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1 Introduction

Conformal field theories are scale invariant, which seems to require that two-point functions

behave as power laws. But this is not quite true: conformal correlation functions can in

fact have logarithms [1–4], which contain a scale. Many interesting models turn out to have

this property, such as percolation [5], self-avoiding walks [2, 6], spanning forests [7], as well

as systems with quenched disorder [5, 8–11]. This surprising fact and its consequences

will be examined at length in this paper, where we will study logarithmic Conformal Field

Theories (logCFTs) starting from first principles and especially without fixing a particular

spacetime dimension.

We should begin by remarking that there is already a vast literature on the subject,

specializing mostly to two dimensions. In the seminal papers [1, 4], Ferrara, Gatto and

Grillo (working in general d) and later Gurarie (d = 2) pointed out that logarithmic terms

in CFT correlation functions are caused by reducible but indecomposable representations

of the conformal group. Subsequent work focused on the constraints coming from two-

dimensional conformal symmetry on (chiral) three- and four-point functions, and Operator

Product Expansions (OPEs) [12–17]. Infinitely many logCFTs were later constructed by

extending the Kac table of the ordinary Virasoro minimal models [18]. Both the representa-

tion content and the fusion rules of these “logarithmic minimal models” have been studied

in detail [19–23]. A partially overlapping direction of research has focused on realizing 2d

logCFTs as continuum limits of lattice models, see for instance [24–27]. In spite of these

developments, it is fair to say that 2d logCFTs are significantly less understood than their

non-logarithmic counterparts. In particular, the computation of non-chiral (also known

as bulk or local) correlation functions remains a difficult problem [28–36]. The references

given above can serve as a starting point for the reader. More comprehensive discussions

can be found in the review articles [37–41]. A special class of 2d logCFTs, in the form of

WZW and sigma models on superspaces, is reviewed in [42].

Higher-dimensional logCFTs have received much less attention, apart from the deter-

mination of constraints on some scalar two- and three-point functions [43]. This state of

affairs is unfortunate, since interesting logarithmic theories are certainly not confined to
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two dimensions. As already mentioned, CFTs coupled to quenched disorder generically

flow to logCFTs at long distances. Likewise, the Q-state Potts critical point in 2 ≤ d < 6

and the O(n) model in 2 ≤ d < 4 dimensions become logarithmic in certain limits of their

parameters. These logCFTs describe theories with non-local actions, like percolation and

polymer statistics. Logarithmic theories are also known to arise as limits of quantum field

theories with instantons, like 4d super-Yang-Mills theory [44–46]. An additional reason

to be interested in logCFTs comes from holography, see e.g. [47], where they are dual to

certain higher derivative bulk theories. Most of the work in this direction has so far focused

on the AdS3/CFT2 correspondence or does not go beyond the level of three point functions.

In this paper we will perform a careful and systematic study of the formal structure

of logCFTs in any spacetime dimension. One motivation is the expectation that a broader

look at these theories can help us better understand the two-dimensional case. More

importantly, we hope that these structural results improve our knowledge about higher-

dimensional logarithmic fixed points. This is especially urgent in the light of the conformal

bootstrap [48], which in recent years has proved to be a powerful tool in analyzing CFTs

in any dimension. It has been applied in many contexts, for example in computing critical

exponents of the 3d Ising and O(n) models to high precision [49–52] but also for under-

standing structural properties of CFTs analytically [53–56]. Our work clears the path for

any future bootstrap applications to logCFTs.

The outline of this paper is as follows. In section 2 we discuss general consequences

of (logarithmic) conformal invariance for n-point correlation functions. We start with a

discussion of radial quantization in these theories. The Hilbert space contains reducible but

indecomposable representations, which means that the dilatation operator cannot be made

hermitian. This inevitably leads to the appearance of logarithms in correlation functions.

We work out the Ward identities and their solutions, spelling out in detail the general form

of two, three and four point functions. Three- and four-point functions must satisfy further

constraints from Bose or crossing symmetry.

Section 3 is concerned with the derivation of the conformal partial wave and conformal

block decompositions of four-point functions. Our main result is to show that conformal

blocks of logarithmic primaries in the four point function of logarithmic operators can be

determined by computing derivatives of ordinary, non-logarithmic conformal blocks. We

show this by solving the Casimir equation à la Dolan and Osborn [57] for a few cases, and

then in full generality via radial quantization methods. In order to illustrate the formalism,

we work out a few explicit examples at the end of the section.

In section 4 we reconsider and extend previous holographic approaches to logarithmic

theories. LogCFTs can be modeled holographically by actions containing higher deriva-

tives, which we motivate by coupling bulk theories to bulk disorder. We then provide a

thorough discussion of scalar theories, computing all two point functions without recourse

to holographic renormalization. We discuss interactions, and show how the resulting struc-

ture is consistent with the results of sections 2 and 3. Next we introduce and discuss

the holographic version of logarithmic spin-1 multiplets, described by models with higher

derivatives of the Maxwell tensor. We finish with some comments on spin-2 models. These

holographic toy models should prove useful in future AdS/CMT applications to strongly

coupled disordered systems.
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In section 5 we analyze a number of concrete logCFTs. We begin with a 2d example,

the triplet model, which is the bosonic sector of the c = −2 theory of symplectic fermions.

Many results are known for this theory, and we show they are in full agreement with

our formalism. Next we consider what we call the logarithmic generalized free field, the

logCFT analog of mean field theory. We discuss in detail the four point functions in this

model and their conformal block decompositions. Two further examples are considered in

a more limited way: the self-avoiding random walks, described by the O(n) model with

n→ 0, and critical percolation, given by the Q→ 1 limit of the Potts model. Both theories

have a Lagrangian description in the UV, which allows for computations using the epsilon

expansion. We reconsider some existing results in our framework.

We finish this paper with a discussion of several issues and an outlook on future

work. Several appendices complement and complete calculations done in the main bulk of

the paper.

2 Consequences of conformal invariance

A CFT is characterized by its symmetry under the action of the conformal group, which

in Euclidean signature is SO(d + 1, 1). Logarithmic CFTs are also invariant under the

action of the same group, but what sets these theories apart is that they contain reducible

but indecomposable representations, which we call logarithmic multiplets. In this section,

we shall examine the constraints imposed by conformal invariance on correlation functions

with insertions of logarithmic operators. For normal CFTs, such constraints and their

solutions are well-known, see for instance [58]. In logCFTs the Ward identities satisfied by

the correlation functions of the associated operators take an unusual form. Nevertheless,

we shall solve them in full generality, with particular attention paid to the two, three and

four-point correlation functions.

2.1 Logarithmic multiplets

We begin by recalling the form of the conformal algebra, for the sake of completeness but

also to set our conventions. The algebra so(d+1, 1) contains as generators D for dilatations,

Pµ for translations, Kµ for special conformal transformations and Mµν = −Mνµ for d-

dimensional rotations (with µ, ν = 1, . . . , d), satisfying non-trivial commutation relations:

i[D,P µ] = Pµ, i[D,Kµ] = −Kµ, i[Pµ,Kν ] = 2δµνD −Mµν ,

i[Mµν , Xρ] = δµρXν − δνρXµ , for Xµ = Pµ,Kµ , (2.1)

i[Mµν ,Mρσ] = δµρMνσ − δνρMµσ + δνσMµρ − δµσMνρ.

Next we consider representations of this algebra. In logarithmic CFTs, states are organized

in logarithmic multiplets of rank r ≥ 1. Such a multiplet is built on top of r primary states

|Oa〉, a = 1, . . . , r, obeying the highest-weight condition

Kµ|Oa〉 = 0 . (2.2)

The states |Oa〉 can have arbitrary spin, although we are suppressing O(d) indices for

simplicity. A full representation of the conformal algebra consists of the r primary states
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and their infinite descendants. The latter are obtained by acting an arbitrary number

of times with Pµ on the primary states, exactly like for a standard conformal multiplet

with r = 1.

The generator of dilatations D acts on primary states in the following way:1

D|Oa〉 = −i∆ b
a |Ob〉, ∆ =


∆ 1 0 · · · 0

0 ∆ 1 · · · 0
...

...
...

. . .
...

0 0 0 ∆ 1

0 0 0 0 ∆

 . (2.3)

The Jordan block form of the matrix ∆ in (2.3) means that for r > 1 such representations

are indecomposable but reducible. It is from this simple fact that the entire peculiar

structure of logarithmic theories will emerge [4].

On the cylinder R×Sd−1, we normally think of states |O〉 as energy eigenstates, with

D playing the role of the Hamiltonian. In logarithmic CFTs, the states |Oa〉 are actually

generalized eigenstates, meaning that they satisfy

(D + i∆)r−a+1|Oa〉 = 0 . (2.4)

Passing to flat space, the states |Oa〉 correspond to insertions of local operators Oa at the

origin. To insert them elsewhere we simply act with the generator of translations. Under

rotations and translations, local operators transform as they would in a CFT. However,

(2.3) implies that the action of the D and Kµ generators is now:

i[D,Oa(x)] =

(
∆ b
a + δba x ·

∂

∂x

)
Ob(x), (2.5a)

i[Kµ,Oa(x)] = −2xµ

(
∆ b
a + δba x ·

∂

∂x

)
Ob(x) + x2 ∂

∂xµ
Oa(x) + 2ixλ Sλµ · Oa(x) , (2.5b)

where Sµν is a matrix representation of the d-dimensional rotation group, acting on the

O(d) indices of Oa(x). We see that both dilatations and special conformal transformations

lead to a mixing between different operators in the multiplet. This mixing is an inevitable

consequence of the reducible but indecomposable property of these logarithmic multiplets.

