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1 Introduction

Argyres-Douglas (AD) theories are strongly-coupled A/ = 2 superconformal field theories
that have (at least one) fractional dimensional Coulomb branch operators. Originally, AD
theory was discovered as a low-energy limit of the effective field theory describing the special
loci of the Coulomb branch of an A/ = 2 gauge theory [1, 2]. At this special loci, we have
massless mutually non-local electromagnetically charged particles which are described by
an interacting conformal field theory. There has been many generalizations of the original
construction [3-11].

Since AD theories have non-integer Coulomb branch operators, the conformal points
cannot be described by A/ = 2 Lagrangian gauge theories. Moreover, writing a Lagrangian
for a quantum field theory of both electrically and magnetically charged particles has been
a long-standing problem, which has been achieved only by sacrificing manifest Lorentz
symmetry or a second-quantized picture. This lack of a Lagrangian description posed
some challenges in understanding conformal phase of AD theories. This difficulty has been
partially overcome by considering N/ = 1 Lagrangian gauge theories that flow to Argyres-
Douglas theories [12-14].

Such N = 1 gauge theories were constructed via certain A/ = 1 preserving deformations
of an N = 2 superconformal field theory T¢v labelled by a nilpotent element of the flavor
symmetry algebra g:

Tov ~ Tir[Tov, p), (1.1)

where p is an embedding of su(2) into g labelling the nilpotent element of g. The com-
mutant of p determines the remaining flavor symmetry. We deform the UV theory by



introducing a chiral multiplet M that transforms as an adjoint of g which is coupled via a
superpotential term

W =TrMp. (1.2)

Here p is the moment map operator for the flavor symmetry g which also transforms as
the adjoint. Then we give a nilpotent vacuum expectation value (M) = p(c™) to the chiral
multiplet, which triggers an RG flow to an A/ = 1 theory. This type of deformation was
first considered in [15] and was also later studied in [16-21].

One crucial feature of this deformation is that it preserves a U(1) symmetry that can be
mixed with the R-symmetry. The superconformal R-symmetry in the IR is determined via
a-maximization [22]. Generically, there exists an accidental symmetry caused by some op-
erators hitting the unitarity bound along the RG flow. These unitarity-violating operators
become free and get decoupled. We need to subtract this piece and do the a-maximization
again to correctly obtain the superconformal R [23]. We need to repeat this until all the
operators have dimension above the unitarity bound.

Now, if we choose Tyvy to be the conformal SQCD such as SU(N) gauge theory with
2N fundamental hypermultiplets and p to be principal embedding that breaks the SU(2N)
symmetry completely (but baryonic U(1) and axial U(1) symmetry are left unbroken),
the Tir is given by (Aj, Aon—1) Argyres-Douglas theory, upon removing operators that
become free along the RG flow. Since the deformation will give a nilpotent mass to the
fundamental hypermultiplets, we can integrate them out. This produces an A/ = 1 gauge
theory that flows to the N’ =2 AD theory, which provides a new handle to investigate this
strongly-coupled SCFT. It was also found that if we dimensionally reduce the setup to 3d,
similar SUSY enhancing RG flow can be obtained once we impose additional constraint to
remove the operators that would be removed in 4d [24, 25].

The N = 1 Lagrangian gauge theories that flow to AD theories have many interesting
applications. First of all, one can use localization to compute various supersymmetric
partition functions. The full superconformal index of the N' = 2 fixed point was computed
in [12-14]. This result has been checked against a number of independent computations in
specialized limits. Realization of the AD theories in terms of M5-branes makes it possible
to compute the Schur and Macdonald indices using the TQFT living on a Riemann surface
with an irregular puncture [26-30]. Also, it is possible to use the 3d mirror description to
compute the Hall-Littlewood index [31]. There is also an interesting connection between the
Schur index and the spectrum of massive BPS particles in the Coulomb branch [32-35]. The
correspondence between 4d N' = 2 SCFT and the 2d chiral algebra [36] gives another way
of computing the Schur/Macdonald index [30, 33, 37-39] of the Argyres-Douglas theories.
The Lagrangian description would be helpful to understand the surface defect of the AD
theories [40] as well. Finally, the Lagrangian description for the AD theory has been used to
obtain the Coulomb branch Lens space index [41] which computes a wild Hitchin character.
It was also used to topologically twist the AD theory [42].

In this paper, we extend the construction of [12-14] for the (A1, A4,) = (I2n+1) and
(A1,Dy) = (I2,n—2,5) to more generalized AD theories that are called (Aj_1, Apmi—1) =
(Iimk) and (Iymk, S) theories (or A% [m] and A™F[m] in the notation of [9, 37]). We



find that conformal quiver gauge theories of certain type flow to AD theories upon N' =1
deformations with p being the principal embedding. The relevant quivers are as follows:

(N) = (2N) = (3N) —... = (mN = N) =[mN]  ~ (A1, ANm_1)
(1] (k+1) = 2k +1) — ... — (mk =k + 1) —[mk + 1]~ (Inmk, S)

Here nodes in the parenthesis denote SU gauge groups, while the nodes in the box denote

(1.3)

the flavor U group. We find that once we perform the nilpotent deformation for the flavor
SU(mN) or SU(mk + 1) on the right-hand side using the principal embedding, we obtain
the Argyres-Douglas theory in the IR upon removing decoupled operators. Here we do not
touch the U(1) factors of the flavor group. In the end we have U(1)™~! and U(1)™ flavor
symmetry for the first and second quiver theory upon principal deformation.

We also find that the following quiver gauge theories made out of SO and Sp gauge
group! flow to Argyres-Douglas type theories (with N even for (1.5)):2

SO(2)] - Sp(N) — SO(4N + 2) — Sp(3N)—

... = Sp(2mN — N) —[SO(4mN +2) |~ (A2 1, Danm+1) )
SO(N) — Sp(N — 2) — SO(3N — 4) — Sp(2N — 4)—
.. = Sp(m(N = 2)) = [SOE@M(N —2) + N) |~ (Ao, Dy 2y x) (15)
Sp(N) — SO(AN +4) — Sp(3N + 2) — SO(8N + 8)—
~.=Sp((m—1)(2N +2) + N) =[SO(4m(N + 1)) |~ DI m] (16)
Here (Agm—1, Danme1) = DiNp, 1 [2m] and (Azm, Dy g x) = DEEZIBE]%V:?)H[Qer 1]

in the notation of [9, 37]. We consider the principal nilpotent deformation of the flavor
node on the right-hand side end. We find that there are indeed operators of fractional
dimensions and rational central charges.

