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1 Introduction

Extensive studies of the Sachdev-Ye-Kitaev (SYK) model [1–6] have revealed several fasci-

nating features of this solvable large-N model. Perhaps the most important property is its

quantum chaotic behavior [4–6] that makes it a promising, but still somewhat mysterious,

candidate for a holographic dual of AdS2 quantum gravity [7–16]. The model develops an

emergent (approximate) reparametrization symmetry at low energy [6, 17–19] that is also

present in dilaton gravity theories on AdS2 [6, 20–23]. It has intimate relations with well-

studied random matrix models [6, 18, 24–32], it further boosts the study of a different type

of the large-N limit [33–48], and it is closely related to vector models [49]. The SYK model

can be generalized to include extra symmetries [50] or to live in higher dimensions [51–56].

Of course, the model is also of great interest in condensed matter physics [51, 54, 57–67].

Other related recent work can be found in [68–83].

In particular, supersymmetric extensions of the SYK model have been constructed

in [84], and a supersymmetric SYK-like model without a random coupling has been pro-

posed in [41]. Aspects of supersymmetric SYK models have also been studied in [31, 50,

85, 86]. In this paper, we study the correlation functions of the N = 2 supersymmetric

SYK model proposed in [84]. One nice feature of the N = 2 model, compared to its N = 1
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cousin, is that the supersymmetry is preserved not only in the large-N limit, but also for

finite N [84].

In section 2 we review the N = 2 model, which has a few new technical features

compared to the N = 1 theory. In section 3 we discuss the fact that in contrast to both the

fermionic SYK model studied in [4–6] and the N = 1 supersymmetric model studied in [84],

the computation of 4-point functions in the N = 2 model requires both antisymmetric and

symmetric conformal eigenfunctions, which we work out. In section 4 we compute the

4-point functions and see another difference: divergences in 4-point functions arise from

the exchange of a full N = 2 supermultiplet. This N = 2 supermultiplet presumably

leads to a super-Schwarzian effective action due to the breaking of conformal symmetry

in the infared. While these new features were anticipated [84], we provide some concrete

computations to confirm them. Finally in section 5 we briefly comment on the operator

product expansion (OPE) between operators that are bilinear in the fundamental fields.

These OPE coefficients may be extracted from our 4-point function results in a manner

almost identical to the analysis of [32].

Note added. As we were preparing this work for submission we became aware of other

work [87, 88] on supersymmetric SYK models. Among many other things, the paper [87]

studies the correlation functions of the N = 1 supersymmetric SYK model using the

formalism of a real superfield. In this work we focus on the N = 2 supersymmetric SYK

model which could be constructed using a complex superfield, although we use component

fields. Our paper therefore also overlaps with the newly appearing paper [89] on the SYK

model with complex fermions.

2 The operator spectrum

In this paper we study the N = 2 supersymmetric SYK model of [84]. We begin in this

section by supplying some details about the spectrum of this model that were not given

explicitly in [84]. The model describes N complex fermions ψi in 1+0 dimensions governed

by the Lagrangian

L = iψ̄i∂ψi − b̄ibi + i
q−1

2 Cij1...jq−1 b̄iψj1 . . . ψjq−1 + i
q−1

2 C̄ij1...jq−1biψ̄j1 . . . ψ̄jq−1 , (2.1)

where b is a complex bosonic auxiliary field, q is an odd integer (so that the Lagrangian

is bosonic), and Ci1···iq is a random complex coupling drawn from a Gaussian distribution

with

〈Cii...iq C̄ii...iq〉 =
(q − 1)! J

N q−1
. (2.2)

We are interested in the large-N limit, with J held fixed.

2.1 2-point functions

We begin by considering the 2-point functions

Gψ(τ12) =
1

N

N∑
i=1

〈ψi(τ1)ψ̄i(τ2)〉 , Gb(τ12) =
1

N

N∑
i=1

〈bi(τ1)b̄i(τ2)〉 (2.3)
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in Euclidean time τ , where we use τij = τi − τj . The complex conjugate 2-point functions,

obtained by replacing ψ ↔ ψ̄ and b↔ b, evidently satisfy

Gψ̄(τ) = −Gψ(−τ) , Gb̄(τ) = Gb(−τ) . (2.4)

In the IR limit, the Schwinger-Dyson equations relating the 2-point functions to the cor-

responding self-energies read

Σψ(τ12) = (q − 1)JGb(τ12)
(
Gψ̄(τ12)

)q−2
, (2.5)

Σb(τ12) = J
(
Gψ(τ12)

)q−1
, (2.6)

−δ(τ13) =

∫
dτ2G

ψ(τ12)Σψ(τ23) , (2.7)

−δ(τ13) =

∫
dτ2G

b(τ12)Σb(τ23) , (2.8)

together with their complex conjugates. Taking the ansatz

Gb(τ12) =
bb

|τ12|2∆b
, Gψ(τ12) =

bψ sgn(τ12)

|τ12|2∆ψ
, (2.9)

the solution is found to be [84]

∆ψ =
1

2q
, ∆b =

1 + q

2q
, bψ =

(
tan π

2q

2πJ

)1/q

, bb =
1

q

(
tan π

2q

2πJ

)1/q

. (2.10)

From these results and the relation (2.4) we see that

Gψ(τ) = Gψ̄(τ) , Gb(τ) = Gb̄(τ) . (2.11)

2.2 The diagonal 4-point kernel

In the large-N limit, the connected 4-point functions are dominated by ladder diagrams.

This will be the topic of section 4; here we only need to recall that these can be gen-

erated iteratively by repeated convolution with an appropriate integral kernel. The ker-

nels of the different types of 4-point functions can be worked out straightforwardly. For

〈ψi(τ1)bi(τ2)ψ̄j(τ3)b̄j(τ4)〉 the kernel is (see figure 1)

Kd = J(q − 1)Gψ(τ14)Gb(τ23)
(
Gψ(τ34)

)q−2
, (2.12)

where the factor of q − 1 arises from the (q − 1)! in (2.2) divided by a symmetry factor

(q − 2)!. The superscript “d” indicates that this kernel is diagonal in the sense that the

directions of the arrows on the left and right sides of the kernel match. This means it can

be iterated directly to build ladder diagrams with arbitrarily many rungs. The operators

running in the OPE channel of this kernel take the schematic form ψi∂
nbi, and have U(1)

charge 1
q + q−1

q = 1.

There is another kernel which is almost the same as this, but with all fields replaced

by their conjugates. We could call this K d̄, but it follows from eq. (2.11) that K d̄ = Kd.

– 3 –
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Figure 1. Kernel of the 〈ψi(τ1)bi(τ2)ψ̄j(τ3)b̄j(τ4)〉 correlation. Iterating this kernel generates all

ladder diagrams, which dominate the large-N limit of the connected 4-point function.

This simply means that there is another set of conjugate operators ψ̄i∂
nb̄i with the same

dimensions as the ones corresponding to the kernel Kd.

In the conformal limit the kernel becomes simply

Kd
c (τ1, τ2; τ3, τ4) =

α sgn(τ14) sgn(τ34)

|τ14|1/q|τ34|(q−2)/q|τ23|(1+q)/q
, (2.13)

where

α =
q − 1

q

tan( π2q )

2π
. (2.14)

Next we consider the kernel convolution eigen-equation

k f(τ1, τ2) =

∫
dτ3 dτ4K(τ1, τ2; τ3, τ4)f(τ3, τ4) , (2.15)

which for a generic kernel admits both symmetric and antisymmetric eigenfunctions

f(τ1, τ2). We will denote the symmetric and antisymmetric eigenvalues of the kernel (2.13)

by ks,dc and ka,dc , respectively. Here, and in all that follows, the superscripts “s” and “a”

stand respectively for symmetric and antisymmetric, the subscript “c” reminds us that we

are working in the conformal limit, and the superscript “d” indicates that these are the

eigenvalues of the diagonal kernel Kd.