The action of the generators above, together with translations and rotations, determine

the Ward identities for correlation functions in the usual way:

〈[G,O1
a1

(x1) · · · Onan(xn)]〉 =
n∑
k=1

〈O1
a1

(x1) · · · [G,Okak(xk)] · · · Onan(xn)]〉 = 0 , (2.6)

with G an arbitrary generator of the conformal algebra and the Oia(x) arbitrary local

operators. We see that in general these identities relate correlators of different components

of the same multiplet.

1Of course, the form of the matrix ∆ is basis-dependent; here we choose a particularly convenient basis.
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There is a formal way of understanding the origin of equations (2.5), see e.g. [12]. Let

us start with the action of the dilatation generator on a rank-1 primary state |O〉. Formally

we have

∂∆(iD −∆)|O〉 = 0 ⇒ iD|∂∆O〉 = ∆|∂∆O〉+ |O〉 . (2.7)

Similarly one deduces

iD
1

n!
|∂n∆O〉 = ∆

1

n!
|∂n∆O〉+

1

(n− 1)!
|∂n−1

∆ O〉. (2.8)

It follows that if we make the identification

|Oa〉 ≡
1

(r − a)!
∂r−a∆ |O〉, (2.9)

we recover the transformation laws (2.3) and (2.5) for a rank-r multiplet. This relation

is a formal trick that can be useful in solving the Ward identities. Nevertheless, many

known logCFTs are limits of one-parameter families of CFTs [5, 11] and in those cases the

identification (2.9) is more than a bookkeeping tool. Indeed, when tuning a parameter p to

a special value p∗, a logarithmic multiplet can arise when r operators collide to the same

scaling dimension. In order to cancel divergences in (p−p∗), one is forced to consider linear

combination of operators which become derivatives with respect to the scaling dimension

in the (p−p∗)→ 0 limit. Some examples of this phenomenon will be presented in section 5.

In the next subsections, we will use the Ward identities to constrain the form of n-point

functions of logarithmic operators. Before we do so, we may ask what happens when we

consider a finite conformal transformation x→ x′ with scale factor

Ω(x) = |det(∂x′µ/∂xν)|1/d . (2.10)

By exponentiating the action of the generators it is easy to show that, say, a rank-two

scalar multiplet of dimension ∆ transforms as:

O′1(x′) =
1

Ω(x)∆
[O1(x)− ln Ω(x)O2(x)] , (2.11a)

O′2(x′) =
1

Ω(x)∆
O2(x) . (2.11b)

Generalizations are straightforward, but here already we see the feature that gives log-

arithmic CFTs their name, namely the appearance of logarithms. Such logarithms will

abound in correlation functions. As an immediate consequence we notice that, in radial

quantization, conjugate states 〈Oa| have to be defined in an unusual way. In a CFT, such

states can be obtained by performing an inversion I which maps xµ → xµ/(µ|x|)2, for some

scale µ:

〈O| ≡ lim
|x|→0

〈0|IO(x)I = lim
|x|→∞

(µ|x|)2∆〈0|O(x) . (2.12)
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Usually the scale µ is set to one implicitly. However, the scale is important in a logarithmic

theory since now the conjugate states become:

〈O1| = lim
|x|→∞

(µ|x|)2∆〈0|
[
O1(x) + lnµ2|x|2O2(x)

]
, (2.13a)

〈O2| = lim
|x|→∞

(µ|x|)2∆〈0|O2(x) . (2.13b)

We see that, while we may get rid of the overall µ factor, the scale survives inside the

logarithm.

This might seem paradoxical: how can a scale invariant theory contain a scale? To

understand how this can be, consider performing a change of basis of states of the form

|Oa〉 → R b
a |Ob〉, R b

a :=

Rb−a if a ≤ b

0 if a > b
, (2.14)

for some fixed coefficients R0, . . . , Rr−1. Since [∆,R] = 0, this leaves both the action of

the conformal generators and the Ward identities unchanged.2 Going back to (2.11), we

see that a change of scale (i.e. Ω(x) = const.) amounts precisely to performing such a field

redefinition. It is then the freedom to change operator basis as in (2.14) which makes the

presence of a scale possible while preserving the full conformal invariance of the theory.

We will provide a more thorough discussion of this and related matters in section 2.6, but

henceforth we will implicitly work in units where µ = 1.

2.2 Two-point functions

Here we will derive the form of the two-point functions of logarithmic operators. Let’s

consider two scalar multiplets: Oa of dimension ∆1 and rank r, and Õb of dimension ∆2

and rank r′. Without loss of generality, we can assume that r ≤ r′. By Poincaré invariance,

their two-point function can be written as

〈Oa(x)Õb(0)〉 =
Bab(s)

|x|∆1+∆2
, (2.15)

where s := |x| and Bab(s) is a matrix of size r × r′ that we wish to determine. The Ward

identities imply that

s
d

ds
Bab = −B(a+1)b −Ba(b+1) , (2.16a)(

s
d

ds
+ ∆1 −∆2

)
Bab = −2B(a+1)b , (2.16b)

for all a, b. Here and in what follows we use the convention that Bab(s) = 0 if the labels

a, b are unphysical, i.e. if a > r or b > r′. Combining both equations, we obtain the

useful relation:

Ba(b+1) −B(a+1)b = (∆1 −∆2)Bab . (2.17)

2Conversely, it may be shown that any matrix R that commutes with ∆ is of the form shown in eq. (2.14).
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From this it is easy to determine that ∆1 = ∆2 ≡ ∆. Indeed, if this wasn’t the case we

would get immediately Brr′ = 0, and using the same relation successively determines that

all other elements would also be zero. Proceeding then with ∆1 = ∆2, eq. (2.17) now

implies that the matrix element Bab only depends on a+ b and thus we set

Bab(s) =: βa+b−1(s). (2.18)

In the new variables, eqs. (2.16) implies

s
d

ds
βn(s) = −2βn+1(s) . (2.19)

Moreover, eq. (2.17) implies that βn = 0 if n > r. Consequently, the system of differential

equations (2.19) can be solved in terms of r undetermined constants k1, . . . , kr:

βn(s) =
r−n∑
m=0

kn+m
(−1)m

m!
(lnx2)m, n = 1, . . . , r . (2.20)

Summarizing, the Jordan block form of the representation (2.3) forces various logarithmic

terms to be present in the 〈OaÕb〉 correlation function.

There are several important simplifications possible at this stage. First, we remark that

after a suitable change of basis, all two-point functions of operators in different multiplets

can be made to vanish. Since the proof of this statement is slightly technical, we refer to

appendix A for details. Next, we remark that for the correlator 〈OaOb〉 of two identical

multiplets, we can always assume that kr 6= 0. If this is not the case, the bottom component

Or of the multiplet completely decouples from the theory. But if kr 6= 0, there exists a

field redefinition which allows us to set k1 = . . . = kr−1 = 0. Indeed, the r undetermined

constants precisely match the number of free parameters in the field redefinition matrix R

in (2.14), and we may use this freedom to set such parameters to zero.

In conclusion, the two-point functions of a logarithmic multiplet Oa of dimension ∆

can always be brought to the canonical form

〈Oa(x)Ob(0)〉 =
kO
|x|2∆

×


(−1)n

n!

(
lnx2

)n
if n ≡ r + 1− a− b ≥ 0

0 if n < 0

(2.21)

for some constant kO 6= 0. In particular, if Oa(x) is of rank r = 2, we have

〈Oa(x)Ob(0)〉 =
kO
|x|2∆

(
− lnx2 1

1 0

)
ab

, (2.22)

which is a standard result in d = 2 dimensions [4].

One particular consequence of these results is that unitarity is broken. Reflection

positivity would require the two point functions 〈Oa(x)Oa(−x)〉 to be positive, for all

x and (hermitian) fields Oa. However it is evident from (2.21) that this is not possible

unless all multiplets have rank r = 1 and kO ≥ 0. The same conclusion can be drawn by
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inspecting the matrix of inner products 〈Oa|Ob〉. As shown in appendix C, this matrix

always has negative eigenvalues.3 As an important consequence, the unitarity bounds [59]

on operator dimensions that apply to ordinary CFTs do not hold for logCFTs. The sign

of the overall normalization kO is unimportant for this conclusion. Of course, all of these

statements follow essentially from the fact that the dilatation generator is not hermitian,

which means in particular that time translations on the cylinder are not implemented by

a unitary operator.