This paper is organized as follows: in section 2, we review aspects of the generalized
Argyres-Douglas theories we study in this paper. In section 3, we consider N' = 1 deforma-
tions of certain A/ = 2 SU quiver gauge theories that flow to the generalized AD theories
of type Ai_1. In section 4, we consider the deformation of Sp — SO gauge theories that,
we conjecture, will flow to AD theories. We conclude in section 5 with some remarks.

Note added. While we were finishing this paper, we became aware that the SU-quiver
gauge theories (1.3) that flow to the (Ap_1, Ank—1) and (L, mk, S) AD theories were also
independently discovered by [43] and reported earlier by one of the authors. We thank them
for sharing this information. We coordinated the submission of this paper with them.

!Our notation for the symplectic group is chosen so that Sp(1) = SU(2).

2Interestingly, in all cases in which the IR Argyres-Douglas theory we obtain after the A" = 1 deformation
is of (G, G")-type with G, G’ simply-laced Lie algebras, we find that the Dynkin diagram of G is realized by
the gauge nodes of the UV quiver theory (before the deformation), while G’ coincides with the Lie algebra
of the non-Abelian flavor symmetry group of the UV quiver theory.



2 Review on generalized AD theories

A large class of 4d N' = 2 superconformal theories can be constructed by compactifying
6d N = (2,0) theory of type I' € ADFE on a Riemann surface with a partial topological
twist [44, 45]. Such 4d theories are said to be in class S. One can construct generalized
Argyres-Douglas theories by choosing the Riemann surface as a sphere with one irregular
puncture [6, 9, 11]. On top of this, it is possible to add one regular puncture. A reg-
ular puncture is labeled by an SU(2) embedding into I When I' = SU(N), the SU(2)
embeddings are in one-to-one correspondence with the partitions of N. The type of sin-
gularity determines the Seiberg-Witten curve. For example, if we choose I' = A,_; with
the Riemann surface being a sphere with one irregular puncture of type I y (following the
notation of [6]), we obtain the SW curve at the conformal phase as

a* =N, (2.1)
with Seiberg-Witten 1-form given as
Asw = xzdz . (2.2)

The SW differential should have scaling dimension 1, since the mass of the BPS particle
is given as M = |Z| = | [ Asw|. The AD theory has chiral operators parametrizing the
Coulomb branch. They appear as the deformations of the singular curve. In this case, it
can be deformed to give

k In
b =N+ Z Z wg g (2.3)

0=2 i=n+2+]j(l—1)/k]

where N = kn — j with k,n,j € Z>¢. The parameters uy; appear in pairs (u,v) so that
[u] + [v] = 2. The parameter that has scaling dimension greater than 1 is identified as
the chiral operator, and the other is identified as the coupling constant appearing in the
Lagrangian [2].

Another way of constructing a class of AD theories is to start with type IIB superstring
theory and compactify it on a Calabi-Yau 3-fold singularity of the form

W(xayazaw) = WG($7y> + WG’(sz) = 07 (24)

with (z,y, z,w) € C*. Here W are the equations governing the form of the singularity of
ADE type and are given as follows:

Wa, (z,y) = 2" + 47,

Wp, (z,y) = 2" +ay”,

Wi, (z,y) = 2° + ', (2.5)
Wi, (z,y) = 2° + 2y°,

Wi(w,y) = 2 + ¢



The 4d N = 2 superconformal theory obtained in this way is called the (G, G’) theory [5].
The Seiberg-Witten 1-form is replaced by a holomorphic 3-form given as

_drx Ndy ANdz Adw

Q
aw ’

(2.6)

and the mass of a BPS particle is given by [46]

Me = /C Q, (2.7)

where C' is a supersymmetric 3-cycle in the Calabi-Yau 3-fold.

The chiral operator content of the theory is determined by the deformations of the
singularity [46]. Consider the ring of holomorphic functions of four variables Clz,y, z, w],
and take a quotient by the ideal generated by dW:

R =Clz,y, z,w]|/dWV . (2.8)
We can write an element in R as 2% = z'y/z*w! modulo dW = 0. Then consider the
deformation
W(z,y,z,w) = W(x,y,z,w)+ Z Ua T . (2.9)
z*€ER

Combining this with the fact that [2] = 1, one can compute the scaling dimensions of the
deformation parameters u,. Among them, the ones that have dimension greater than 1
are identified as the Coulomb branch operators.?

One noticeable feature of the generalized AD theories is that quite often they admit
exactly marginal deformations. This can be seen if some of the Coulomb branch operators
have scaling dimension 2, which includes exactly marginal operator in the same multiplet.
It is widely believed that any exactly marginal deformation of an N' = 2 SCFT arises
through a gauge interaction. Therefore it should be possible to take the extremely weak
limit of the gauge couplings and decompose the theory into smaller AD theories with global
symmetry. When there is a gauge coupling, there may be a dual description. The dual
descriptions for the AD theories have been studied in [10, 11, 47, 48].

(Ag—1,ANn—1) theory. This theory can also be obtained in class S by choosing I’ = Ay
and the Riemann surface to be a sphere with one irregular puncture of type I n. The
Seiberg-Witten curve and the 1-form for this theory is given as in (2.3) and (2.2). From
this curve and 1-form, one can deduce the scaling dimensions of the Coulomb branch
operators of this theory: in fact, by noticing that

[zl = v, [l=w= (2.10)
we obtain

ik—0j ik —lj
N+k k+kn—j’

] = (2.11)

3There can be also mass parameters that have dimensions greater than or equal to 1. One can distinguish
them by noticing that they do not pair up with other parameters so that the dimensions add up to 2.



Among the u; ;’s, the ones that have scaling dimension greater than 1 are identified as the
Coulomb branch operators.

From the Coulomb branch operator spectrum and the curve, it is possible to compute
the central charges of the theory [49]. First, there is a relation?

20 —c=-Y (2w]—-1), (2.12)

where the sum is over the Coulomb branch operators. Another relation is

1 1 or 1 T
where r is the dimension of the Coulomb branch (sometimes called the rank of an N' = 2
SCFT) and

R(A) =) [w]—r, (2.14)
while R(B) is a quantity that can be computed from the SW curve.