As described in section 3.2.3 of [6], conformal invariance effectively allows the eigen-

values to be determined simply by

ks,dc =

∫
dτ3 dτ4K

d
c (1, 0; τ3, τ4)

1

|τ34|∆ψ+∆b−h
, (2.16)

ka,dc =

∫
dτ3 dτ4K

d
c (1, 0; τ3, τ4)

sgn(τ34)

|τ34|∆ψ+∆b−h
(2.17)

in terms of a conformal weight h. Note that in this case the two outgoing lines are a boson

and a fermion, so we use ∆ψ + ∆b − h in the eigenfunction instead of 2∆ψ − h as in [6].

Plugging in eqs. (2.9) and (2.10), the eigen-equations become

ks,dc = α

∫
dτ3 dτ4

sgn(1− τ4)

|1− τ4|1/q |τ3|(1+q)/q

sgn(τ34)

|τ34|
3q−2

2q
−h

(2.18)

ka,dc = α

∫
dτ3 dτ4

sgn(1− τ4)

|1− τ4|1/q |τ3|(1+q)/q

1

|τ34|
3q−2

2q
−h

. (2.19)
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Figure 2. Kernels of the 〈ψi(τ1)ψ̄i(τ2)ψj(τ3)ψ̄j(τ4)〉, 〈ψi(τ1)ψ̄i(τ2)bj(τ3)b̄j(τ4)〉, 〈bi(τ1)b̄i(τ2)

ψj(τ3)ψ̄j(τ4)〉 and 〈bi(τ1)b̄i(τ2)bj(τ3)b̄j(τ4)〉 correlation functions. Iterating these kernels to build

ladder diagrams amounts to 2× 2 matrix multiplication.

Using the integrals tabulated in appendix A one finds that the eigenvalues are given by

ks,dc (h) =
απ2 cos

(
π( q+2

4q −
h
2 )
)
Γ
( q+2

2q − h
)

sin
(
π
2q

)
Γ
(

1
q

)
cos
(π(1+q)

2q

)
Γ
(1+q

q

)
sin
(
π(3q−2

4q −
h
2 )
)
Γ
(3q−2

2q − h
) , (2.20)

ka,dc (h) =
απ2 sin

(
π( q+2

4q −
h
2 )
)
Γ
( q+2

2q − h
)

sin
(
π
2q

)
Γ
(

1
q

)
cos
(π(1+q)

2q

)
Γ(1+q

q ) cos
(
π(3q−2

4q −
h
2 )
)
Γ
(3q−2

2q − h
) . (2.21)

These expressions are easily seen to be in complete agreement with eq. (6.2) of [84].

2.3 The non-diagonal 4-point kernels

It is similarly easy to work out kernels corresponding to pairs of bosons or fermions on the

same side of the ladder. These kernels have the property that the two legs on the left are

different than the two legs on the right, so adding any additional such rung to a ladder will

change the “end” of the latter. These kernels are therefore assembled into a 2 × 2 matrix,

as illustrated in figure 2.

The entries of this kernel matrix Kij are

K11 = J
(q − 1)!

(q − 3)!
Gψ(τ14)Gψ̄(τ23)Gb̄(τ34)

(
Gψ(τ34)

)q−3
, (2.22)

K12 = J
(q − 1)!

(q − 2)!
Gψ(τ14)Gψ̄(τ23)

(
Gψ(τ34)

)q−2
, (2.23)

K21 = J
(q − 1)!

(q − 2)!
Gb̄(τ14)Gb(τ23)

(
Gψ(τ34)

)q−2
, (2.24)

with K22 = 0 since there is no connected contribution to 〈bi(τ1)b̄i(τ2)bj(τ3)b̄j(τ4)〉. We now

repeat the computation of eqs. (2.16) and (2.17) to find the eigenvalues kij of the three

Kij . In the conformal limit we have from eqs. (2.9) and (2.10) that

K11
c =

(q − 2)α sgn(τ14) sgn(τ23)

|τ14|1/q|τ34|(q−3)/q|τ34|(q+1)/q|τ23|1/q
,

K12
c =

qα sgn(τ14) sgn(τ23) sgn(τ34)

|τ14|1/q|τ34|(q−2)/q|τ23|1/q
, (2.25)

K21
c =

α
q sgn(τ34)

|τ14|(1+q)/q|τ34|(q−2)/q|τ23|(1+q)/q
.
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As in the diagonal case, the eigenfunctions can be either symmetric or antisymmetric, and

we compute them separately.

Here it is important to clarify that we call a 2-component eigenfunction of the kernel

matrix “symmetric” or “antisymmetric” according to the symmetry property of only the

first, fermionic component. The second, bosonic component must have the opposite sym-

metry, since the off-diagonal kernel entries K12
c and K21

c are odd under a simultaneous flip

of τ1 ↔ τ2 and τ3 ↔ τ4.

To find the antisymmetric eigenvalues we therefore consider a 2-component trial eigen-

function of the form (
sgn(τ34)

|τ34|
1
q
−h

1

|τ34|
q+1
q
−h

)
. (2.26)

As in the previous subsection the powers in the denominator are taken in consideration

of the dimensions of the free legs in the associated kernel diagram, in this case 2∆ψ and

2∆b, respectively. When acting on a vector of this form, we find that the kernel has the

non-zero matrix elements

ka,11
c =

−(q − 2)απ2 sin
(
π( 1

2q −
h
2 )
)
Γ
(

1
q − h

)
sin
(
π
2q

)2
Γ
(

1
q

)2
sin
(
π(2q−1

2q −
h
2 )
)
Γ
(2q−1

q − h
) , (2.27)

ka,12
c =

−qα π2 sin
(
π( 1

2q −
h
2 )
)
Γ
(

1
q − h

)
sin
(
π
2q

)2
Γ
(

1
q

)2
sin
(
π(2q−1

2q −
h
2 )
)
Γ
(2q−1

q − h
) , (2.28)

ka,21
c =

α
q π

2 cos
(
π( q+1

2q −
h
2 )
)
Γ
( q+1

q − h
)

cos
(
π q+1

2q

)2
Γ
( q+1

q

)2
cos
(
π( q−1

2q −
h
2 )
)
Γ
( q−1

q − h
) . (2.29)

The two eigenvalues of the 2× 2 matrix ka,ijc can be represented as1

ka,±(h) = ∓
Γ
(
2− 1

q

)
Γ
(
1− h

2 −
1
2q

)
Γ
(

1
2q + h

2

)
Γ
(

1
2 − h+ 1

q ∓
1
2

)
Γ
(
1 + 1

q

)
Γ
(
1 + h

2 −
1
2q

)
Γ
(

1
2q −

h
2

)
Γ
(

3
2 − h−

1
q ∓

1
2

) . (2.30)

It can be checked that

ka,+c

(
h− 1

2

)
= ka,dc (h) and ka,−c

(
h+

1

2

)
= ks,dc (h) , (2.31)

in accord with the statement on page 30 of [84].

Similarly, to find the symmetric eigenvalues we act with the kernel on(
1

|τ34|
1
q
−h

sgn(τ34)

|τ34|
q+1
q
−h

)
(2.32)

1The eigenvalues can also be represented as k̃a,±c = 1
2
ka,11
c ±

√
1
4
(ka,11
c )2 + ka,12

c ka,21
c . We caution the

reader that although the sets {k̃a,+c , k̃a,−c } and {ka,+c , ka,−c } are the same for all h, it is not true that

k̃a,±c = ka,±c for all h.