The generalization to traceless symmetric tensors of spin ` > 0 is straightforward.4

As in the case of ordinary CFTs, the resulting correlation function features the inversion

tensor [58]

Iµν(x) := δµν − 2
xµxν
x2

. (2.23)

To simplify correlators of spinning operators Oµ1···µ`(x), we use a coordinate-free nota-

tion [60]:

O(`)(x; z) := Oµ1···µ`(x) zµ1 · · · zµ` , (2.24)

where zµ is an auxiliary vector satisfying z · z = 0. With this notation, the two-point

functions of a logarithmic spin-` multiplet can be brought into the following form:

〈O(`)
a (x; z)O(`)

b (0; z′)〉 =
kO
|x|2∆

(
Iµν(x)zµz′ν

)` ×


(−1)n

n!

(
lnx2

)n
if n ≡ r+1−a−b ≥ 0

0 if n < 0
,

(2.25)

again for some undetermined constant kO 6= 0.

2.3 Three-point functions

We will now study constraints on three-point functions in a similar fashion to the previous

section, restricting our analysis to scalar-scalar-spin ` correlators for simplicity. Let us first

consider an ordinary (non-logarithmic) CFT with two scalar primaries φ, χ with scaling

dimensions ∆φ, ∆χ and a spin-` primary O(`) of dimension ∆O. Conformal invariance

forces their three-point function to take the following form:

〈φ(x1)χ(x2)O(`)(x3; z)〉 = λφχOP∆φ∆χ∆O(xi) (X · z)` , (2.26)

where λφχO is an OPE coefficient,

P∆1∆2∆3(xi) =
1

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
, xij := xi − xj , (2.27)

and

Xµ =
|x13||x23|
|x12|

(
xµ13

x2
13

− xµ23

x2
23

)
. (2.28)

3The number of negative eigenvalues is br/2c if kO > 0, otherwise it’s dr/2e.
4By spin ` we mean the traceless-symmetric representation of the rotation group O(d), given by a single

row Young tableau with ` boxes.
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We want to generalize this to the case where all operators are part of logarithmic

multiplets, where φa, χb have rank r1, r2 and O(`)
c has rank r3. This logarithmic three-

point function takes the form:

〈φa(x1)χb(x2)O(`)
c (x3; z)〉 = Kabc(xi) P∆φ∆χ∆O(xj) (X · z)` . (2.29)

We can obtain constraints on the functions Kabc(xi) using the D and Kµ Ward identities.

To simplify the resulting expressions, let’s introduce the variables

τ1 := ln
|x23|
|x12||x13|

, τ2 := ln
|x13|
|x12||x23|

, τ3 := ln
|x12|
|x13||x23|

, (2.30)

or equivalently

τi = ∂∆i ln[P∆1∆2∆3(xi)]. (2.31)

The Ward identities look now extremely simple:

∂

∂τ1
Kabc = K(a+1)bc ,

∂

∂τ2
Kabc = Ka(b+1)c ,

∂

∂τ3
Kabc = Kab(c+1) . (2.32)

We defer the proof of eq. (2.32) to section 2.5. Again, we use the convention that

Kabc(τi) = 0 if any of the labels a, b, c is unphysical. The most general solution to eqs. (2.32)

depends on r1r2r3 coefficients λφχOijk as follows:

Kabc(τi) =

r1−a∑
k=0

r2−b∑
l=0

r3−c∑
m=0

λφχO(a+k)(b+l)(c+m)

τk1
k!

τ l2
l!

τm3
m!

. (2.33)

Conformal invariance does not constrain the different OPE coefficients λφχOijk . However,

when two or more of the fields are identical, additional constraints will come from Bose

symmetry. Below, we will spell out these constraints for the case where the two scalars

belong to rank-two multiplets.

2.3.1 Examples

As the simplest example of the formulae above, let us consider the case of two rank-1

scalars φ, χ of dimension ∆φ, ∆χ and one rank-r scalar field Op of dimension ∆O. In this

case, the three-point function reads

〈φ(x1)χ(x2)Op(x3)〉 = P∆φ∆χ∆O(xj)Kp(τ3) , Kp(τ3) =

r−p∑
n=0

λφχOp+n

τn3
n!
, (2.34)

where λφχO1···r are the relevant OPE coefficients. In more detail, for r = 2 we find

〈φ(x1)χ(x2)O1(x3)〉 = P∆φ∆χ∆O(xj)
(
λφχO2 τ3 + λφχO1

)
, (2.35a)

〈φ(x1)χ(x2)O2(x3)〉 = P∆φ∆χ∆O(xj)λ
φχO
2 . (2.35b)

– 9 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

For a more complicated example, consider the three-point function of a rank-two scalar

primary φa and a rank-r primary of spin `:

〈φa(x1)φb(x2)O(`)
c (x3; z)〉 = Kabc(τi) P∆φ∆φ∆O(xj) (X · z)` , (2.36)

where a, b = 1, 2 and c = 1, . . . , r. As a starting point we consider the general solu-

tion (2.33). However, since there are two insertions of the same multiplet, we have to take

Bose symmetry into account, which requires

Kabc(τ1, τ2, τ3) = (−1)`Kbac(τ2, τ1, τ3). (2.37)

In particular, K11c(τi) and K22c(τi) will be even (resp. odd) under the exchange τ1 ↔ τ2 if `

is even (resp. odd). Consequently, we will treat the cases where ` is even and odd separately.

First, we consider the case of odd `. Concretely, eq. (2.37) implies that the coefficients

λφφOijk obey

λφφO11k = λφφO22k = 0 , λφφO12k = −λφφO21k , 1 ≤ k ≤ r. (2.38)

Consequently, there are only r undetermined OPE coefficients. After defining the functions

Λc(τ3) :=
r−c∑
n=0

λφφO12(c+n)

τn3
n!
, 1 ≤ c ≤ r , (2.39)

it is possible to write the functions Kabc in the following compact form:

K11c = (τ2 − τ1) Λc(τ3) , (2.40a)

K12c = −K21c = Λc(τ3) , (2.40b)

K22c = 0 . (2.40c)

Notice that the correlator 〈φ1φ1O(`)〉 is generally nonzero, despite the fact that ` is odd

in this case. Although this might seem paradoxical, an explanation comes by inspecting

the φ1 × φ1 OPE. As shown in appendix B, this expansion does not contain the primary

operator O(`), but it does include contributions from its descendants, which have a different

spin and consequently a different parity under Bose symmetry.

Second, we consider the case of even `. Here Bose symmetry only requires that

λφφO12k = λφφO21k , 1 ≤ k ≤ r , (2.41)

so there are 3r undetermined OPE coefficients. Introducing the quantities
Λ1
c(τ3)

Λ2
c(τ3)

Λ3
c(τ3)

 :=
r−c∑
n=0


λφφO11(c+n)

λφφO12(c+n)

λφφO22(c+n)

 τn3
n!
, 1 ≤ c ≤ r , (2.42)

the functions Kabc can be written in the compact form:

K11c = Λ1
c(τ3) + (τ1 + τ2) Λ2

c(τ3) + τ1τ2 Λ3
c(τ3) , (2.43a)

K12c = Λ2
c(τ3) + τ1 Λ3

c(τ3) , (2.43b)

K21c = Λ2
c(τ3) + τ2 Λ3

c(τ3) , (2.43c)

K22c = Λ3
c(τ3) . (2.43d)
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Finally, as a special case of the above, consider the three-point function of φa itself:

〈φa(x1)φb(x2)φc(x3)〉 = Kabc(τi) P∆φ∆φ∆φ
(xj). (2.44)

In this case, Bose symmetry is even more constraining, and the most general solution to

the Ward identities will only depend on four coefficients λφφφi , i = 1, . . . , 4:

K111 = λφφφ1 + λφφφ2

∑
i

τi + λφφφ3

∑
i<j

τiτj + λφφφ4 τ1τ2τ3 , (2.45a)

K112 = λφφφ2 + λφφφ3 (τ1 + τ2) + λφφφ4 τ1τ2 , (2.45b)

K122 = λφφφ3 + λφφφ4 τ1 , (2.45c)

K222 = λφφφ4 . (2.45d)

All other Kabc (e.g. K121 and K221) are related to the above solutions by cyclic permutations

of the τi.

2.3.2 Conserved currents

So far, we have considered constraints coming from conformal symmetry alone on three-

point functions. Some additional constraints apply to conserved currents, which are spin-`

operators Jµ1···µ` whose correlators are conserved at non-coincident points:

∂

∂yµ1
〈O1(x1) · · · On(xn)Jµ1···µ`(y)〉 = 0 y 6= x1, . . . , xn , (2.46)

for arbitrary insertions of O1, . . . ,On. Current conservation puts a constraint on the di-

mension ∆J of J :

Jµ1···µ`(x) conserved → ∆J = `+ d− 2 . (2.47)

This is a consequence of conformal invariance and holds both for ordinary and logarithmic

CFTs. We will see that in logarithmic CFTs current conservation forces various three-point

functions to vanish.

For definiteness, we consider the case where J itself is a rank-one tensor operator

— i.e. J has no logarithmic partners. Furthermore, we will specialize to the three-point

function 〈φaφbJ〉 where φa is a rank-two scalar of dimension ∆φ. The strategy to derive

these constraints is the following. The correlator 〈φaφbJ〉 can be written as

〈φa(x1)φb(x2)Jµ1···µ`(x3)〉 = Kab(τ) P∆φ∆φ∆J
(x) [Xµ1 · · ·Xµ` − traces] , (2.48)

for some matrix Kab determined in section 2.3.1. Then it is shown in [58] that

∂

∂xµ1
3

P∆φ∆φ∆J
(x) [Xµ1 · · ·Xµ` − traces] = 0 [∆J = `+ d− 2] , (2.49)

at x3 6= x1, x2. We must then have also

∂

∂xµ3
〈φa(x1)φb(x2)Jµ···µ`(x3)〉 = 0 ↔ ∂

∂xµ3
Kab(τi) = 0 . (2.50)
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This is the equation that we will use to get concrete constraints on OPE coefficients. In

what follows, we will consider ` odd and even separately.