Now, coming back to the case of (Ax_1, Any_1) theory, one can compute the central

charges from the above relations. The function R(B) is given as [52]

(k — 1)NE(N — 1)
AN + k)

R(B) = (2.15)
From this formula, we can compute the central charges for arbitrary & and N. The formula
simplifies when N = nk, with n being an integer:

(k — 1)(2k*n? + 2kn? — 5n — 5) (k — 1)(k*n? + kn? — 2n — 2)

“= 24(n + 1) T 12(n+1) - (216)

The Coulomb branch operators are given as
i
n+1

[ug ;] = , (2.17)

with£=2,3,....,kandi=n+2,n+3,...,¢{n.

(Ik,~,Y) theory. One can engineer this type of AD theory by compactifying 6d
N = (2,0) theory of type I' = Aj_; on a sphere with an irregular puncture of type Ij,
and a regular puncture of type Y. This theory has a global symmetry SU(k) if (k, N) =1
and SU(k) x U(1)*~! if N is divisible by k. Here Y labels the partitions of k. When
Y =[1,...,1] is the full puncture, the SW curve will be of the form

:ck—i—zN—}—m—:—i—...:O, (2.18)
z

where my, is one of the mass parameters of SU(k). Here we omitted the deformations.

4This relation is modified when an N' = 2 SCFT is obtained via gauging a discrete subgroup of the
U(1), symmetry [50, 51].



When N = kn, the central charges are given as

1 1
a= 4—8(k—1)(4k2n+4k2+4kn—k—10) . c= E(k—l)(kzn—l—kz—l—lm—Q) , (2.19)
and the dimensions of the Coulomb branch operators are
2i .
[U(}i]—m (6—2,3,...7143, Z—n+2,,£(n+1)_1) (220)
When Y = S = [k — 1, 1] is the simple puncture and N = kn, the central charges are
- k(2k*n? + 6kn — 2n% — 5n + 1) oo k(k®n? +3kn —n? —2n +1) (2.21)
N 24(n+1) T 12(n+1) ’ ‘
and the dimensions of the Coulomb branch operators are
2i
] =—, 2.22
[weil = = (2:22)

with¢=23,....,kandi=n+2,n+3,...,/n+ 1.

(A, Dy) theory. Some of the AD theories do not have a class S realization. One
example is the (Ag, D)) theory with & > 1. This can be easily realized from type IIB
string theory compactified on the Calabi-Yau 3-fold singularity

P42 2y w? = 0. (2.23)

Since the holomorphic 3-form has scaling dimension 1, we can deduce the scaling dimensions
of the coordinates to be
2(n—1) 2(k+1) (k+1)(n—1)
[2]= 15— W= = Wl =7 ——
k+2n—1 k+2n—1 k+2n—1

This allows us to compute the scaling dimension of the Coulomb branch operators that

(k+1)(n—2)
—_— 2.24
k+2n—1 ( )
can be obtained as a deformation of the singularity.

For example, the (A3, D5) theory has Coulomb branch operators of dimension

4 445 8
Au) € {3,3, 3322 3} . (2.25)
We can also compute the central charges of this theory. For the (G,G’) theory, the
BPS quiver, that encodes the massive BPS spectrum in the Coulomb branch, has the form
of a product of the Dynkin diagrams for G' and G’. From this information, one can form
quantum monodromy operator M [5]. The trace of monodromy TrM® (or its power) can
be associated to a 2d chiral algebra where the 2d central charge cog is given in terms of
4d central charge csq ad coqg = 12Ne¢yy. At the same time, one can compute the (effective)
central charge by studying the scaling behavior of TrM [8, 32]. To this end, we get

1 (rgrahcha
=—————F""F-+2 2.2
¢ 12< he +her ) (2.26)

where rg, hg are the rank and the dual Coxeter number of G respectively, and r is the di-
mension of the Coulomb branch (rank) of the theory. Once we know the ¢ and the Coulomb
branch spectrum, we can deduce the other central charge a from the relation (2.12).



3 AD theories from quivers with SU(n) gauge groups

3.1 Lagrangian for (A,,—1, ANm—1) theory

Given the success of NV = 1 nilpotent deformations in producing effective Lagrangians that
flow to Argyres-Douglas theories of type (A1, G) with G = A,,, D,,, it is natural to wonder
if similar deformations of quiver theories can lead to more general AD theories such as
(A, G). Motivated by this, we consider the following 4d N = 2 quiver gauge theory. Start
with a theory having an SU(N) gauge symmetry and 2N hypermultiplets in the fundamen-
tal representation. As is well known, this theory is superconformal and has an SU(2N) fla-
vor symmetry which we wish to gauge. One way to maintain superconformality will then be
to add to this theory, 3N hypermultiplets transforming in the fundamental representation
of the newly minted SU(2N) gauge group. The resulting theory will have SU(3N) flavor
symmetry which we can again gauge if we wish and add 4N hypermultiplets transforming
in the fundamental representation of the SU(3N) gauge group. As is obvious, this process
can be continued indefinitely to produce a quiver of any desired length. A generic quiver
of this kind will therefore consists of an SU(N) x SU(2N) x - - - x SU(mN — N) gauge group
and an SU(mN) flavor symmetry group, and is given as in the following quiver diagram:

(N) = (2N) = (3N) — ... — (mN — N) —[mN| (3.1)

Let ¢y (¢ =1,...,m — 1) denote the adjoint chiral multiplet associated to the N' = 2
vector multiplet for the SU(IN) gauge node in the above quiver. Also, let (Qg,@g) be
the chiral multiplets forming the hypermultiplet that transforms in the bifundamental
representation of SU(/N) x SU(UN + N). We will use py to denote the SU(/N) moment
map operator formed from (Qg,@g) while gy will denote the SU(/N + N) moment map

operator formed from (Qg, Q7). The superpotential of the above quiver is then given by

m—1

W=z = Tréyp + Z Trepe(pe — fe—1) - (3.2)
(=2
We now introduce a chiral multiplet M transforming in the adjoint representation of the
SU(mN) flavor symmetry, switch on a superpotential term given by