– 6 –
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to find the matrix elements

ks,11
c =

(q − 2)απ2 cos
(
π( 1

2q −
h
2 )
)
Γ
(

1
q − h

)
sin
(
π
2q

)2
Γ
(

1
q

)2
cos
(
π(2q−1

2q −
h
2 )
)
Γ
(2q−1

q − h
) , (2.33)

ks,12
c =

qα π2 cos
(
π( 1

2q −
h
2 )
)
Γ
(

1
q − h

)
sin
(
π
2q

)2
Γ
(

1
q

)2
cos
(
π(2q−1

2q −
h
2 )
)
Γ
(2q−1

q − h
) , (2.34)

ks,21
c =

−α
q π

2 sin
(
π( q+1

2q −
h
2 )
)
Γ
( q+1

q − h
)

cos
(
π 1+q

2q

)2
Γ
(1+q

q

)2
sin
(
π( q−1

2q −
h
2 )
)
Γ
( q−1

q − h
) , (2.35)

and the corresponding eigenvalues (footnote 1 applies again)

ks,±c (h) = ∓
Γ
(
2− 1

q

)
Γ
(

1
2 −

h
2 −

1
2q

)
Γ
(

1
2 + h

2 + 1
2q

)
Γ
(

1
2 − h+ 1

q ∓
1
2

)
Γ
(
1 + 1

q

)
Γ
(

1
2 + h

2 −
1
2q

)
Γ
(

1
2 −

h
2 + 1

2q

)
Γ
(

3
2 − h−

1
q ∓

1
2

) . (2.36)

Notice that

ks,+c

(
h− 1

2

)
= ks,dc (h) and ks,−c

(
h+

1

2

)
= ka,dc (h) , (2.37)

again in accord with [84].

It should not be a surprise to have found in eq. (2.31) that ka,−c can be related to ks,dc
instead of to ka,dc : this is a consequence of the different symmetry properties of the two

entries in (2.26). The relation (2.37) between ks,−c and ka,dc occurs for the same reason.

For a given kernel K, the dimensions of the operators running in the OPE channel

of K are the values of h for which the eigenvalue(s) of K satisfy k(h) = 1. From the

relation (2.31) between the diagonal and non-diagonal 4-point kernels, it is natural to expect

that operators whose dimensions arise from the ka,+c (h), ka,dc (h) and ks,−c (h) eigenvalues

assemble into a tower of N = 2 supermultiplets with dimensions
{
h − 1

2 , h, h + 1
2

}
. For

example, for q = 3 we have

ka,+c (h) = 1 ⇒ ha,+m = 1, 3.0659, 5.09488, 7.11311, 9.12623, . . . (2.38)

ka,dc (h) = 1 ⇒ ha,dm = 1.5, 3.5659, 5.59488, 7.61311, 9.62623, . . . (2.39)

ks,−c (h) = 1 ⇒ hs,−m = 2, 4.0659, 6.09488, 8.11311, 10.1262, . . . (2.40)

in agreement with eq. (6.3) of [84]. These eigenvalues and dimensions are shown in figure 3a.

Similarly, the dimensions from the ks,+c (h), ks,dc (h) and ka,−c (h) eigenvalues comprise a

second tower of N = 2 supermultiplets. The dimensions of these eigenvalues at q = 3 are

ks,+c (h) = 1 ⇒ hs,+m = 1, 2.82114, 4.74091, 6.69332, 8.66092, . . . (2.41)

ks,dc (h) = 1 ⇒ hs,dm = 1.5, 3.32114, 5.24091, 7.19332, 9.16092, . . . (2.42)

ka,−c (h) = 1 ⇒ ha,−m = 2, 3.82114, 5.74091, 7.69332, 9.66092, . . . (2.43)

again in agreement with [84]. These eigenvalues and dimensions are shown in figure 3b.
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(a) The red, orange and yellow curves rep-

resent the eigenvalues ka,+c (h), ka,dc (h) and

ks,−c (h) respectively.
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(b) The magenta, cyan and blue curves rep-

resent the eigenvalues ks,+c (h), ks,dc (h) and

ka,−c (h) respectively.

Figure 3. A plot of the eigenvalues for the q = 3 model. Each figure illustrates one tower of N = 2

supermultiplets. Their intersects with the horizontal k = 1 line give the dimensions of operators

running in the OPE channel.

2.4 The chaotic behavior

The chaotic behavior of this model can be studied in a similar way by analyzing the retarded

kernels. In this subsection we carry out this analysis, partly also as a double check of our

computations in the previous subsections.

The chaotic behavior is measured by out-of-time-order correlators [4, 5], which can be

obtained either from an analytic continuation of the Euclidean 4-point function or directly

from analyzing the retarded kernel. We take the latter approach, following [4, 5] and

section 3.6.1 of [6]. The retarded kernel is defined on a complex time contour with two real

time folds on two antipodal points on the thermal circle. It can expressed in terms of the

retarded and ladder rung propagators

GψR(t) = 2 cos(π∆ψ)bψ

(
π

β sinh
(
πt
β

))2∆ψ

Θ(t) , (2.44)

GbR(t) = −2i sin(π∆b)bb

(
π

β sinh
(
πt
β

))2∆b

Θ(t) , (2.45)

Gxlr(t) = bx

(
π

β cosh(πtβ )

)2∆x

, x ∈ {ψ, b} , (2.46)

which are obtained from the Euclidean propagators by analytic continuation [6, 49].

The retarded kernel contributions to the 4-point functions shown in figure 2 are

K11
R = J

(q − 1)!

(q − 3)!
GψR(t14)Gψ̄R(t23)Gblr(t34)

(
Gψlr(t34)

)q−3
, (2.47)

K12
R = −J (q − 1)!

(q − 2)!
GψR(t14)Gψ̄R(t23)

(
Gψlr(t34)

)q−2
, (2.48)

K21
R = J

(q − 1)!

(q − 2)!
Gb̄R(t14)GbR(t23)

(
Gψlr(t34)

)q−2
. (2.49)
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We have included a factor of i2 in each case due to the vertex insertion on the Lorentzian

time folds, and we have also included a factor of −1 on the kernels K11
R , K21

R arising from

the operator ordering required by the contour [49]. When acting by matrix multiplication

and convolution on an ansatz of the form(
e
−hπ

β
(t1+t2)(β

π cosh πt12
β

) 1
q
−h

e
−hπ

β
(t1+t2)(β

π cosh πt12
β

) 1+q
q
−h

)
, (2.50)

the nonzero matrix elements of the kernel can be explicitly evaluated as

k11
R = 4(q − 2)α

cos2
(
π
2q

)
Γ
( q−1

q

)2
Γ
(

1
q − h

)
Γ
(
2− h− 1

q

) , (2.51)

k12
R = −4qα

cos2
(
π
2q

)
Γ
( q−1

q

)2
Γ
(

1
q − h

)
Γ
(
2− h− 1

q

) , (2.52)

k21
R = −4

α

q

cos2
(
π
2q

)
Γ
(
− 1

q

)2
Γ
(
1 + 1

q − h
)

Γ
(
1− h− 1

q

) . (2.53)

The two eigenvalues of the matrix kijR are

k±R(h) = ∓
Γ
(
2− 1

q

)
Γ
(

1
2 − h+ 1

q ±
1
2

)
Γ
(
1 + 1

q

)
Γ
(

3
2 − h−

1
q ±

1
2

) . (2.54)

The eigenvalue k−R reaches its resonance value k−R(h) = 1 at h = −1. This indicates chaos:

the eigenfunctions (2.50) grow exponentially with maximal Lyapunov parameter

λL =
2π

β
. (2.55)

There are no other negative values of h that set any of the eigenvalues to one. Therefore

there is no “subleading” chaotic behavior.