First, for odd `, there is only one OPE coefficient, namely λφφJ12 . We have

K11 = λφφJ12 (τ2 − τ1) , K12 = −K21 = λφφJ12 , K22 = 0 . [odd `] (2.51)

The only constraint comes from applying eq. (2.50) to K11, which requires that λφφJ12 = 0,

i.e. J does not couple to φa × φb at all. A different way to arrive at this conclusion comes

from the OPE φ1 × φ1 ∼ J . Consider for definiteness the case ` = 1, where for arbitrary

∆J we have

φ1(x)φ1(0) ∼ λφφJ12

|x|2∆φ−∆J+1

[
−xµxν∂νJµ(0)− 1

(∆J+1)(∆J−d+1)
x2∂µJµ(0) + O(x3)

]
.

(2.52)

In the limit ∆J → `+ d− 2 = d− 1 the second term in the OPE blows up, hence requiring

that the OPE remains finite forces λφφJ12 = 0.

For even ` there are three OPE coefficients λφφJ11 , λφφJ12 = λφφJ21 and λφφJ22 , and the

three-point functions are

K11 = λφφJ11 +λφφJ12 (τ1+τ2)+λφφJ22 τ1τ2 , K12 = λφφJ12 +λφφJ22 τ1 , K22 = λφφJ22 . [even `]

(2.53)

Applying eq. (2.50) to K22 does not give any constraints. However, applying it K11 and

K12 shows that λφφJ22 must vanish. We find no additional constraints on the coefficients

λφφJ11 and λφφJ12 . As above, this argument is buttressed by analyzing the φ1 × φ2 ∼ J OPE,

taking ` = 2 for definiteness. For arbitrary ∆J we have

φ1(x)φ2(0) ∼ λφφJ22

|x|2∆φ−∆J+2

[
− lnx2

4
xµxνJµν(0)

+

(
− lnx2

8
+

1

4(∆J + 2)

)
xµxν(x · ∂)Jµν(0)

+
1

2(∆J + 2)(∆J − d)
x2xµ∂νJµν(0) + O(x4)

]
+

λφφJ12

|x|2∆φ−∆J+2
× (finite) . (2.54)

If λφφJ22 6= 0 the term proportional to x2xµ∂νJµν blows up in the limit ∆J → d. A similar

argument applies to the φ1 × φ1 OPE.

It may be interesting in future work to generalize this argument and to find constraints

on OPE coefficients for conserved currents of rank r in more general three-point functions.

2.4 Four-point functions

Let us now turn to the constraints of conformal symmetry on scalar four-point functions.

We first discuss the non-logarithmic case, considering four different rank-1 scalar primaries

φi of dimension ∆i. We recall that their four-point function can always be written as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = F (u, v) P∆1∆2∆3∆4(xi) , (2.55)
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where F (u, v) is a function depending on two independent cross ratios u, v

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.56)

and P is a scale factor:

P∆1∆2∆3∆4(xi) =
∏
i<j

1

|xij |∆i+∆j−Σ/3
, Σ :=

4∑
i=1

∆i . (2.57)

We want to generalize eq. (2.55) to the case of four logarithmic scalars φia of rank ri.

In this case, we write

〈φ1
a(x1)φ2

b(x2)φ3
c(x3)φ4

d(x4)〉 = Fabcd(u, v, xi) P∆1∆2∆3∆4(xj), (2.58)

and we wish to determine the constraints on the tensor Fabcd imposed by conformal invari-

ance. It will be useful to introduce four new variables ζi:

ζ1 :=
1

3
ln
|x23||x24||x34|
|x12|2|x13|2|x14|2

, ζ2, ζ3, ζ4 = cyclic permutations of ζ1 , (2.59)

or equivalently

ζi = ∂∆i ln[P∆1∆2∆3∆4(xj)]. (2.60)

In terms of the ζi variables, the Ward identities take a particularly simple form:

∂

∂ζ1
Fabcd = F(a+1)bcd ,

∂

∂ζ2
Fabcd = Fa(b+1)cd ,

∂

∂ζ3
Fabcd = Fab(c+1)d ,

∂

∂ζ4
Fabcd = Fabc(d+1) . (2.61)

This is proved in section 2.5. Notice that the Ward identities do not restrict the dependence

of Fabcd on u and v, since the latter are conformally invariant. An immediate consequence

of eq. (2.61) is that the functions Fabcd are polynomials in the ζi, the degree of which will

depend on the different ranks ri.

It is possible to write down a completely general solution to eqs. (2.61) similar to

eq. (2.33) for the three-point case. However, we will only work out the details for two

specific cases. First we consider a four-point function with two insertions of a rank-two

scalar and two insertions of a rank-one scalar. Second, we consider the case of four identical

rank-two scalar primaries.

2.4.1 Example: two logarithmic and two normal insertions

As an exercise, we will show how to solve the Ward identities (2.61) for the correlation

function

〈φa(x1)φb(x2)χ(x3)χ(x4)〉 = Fab(u, v, ζi) P∆φ∆φ∆χ∆χ(xi) , (2.62)

where φa is a rank-two scalar primary of dimension ∆φ and χ is a normal scalar primary

of dimension ∆χ (i.e. a rank-1 operator). An immediate consequence of (2.61) is that the

Fab will not depend on ζ3 and ζ4.
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Next, we stress that the Fab must be consistent with Bose symmetry. The exchange

of x3 ↔ x4 acts on the (u, v, ζi) variables as follows:

x3 ↔ x4 : u→ u/v , v → 1/v , ζ1, ζ2 → ζ1, ζ2 , ζ3 ↔ ζ4 . (2.63)

This implies the following crossing symmetry relation:

Fab(u, v, ζ1, ζ2) = Fab(u/v, 1/v, ζ1, ζ2) . (2.64)

Likewise, exchanging x1 and x2 acts on the variables as follows:

x1 ↔ x2 : u→ u/v , v → 1/v , ζ1 ↔ ζ2 , ζ3, ζ4 → ζ3, ζ4 . (2.65)

This implies a second crossing relation, namely

Fab(u, v, ζ1, ζ2) = Fba(u/v, 1/v, ζ2, ζ1) . (2.66)

At this point, we will compute the functions Fab one by one. We will start with F22,

which depends only on u and v. We can therefore write F22 = F3(u, v) for some function

F3(u, v). Taking into account the crossing symmetry relation (2.64), the latter must satisfy

F3(u, v) = F3(u/v, 1/v) . (2.67)

Next, we consider F12, which according to eq. (2.61) obeys

∂

∂ζ1
F12 = F22 = F3(u, v),

∂

∂ζ2
F12 = 0 . (2.68)

Taking again eq. (2.64) into account, we conclude that

F12 = F2(u, v) + ζ1F3(u, v) , F2(u, v) = F2(u/v, 1/v) , (2.69)

for some function F2(u, v). F21 can be obtained from eq. (2.69) using eq. (2.66):

F21 = F2(u, v) + ζ2F3(u, v). (2.70)

Finally, the function F11 is given by

F11 = F1(u, v) + (ζ1 + ζ2)F2(u, v) + ζ1ζ2F3(u, v) , (2.71)

for some function F1(u, v) which obeys

F1(u, v) = F1(u/v, 1/v). (2.72)

In conclusion, the correlation function 〈φaφbχχ〉 is fixed by conformal symmetry up to

three functions Fi(u, v), all of which satisfy a crossing symmetry identity:

Fi(u, v) = Fi(u/v, 1/v), i = 1, 2, 3 . (2.73)
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2.4.2 Example: four insertions of a rank-two operator

Let’s now turn to the four-point function of a single rank-two field φa of dimension ∆φ:

〈φa(x1)φb(x2)φc(x3)φd(x4)〉 = Fabcd(u, v, ζi) P∆φ∆φ∆φ∆φ
(xj) . (2.74)

As in the previous example, the solution for Fabcd must be consistent with Bose symmetry.

Notice that all permutations of four points xi can be obtained by combining the exchange

x1 ↔ x2 with the cyclic permutation (x1, x2, x3, x4) → (x2, x3, x4, x1). The latter acts on

the (u, v, ζi) variables as

(x1, x2, x3, x4)→ (x2, x3, x4, x1) : u↔ v , (ζ1, ζ2, ζ3, ζ4)→ (ζ2, ζ3, ζ4, ζ1) . (2.75)

This means that the functions Fabcd must satisfy the following crossing identities:

Fabcd(u, v, ζ1, ζ2, ζ3, ζ4) = Fbacd(u/v, 1/v, ζ2, ζ1, ζ3, ζ4) (2.76a)

= Fbcda(v, u, ζ2, ζ3, ζ4, ζ1). (2.76b)

Equivalent forms can be obtained by combining these identities in different ways.