SW = Trfim_1 M , (3.3)

and turn on a nilpotent vev p : SU(2) < SU(mN) for M. This will break the SU(mN)
flavor symmetry down to the commutant of the SU(2) embedding specified by p. The super-
multiplets containing the Goldstone modes corresponding to the broken flavor symmetry
generators will decouple in the IR. These can be easily identified using the arguments
delineated in [15]. The chiral multiplets that become massive as a result of the above vev
can also be easily integrated out, resulting in a “Fan” [17]. As was explained in [17], this
theory has two candidate R-symmetries which we call J; and J_. We assume that the
N = 1 theory so obtained flows to a fixed point in the IR. The R-symmetry of the su-
perconformal fixed point is then given by a linear combination of J; and J_. This correct
linear combination can be obtained using the technique of a-maximization [22].



fields | SU((N) | SUUN + N) | SUmN — N) | UL), | UMt | o | J-
Qe ] O 1 1 0 1 0
Qu [] (] 1 1 0 1 0
q 1 1 ] 0 1 1 |1-Nm
q 1 1 [ 0 1 1|1-Nm
b adj 1 1 0 0 2
b1 1 1 adj 0 0 0 2
M, 1 1 1 0 0 0| 2j+2

Table 1. Matter content for the “Lagrangian description” of the (A,,—1, ANm—1) theory. Here ¢
runs from 1 to m—2 and j for the M; runs from 1,..., Nm—1. U(1), is a baryonic global symmetry

acting on (Qy, @g)

The various possibilities for the vev p are classified by partitions of Nm. Upon scan-
ning through the space of all such possibilities, we reached the conclusion that the most
interesting of these is when p corresponds to the principal embedding which sends the fun-
damental representation of SU(mN) into the mN dimensional irrep of SU(2). For other
choices of p, we generically find irrational central charges, implying that they do not exhibit
supersymmetry enhancement in the IR. In the rest of this section, we will therefore mostly
focus on the principal embedding case.

For (M) = pprincipal, the SU(mN) flavor symmetry is completely broken. Recall that
before giving a vev, there were Nm quarks transforming in the fundamental representation
of the SU(mN —N) gauge symmetry. Due to the vev (M), Nm—1 of these will become mas-
sive and get integrated out. The fields forming the rest of the quiver will not be affected.®
The matter content of the theory obtained after integrating out the massive fields and
removing the decoupled modes, is given in table 1. The superpotential of this system can
easily be written down using the results of [17]. The upshot is to write all possible combi-
nation of the fields so that each term in the superpotential has the charge (J1, J_) = (2,2).

The IR R-charge is given in terms of J; and J_ by
1 —2f— € Jo + 1 . €

where € is determined via a-maximization. For the theory being described here, the trial

Rpn—1 = J_, (3.4)

central charges a(e) and c(e) are given by
3 3m  3mN 3mN? 9m3N? 9m*N?  9m3N*

A)=16"T6 " & 64 128 614 128

3m 3mN 3mN? 9m> N2 9m3 N3 27m3 N4

—E + + + - €
32 32 16 128 64 128 .

N 9mN  9mN?  9m3N? N 9m3 N3 N 2Tm3N*\ (35)
64 64 128 64 128
9m  9Im3N?  9m3N3  9m3N?t\ 4
32 128 64 128 )¢

SHowever, as we discuss later, some of the fields and operators will hit the unitarity bound and decouple
along the RG flow.



and

( ) B 1 m 4 5mN  5mNZ2 4 9m3N2  9m3N?3 n 9m3 N4
A= 78 T Tea 64 128 64 128
_l’_

5m  mN  TmN?  9m3N?  9m3N3  2Tm3N?
(_32_ 6 32 1 e 1w >
ImMN  9mN?  9m3N2  9m3N3  27Tm3N%\ (36)
+(_ 64 64 128 ' 64 128 >
9n  9m3N?  9m3N3  9m3N?t\ 4
* (32_ 128 64 128 )

Upon maximizing a(e), we find that the IR R-charges and hence the IR dimensions of the
various operators so obtained are such that some of the gauge singlets and gauge invariant
operators in the theory decouple since they violate the unitarity bound R > % Hence,
these have to be removed from the interacting theory, giving us a corrected a-function [23].
In practice, what happens is that we have to repeat the above cycle of a-maximizing and
checking for possible decoupling of operators multiple times, until we reach a stage when
no gauge invariant fields/operators decouple any more.

For the quivers at hand, by explicitly computing for some low lying values of m and
N, we found that at the end of the RG flow, the following operators decouple: Tr(bé?,
V1<{<m-—1and 2 <k <min(N + 1,/N). Along with these the gauge singlet fields
M;, V1< j < N also decouple. Removing these from the interacting theory implies that
the corrected a-function that describes the IR fixed point is given by

Acorr (€) = 1378(7%—1) (—8+4N+3m(14+m)N?—6 (2+m+m?) N> 4+3m(1+m)N*)
—%(m—l)(H—SN) (4—8N =3 (4+m+m?) N +3m(1+m)N?) e o
b (moDN(LEN) (12 (124m-4m?) N4 3m(L+m)N?) ¢ |
—%(rml)(1+1\f)2 (—4—4N+m(1+m)N?) €,

while the corrected c-function is given by

Ceorr(€) = o= (m—1) (=16+20N +9m(1+m)N? - 18 (2+m+m?) N*+9m(1+m)N?)

———(m=1)(1+N)? (~4—4N +m(1+m)N?) . (3.8)

5 Also see [63-55] for a similar discussion about subtleties in 3d theories arising due to decoupling of

gauge invariant operators.
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The a-function given in (3.7) maximizes at € = 31&5’%) Substituting this back we find that

the IR central charges of the interacting theory are given by

_ (m—1)(=5—5N +2m(1+m)N?)
IR = 24(1+ N) ’
(m—1) (=2 —2N +m(1 +m)N?)

12(1+ N)

(3.9)

CIR =

These values match exactly with the central charges of the (A4;,—1, ANm—1) type Argyres-
Douglas theory given in (2.16). We therefore are tempted to conjecture that the above set
of theories experience SUSY enhancement and flow to the fixed points described by the
(Am—1, ANm—1) AD theories.