3 Symmetric and antisymmetric conformal eigenfunctions

The simplest way of summing ladder diagrams to evaluate a 4-point function is to first

expand the 0-rung ladder diagram in a complete basis of eigenfunctions of the kernels. It is

then straightforward to generate the L-rung ladder, and then to sum all ladder diagrams,

since the kernels act (by convolution) diagonally in this basis. Furthermore one can make

efficient use of conformal symmetry, which effectively reduces all 4-point calculations to

functions of a single cross-ratio χ. In this section, which follows closely section 3.2 of [6],

we determine the complete set of conformal eigenfunctions of the various ladder kernels.

Particular importance is played by the transformation χ → χ
χ−1 which is a symmetry of

both the fermionic SYK model studied in [4–6] and the N = 1 supersymmetric model

studied in [84, 87]. However, in our study of the N = 2 model we will also require

eigenfunctions that are antisymmetric under χ→ χ
χ−1 .
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It is straightforward to check that the kernels commute with the conformal Casimir

operator, which reads

C = χ2(1− χ)∂2
χ − χ2∂χ (3.1)

in terms of the conformal cross ratio

χ =
τ12τ34

τ13τ24
. (3.2)

It admits a set of eigenfunctions Φh(χ), with eigenvalues h(h− 1), that satisfy

CΦh(χ) = h(h− 1)Φh(χ) . (3.3)

This is an equation of hypergeometric type that for 0 < χ < 1 has two linearly independent

solutions

F1(χ) =
χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ) , (3.4)

F2(χ) =
χ1−hΓ(1− h)2

Γ
(
2(1− h)

) 2F1(1− h, 1− h; 2− 2h;χ) (3.5)

related by h→ 1−h, where we have chosen an overall normalization for later convenience.

These expressions are useful because they manifest the behaviors χh, χ1−h of the eigen-

functions near χ = 0, but it is more convenient to work in a different basis of solutions

where the symmetry properties under the transformation χ → χ
χ−1 are manifest. We will

denote the eigenfunctions that are symmetric and antisymmetric under this transformation

by Φs
h(χ) and Φa

h(χ), respectively.

In the region χ > 1, the two solutions with definite parity under χ→ χ
χ−1 are

Φs
χ>1(χ) =

Γ
(

1
2 −

h
2

)
Γ
(
h
2

)
√
π

2F1

(
h

2
,

1− h
2

,
1

2
,

(χ− 2)2

χ2

)
, (3.6)

Φa
χ>1(χ) = −

2Γ
(
1− h

2

)
Γ
(
h
2 + 1

2

)
√
π

χ− 2

χ
2F1

(
2− h

2
,
h+ 1

2
,

3

2
,

(χ− 2)2

χ2

)
. (3.7)

These can be extended to the region 0 < χ < 1 by matching their behaviors at χ ∼ 1 to

appropriate linear combinations of F1 and F2. Specifically, as discussed in [6], if fχ>1 ∼
A + B log(χ − 1) as χ → 1+, then the corresponding extension f0<χ<1 should approach

A + B log(1 − χ) as χ → 1−. In this manner we find that the appropriate expressions in

the region 0 < χ < 1 are

Φs
0<χ<1(χ) = AF1(χ) +BF2(χ) , (3.8)

Φa
0<χ<1(χ) = BF1(χ) +AF2(χ) , (3.9)

where

A =
1

2
tan(πh) cot

(
πh

2

)
, B = −1

2
tan(πh) tan

(
πh

2

)
. (3.10)
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Finally, the eigenfunctions can be extended to the region χ < 0 by exploiting the

transformation χ→ χ
χ−1 ,

Φs
χ<0 = +Φs

0<χ<1

(
χ

χ− 1

)
, Φa

χ<0 = −Φa
0<χ<1

(
χ

χ− 1

)
. (3.11)

Following [6], the range of allowed values of h can be determined by requiring that the

Casimir be hermitian with respect to the inner product

〈g, f〉 =
1

2

∫ ∞
−∞

dχ

χ2
g(χ)∗f(χ) . (3.12)

Convergence of this integral requires the eigenfunctions to approach zero at least as fast

as χ1/2. This restricts the set of allowed symmetric and antisymmetric eigenfunctions and

eigenvalues to

Φs
h(χ) with h =

1

2
+ is , s > 0 , or h = 2n , n ∈ Z+ , (3.13)

Φa
h(χ) with h =

1

2
+ is , s > 0 , or h = 2n− 1 , n ∈ Z+ . (3.14)

Notice that due to the degeneracy under h → 1 − h, which originates from the form

of the eigenvalue h(h − 1) of the Casimir, we can choose to restrict the parameters s in

the continuous spectra h = 1
2 + is to be positive. The continuous series of eigenfunctions

admit useful integral representations

Φs
h(χ) =

1

2

∫ ∞
−∞

|χ|h

|y|h|y − 1|1−h|y − χ|h
dy , (3.15)

Φa
h(χ) =

sgn(χ)

2

∫ ∞
−∞

|χ|h sgn(y) sgn(y − 1) sgn(y − χ)

|y|h|y − 1|1−h|y − χ|h
dy , (3.16)

the first of which was pointed out in [6]. These can be explicitly checked by carrying out the

integrations in the four different intervals. The continuous eigenfunctions are orthogonal,

with

〈Φs
h, Φs

h′〉 =
π tan(πh)

4h− 2
2πδ(h− h′) ,

〈Φa
h, Φa

h′〉 =
π tan(πh)

4h− 2
2πδ(h− h′) , (3.17)

〈Φa
h, Φs

h′〉 = 0 = 〈Φs
h, Φa

h′〉 .

The orthogonality between the symmetric and antisymmetric eigenfunctions can be simply

understood as a consequence of the invariance of the measure dχ/χ2 under χ→ χ
χ−1 .

The discrete eigenfunctions can be identified as the real part of the Legendre Qν
functions of the second kind:

Φs
h = 2 Re

(
Qh−1

(
2− χ
χ

))
, h = 2n , n ∈ Z+ , (3.18)

Φa
h = 2 Re

(
Qh−1

(
2− χ
χ

))
, h = 2n− 1 , n ∈ Z+ , (3.19)
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which is a straightforward generalization of [6]. The inner product between the discrete

eigenfunctions is simply encapsulated in the formula

〈Φh,Φh′〉 =
π2δhh′

4h− 2
. (3.20)

In particular, the δhh′ implies that the symmetric and antisymmetric eigenfunctions are

orthogonal since their h parameters must be even and odd, respectively.

We conclude this section by using the completeness relation to write an explicit formula

for the eigenfunction decomposition of an arbitrary function f(χ). Schematically it reads

f(χ) =

∫∑
h,i

f i(h)

〈Φi
h,Φ

i
h〉

Φi
h(χ) where f i(h) ≡ 〈f,Φi

h〉 , (3.21)

where the sum over all eigenfunctions includes an index i ∈ {s, a} that accounts for both

the symmetric and antisymmetric sectors, and
∫∑
h denotes a sum over the discrete states

and an integral over the continuous series. Specifically, using eqs. (3.17) and (3.20), we have

f(χ) =
∞∑
h=1

(4h− 2)

π2

{
f s(h)Φs

h(χ) if h is even

fa(h)Φa
h(χ) if h is odd

}
+
∑

i∈{s,a}

∫ ∞
0

ds

2π

(4h− 2)

π tan(πh)
f i(h)Φi

h(χ) ,

(3.22)

where in the integral it should be understood that h = 1
2 + is. Similarly to the case of [6],

this formula can be understood as a single contour integral over a contour in the complex

h plane defined as

1

2πi

∫
C
dh ≡

∫ +∞

−∞

ds

2π
+

∞∑
n=1

Resh=n . (3.23)

In this sense, then, we have finally

f(χ) =
1

2πi

∫
C
dh

(
(2h− 1)f s(h)

π tan
(
πh
2

) Φs
h(χ) +

(2h− 1)fa(h)

π tan
(π(h−1)

2

)Φa
h(χ)

)
. (3.24)

4 Evaluating the 4-point functions

Given the complete set of eigenfunctions of the kernels, we are now ready to compute the

full 4-point functions in this model, following closely the similar calculation in the fermionic

SYK model [4–6]. Throughout this analysis we left out a proper treatment of the (so-called

“enhanced”) contributions from the lowest N = 2 supermultiplet, although we check at

the very end of this section that all divergences in the 4-point functions indeed arise from

exchange of this multiplet.