The computation of the Fabcd follows the same steps as the computation from sec-

tion 2.4.1, and we will not spell out the details. In the end the correlators 〈φaφbφcφd〉
involve five functions5 F1, . . . ,F5 as follows:

F1111 = F1(u, v) +
∑
i

ζiF2(u, v) + (ζ1ζ2 + ζ3ζ4)F3(u, v)

+ (ζ1ζ3 + ζ2ζ4)F3(1/u, v/u) + (ζ1ζ4 + ζ2ζ3)F3(v, u)

+
∑
i<j<k

ζiζjζk F4(u, v) + ζ1ζ2ζ3ζ4F5(u, v) , (2.77a)

F1112 = F2(u, v) + ζ1F3(v, u) + ζ2F3(1/u, v/u) + ζ3F3(u, v)

+ (ζ1ζ2 + ζ1ζ3 + ζ2ζ3)F4(u, v) + ζ1ζ2ζ3F5(u, v) , (2.77b)

F1122 = F3(u, v) + (ζ1 + ζ2)F4(u, v) + ζ1ζ2F5(u, v) , (2.77c)

F1222 = F4(u, v) + ζ1F5(u, v) , (2.77d)

F2222 = F5(u, v). (2.77e)

The conformally invariant functions Fi(u, v) have the following crossing properties:

Fi(u, v) = Fi(u/v, 1/v) = Fi(v, u) if i = 1, 2, 4, 5; (2.78a)

F3(u, v) = F3(u/v, 1/v). (2.78b)

All other four-point functions (like F2122) can be obtained from (2.77) by using eqs. (2.76)

and (2.78) repeatedly.

5Note that the functions Fi are not the same as those defined in the previous section. We will refer to

the proper definition wherever a confusion will appear.
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2.5 n-point functions

The discussion of three- and four-point functions can be easily extended to scalar n-point

functions.6 This will allow us to derive the solution of the Ward identities once and for all.

Consider therefore the correlation function of n scalars Oia of rank ri and dimension ∆i. It

can be written in the following form:

〈O1
a1

(x1) · · · Onan(xn)〉 = P∆1···∆n(xi)Fa1···an(xi) , (2.79)

where we have extracted a scale factor P:

P∆1···∆n(xi) :=
∏
i<j

1

|xij |κ1(∆i+∆j)−κ2Σn
, Σn :=

n∑
i=1

∆i (2.80)

writing κ1 = 2/(n − 2) and κ2 = 2/[(n − 1)(n − 2)]. The function P is defined such that

under any conformal transformation x → x′ with scale factor Ω(x) — cf. eq. (2.10) — it

transforms as

P∆1···∆n(x′1, . . . , x
′
n) =

n∏
i=1

1

Ω(xi)∆i
P∆1···∆n(x1, . . . , xn) . (2.81)

To prove this, the identity |x′ − y′|2 = Ω(x)Ω(y)|x − y|2 may be used. The function

Fa1···an(xi) can depend on n(n − 1)/2 Lorentz scalars, out of which n(n − 3)/2 are cross

ratios ui and the other n variables are Poincaré but not conformally invariant. We will

parametrize these remaining n variables as follows:

ζ
(n)
i := ∂∆i ln[P∆1···∆n(xj)] (2.82)

=
2

(n− 1)(n− 2)
ln

( ∏
k<l |xkl|∏

j 6=i |xij |n−1

)
,

for i = 1, . . . , n. By construction, the ζ
(n)
i transform as

ζ
(n)
i (x′) = ζ

(n)
i (x)− ln Ω(xi) . (2.83)

Clearly, ζ
(n)
i reduces to τi for n = 3 and ζi for n = 4.

To derive the Ward identities, consider performing an infinitesimal transformation

x → x′ with scale factor Ω(x) = 1 + εα(x) + O(ε2), where ε is a small parameter. Under

such a transformation we have

δOa(x) := O′a(x′)−Oa(x)

= −ε α(x) [∆Oa(x) +Oa+1(x)] + O(ε2) . (2.84)

Consequently the correlator (2.79) transforms as

δ〈O1
a1

(x1) · · · Onan(xn)〉 = −ε
n∑
i=1

α(xi)
[
∆i 〈O1

a1
(x1) · · · Onan(xn)〉

+ 〈O1
a1

(x1) · · · Oiai+1(xi) · · · Onan(xn)〉
]

+ O(ε2) . (2.85)

6The generalization to spinning n-point functions is straightforward but not important for this work,

see e.g. [60] for an introduction.
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At the same time, using eqs. (2.81) and (2.83) it may be shown that

δ
(
P∆1···∆n(x)Fa1···an(u, ζ)

)
= −ε

n∑
i=1

α(xi)

[
∆i Fa1···an+

∂

∂ζ
(n)
i

Fa1···an

]
P∆1···∆n(x) + O(ε2) .

(2.86)

Equating these two expressions we conclude

∂

∂ζ
(n)
i

Fa1···ai···an(u, ζ) = Fa1···(ai+1)···an(u, ζ) i = 1, . . . , n . (2.87)

The Ward identities for three-point (2.32) and four-point (2.61) functions are a special case

of eq. (2.87). Notice that the dependence on the cross ratios ui is not constrained. The

general solution to eq. (2.87) is

Fa1···an(ui, ζ
(n)
i ) =

r1−a1∑
k1=0

· · ·
rn−an∑
kn=0

F(a1+k1)···(an+kn)(ui)
n∏
i=1

[
ζ

(n)
i

]ki
ki!

(2.88)

which is given in terms of r1 × r2 × · · · × rn functions Fa1···an(ui) that depend only on the

cross ratios. As before, if any of the inserted operators are identical, Bose symmetry will

impose additional constraints on the Fa1···an(ui).

2.6 Scale dependence

We will now formalize the brief statements of section 2.1 on the scale dependence of loga-

rithmic correlation functions. Let us recall what the issue is. On the one hand dimensional

analysis requires that logarithms have dimensionless arguments, and hence we must intro-

duce a scale µ. On the other, in a conformal theory we expect that all scales should drop

out. The way that these two statements are reconciled in a logCFT is that the operator

basis itself becomes scale dependent. Indeed, there is an ambiguity in the choice of operator

basis, since all Ward identities in the theory are preserved under the transformation

Oa(x)→ R b
a Ob(x), R b

a :=

Rb−a if a ≤ b

0 if a > b
. (2.89)

This ambiguity precisely cancels the ambiguity in the choice of scale µ. To see this, consider

writing a Callan-Symanzik type equation for correlation functions,

µ
d

dµ
〈Oa1(x1) . . .Oan(xn)〉 = 0 (2.90)

Let us write Oµa := R b
a (µ)Ob, with R b

a (µ0) = δba. Then we can write the equation in

the form (
µ
∂

∂µ
δb1a1
· · · δbnan +

n∑
k=1

δb1a1
· · · γ bk

ak
· · · δbnan

)
〈Oµb1(x1) . . .Oµbn(xn)〉 = 0. (2.91)

where we have defined

γ b
a :=

(
R−1∂µR

) b
a
. (2.92)
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In order for such an equation to be true, it must necessarily reduce to the Ward

identities. Since µ∂µ implements a change of scale it is perhaps not surprising that the

only possibility is to equate the above with the dilatation Ward identity, by setting

γ b
a = ∆ b

a −∆ δba =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

0 0 0 0 0

 . (2.93)

In this way we see indeed that the scale dependence is cancelled by a shift in the operator

basis as determined by γ b
a .

A different interpretation of the Callan-Symanzik equation (2.91) is that it provides us

with a prescription to compare correlation functions at different scales, once some initial

conditions are given. Suppose that we choose a field redefinition that brings the two-point

function 〈OaOb〉µ in the canonical form (2.21) at the initial scale µ0. If we now change

the scale to some new value µ′, the correlator 〈OaOb〉µ′ will no longer be in the canonical

form, since the coefficients k1, . . . , kr−1 may be nonzero. We could choose to cancel this

change by redefining our operator basis as before, or instead we could simply say that the

coefficients are now scale dependent. Concretely, the coefficients kj would transform as

follows under a scale transformation:

µ
∂

∂µ
ki(µ) = −2γ j

i kj(µ) (2.94)

A similar reasoning applies to three- and four-point functions. Consider for instance the

scale dependence of the three-point function 〈φχOa〉, where φ, χ are non-logarithmic scalars

and Oa is a logarithmic scalar of rank r. The general form of this three-point function was

computed in section 2.3.1, and it was found that it depends on r coefficients λφχO1 , . . . , λφχOr .

The functions Ka obey: (
µ
∂

∂µ
δ a′
a + γ a′

a

)
Ka′(τ3;µ) = 0 (2.95)

Evidently, this equation is satisfied if we make the τi variables dimensionless, i.e. by re-

placing τi → τi− lnµ. Equivalently, we can keep the τi with a fixed scale µ0, provided that

the coefficients λa transform under scale changes as

µ
∂

∂µ
λφχOi = −γ j

i λ
φχO
j . (2.96)

The same reasoning applies to more general logarithmic three-point functions. Equations

(2.94) and (2.96) now determine the running of all correlation functions.