A crucial piece of evidence that supports our conjecture comes from matching the
spectrum of Coulomb branch operators of the afore-mentioned AD theories to the operator
spectrum of the theories obtained through the nilpotent deformation being described here.”
To see this notice that the Coulomb branch operators of the (A;,—1, Anm—1) AD theory
are given by the set {us; ; 2 <s<m, N+2<i<sN} with the dimension of us; being

1
N+1°
On the other hand in the Lagrangians being described here, the partial list of gauge invari-
ant chiral operators is given by {T‘rgb’zc ;2<0<m—-1, N+2<k<IN}U{M;; N+1<
j < Nm — 1}. The dimension of these operators at the IR fixed point can be easily

(3.10)

[US,Z'] =

computed by using the relation A = %RIR, which gives

k j+1
M=
We therefore see that [Trd)’g] and upy, V2</l<m—-2, N+2<k</{N are in one-to-one
correspondence, while M; corresponds to w,, ;.

[Trgy] = (3.11)

3.2 Lagrangian for (I, mk,S) theory

Another class of 4d N = 2 superconformal quivers that proved to show interesting be-
haviour upon nilpotent deformation is given as follows. The quiver consists of m — 1 gauge
nodes, with the ¢-th node carrying an SU(k{+1) gauge symmetry. There are bifundamental
hypermultiplets connecting the ¢-th node to the (¢+1)-th node. This causes the S-function
for the gauge coupling at each node, except the first and the last one, to vanish. In order
to make the S-function at the first and the last node to vanish, we then need to couple one
more fundamental hyper at the first node and mk + 1 fundamental hypermultiplets at the
last node. We can represent this theory using the quiver diagram as follows:

(1] (k+1)— 2k +1) — ... — (mk — k +1) —[mk + 1] (3.12)

This quiver gauge theory has an SU(mk + 1) x U(1)™ flavor symmetry.

In fact there exist theories with same central charges (a,c) but different Coulomb branch operator
spectrum: for example both (A2, As) and (A1, D1g) have (a,c) = (%, 2—65
5 5 3 3 7 10 11 4 13 14 5 16 17

9 .
branch operators are (3, 3,5, 5, 1,2, 3) and (5, 5,3, 5> 9 30 9 o) respectively.

), but the dimensions of Coulomb
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We now deform this quiver by coupling a chiral multiplet M transforming in the adjoint
representation of SU(mk + 1) via the superpotential term

SW = TeiM (3.13)

where [z is the moment map operator for the SU(mk+1) flavor symmetry in the undeformed
quiver. Upon studying the outcome of giving a nilpotent vev p : SU(2) — SU(mk + 1)
to M, we arrive at the conclusion that in this case also, the vev corresponding to the
principal embedding is the most interesting. The other choices generically give irrational
central charges at the end of the RG flow, therefore no SUSY enhancement occurs. We
thus focus on the principal embedding in the rest of this discussion.

The matter content of the theory obtained via this deformation (upon integrating out
the massive quarks along with removing the decoupled fields) is given in table 2. The broad
picture of what follows is same as the discussion in the previous subsection. The details
are of course different. The trial a and the c-functions of this Lagrangian gauge theory are

given by
(U k)m (5 4+ 9K m® 4 3KPm(0 + m) + k(10 + 9m)) ¢
0 (3.14)
+ 1728(1 + kym (=3 + k(7 — 3m) — k*(=9 + m)m + 3k*m?) €
- %87” (*1 + E'm? 4 3k(2 4+ m) + E3m(3 + 2m) + k2 (3 + 6m + m2)) e
and

1
(€)= 1ogm (119K m? 9k m(2m —3) + k(2Tm —44) +k? (17— 54m+9m?))

1
+ 35 (LK) (727K mP +9km(9-+m) 4k (53+27m) )

> (3.15)
+@(1+k)m (—3+k(7—3m) —k*(—9+m)m+3k*m?) €
_%m (—1+k4m2—|—3k(2+m)+k3m(3+2m)+k2 (3+6m—|—m2))53,

Repeating the cycle of a-maximizing and removing gauge invariant operators and fields
that hit the unitarity bound, we find that all of Tr¢}, V1 < <m—1,2<i<k+1,
hit the unitarity bound and decouple as free fields. At the same time, the gauge singlet
fields M;, 1 < j < k, also decouple. The a and the c-function describing the flow of the
interacting theory (after removing the free fields that decouple) are then given by

Georr(€) = %m (1+k(9m—14)+k* (9m—6m>—6) +3k* (m*—1) +3k* (2—6m+m?))
—%8(1+3k‘)m (=5+k—9km+3k* (m*—1) —3k* (3—3m+m?)) e

+%8(1+k:)m (=3=3k(1+m)+3k> (m*—1) —k* (11-9m+m?)) €

9
—@(1+k)2m(—1+k(—4+3m)+k2 (m*-1)) e, (3.16)
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fields | SU(k+1) | SU(kC+1) | SU(((+ Dk+1) | SU(m—Dk+1) | Jy | Jo
T ] 1 1 1 1 0
@ [ 1 1 1 1 0
Qu 1 (] [ 1 1 0
O, 1 ] ] 1 1 0
Um 1 1 1 L] 1 | —mk
m 1 1 1 O 1 | —mk
b 1 adj 1 1 0 2
M; 1 1 1 1 0 |2j+2

Table 2. Matter content for the “Lagrangian description” of the (I, mk,.S) theory. Here ¢ runs
from 1 to m — 2, while the index j in M; runs from 1 to mk. For the sake of brevity, we have not
included the flavor symmetries acting on the various bifundamental hypermultiplets.

and

Coone(€) = 3 (1L K(2Tm—34) 4Ok (m? —1) +9K? (2 6m-+m?) ~0k? (2~ 3m +2m?))

+%8m (T+k(34+27m) —27k* (m? = 1)+9k2 (24 6m+m?)+9k> (10— 9m+2m?) e

—i—%g(l—i—k:)m (—=3—3k(1+m)+3k> (m*—1) —k* (11-9m+m?)) €

—%8(1+k)2m(—1+k(—4+3m)+k2 (m*-1))é. (3.17)

The a-function given in (3.16) maximizes at € = gi—ié We thus find that the IR central

charges of the interacting theory are given by

m (1 + k(6m —5) + 2k* (m* — 1))

arg = AT ’
m (1+ k(3m —2) + k2 (m2 — 1)) (3.18)
CIR = BT F) .

These match perfectly with the central charges of the (Ijmk,S) type AD theory given
in (2.21).