4.1 Setup

There are several independent 4-point functions. We consider first those of the type en-

countered in section 2.3 for which both pairs of U(N) indices are contracted between fields

with the same statistics:

〈ψi(τ1)ψ̄i(τ2)ψj(τ3)ψ̄j(τ4)〉 , 〈bi(τ1)b̄i(τ2)ψj(τ3)ψ̄j(τ4)〉 , (4.1)

〈ψi(τ1)ψ̄i(τ2)bj(τ3)b̄j(τ4)〉 , 〈bi(τ1)b̄i(τ2)bj(τ3)b̄j(τ4)〉 . (4.2)
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These correlation functions take the form

1

N2

N∑
i,j=1

〈ψi(τ1)ψ̄i(τ2)ψj(τ3)ψ̄j(τ4)〉 (4.3)

= Gψ(τ12)Gψ(τ34) +
1

N
Fψψ̄ψψ̄(τ1, τ2, τ3, τ4) +O

(
1

N2

)
(4.4)

= Gψ(τ12)Gψ(τ34)

[
1 +

1

N
Fψψ̄ψψ̄(χ) +O

(
1

N2

)]
, (4.5)

and similarly for the others. We would like to compute the Fxx̄yȳ’s. Notice that we have

adopted two conventions for Fxx̄yȳ and it is meant to be understood that when we write

the argument as the cross-ratio χ defined in eq. (3.2), we mean the function in (4.5),

and when we write the arguments as τ1, τ2, τ3, τ4, we mean the function in (4.4). The

zero-rung (tree-level) contributions to these 4-point functions, which we indicate with a

subscript “0”, are

Fψψ̄ψψ̄0 (τ1, τ2, τ3, τ4) = Gψ(τ14)Gψ(τ23) , (4.6)

F bb̄bb̄0 (τ1, τ2, τ3, τ4) = Gb(τ14)Gb(τ23) , (4.7)

Fψψ̄bb̄0 (τ1, τ2, τ3, τ4) = F bb̄ψψ̄0 (τ1, τ2, τ3, τ4) = 0 . (4.8)

In terms of the cross ratio, the non-zero ones read

Fψψ̄ψψ̄0 (χ) = sgn

(
χ

1− χ

)∣∣∣∣ χ

1− χ

∣∣∣∣ 1
q

, F bb̄bb̄0 (χ) =

∣∣∣∣ χ

1− χ

∣∣∣∣ 1+q
q

. (4.9)

Next we decompose the 0-rung correlators (4.9) into the conformal eigenfunctions con-

structed in the previous section. To this end we first compute the inner products of the

0-rung correlators (4.9) with the symmetric and antisymmetric eigenfunctions, using their

integral representations (3.15) and (3.16). These integrals can be evaluated straightfor-

wardly using formula (3.11) of [49] (see also the appendix for more details on these types

of integrals), and we find

〈Fψψ̄ψψ̄0 ,Φs
h〉 = −

π cos2
(
π
2q

)
Γ
( q−1

q

)2(
sin(πh) + sin(πq )

)
Γ
(
− h− 1

q + 2
)
Γ
(
h− 1

q + 1
) ≡ kψ,s0 (h) , (4.10)

〈Fψψ̄ψψ̄0 ,Φa
h〉 =

π cos2
(
π
2q

)
Γ
( q−1

q

)2(
sin(πq )− sin(πh)

)
Γ
(
− h− 1

q + 2
)
Γ
(
h− 1

q + 1
) ≡ kψ,a0 (h) , (4.11)

〈F bb̄bb̄0 ,Φs
h〉 =

π cos2
(
π
2q

)
Γ
(
− 1

q

)2(
sin(πh) + sin(πq )

)
Γ
(
− h− 1

q + 1
)
Γ
(
h− 1

q

) ≡ kb,s0 (h) , (4.12)

〈F bb̄bb̄0 ,Φa
h〉 =

π cos2
(
π
2q

)
Γ
(
− 1

q

)2(
sin(πh)− sin(πq )

)
Γ
(
− h− 1

q + 1
)
Γ
(
h− 1

q

) ≡ kb,a0 (h) . (4.13)

The two 4-point functions in eq. (4.1) are closed under iterating the kernel shown in

figure 2, as are the two shown in eq. (4.2). We consider the two pairs in turn, since the

calculations are essentially identical.
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4.2 The ψψ̄ψψ̄ and bb̄ψψ̄ 4-point functions

The eigenfunction expansion of Fψψ̄ψψ̄0 (χ) is given by plugging kψ,s0 (h) and kψ,a0 (h) into the

completeness relation (3.24). We can write this as

Fψψ̄ψψ̄0 (χ) =
1

2πi

∫
C
dh
(
f s0 (h) + fa0 (h)

)
(4.14)

where

f s0 (h) =
(2h− 1)kψ,s0 (h)

π tan
(
πh
2

) Φs
h(χ) , fa0 (h) =

(2h− 1)kψ,a0 (h)

π tan
(π(h−1)

2

) Φa
h(χ) . (4.15)

Although F bb̄ψψ̄0 (χ) = 0, let us still write it as

F bb̄ψψ̄0 (χ) =
1

2πi

∫
C
dh
(
ms

0(h) +ma
0(h)

)
, ms,a

0 (h) = 0 , (4.16)

so that it serves as a starting point of the repeated action by the kernel matrix.

Starting from the zero-rung ladders characterized by f s,a0 (h) and ms,a
0 (h), we generate

the n-rung ladder contribution to the 4-point functions by convolving n times with the

kernel matrix (2.25). The full 4-point functions are then determined by the geometric

series

f s,a(h) =
∞∑
n=0

f s,an (h) , ms,a(h) =
∞∑
n=0

ms,a
n (h) . (4.17)

From our previous analysis and the integral relations

sgn(τ12) sgn(τ34)

|τ12|2∆|τ34|2∆
Φs
h = +

1

2

∫
dτ0

sgn(τ12)

|τ10|h|τ20|h|τ12|2∆−h
sgn(τ34)

|τ30|1−h|τ40|1−h|τ34|2∆−1+h
, (4.18)

sgn(τ12) sgn(τ34)

|τ12|2∆|τ34|2∆
Φa
h = −1

2

∫
dτ0

sgn(τ01) sgn(τ02)

|τ10|h|τ20|h|τ12|2∆−h
sgn(τ03) sgn(τ04)

|τ30|1−h|τ40|1−h|τ34|2∆−1+h
, (4.19)

we conclude that (f sn,m
s
n) close under the action of the kernels K11

c , K12
c , K21

c with eigen-

values ka,11
c , ka,12

c , ka,21
c respectively; while (fan ,m

a
n) is another basis on which the kernels

K11, K12, K21 have eigenvalues ks,11
c , ks,12

c , ks,21
c respectively.

