). Finally, study-

ing this σ-model at the Hamiltonian level would indicate if it is also possible to reinterpret

it as a dihedral affine Gaudin model [36].

In [37] the Yang-Baxter deformation of the PCM plus WZ term of [14] was recast in

the framework of E-models [38, 39] (a first-order action defined on the Drinfel’d double).

Understanding how to formulate the bi-Yang-Baxter deformation of the PCM plus WZ

term (and TsT transformations thereof) presented in sections 2 (and 3) in this language

may prove useful in gaining a deeper understanding of the underlying algebraic structure

of the model.

Setting ηL = ηR = ω = 0 and k = 1, the deformed action simplifies to the WZW action

for the group G. This model is conformal, as are its deformations associated with TsT

transformations. It would be interesting to investigate which other points in parameter

space correspond to conformal sigma models at the quantum level and hence define string

backgrounds. In particular, this would involve generalising the one-loop renormalisation

analysis, including UV and IR fixed points, of [1] beyond the SU(2) case.

Finally, there are a class of superstring backgrounds for which the Green-Schwarz

worldsheet action takes the form (at least in part) of an integrable supercoset σ-model [40–

44]. For the maximally symmetric AdS5×S5 background the PSU(2, 2|4)/(SO(1, 4)×SO(5))

supercoset model of [40] captures the full Green-Schwarz string. Generalising the bosonic

construction of [10], the Yang-Baxter deformation of this model was constructed in [45, 46].

Particularly relevant to the constructions of this paper are string backgrounds for which

the superisometry takes the form of a product group. For example, the AdS3 × S3 × T 4

background is related to the supercoset PSU(1, 1|2)2/(SU(1, 1)×SU(2))diag, and the AdS3×
S3×S3×S1 background to the supercoset D(2, 1;α)2/(SU(1, 1)×SU(2)×SU(2))diag [47]. In

these cases one can construct a bi-Yang-Baxter deformation of the supercoset σ-model [25],

or alternatively introduce a WZ term [48]. The results presented in this paper provide the

first steps towards combining these two constructions into a single three-parameter model,

on top of which further parameters may be introduced via TsT transformations.
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[9] C. Klimč́ık, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys. 104 (2014) 1095

[arXiv:1402.2105] [INSPIRE].

[10] F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models,

JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].

[11] F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On the Hamiltonian integrability of the

bi-Yang-Baxter σ-model, JHEP 03 (2016) 104 [arXiv:1512.02462] [INSPIRE].

[12] I. Kawaguchi and K. Yoshida, Hybrid classical integrability in squashed σ-models, Phys. Lett.

B 705 (2011) 251 [arXiv:1107.3662] [INSPIRE].

[13] F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie

symmetries and application to Yang-Baxter type models, J. Phys. A 49 (2016) 415402

[arXiv:1606.01712] [INSPIRE].

[14] F. Delduc, M. Magro and B. Vicedo, Integrable double deformation of the principal chiral

model, Nucl. Phys. B 891 (2015) 312 [arXiv:1410.8066] [INSPIRE].

– 17 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2012.08.002
https://doi.org/10.1016/j.nuclphysb.2012.08.002
https://arxiv.org/abs/1205.3201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3201
https://doi.org/10.1007/JHEP06(2014)002
https://doi.org/10.1007/JHEP06(2014)002
https://arxiv.org/abs/1403.5517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5517
https://doi.org/10.1016/0550-3213(96)00256-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B473,509%22
https://doi.org/10.1007/BF01215276
https://doi.org/10.1007/BF01215276
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,92,455%22
https://doi.org/10.1016/0550-3213(92)90536-K
https://doi.org/10.1016/0550-3213(92)90536-K
https://arxiv.org/abs/hep-th/9108001
https://inspirehep.net/search?p=find+EPRINT+hep-th/9108001
https://doi.org/10.1016/0550-3213(92)90518-G
https://doi.org/10.1016/0550-3213(92)90518-G
https://arxiv.org/abs/hep-th/9112070
https://inspirehep.net/search?p=find+EPRINT+hep-th/9112070
https://doi.org/10.1088/1126-6708/2002/12/051
https://arxiv.org/abs/hep-th/0210095
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210095
https://doi.org/10.1063/1.3116242
https://arxiv.org/abs/0802.3518
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3518
https://doi.org/10.1007/s11005-014-0709-y
https://arxiv.org/abs/1402.2105
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2105
https://doi.org/10.1007/JHEP11(2013)192
https://arxiv.org/abs/1308.3581
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3581
https://doi.org/10.1007/JHEP03(2016)104
https://arxiv.org/abs/1512.02462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02462
https://doi.org/10.1016/j.physletb.2011.09.117
https://doi.org/10.1016/j.physletb.2011.09.117
https://arxiv.org/abs/1107.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3662
https://doi.org/10.1088/1751-8113/49/41/415402
https://arxiv.org/abs/1606.01712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01712
https://doi.org/10.1016/j.nuclphysb.2014.12.018
https://arxiv.org/abs/1410.8066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8066


J
H
E
P
1
0
(
2
0
1
7
)
2
1
2

[15] I. Kawaguchi, D. Orlando and K. Yoshida, Yangian symmetry in deformed WZNW models

on squashed spheres, Phys. Lett. B 701 (2011) 475 [arXiv:1104.0738] [INSPIRE].

[16] I. Kawaguchi and K. Yoshida, A deformation of quantum affine algebra in squashed

Wess-Zumino-Novikov-Witten models, J. Math. Phys. 55 (2014) 062302 [arXiv:1311.4696]

[INSPIRE].

[17] I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS5 × S5

superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].

[18] T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter

equation — Towards the gravity/CYBE correspondence, JHEP 06 (2014) 135

[arXiv:1404.1838] [INSPIRE].

[19] T. Matsumoto and K. Yoshida, Schrödinger geometries arising from Yang-Baxter

deformations, JHEP 04 (2015) 180 [arXiv:1502.00740] [INSPIRE].

[20] T. Matsumoto and K. Yoshida, Integrability of classical strings dual for noncommutative

gauge theories, JHEP 06 (2014) 163 [arXiv:1404.3657] [INSPIRE].

[21] T. Matsumoto and K. Yoshida, Yang-Baxter σ-models based on the CYBE, Nucl. Phys. B

893 (2015) 287 [arXiv:1501.03665] [INSPIRE].

[22] S.J. van Tongeren, On classical Yang-Baxter based deformations of the AdS5 × S5

superstring, JHEP 06 (2015) 048 [arXiv:1504.05516] [INSPIRE].

[23] S.J. van Tongeren, Yang-Baxter deformations, AdS/CFT and twist-noncommutative gauge

theory, Nucl. Phys. B 904 (2016) 148 [arXiv:1506.01023] [INSPIRE].

[24] D. Osten and S.J. van Tongeren, Abelian Yang-Baxter deformations and TsT

transformations, Nucl. Phys. B 915 (2017) 184 [arXiv:1608.08504] [INSPIRE].

[25] B. Hoare, Towards a two-parameter q-deformation of AdS3 × S3 ×M4 superstrings, Nucl.

Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].
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