Let us now compare the operator spectrum of the two theories. The Coulomb branch
operators of the (I ;k,S) theory are given by {ug; ; 2 <€ <m, k+2 <i < lk+1}.
Their respective dimensions are '

[uei] = %H (3.19)
Meanwhile, the IR spectrum of chiral operators of the Lagrangian described here contains
the following operators: {Trd)@, 2<t<m—-1, k+2 <i <Lk+1}U{M;, k+1 < j < mk}.
Their respective IR dimensions are

[Trgp] = ———, [Mj] = 7——. (3.20)
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It is straightforward to see that Trgb@ corresponds to uy; while M; corresponds to ty, jy1.
This uncanny match of the spectra in the two theories provides further credence to our
conjecture.

4 AD theories from quivers with SO/Sp gauge groups

In addition to quivers with unitary gauge groups, we can also consider 4d N = 2 quiv-
ers with symplectic and orthogonal gauge groups. These too show some very interesting
behaviour under N/ = 1 nilpotent deformations. In the following, we describe in detail
our analysis of these quivers: they consist of alternating symplectic and orthogonal gauge
groups with half-hypermultiplets transforming in the bi-fundamental representation of the
gauge symmetry associated to any two consecutive pair of nodes.

The first class of quivers we are interested in starts with a node with Sp(/N) gauge sym-
metry. The next node then carries SO(4N +4) gauge symmetry. We can now continue this
chain by making sure that we add enough fundamental hypermultiplets at each gauge node
to make its -function vanish. Depending on the type of the last gauge node, the flavor sym-
metry carried by the quiver will either be described by an orthogonal or a symplectic group.

Alternatively, we can choose the first node of the quiver to be SO(N). The next node
is then given by Sp(N — 2) and so on. Once again, depending upon the choice of last
gauge node, the flavor symmetry of the quiver will be described by an orthogonal or a
symplectic group.

We find that when the quivers carry a symplectic flavor group, the A/ = 1 nilpotent
deformations do not seem to show any interesting feature: the central charges are mostly
irrational, which leads us to believe that these cannot have SUSY enhancement. Once in a
while it happens that the central charges do become rational, however these cases do not
seem to follow any fixed pattern, and neither were we able to match their central charges
with those of any known A = 2 theories: we conjecture that there is no SUSY enhancement
in these cases. This is consistent with the conjectures of [14].

However, it turns out that when the flavor group of the quiver is of Dy = SO(2N)
type, then the nilpotent deformation corresponding to the principle nilpotent orbit always
gives an interacting IR theory with rational central charges.

4.1 Lagrangian for (A2m—1, D2anm+1) theory

Let us consider a quiver with m gauge nodes carrying a symplectic gauge group and m — 1
nodes carrying an orthogonal gauge group. The beginning gauge node of the quiver is cho-
sen to be Sp(IV) while the k-th symplectic gauge node is given by Sp(2kN — N). Meanwhile
the k-th orthogonal gauge node carries SO(4Nk + 2) gauge symmetry. The S-function at
each gauge node vanishes except for the gauge node at the beginning of the quiver. To
make the gauge coupling at this node marginal, we add 2 half-hypermultiplets transform-
ing in the fundamental representation of the Sp(/N) gauge symmetry. Thus the total flavor
symmetry of the quiver is given by SO(2) x SO(4mN + 2). This quiver can be drawn
as follows:

SO(2) |-Sp(N)—SO(4N +2)—Sp(3N) — ... — Sp(2mN — N) — (4.1)
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As has been the theme of this paper, we now consider N' = 1 nilpotent deformations of
this quiver by coupling a gauge singlet chiral superfield M. Here M is chosen to transform in
the adjoint representation of the SO(4mN +2) flavor symmetry of the quiver. We now turn
on vevs (M) = p given by nilpotent orbits of SO(4mN+2), that is p : SU(2) — SO(4mN+2),
and analyse the data at the IR fixed point of this deformed quiver. Once again, the most
interesting case turns out to be when p corresponds to the principal nilpotent orbit of
SO(4mN + 2). The matter content of the Lagrangian obtained via this deformation, is
summarized in table 3. For this deformation, the central charges of the interacting theory
(obtained after decoupling all operators and fields that hit the unitarity bound) at the fixed
point are always rational and are given by the following functions of m and V:
24m*N + 32m*N? —5(1 +2N) + m (5 — 5N — 8N?)

24 4 48N ’
—1—2N +6m?N +8m*N? —m (-1 + N + 2N?)
6+ 12N ’

Meanwhile, the spectrum of this SCFT will contain the following chiral operators as a

alR =
(4.2)

CIR =

subset:

{ng’;,g; 1<(<m, N+1§kz§2N£fN} U

{Tr¢%’67,5; 1<f<m-1, N+1§k§2N€} U

{Pfpsoe; 2<tl<m—1} U (43)
{szgkfl N N+1 S k‘ S 2mN}U
{Mj:QmN ; Ifm> 1} ,
with their corresponding dimensions being
2k
[TW%]S,Z] = [TW%’B,Z] “ONT1
2Nl +1
Pf = — 4.4
[Pféso,] NI’ (4.4)
e J+1
AN 41

Here ¢gp ¢ is the adjoint chiral multiplet associated to the /-th symplectic gauge node.
Similarly, ¢so ¢ is the adjoint chiral multiplet associated to the ¢-th orthogonal gauge node
and M; are gauge singlets forming the bottom most component of the spin-j representation
with respect to the SU(2) embedding specified by p.

Based on the trend so far, it wouldn’t be unreasonable to expect that the CFT at
this fixed point has enhanced supersymmetry with (4.3) giving the spectrum of Coulomb
branch operators. This is definitely true when m = 1. In that case the above data matches
that for the (A1, Dan—1) AD theory and the N/ = 1 Lagrangian theory being described
here coincides with that described in [14].