Let us consider the symmetric sector first; the action of the kernel matrix on an n-rung

ladder is (
f sn+1

ms
n+1

)
=

(
ka,11
c ka,12

c

ka,21
c 0

)(
f sn
ms
n

)
. (4.20)

We can diagonalize the matrix as(
f sn+1

ms
n+1

)
= Ua†

(
k̃a,−c (ka,21

c − ka,12
c ) sgn(ka,21

c )

0 k̃a,+c

)
Ua

(
f sn
ms
n

)
, (4.21)

where the k̃’s are defined in footnote 1, and the transformation matrix is Ua = U(ka,11
c ,

ka,12
c , ka,21

c ) with

U(x, y, z) =
1√

−x
√
x2 + 4yz + x2 + 2yz + 2z2

−
√
x2+4yz−x√
2 sgn(z)

√
2|z|

√
2z

√
x2+4yz−x√

2

 . (4.22)

– 14 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
2

The contribution from the n-rung ladder diagram can then be solved straightforwardly:(
f sn
ms
n

)
= Ua,†

(
(k̃a,−c )n (ka,21

c − ka,12
c ) (k̃a,−c )n−(k̃a,+c )n

k̃a,−c −k̃a,+c
sgn(ka,21

c )

0 (k̃a,+c )n

)
Ua

(
f s0
ms

0

)
. (4.23)

Summing over all such diagrams as in eq. (4.17) then gives(
f s

ms

)
= Ua,†

 1
1−k̃a,−c

ka,21
c −ka,12

c

(1−k̃a,−c )(1−k̃a,+c )
sgn(ka,21

c )

0 1
1−k̃a,+c

Ua

(
f s0
ms

0

)
. (4.24)

Multiplying through by the U matrices leads to,(
f s

ms

)
=

1

(1− k̃a,−c )(1− k̃a,+c )

(
1 ka,12

c

ka,21
c 1− ka,11

c

)(
f s0
ms

0

)
. (4.25)

Finally, since ms
0 = 0, we have simply

f s(h) =
f s0 (h)

(1− k̃a,−c )(1− k̃a,+c )
, ms(h) =

ka,21
c f s0 (h)

(1− k̃a,−c )(1− k̃a,+c )
. (4.26)

The calculation in the antisymmetric sector proceeds in the same way, leading to exactly

the same result but with the “s” and “a” superscripts exchanged.

The full 4-point functions are then given by

Fψψ̄ψψ̄(χ) =
1

2πi

∫
C
dh
(
f s(h) + fa(h)

)
, F bb̄ψψ̄(χ) =

1

2πi

∫
C
dh
(
ms(h) +ma(h)

)
.

(4.27)

As in the pure fermionic case (see [6] for details), we can move the contour in the positive

real direction to pick up only the contributions from the poles at k̃i,+c = 1 — the factors

1− k̃i,−c in the denominator never vanish since k̃i,−c is always negative, and the poles of the

ki,21
c factors in the numerator are all cancelled by poles in the denominator. In the χ > 1

region this contour deformation is straightforward and leads to

Fψψ̄ψψ̄(χ) = −
∑

i∈{s,a}

∑
m

Res
h=h̃i,+m

(
f i0(h)

(1− k̃i,−c )(1− k̃i,+c )

)
, χ > 1 , (4.28)

F bb̄ψψ̄(χ) = −
∑

i∈{s,a}

∑
m

Res
h=h̃i,+m

(
ki,21
c f i0(h)

(1− k̃i,−c )(1− k̃i,+c )

)
, χ > 1 , (4.29)

where the sums run over the roots of 1 − k̃i,+c (h) = 0, enumerated here as h̃i,+m , and i

means the complement of i in the set {s, a}. In the χ < 1 region, we meet a similar

problem of negative entries of the hypergeometric function as that encountered in [6]. It

is straightforward to generalize their treatment to our case; the net effect is to replace the

Φa,s
h by χhΓ(h)2

Γ(2h) 2F1(h, h; 2h;χ). Therefore, the formulas (4.28) and (4.29) can be extended

to the region 0 < χ < 1 by replacing the f i0(h)’s with

f̃ s0 (h) =
(2h− 1)kψ,s0 (h)

π tan
(
πh
2

) χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ) , (4.30)

f̃a0 (h) =
(2h− 1)kψ,a0 (h)

π tan
(π(h−1)

2

) χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ) . (4.31)
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4.3 The ψψ̄bb̄ and bb̄bb̄ 4-point functions

The other two 4-point functions can be computed similarly. We begin with the eigenfunc-

tion decompositions of the 0-rung ladders

F bb̄bb̄0 (χ) =
1

2πi

∫
C
dh
(
bs0(h) + ba0(h)

)
, (4.32)

Fψψ̄bb̄0 (χ) =
1

2πi

∫
C
dh
(
ps0(h) + pa0(h)

)
, (4.33)

with

bs0(h) =
(2h− 1)kb,s0

π tan
(
πh
2

) Φs
h(χ) , ba0(h) =

(2h− 1)kb,a0

π tan
(π(h−1)

2

)Φa
h(χ) , ps,a0 (h) = 0 . (4.34)

The calculation proceeds the same as in the previous subsection, except with (f,m) 7→
(p, b), all the way through eq. (4.25). At that step we plug in eq. (4.34) which leads to

ps(h) =
ka,12
c bs0(h)

(1− k̃a,−c )(1− k̃a,+c )
, bs(h) =

(1− ka,11
c )bs0(h)

(1− k̃a,−c )(1− k̃a,+c )
, (4.35)

again together with the same equation but with the “s” and “a” superscripts exchanged.

With these results, the full 4-point functions are then

Fψψ̄bb̄(χ) = −
∑

i∈{s,a}

∑
m

Res
h=h̃i,+m

(
ki,12
c bi0(h)

(1− k̃i,−c )(1− k̃i,+c )

)
, χ > 1 , (4.36)

F bb̄bb̄(χ) = −
∑

i∈{s,a}

∑
m

Res
h=h̃i,+m

(
(1− ki,11

c )bi0(h)

(1− k̃i,−c )(1− k̃i,+c )

)
, χ > 1 . (4.37)

As we saw in the previous subsection, these formulas can be extended to the region

0 < χ < 1 by replacing the bi0(h)’s with

b̃s0(h) =
(2h− 1)kb,s0 (h)

π tan
(
πh
2

) χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ) , (4.38)

b̃a0(h) =
(2h− 1)kb,a0 (h)

π tan
(π(h−1)

2

) χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ) . (4.39)

4.4 The ψbψ̄b̄ 4-point function

Finally we turn to the 〈ψi(τ1)bi(τ2)ψ̄j(τ3)b̄j(τ4)〉 4-point function, which is more subtle. It

has no disconnected contributions, taking the form

1

N2

N∑
i,j=1

〈ψi(τ1)bi(τ2)ψ̄j(τ3)b̄j(τ4)〉 =
1

N
Fψbψ̄b̄(τ1, τ2, τ3, τ4) +O

(
1

N2

)
, (4.40)

with the 0-rung correlator being simply

Fψbψ̄b̄0 (τ1, τ2, τ3, τ4) = Gψ(τ13)Gb(τ24) =
1

q

(
tan

(
π
2q

)
2πJ

)2/q sgn(τ13)

|τ13|
1
q

1

|τ24|
1+q
q

. (4.41)
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We would like to continue working with the conformal eigenfunctions from section 3. In

order to do this we would have to factor out some appropriate overall τ dependence in

order to render eq. (4.41) a function of the cross-ratio χ, as for example between eqs. (4.4)

and (4.5). We can’t, however, divide by the obvious candidate Gψ(τ13)Gb(τ24) as this would

give us F0(χ) = 1, and the function “1” is not in the allowed spectrum; it would correspond

to the discrete state h = 0 in eq. (3.13), which is absent because it is not normalizable with

respect to (3.12).

Let us instead notice that the tree-level 4-point function can be expressed as

Fψbψ̄b̄0 (τ1, τ2, τ3, τ4) = ∂τ4G0(τ1, τ2, τ3, τ4) (4.42)

in terms of the auxiliary quantity

G0(τ1, τ2, τ3, τ4) =

(
tan

(
π
2q

)
2πJ

)2/q sgn(τ13) sgn(τ24)

|τ13|
1
q |τ24|

1
q

. (4.43)

This derivative might introduce a spurious δ(τ24) contact term, but since we are not inter-

ested in any such terms we can in practice just commit ourselves to neglecting all possible

contact terms at the very end of any calculation. It is evident from the powers of the

denominator factors in eq. (4.43) that we should think of G roughly as a four-fermion cor-

relator; this will tell us, in particular, the conformal of the eigenfunctions we should use

when diagonalizing the relevant kernel.