3 Conformal block decompositions

In the previous section we have studied the general constraints of conformal symmetry on

correlators of logarithmic multiplets. In particular, we have seen that four-point correla-

tion functions are determined up to a set of seemingly arbitrary functions of cross-ratios.
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However, this analysis neglects the existence of the operator product expansion. Due to the

state-operator correspondence, the OPE implies that such functions are sums of contribu-

tions from in principle all possible operators in the theory, organized into conformal blocks.

Each conformal block captures the contribution of an entire multiplet to the four-point

function, which includes not only primary states but also descendants. Our goal in this

section is to understand the conformal block decompositions of the four point functions of

logarithmic multiplets.

We will do this in several steps. We begin by reviewing how such decompositions are

derived in CFTs. Next, we generalize the fact that conformal blocks are eigenfunctions of

the Casimir operator to the logarithmic case. This allows us to work out the conformal

block decomposition in a couple of examples. The upshot is that the logarithmic blocks

are essentially derivatives of ordinary ones. In principle this approach could be extended

to all possible four-point functions, but we shall not pursue this here. Instead we move on

to a more general analysis based on radial quantization techniques. More concretely, we

will achieve two separate goals. Firstly, a precise understanding of the decomposition in

terms of contributions which we will call logarithmic conformal blocks. In particular we

will derive precise (but complicated) expressions for these contributions in terms of radial

quantization matrix elements. Secondly, we shall show that these expressions are related

in a simple way to those corresponding to non-logarithmic conformal blocks. This means

that we will not have to compute the logarithmic conformal blocks explicitly, but rather

we will determine them in terms of certain derivatives of ordinary blocks.

3.1 Conformal blocks in CFTs

Let us start by considering the four-point function

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = F (u, v) P∆1∆2∆3∆4(xi) , (3.1)

of four different scalar primaries φi of dimension ∆i, see eq. (2.55). Thanks to the state-

operator correspondence every CFT has a radial quantization Hilbert space, spanned by

primary operators |O〉 and their descendants Pµ1 · · ·Pµn |O〉. We will use the shorthand

notation |O;α〉 ≡ Pα|O〉 to describe such states, interpreting α as a multi-index. Again,

we ignore any O(d) indices belonging to the state |O〉. These descendant states can be

organized into states with a well-defined spin and scaling dimension. In such a basis, the

different descendants are orthogonal:

〈O;α|O;β〉 = kO δαβ gα(∆O; `O) , (3.2)

where kO is the normalization of the 〈OO〉 two-point function, ∆O its scaling dimension

and `O its spin. The norms gα(∆O; `O) depend only on the quantum numbers of the

operator O and can be computed using the conformal algebra [61]. Assuming that the

four-point function (3.1) is radially ordered, we can then insert a complete set of states,

which yields

〈φ1φ2φ3φ4〉 =
∑

primaries O
k−1
O

∑
α

〈0|φ1(x1)φ2(x2)|O;α〉 gα(∆O; `O)−1 〈O;α|φ3(x3)φ4(x4)|0〉.

(3.3)

– 19 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

The radial quantization matrix element 〈0|φ1(x1)φ2(x2)|O;α〉 is proportional to an OPE

coefficient λ12O, but otherwise fixed by conformal symmetry. The same holds, mutatis

mutandis, for the matrix element 〈O;α|φ3(x3)φ4(x4)|0〉. We will therefore write

〈0|φ1(x1)φ2(x2)|O;α〉 =: λ12OM[1, 2, α,∆O, `O] , (3.4a)

〈O;α|φ3(x3)φ4(x4)|0〉 =: λ34OM′[3, 4, α,∆O, `O]. (3.4b)

The matrix elements M[1, 2, α,∆, `] and M′[3, 4, α,∆, `] can in principle be computed

using the conformal algebra, but their precise form is not important here. In conclusion,

we can rewrite eq. (3.3) as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑
O
k−1
O λ12Oλ34OW

(`O)
∆O

(xi; ∆j) , (3.5)

W
(`)
∆ (xi; ∆j) :=

∑
α

M[1, 2, α,∆, `] gα(∆; `)−1M′[3, 4, α,∆, `] . (3.6)

It follows that the conformal partial waves W
(`)
∆ (xi; ∆j) are universal objects in CFT. They

depend only on the positions xi and scaling dimensions ∆i of the external operators φi(xi)

and the scaling dimension ∆ and spin ` of the exchanged operators O.

The partial waves have the same conformal properties as the four-point functions, and

hence we can strip off a scale factor

W
(`)
∆ (xi; ∆j) = G

(`)
∆ (u, v; ∆j) P∆1∆2∆3∆4(xi). (3.7)

leaving behind a conformal block G
(`)
∆ (u, v; ∆i) which depends only on u and v and the

external dimensions ∆1···4. It follows that the function F (u, v) can be decomposed in

terms of the conformal blocks:

F (u, v) =
∑
O
k−1
O λ12Oλ34OG

(`O)
∆O

(u, v; ∆i) . (3.8)

We stress that the conformal blocks G
(`)
∆ (u, v; ∆i) defined in eq. (3.7) are normalized in an

unconventional way. Often one defines conformal blocks Ĝ
(`)
∆ as follows:

G
(`)
∆ (u, v; ∆i) =: u−(∆1+∆2+∆3+∆4)/6 v(−∆1+2∆2+2∆3−∆4)/6 Ĝ

(`)
∆ (u, v; ρ1, ρ2) . (3.9)

The latter depend on the external dimensions only through the linear combinations

ρ1 ≡ (∆2 −∆1)/2 and ρ2 ≡ (∆3 −∆4)/2.7 They can be characterized as solutions to a

second-order differential equation [57] with the following asymptotic behavior:

Ĝ
(`)
∆ (u, v; ρ1, ρ2) ∼

u→0,v→1
(−1)`

`! Γ(d/2− 1)

2` Γ(`+ d/2− 1)
u∆/2C

(d/2−1)
`

(
1− v
2
√
u

)
, (3.10)

where the C
(a)
j are Gegenbauer polynomials. There are systematic methods to compute the

scalar conformal blocks Ĝ
(`)
∆ (u, v; ρ1, ρ2) for arbitrary d; we refer the reader to [57, 62–65]

as a point of entry in the relevant literature.

7The quantities ρ1 and ρ2 are usually denoted as a and b in the CFT literature.
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3.2 Exchange of logarithmic operators

Before discussing the conformal block decomposition of a four-point function of logarithmic

operators, we will consider the exchange of a logarithmic rank-r operator to the four-

point function (3.1) of four normal scalars. The discussion will revolve around the Casimir

equation, a second-order PDE that the conformal block must obey. Let us start by recalling

the general framework [57]. We start from the quadratic Casimir of so(d+ 1, 1), namely

L2 :=
1

2
LABL

AB =
1

2
MµνM

µν −D2 +
1

2
(PµKµ +KµPµ) , (3.11)

where we denote the generators of so(d + 1, 1) as LAB = −LBA. These generators act

on local operators as first-order differential operators: [LAB, φ
i(x)] = L

(i)
ABφ

i(x). A short

calculation then leads to the following identity:

L2〈0|φ1(x1)φ2(x2)|Ψ〉 = 〈0|φ1(x1)φ2(x2)L2|Ψ〉 , L2 :=
1

2

(
L

(1)
AB + L

(2)
AB

)2
, (3.12)

for any arbitrary state |Ψ〉 in the Hilbert space of the CFT. Acting on a state |O;α〉, the

Casimir evaluates to

L2|O;α〉 = C2(∆O, `O)|O;α〉, C2(∆, `) := ∆(∆− d) + `(`+ d− 2) . (3.13)

We conclude that the partial wave W
(`)
∆ obeys the following second-order differential

equation:

L2 ·W (`)
∆ (xi; ∆j) = C2(∆, `)W

(`)
∆ (xi; ∆j) . (3.14)

By extracting the scale factor P, this equation descends to a second-order PDE for the

conformal block G
(`)
∆ :

Du,v ·G(`)
∆ (u, v; ∆i) = C2(∆, `)G

(`)
∆ (u, v; ∆i) . (3.15)

This is the promised Casimir differential equation for G
(`)
∆ . The precise form for the differ-

ential operator Du,v is shown in [57].8

We will now consider a more general case, namely one where the exchanged operator

Op is part of a logarithmic multiplet of rank r > 1, hence p takes values p = 1, . . . , r. We

will denote the dimension and spin of Op as ∆O resp. `. In that case, the Gram matrix

Gpα;qβ := 〈Op;α|Oq;β〉 (3.16)

will be non-trivial, due to mixing between the different primaries Op within the multiplet.

We will require the inverse of the Gram matrix, Gpα;q;β , which is given by

Gpα;q;β = k−1
O δαβ V

pq(∂∆O) · g−1
α (∆O, `O), V pq(∂) =

{
∂n/n! if n ≡ p+q−r−1 ≥ 0

0 if n < 0
,

(3.17)

8To be precise, the Casimir operator from that reference applies to the function Ĝ
(`)
∆ — it is straightfor-

ward to obtain Du,v from their expression using (3.9).
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provided that the two-point function 〈OpOq〉 is of canonical form. This computation is

outlined in appendix C. By definition, the contribution of the Op logarithmic multiplet to

the four-point function (3.1) is given by

W(r)
O :=

r∑
p,q=1

∑
α,β

〈0|φ1(x1)φ2(x2)|Oq;α〉Gpα;qβ〈Oq;β|φ3(x3)φ4(x4)|0〉 . (3.18)

We will now show that the above partial wave obeys a differential equation similar to (3.14).