As a more non-trivial example, consider the case when N = 1 and m = 2. The quiver
in (4.1), then becomes

SO(2)| - Sp(1) = SO(6) — Sp(3) —[SO(10) | (4.5)
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fields | Sp(2kN — N) | SO(4Nk+2) | Sp(2kN + N) | Sp(2mN — N) | Jy J_
Qr ] L] 1 1 1 0
Q) 1 L] L] 1 1 0
¢, 1 1 1 L] 1 0
Im 1 1 1 L] 1 | —4mN
Psp k 1 adj 1 1 0 2
?30.k 1 1 adj 1 0 2
Mj—9 1 1 1 1 1 0| 2j+2
M sy 1 1 1 1 0 | 4mN +2

Table 3. Matter content for the “Lagrangian description” of the (Aspm—1, Damn+1) theory. For
the sake of brevity, we have not shown the SO(2) flavor symmetry under which ¢ transforms as
a doublet. Here k runs from 0 to m — 1. At k = 0, SO(4Nk + 2) — SO(2), which is the flavor
symmetry of the theory. The index ¢ in M;—_2,—1 runs from 1 to 2mN.

Deforming this quiver in the manner described here, one can easily verify that (4.3) will
give us a set of 7 chiral operators of dimensions

4 4 45
777>77772721§ .
3’333 3

This is identical to the list of Coulomb branch operators of the (As, Ds) theory given
in (2.25). In fact, we checked that the operators listed in (4.3) are in one-to-one correspon-
dence with the set of Coulomb branch operators of the (Asy,—1, Damn+1) AD theory. The
central charges also agree with that of the above AD theories. We therefore conjecture that

(4.6)

N =1 preserving principal nilpotent deformations of the quiver in (4.1) trigger an RG flow
that brings the theory to the fixed point described by the (Agy—1, Doapmn41) AD theory.

4.2 Lagrangian for (Azm, Dm(N—2)+%) theory

Let us now consider the quiver gauge theory where the left-most node carries SO(NV) gauge
symmetry and containing a total of 2m gauge nodes, with m of them carrying orthogonal
gauge symmetry and m of them carrying symplectic gauge symmetry. It can be represented
by the following quiver diagram:

SO(N) — Sp(N — 2) — SO(3N — 4) — Sp(2N — 4) —

(4.7)
... = Sp(m(N - 2)) —[SO(2m(N —2) + N)|

The flavor symmetry of the quiver is then given by SO(2m(N — 2) + N).

Now we subject these quivers to A/ = 1 preserving nilpotent deformations, as was done
in the previous sections. We find that the interacting theory at the IR fixed point always has
rational central charges when the vev of the gauge singlet field M corresponds to the prin-
cipal nilpotent orbit of SO(2m (/N —2)+ N) and N is an even number greater than or equal
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to 4. The central charges for the IR theory are given by the following functions of m and N:
m (4 +16m*(N —2)? — 13N +8N? + 24m (2 — 3N + N?))

aiR =

48(N — 1) ’
2 2 9 (4.8)
~ m(4m*(N —2)> + N(=3+2N) +6m (2 — 3N + N?))
e 12(N — 1) :
At this fixed point, the spectrum will necessarily contain the following chiral operators:
N
{Trqﬁ%’;,e; 1<t<m, 2Sk§(N—2)E} U
2% N
Trgpsh,; 1<0<m, —<k<(N-2){——+1, U
’ 2
(4.9)
{Pf¢so,e ;2</(< m} U
N N-=-2)2m+1
{MJ(N—Q)m+N/2—17 Mj=2k—1 ; 5 <k< ( )é )} ,
The respective IR dimensions of these operators are given by
2k
[ngg,é] = [Tr¢%]6,e] T N_1’
(2N —4)f{ — N + 4
Pf = 4.10
[Pf¢so,] 5N 3 , (4.10)
Jj+1
M;] = )
[ ]] N —1

The data given above satisfies the relation given in (2.12), thereby providing a non-trivial
consistency check for our conjecture that the A/ = 1 principal nilpotent deformation of
this quiver theory leads to an N'= 2 SCFT in the IR. In fact we checked that in all cases
that we considered the above, the list of operators given in (4.10) is in one-to-one corre-
spondence with the spectrum of Coulomb branch operators of the (Ag,, Dm( N-2)+ X ) AD
theory. The central charges (4.8) also agree with that of these AD theories. We therefore
conjecture that the IR fixed point of our N’ = 1 deformed quiver theory is described by
the (Aam, Dm(N—2)+%) AD theory.

An interesting observation is that when N = 4, i.e. the starting node of the quiver has
SO(4) gauge symmetry, we have

1
AR = CIR = m (4m* 4+ 9m +5) . (4.11)

Had we not been able to identify the IR theory, we might have wondered if the correspond-
ing fixed points are actually some N = 3 or N' = 4 theories, given that the two central
charges become equal [56]. However, it is easy to exclude these possibilities. First of all,
in all known 4d N = 4 theories the central charges are such that 4a is integral, while this
is not the case for the values listed in (4.11) for generic m. Even if the central charges
in (4.11) do become integral when m is 9k or 9k £ 1, their putative Coulomb branch will
contain operators with non-integral dimension: this is in contradiction with the fact that
all the Coulomb branch operators in N' = 4 theories have integer dimension. Also, in
all the known N = 3 theories as constructed in [57], the Coulomb branch operators have
integer dimensions [50]. Therefore these couldn’t have been N = 3 fixed points either.
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4.3 Lagrangian for nggigg [m] theory

Finally, let us consider the quiver gauge theory starting with Sp(V) gauge symmetry and
containing a total of 2m — 1 gauge nodes, of which m — 1 nodes carry an orthogonal gauge
group and m nodes carry a symplectic gauge group. It can be represented as the following
quiver diagram:

Sp(N) — SO(4N +4) — Sp(3N 4 2) — SO(8N + 8) —
<. = 8p((m = 1)(2N +2) + N) = |SO((4N + 4)m))|

(4.12)

The flavor symmetry of this theory is given by SO((4N + 4)m).

We now consider the N’ = 1 deformation of this theory obtained by coupling a chiral
superfield M transforming in the adjoint representation of the flavor symmetry. This is
done by adding the usual superpotential term given by

oW =TrMpy, (4.13)

with p being the moment map operator for the SO((4N+4)m) flavor symmetry, and turning
on the nilpotent vev specified by p : SU(2) < SO((4N +4)m). When p corresponds to the
principal embedding, we find that after removing all the operators and fields that decouple
along the RG flow, the interacting fixed point has rational central charges which can be
written as the following functions of N and m:

m (32(m — 1)2(1 + N)? + N(19 + 24N) + 8(m — 1) (5 + 13N + 8N?))
72 4+ 48N ’
m (=2 —5N —2N? — 6m(1 + N) + 8m?(1 + N)?)
18 + 12N ‘

airR =
(4.14)

CIR =

Given our past experience that whenever an A/ = 1 nilpotent deformation consistently
gave rational central charges, the RG flow always brought the theory to a fixed point with
enhanced supersymmetry of Argyres-Douglas type, we believe that this must be true also
in the present cases.