Now consider the action of some kernel K on G0, defined by

G1(τ1, τ2, τ3, τ4) =

∫
dτ5dτ6K(τ1, τ2; τ5, τ6)G0(τ5, τ6, τ3, τ4) . (4.44)

It is evident that taking a τ4 derivative commutes with the action of the ladder kernel,

and this property clearly extends to arbitrary order as we iterate the kernel. Therefore,

the full 4-point function Fψbψ̄b̄ can be obtained by first computing the sum of all ladder

contributions to G using the kernel (2.13) and then taking ∂τ4 . To compute the latter we

begin by constructing an appropriate function of the cross-ratio χ by factoring out the

same prefactor as in the four-fermion function (4.5), defining

G0(χ) ≡ G0(τ1, τ2, τ3, τ4)

Gψ(τ12)Gψ(τ34)
= sgn(χ)|χ|

1
q . (4.45)

Now we can decompose G0(χ) into the conformal eigenfunctions by plugging its matrix

elements

〈G0,Φ
s
h〉 =

π cos2
(
π
2q

)
Γ
( q−1

q

)2(
sin(πh) + sin(πq )

)
Γ
(
− h− 1

q + 2
)
Γ
(
h− 1

q + 1
) = ks0(h) , (4.46)

〈G0,Φ
a
h〉 =

π cos2
(
π
2q

)
Γ
( q−1

q

)2(
sin(πq )− sin(πh)

)
Γ
(
− h− 1

q + 2
)
Γ
(
h− 1

q + 1
) = ka0(h) (4.47)

into the completness relation (3.24).
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Since the relevant kernel Kd
c is diagonal, much of the complication encountered in the

previous two subsections is avoided. The sum over ladder diagrams just inserts a geometric

series factor 1/
(
1−ki(h)

)
into the conformal eigenfunction decomposition, where ki(h) are

the eigenvalues of the kernel. However, we should not use the formulas (2.20) and (2.21)

since those are the eigenvalues of Kd
c when acting on eigenfunctions of the form (2.16)

and (2.17). Since we are iterating the action of Kd
c on G, which should be treated like a four-

fermion correlator, we must work out the eigenvalues of Kd
c when acting on eigenfunctions

of the form (2.16) and (2.17) with 2∆ψ replacing ∆ψ +∆b. This is readily accomplished by

substituting h→ h+ 1
2 in eqs. (2.16) and (2.17), and hence also into eqs. (2.20) and (2.21).

The resulting symmetric and antisymmetric eigenvalues can be expressed in terms of the

matrix elements of G0 as

ko,sc (h) = ks,dc

(
h+

1

2

)
= 4αq

(
h− 1 +

1

q

)
ka0(h) ,

ko,ac (h) = ka,dc

(
h+

1

2

)
= 4αq

(
h− 1 +

1

q

)
ks0(h) . (4.48)

Before proceeding, however, we should make here one comment about the operator

spectrum in this channel. The dimensions of the operators running in this channel are

encoded in the divergences of the 4-point function, which occur at the values of h such that

ko,ic (h) = 1 , i ∈ {s, a} . (4.49)

However, this h itself does not directly correspond to the operators in the original 4-point

function Fψbψb. To see this, let us recall that as noted by [5, 6, 50], the eigenfunctions

are naturally dressed with additional factors that allow them to be expressed as 3-point

functions whose form is dictated by conformal symmetry. We have used this implicitly in

previous sections but here we must be more explicit, writing the eigenfunction for example

as eq. (3.69) of [6]:

sgn(τ12)

|τ10|ho−1/2|τ20|ho+1/2|τ12|∆ψ+∆b−ho
, (4.50)

where ho is the dimension of the 3rd operator propagating in the channel.

But, as we have already mentioned, in the present computation, the appropriate eigen-

functions are not eq. (4.50) but rather

sgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h
. (4.51)

Comparing the two expressions, in particular the power of the last term,2 which is the

one that enters directly into the integrals that compute the eigenvalues (cf. eqs. (2.16)

2The seeming mismatch of the power of |τ20| does not matter since we can always move τ0 to infinity

using conformal invariance, without affecting the result of the calculation. Another way to understand this

is to notice that the power of τ2 will be corrected once we take the τ4 derivative; this will produce an extra

power of 1/τ24 in the end.
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and (2.17)), we see that the real dimension ho of the operator running in the original

4-point function Fψbψ̄b̄ is related to h by

h = ho −
1

2
. (4.52)

Indeed, as a check of this relation, we see that the solution to (4.49), together with the

shift (4.52), does give the correct dimensions (2.20), (2.21) (as manifested already in (4.48)).

With this important comment out of the way, we are ready to write the sum over all

ladder diagrams

G(χ) =
∑

i∈{s,a}

1

2πi

∫
C
dh

gī(h)

1− ko,ic (h)
Φī
h , (4.53)

where

gs(h) =
(2h− 1)ks0
π tan

(
πh
2

) , ga(h) =
(2h− 1)ka0

π tan
(π(h−1)

2

) . (4.54)

Notice however that h = 1 is a solution to both ko,ac (h) = 1 and ko,sc (h) = 1, therefore

in the discrete sum of the odd series Φa
h, the h = 1 term diverges. This corresponds

to an enhancement due to a mode of dimension ho = 3
2 that is is similar to the h = 2

enhancement appearing in the fermionic SYK model [6, 84]. In the following computation,

we have excluded such enhanced contributions.

We can then push the contour to the right, picking up contributions from poles of

the factor
kī0

1−ko,ic (h)
. Due to the proportionality (4.48) between kī0 and ko,ic , the poles of

the numerator kī0 are cancelled by poles of ko,ic in the denominator and thus the only

contribution comes from solutions to ko,ic (h) = 1. Furthermore, in light of eq. (4.48), these

poles correspond to the set hi,dm − 1
2 , where hi,dm are the solutions to kī,dc (h) = 1, i.e. the

dimensions of states propagating in the OPE channel of the diagonal kernel. For the χ > 1

region, this contour manipulation is straightforward and leads to

G(χ) = −
∑

i∈{s,a}

∑
m

Res
h=hī,dm − 1

2

(
gī(h)

1− ko,ic (h)
Φī
h

)
, χ > 1 . (4.55)

As in the previous subsections, we replace the Φa,s
h by χhΓ(h)2

Γ(2h) 2F1(h, h; 2h;χ) to obtain

G(χ) = −
∑

i∈{s,a}

∑
m

Res
h=hī,dm − 1

2

(
gī(h)

1− ko,ic (h)

χhΓ(h)2

Γ(2h)
2F1(h, h; 2h;χ)

)
, 0 < χ < 1 .

This concludes our calculation of the auxiliary quantity G, but it remains to compute

the original 4-point function

Fψbψ̄b̄(τ1, τ2, τ3, τ4) = ∂τ4G(τ1, τ2, τ3, τ4) . (4.56)

This τ4 derivative can be worked out explicitly. Making use of a property of the hyperge-

ometric function and

∂τ4χ = −τ12τ23

τ13τ2
24

= −χ τ23

τ34τ24
, (4.57)
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the derivative is equivalent to replacing the 2F1(h, h; 2h;χ) by the factor

sgn(τ34)

|τ34|

(
1

q
2F1(h, h; 2h;χ)− τ23

τ24
h 2F1(h, h+ 1; 2h;χ)

)
. (4.58)

The replacement for 2F1(1 − h, 1 − h; 2 − 2h;χ) can be obtained from (4.58) by sending

h→ 1− h.