To set up this differential equation, we first remark that the Casimir L2 does not act simply

on |Op〉 or any descendant |Op;α〉. The reason is that the matrix ∆ is not diagonal. As a

matter of fact, we have

(
L2 − C2(∆O, `O)

)
|Op;α〉 =

r∑
q=1

[
δq,p+1∂∆O + δq,p+2

1

2
∂2

∆O

]
C2(∆O, `O)|Oq;α〉 . (3.19)

However, by acting r times with the operator in the l.h.s. of (3.19), we obtain(
L2 − C2(∆O, `O)

)r|Op;α〉 = 0 . (3.20)

It is easy to see that this observation leads to a higher-order Casimir equation for the

above partial wave. For convenience, let’s strip off a trivial scaling factor from the partial

wave (3.18):

W
(r)
O =: P∆1···∆4 GO(u, v) (3.21)

Then applying the Casimir trick r times yields(
Du,v − C2(∆O, `O)

)r ·GO(u, v) = 0 . (3.22)

Indeed, this is a PDE of order 2r that generalizes the normal Casimir equation (3.15).

Finally, we will find the appropriate solution for eq. (3.22). As a starting point, notice

that a general solution is given by

GO =
r−1∑
n=0

an
∂n

∂∆n
O
G

(`O)
∆O

(u, v; ∆1,∆2,∆3,∆4) (3.23)

where G
(`)
∆ are the standard conformal blocks from the previous section. The only thing

left to do is to compute the relative coefficients an appearing in this sum. We do so by

analyzing the limit of the φi four-point function where x3 → x4. To be precise, we first

compute the leading φ3(x3)φ4(x4) ∼ Op(x4) OPE, which depends on r OPE coefficients

λ34O
i with i = 1, . . . , r. Next, we plug this OPE into the four-point function. This gives

u(∆1+∆2+∆3+∆4)/6GO(u, v) ∼
x3→x4

k−1
O

(−1
2)``! Γ(d/2− 1)

Γ(d/2− 1 + `)
u∆/2C

(d/2−1)
`

(
1− v
2
√
u

)
×

r∑
p,q=1

λ12O
p λ34O

q

{
ln(
√
u)k/k! if k ≡ p+ q − r − 1 ≥ 0

0 if k < 0
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where λ12O
p are the OPE coefficients appearing in the three-point function 〈φ1φ2Op〉. By

comparing this to the conformal block asymptotics (3.10) we read off the an:

an =
k−1
O
n!

∑
p+q=n+r+1

λ12O
p λ34O

q . (3.24)

This concludes the computation of logarithmic conformal blocks for the case of four-point

functions of rank-one scalars.

For practical purposes, we will print the results for ranks r = 2, 3. If the exchanged

operator O has rank two, then the total contribution to the four-point function (3.1) is

GO = k−1
O

[
λ12O

1 λ34O
2 +λ12O

2 λ34O
1 +λ12O

2 λ34O
2

∂

∂∆O

]
G

(`O)
∆O

(u, v; ∆1,∆2,∆3,∆4) , [r = 2].

(3.25)

For rank r = 3 we have instead

GO = k−1
O

[
λ12O

1 λ34O
3 + λ12O

2 λ34O
2 + λ12O

3 λ34O
1 +

(
λ12O

2 λ34O
3 + λ12O

3 λ34O
2

) ∂

∂∆O

+
1

2!
λ12O

3 λ34O
3

∂2

∂∆2
O

]
G

(`O)
∆O

(u, v; ∆1,∆2,∆3,∆4) , [r = 3] . (3.26)

In general, if the exchanged operator is of rank r, the conformal block decomposition will

contain derivatives up to order r − 1 of the conformal block.

3.3 Example: one external logarithmic operator

In this section, we will consider a problem that is orthogonal to the case considered above:

we have in mind the four-point function

〈χ(x1)χ(x2)χ(x3)φa(x4)〉 = P∆χ∆χ∆χ∆φ
(xi)Fa(τ4) (3.27)

where χ is a rank-one scalar primary and φa has rank two. Following the logic of section 2.4,

the functions Fa can be decomposed as follows:

F1 = F1(u, v) + τ4F2(u, v) , F2 = F2(u, v) (3.28)

in terms of two conformally invariant functions F1,2(u, v).9 Consequently, we need to

consider two different conformal block decompositions, treating F1 and F2 separately. For

simplicity, we will consider the exchange of a rank-one operator O of dimension ∆O and

spin `. We will denote the contribution of O to the four-point functions (3.27) as(
F1(u, v)

F2(u, v)

)
=

(
GO,1(u, v)

GO,2(u, v)

)
+ other multiplets . (3.29)

A priori, the functions GO,i(u, v) can depend on three OPE coefficients: λχχO ∝ 〈χχO〉
and λχφOi ∝ 〈χφiO〉 for i = 1, 2.

9Although the Fi obey various crossing identities, they won’t play a role in this section.
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We will now use the conformal Casimir to construct the partial waves GO,i. Let us

first consider the four-point function 〈χχχφ2〉. The Casimir trick applies as before, and

we obtain: (
L2 − C2(∆O, `O)

) [
P∆χ∆χ∆χ∆φ

(x)GO,2(u, v)
]

= 0 . (3.30)

This is the differential equation we encountered above, and we know its solution: GO,2
must be proportional to a normal conformal block. Taking into account the asymptotics

of this four-point function in the limit x3 → x4, we conclude that

GO,2(u, v) = λχχOλχφO2 G
(`O)
∆O

(u, v; ∆χ,∆χ,∆χ,∆φ) . (3.31)

Next, we consider the 〈χχχφ1〉 four-point function. This time, we obtain(
L2 − C2(∆O, `O)

)
[PGO,1(u, v)] = −

(
L2 − C2(∆O, `O)

)
[τ4 PGO,2(u, v)] ,

P := P∆χ∆χ∆χ∆φ
(x) . (3.32)

This has the form of an inhomogeneous differential equation, the r.h.s. playing the role of

a source term. We can rewrite the r.h.s. using the identity

−
(
L2 − C2(∆O, `O)

)
[τ4 PGO,2(u, v)] =

(
L2 − C2(∆O, `O)

) [
P

∂

∂∆φ
GO,2(u, v)

]
(3.33)

which follows from deriving (3.30) with respect to ∆φ. Therefore the general solution

to (3.32) is

GO,1(u, v) = γ G
(`O)
∆O

(u, v; ∆χ,∆χ,∆χ,∆φ) + λχχOλχφO2

∂

∂∆φ
G

(`O)
∆O

(u, v; ∆χ,∆χ,∆χ,∆φ)

(3.34)

for some constant γ. The latter can be fixed by considering the x3 → x4 limit of the

four-point function:

γ = λχχOλχφO1 . (3.35)

3.4 Conformal partial waves: general case

We will now derive general formulae for the conformal partial waves in the logarithmic case

using radial quantization methods. We consider the four-point function

〈φ1
a(x1)φ2

b(x2)φ3
c(x3)φ4

d(x4)〉 (3.36)

of logarithmic operators φia of rank ri. We want to mimic what we did in section 3.1

for ordinary CFTs and insert a complete set of states in this expression. Inserting the

identity operator as in (3.18) in the correlator (3.36) means that we must evaluate radial

quantization matrix elements

〈0|φ1
a(x1)φ2

b(x2)|Op;α〉 and 〈Oq;α|φ3
c(x3)φ4

d(x4)|0〉. (3.37)

We will show that these are related to the universal matrix elements M and M′ from

eq. (3.4) in a simple way. The argument is the following. Recall that the three-point

function 〈φ1
aφ

2
bOp〉 can be expressed as

〈φ1
a(x1)φ2

b(x2)O(`O)
p (x3; z)〉 = Kabp(τ1, τ2, τ3) P∆1∆2∆O(xi) (X · z)`O . (3.38)

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

The functions Kabp(τi) can be expressed in terms of a finite number of OPE coefficients

λ12O
ijk , as discussed in section 2.3. Next, using eq. (2.31) we can replace the τi variables in

eq. (3.38) by partial derivatives with respect to ∆1,∆2 and ∆O. The same holds at the

level of the matrix elements, so we conclude that

〈0|φ1
a(x1)φ2

b(x2)|Op;α〉 = Kabp

(
∂

∂∆1
,
∂

∂∆2
,

∂

∂∆O

)
M[1, 2, α,∆O, `O] , (3.39)

where the matrix element M is precisely the one from eq. (3.4).