Another reason to believe this is the fact that when m = 1, the above central charges

become
N(19 + 24N)
AR = ——i oo >
72 + 48N (4 15)
o _N(G+6N) ‘
R~ 981 12N -

These are the central charges of the (Aj, Asn) theory, with the m = 1 case having been
already studied in [13]. We therefore believe that the above fixed points must correspond
to some generalization of (Aj, Aon) theories. After removing all the operators and fields
that hit the unitarity bound, we find that the spectrum of chiral operators contains the
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following operators as a subset:

{Trd%lf),e; 2<0<m, N+2§k§(2N+2)(€_1)+N} -

{Trodh s 1<0<m—1, N+2<k<@N+2)0-1} U

{Pfgsor; 2<€<m—1} U (4.16)

{Mj:2k+1 i N+1<Ek< (2N+2)m—2}u
{M;_ontoym—1; Em>1},
where we follow the same conventions for ¢gp ¢, $s0 ¢ and M; as in the previous subsection.
Once again, based on our experience, we expect that the above operators will be in

one to one correspondence with the Coulomb branch operators of the N' = 2 theory that
our fixed point corresponds to. Their respective dimensions are given by

2k
(Trdh ] = [Tr086,) = 57— -
2N + 2)¢
[Pfpso.] = (2N+3) , (4.17)
[‘%:j+1
JHON 437

If this point has enhanced N/ = 2 supersymmetry with the Coulomb branch operators given
as above, it has to satisfy the relation given in (2.12). We find that this is indeed true at
the above fixed point.

In fact in all the cases we checked, the list of operators given in (4.17) is in one-to-
one correspondence with the spectrum of Coulomb branch operators of the D:gﬁig [m]
AD theory introduced in [9]. The central charges (4.14) also agree with that of these AD
theories. We therefore conjecture that the IR fixed point of our A/ = 1 deformed quiver
theory is described by the Dgg%ig [m] AD theory.

5 Conclusion

As a natural continuation of the works [12-14], in this paper we studied particular N' = 1
preserving deformations of a class of AV = 2 superconformal quiver gauge theories labelled
by the SU(2) embedding p into the (subgroup) of the flavor symmetry. More precisely, the
quiver theories we considered are built out of SU nodes (quivers in (1.3)) or alternating
SO — Sp nodes (quivers in (1.4), (1.5), (1.6)). When p corresponds to a non-principal
embedding, we found that these deformations seem to lead in general to N'=1 SCFTs in
the IR; although it may be possible that at least some of these N' =1 SCFTs are already
known in the literature, stating a precise relation is quite hard at the moment. On the other
hand, when p is chosen to be the principal embedding, the N’ = 1 deformation triggers an
RG flow to IR superconformal theory with enhanced N = 2 supersymmetry of Argyres-
Douglas type. This led us to find UV Lagrangian descriptions for the AD theories of
type (Ak—luAmk—1)7 (Im’mk,S), (Agm_l,DgNerl), (A2m,Dm(N,2)+%) (fOl" N even) and

D::((;x:j; [m]. Interestingly, as already observed in [12-14] N' = 2 SUSY enhancement
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seems to happen only when the flavor group of the Lagrangian UV theory is of ADE type;
however at the moment we don’t have a clear understanding of why this should be the case.

The N' = 2 quiver gauge theories we “N = 1 deformed” to obtain AD theories have
one feature in common. Their associated chiral algebras (in the sense of [36]) satisfy the

Sugawara relation:

kogdimG g
=20 5.1
C2d Y (5.1)
Here coqg = —12¢4q and koy = —%k4d with k4gq being the flavor central charge associated

to the flavor symmetry Gp. For the SU(n) quiver theories that have U(1) factors, we also
need to sum up these contributions (coq = 1 for each U(1)’s). This is consistent with the
conjecture made in [14]. We also find that the flavor central charge is strictly above the
bound k4q > kpounq of [36, 58] (except when there is only one gauge factor in the quiver).
This is also consistent with the conjecture that only the principal nilpotent vev will trigger
a SUSY enhancing flow unless the bound is saturated.

There are a number of open questions and interesting directions yet to be explored. An
immediate application is to use our Lagrangian descriptions to compute the superconformal
index or other supersymmetric partition functions for the Argyres-Douglas theories we
found in this paper. The Schur index for the (Ax_1, Api—1) and (L mk, S) theory has
been recently obtained in [29]. It should be possible to compare directly with this result
and also give a further prediction of the full index. Moreover, we can give a prediction
for the indices of (Ay—1, Danm+1), (A2m, Dm(N_Q)Jrg) and ngxigi [m] theories. The IR
computation of the Schur index along the line of [SST will provide an independent check.

It would also be important to look for more examples, i.e. to study deformations of
a larger class of Lagrangian theories. An exciting possibility would be to find additional
IR non-Lagrangian SCFTs with a = c¢ like the ones we obtained in section 4, but with
enhanced N' = 3 or N' = 4 supersymmetry, although it is not yet clear to us if this is
possible by using this kind of N/ = 1 deformations. In any case, having more examples
will also hopefully lead us to understand which Lagrangian theories will have a chance to
flow to an AD theory, or to some other interesting non-Lagrangian SCFTs; this is related
to the problem of better understanding the mechanism at work in the A/ = 1 deformation
introduced in [12—-14], which is still rather mysterious. It will also be interesting to explore
these RG flows using the methods developed in [59, 60].

Another direction would be to understand how and if S-duality of N = 2 quiver theories
can be related to S-duality for the AD theories obtained after the N' = 1 deformation. We
are currently investigating this point.

Finally, it would be very interesting to study the reduction of our four-dimensional
quiver Lagrangian theories to three dimensions along the lines of [24, 25], which would have
an implication on the 3d mirror symmetry. It should be possible to push the dimensional
reduction further to two dimensions along the lines of [32, 42, 61-64].

We hope to be able to address some of these points in the near future.
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