Notice that the computation in this subsection is secretly making use of the supersym-

metry Ward identity. The supersymmetry transformation on the bosonic fields take the

schematic form Qb → ∂ψ. Therefore, the step of taking a derivative in our computation,

which we saw essentially converts a fermionic factor into a bosonic one, is essentially using

supersymmetry to relate the computation in this subsection to a similar computation in

section 4.2. In fact, the result (4.56) has a form that manifestly satisfies a supersymmetry

Ward identity.

Furthermore, we note from the expressions (4.26) and (4.35), that the Φs
2(χ) term be-

comes divergent at h = 2 = ha,−0 and the Φa
1(χ) term becomes divergent at h = 1 = hs,+0 .

From the expression (4.53), the Φa
1(χ) term becomes divergent at h = 1 = ho,a,+ = hs,d0 .

This confirms that all divergences arise from contributions from the first N = 2 supermul-

tiplet (hs,+0 , hs,d0 , ha,−0 ). This agrees with the expectation of [84]. The proper treatment of

these divergences leads to enhanced contributions to the 4-point functions along the lines of

the analysis for the fermionic SYK model, i.e. section 3.3 of [6]. Schematically, the required

computation includes perturbing away from the conformal limit, getting the corrections to

the propagators, deriving the corrections to the eigenvalues corresponding to the h = 2

supermultiplet, and finally obtaining the regularized contribution to the 4-point function.

This computation has not yet been repeated even for the simpler N = 1 supersymmetric

model and is beyond the scope of this paper. We hope to carry it out elsewhere.

5 6-point functions

A natural next step would be to compute 6-point correlation functions to extract the

OPE coefficients among the singlet bilinear operators of the model. This would be a

supersymmetric generalization of the work [32], and we will follow many of the notations

employed there. Given all the 4-point functions that we have worked out, we can take their

OPE limits and read out the structure constants cxyn according to

1

N

N∑
i=1

xi(τ1)yi(τ2) = sgn(τ12)d(x)d(y) |τ12|hn−hx−hy√
N

∑
n

cxyn FOn(τ2) , (5.1)

where x, y ∈ {ψ, b}, d(ψ) = 1, d(b) = 0, and

FOn(τ) =

(
1 +

1

2
τ∂τ + · · ·

)
On(τ) (5.2)

is a family of operators containing the primary On and all of its descendents. In practice,

the coefficients cxyn can be read off from a 4-point function by restoring all of the time
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dependence via (3.2) and expanding it into the form

Fxyzw(τ1, τ2, τ3, τ4) =
sgn(τ12)d(x)d(y)

|τ12|h1+h2

sgn(τ34)d(z)d(w)

|τ34|h3+h4

∑
n

|cφφn |2

|τ12|−hn |τ34|−hn |τ24|2hn
(5.3)

in the OPE limit

|τ12| � |τ24| , |τ34| � |τ24| . (5.4)

With these coefficients extracted out, one can easily check that there are again two different

types of contributing diagrams to the leading order in the large-N limit of the supersym-

metric SYK model. Because we are treating the supersymmetric model in component

form, the computations are almost the same as those in section 3 of [32]. In particular, we

would need to compute exactly the same integrals I
(1)
mnp and I

(2)
mnp. The only difference is

that we have more possible external configurations and thus would need to sum over more

combinations of cφφn . Since the computation will be largely identical to those in [32], we

will not elaborate any details here.
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A Useful integrals

Here we tabulate some useful integrals:∫
dt dt′

sgn(t1 − t) sgn(t2 − t′) sgn(t− t′)
|t1 − t|2α|t2 − t′|2β |t− t′|2γ

=

π2 sin
(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

sin(πα)Γ(2α) sin(πβ)Γ(2β) sin(πγ)Γ(2γ)

sgn(t12)

|t12|2α+2β+2γ−2
, (A.1)∫

dt dt′
sgn(t1 − t) sgn(t2 − t′)
|t1 − t|2α|t2 − t′|2β |t− t′|2γ

=

π2 cos
(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

sin(πα)Γ(2α) sin(πβ)Γ(2β) cos(πγ)Γ(2γ)

1

|t12|2α+2β+2γ−2
, (A.2)∫

dt dt′
sgn(t1 − t) sgn(t− t′)

|t1 − t|2α|t2 − t′|2β |t− t′|2γ
=

−
π2 cos

(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

sin(πα)Γ(2α) cos(πβ)Γ(2β) sin(πγ)Γ(2γ)

1

|t12|2α+2β+2γ−2
, (A.3)
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∫
dt dt′

sgn(t1 − t)
|t1 − t|2α|t2 − t′|2β |t− t′|2γ

=

π2 sin
(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

sin(πα)Γ(2α) cos(πβ)Γ(2β) cos(πγ)Γ(2γ)

sgn(t12)

|t12|2α+2β+2γ−2
. (A.4)∫

dt dt′
sgn(t− t′)

|t1 − t|2α|t2 − t′|2β |t− t′|2γ
=

π2 sin
(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

cos(πα)Γ(2α) cos(πβ)Γ(2β) sin(πγ)Γ(2γ)

sgn(t12)

|t12|2α+2β+2γ−2
, (A.5)

and ∫
dt dt′

1

|t1 − t|2α|t2 − t′|2β |t− t′|2γ
=

π2 cos
(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

cos(πα)Γ(2α) cos(πβ)Γ(2β) cos(πγ)Γ(2γ)

1

|t12|2α+2β+2γ−2
. (A.6)

Additional similar types of integrals may be found in section 3 of [49]. Notice that the

integral (A.2), (A.3) and (A.6) are proportional to δ(τ12) when 2α + 2β + 2γ = 3, similar

to those listed in [49]. We omitted these special cases in the above table for simplicity.

These results can be derived from slightly tedious computations building on the basic

identities [84]

1

|t|2∆
=

1

2 cos(π∆)Γ(2∆)

∫
dω eiωt

1

|w|1−2∆
, (A.7)

sgn(t)

|t|2∆
=

1

2i sin(π∆)Γ(2∆)

∫
dw eiwt

sgn(w)

|w|1−2∆
. (A.8)

Here we provide one example of such a derivation:∫
dt dt′

sgn(t1 − t) sgn(t2 − t′) sgn(t− t′)
|t1 − t|2α|t2 − t′|2β |t− t′|2γ

(A.9)

=

∫
dt dt′

1

2i sin(πα)Γ(2α)

1

2i sin(πβ)Γ(2β)

1

2i sin(πγ)Γ(2γ)
(A.10)

×
∫
dw eiw(t1−t) sgn(w)

|w|1−2α

∫
du eiu(t2−t′) sgn(u)

|u|1−2β

∫
dv eiv(t−t′) sgn(v)

|v|1−2γ
(A.11)

=
(2π)

2i sin(πα)Γ(2α)

1

2i sin(πβ)Γ(2β)

1

2i sin(πγ)Γ(2γ)
(A.12)

×
∫
dw

∫
dt ei

(
wt1+ut2+(−u−w)t

)
sgn(w)

|w|1−2α

∫
du

sgn(u)

|u|1−2β

sgn(−u)

|u|1−2γ
(A.13)

=
(2π)2

2i sin(πα)Γ(2α)

1

2i sin(πβ)Γ(2β)

1

2i sin(πγ)Γ(2γ)
(A.14)

×
∫
dw ei(w(t1−t2)) sgn(w)

|w|1−2α

sgn(−w)

|w|1−2β

sgn(w)

|w|1−2γ
(A.15)

=
π2 sin

(
π(α+ β + γ − 1)

)
Γ(2α+ 2β + 2γ − 2)

sin(πα)Γ(2α) sin(πβ)Γ(2β) sin(πγ)Γ(2γ)

sgn(t12)

|t12|2α+2β+2γ−2
. (A.16)
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