Likewise the three-point functions 〈φ3
cφ

4
dOq〉 are described by a set of functions K ′cdq(τi),

which encode a number of OPE coefficients λ34O
ijk . Therefore we can also relate the matrix

elements 〈Oq;α|φ3
c(x3)φ4

d(x4)|0〉 to the matrix elements M′ from eq. (3.4):

〈Oq;α|φ3
c(x3)φ4

d(x4)|0〉 = K ′cdq

(
∂

∂∆3
,
∂

∂∆4
,

∂

∂∆O

)
M′[3, 4, α,∆O, `O]. (3.40)

Bringing everything together, it follows that the contribution of the operator Op to the

four-point function (3.36) is given by

〈φ1
aφ

2
bφ

3
cφ

4
d〉 ∼k−1

O

∑
pq

∑
α

[
Kabp

(
∂

∂∆1
,
∂

∂∆2
,

∂

∂∆O

)
M[1, 2, α,∆O, `O]

]
(3.41)

×
[
V pq

(
∂

∂∆O

)
gα(∆O, `O)−1

]
×
[
K ′cdq

(
∂

∂∆3
,
∂

∂∆4
,

∂

∂∆O

)
M′[3, 4, α,∆O, `O]

]
.

Formula (3.41) is not very enlightening, but as we will now show it can in fact be rewrit-

ten in a more useful way, in terms of a differential operator acting on a normal partial

wave W
(`)
∆ (xi,∆j).

To see this, let’s first assume that the exchanged multiplet O is non-logarithmic, i.e. of

unit rank. Then it’s possible to commute the sum over descendants α with the operators

Kab(∂∆1 , ∂∆2) and K ′cd(∂∆3 , ∂∆4). By doing so, it immediately follows that the partial

wave becomes

〈φ1
aφ

2
bφ

3
cφ

4
d〉 ∼ k−1

O Kab

(
∂

∂∆1
,
∂

∂∆2

)
K ′cd

(
∂

∂∆3
,
∂

∂∆4

)
·W (`O)

∆O
(xi; ∆j) , [rO = 1]

(3.42)

which is of the desired form, namely a differential operator acting on an ordinary partial

wave, cf. eq. (3.6). Suppose now that the exchanged operator Op is logarithmic, i.e. of rank

rO > 1. In this case, the sum over descendants α can no longer be commuted with the

differential operators Kabp, V
pq and K ′cdq, since both the matrix elements M,M′ and the

norm gα depend on the dimension ∆O. It is still possible to reorganize the expression (3.41),

but this requires using the precise form of the operators Kabp and K ′cdq as fixed by conformal

invariance. This computation is outlined in appendix C. In the end the partial wave (3.41)
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can be expressed in terms of the OPE coefficients λ12O
ijk and λ34O

ijk as:

〈φ1
aφ

2
bφ

3
cφ

4
d〉 ∼ DabcdO ·W (`O)

∆O
(xi; ∆j),

DabcdO := k−1
O

r1−a∑
l1=0

r2−b∑
l2=0

r3−c∑
l3=0

r4−d∑
l4=0

rO∑
p,q=1

λ12O
(a+l1)(b+l2)p λ

34O
(c+l3)(d+l4)q

×
4∏
i=1

1

li!

∂li

∂∆li
i

V pq

(
∂

∂∆O

)
. (3.43)

This “master formula” describes the most general partial wave for a scalar four-point

function in a logarithmic CFT.

3.5 From partial waves to conformal blocks

We will now obtain the conformal blocks from the conformal partial waves. Recall from

section 2.4 that a logarithmic four-point function can be written as

〈φ1
a(x1)φ2

b(x2)φ3
c(x3)φ3

d(x4)〉 = Fabcd(u, v, ζi) P∆1∆2∆3∆4(xj). (3.44)

Let’s isolate the part of Fabcd that is independent of the ζi variables:

Fabcd(u, v, ζi) = habcd(u, v) + O(ζi). (3.45)

In what follows, we will develop a conformal block decomposition for the function

habcd(u, v). The crucial idea will be to use eq. (2.60): it implies that if we act with the

differential operator DabcdO from eq. (3.43) on a partial wave, we obtain

DabcdO ·W (`O)
∆O

(xi; ∆j) =
[
DabcdO ·G(`O)

∆O
(u, v; ∆i)

]
P∆1∆2∆3∆4(xj) + O(ζi). (3.46)

Since this is true for all values of a, b, c, d, it follows that the functions habcd(u, v) admit

the following conformal block decomposition:

habcd(u, v) =
∑
O
DabcdO ·G(`O)

∆O
(u, v; ∆i) . (3.47)

This decomposition is very similar to the ordinary one (3.8), the main difference be-

ing that here every term is a linear combination of a normal conformal block and its

partial derivatives.

At this point, we can compare the master formula (3.43) to results obtained previ-

ously using the Casimir equation. First we consider the exchange of a rank-r operator Op
exchanged in a four-point function of non-logarithmic scalars φi, as in section 3.2. Recall

that the three-point function 〈φ1φ2Op〉 was characterized by r OPE coefficients λ12O
p , and

likewise the three-point function 〈φ3φ4Op〉 was characterized by r OPE coefficients λ34O
q .

According to the formula (3.43), the complete partial wave associated to O is then given by

k−1
O

r∑
p,q=1

λ12O
p λ34O

q V pq

(
∂

∂∆O

)
G

(`O)
∆O

(u, v; ∆1,∆2,∆3,∆4) . (3.48)

– 26 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

It is easy to see that this expression is equivalent to eqs. (3.23) and (3.24) that we derived

before. Second, we consider the exchange of a non-logarithmic operator O to the four-point

function 〈χχχφa〉, where χ is of rank one and φa has rank two. This was considered before

in section 3.3. Again, it is easy to see that formula (3.43) is equivalent to the previous

results (3.31) and (3.31).

3.6 Rank-two four-point function

Let’s now turn to the four-point function of a single rank-two operator φa. In section 2.4.2,

it was shown that the correlators 〈φaφbφcφd〉 are encoded by five different functions Fi(u, v)

of u and v, satisfying a number of crossing relations (2.78). Here we will develop a conformal

block decomposition for each of the Fi and consider the consequences of Bose symmetry.

Consider the contribution of a rank-rO exchanged operator Op of spin `. Recall from

section 2.3.1 that depending on whether `O is even or odd, Bose symmetry imposes various

constraints on the OPE coefficients λφφOijk . If `O is even, let’s denote

λφφO11p ≡ a
O
p , λφφO12p = λφφO21p ≡ b

O
p , λφφO22p ≡ c

O
p , [`O even] (3.49)

and if `O is odd

λφφO11p = 0 , λφφO12p = −λφφO21p ≡ b
O
p , λφφO22p = 0 , [`O odd]. (3.50)

For simplicity, we will set kO to one, which can always be accomplished by a redefinition

of the OPE coefficients.

Consider first the case where `O is even. Then the relevant differential operators are

given by

D1111
O =

rO∑
p,q=1

[
aOp + bOp (∂∆1 + ∂∆2) + cOp ∂∆1∂∆2

]
×
[
aOq + bOq (∂∆3 + ∂∆4) + cOq ∂∆3∂∆4

]
V pq(∂∆O) , (3.51a)

D1112
O =

rO∑
p,q=1

[
aOp + bOp (∂∆1 + ∂∆2) + cOp ∂∆1∂∆2

][
bOq + cOq ∂∆3

]
V pq(∂∆O) , (3.51b)

D1122
O =

rO∑
p,q=1

[
aOp + bOp (∂∆1 + ∂∆2) + cOp ∂∆1∂∆2

]
cOq V

pq(∂∆O) , (3.51c)

D1221
O =

rO∑
p,q=1

[
bOp + cOp ∂∆1

][
bOq + cOq ∂∆4

]
V pq(∂∆O) , (3.51d)

D1222
O =

rO∑
p,q=1

[
bOp + cOp ∂∆1

]
cOq V

pq(∂∆O) , D2222
O =

rO∑
p,q=1

cOp c
O
q V

pq(∂∆O) . (3.51e)

When acting on a conformal block, eqs. (3.51a), (3.51b) and (3.51c) can be rewritten using

the identity (D.1).
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Similarly, for odd `O we have

D1111
O =

rO∑
p,q=1

bOp b
O
q (∂∆2 − ∂∆1)(∂∆4 − ∂∆3)V pq(∂∆O) , (3.52a)

D1112
O =

rO∑
p,q=1

bOp b
O
q (∂∆2 − ∂∆1)V pq(∂∆O) , (3.52b)

D1221
O = −

rO∑
p,q=1

bOp b
O
q V

pq(∂∆O) , (3.52c)

D1122
O = D1222

O = D2222
O = 0 . (3.52d)

The full conformal block decompositions for the functions Fi are obtained by summing

over both even- and odd-spin operators. We obtain:

F1(u, v) =
∑
O
D1111
O ·G(`O)

∆O
(u, v; ∆i) , F2(u, v) =

∑
O
D1112
O ·G(`O)

∆O
(u, v; ∆i) , (3.53)

F3(u, v) =
∑
O
D1122
O ·G(`O)

∆O
(u, v; ∆i) , F3(v, u) =

∑
O
D1221
O ·G(`O)

∆O
(u, v; ∆i) , (3.54)

F4(u, v) =
∑
O
D1222
O ·G(`O)

∆O
(u, v; ∆i) , F5(u, v) =

∑
O
D2222
O ·G(`O)

∆O
(u, v; ∆i) . (3.55)

The conformal blocks are to be evaluated at ∆1 = ∆2 = ∆3 = ∆4 ≡ ∆φ.

We conclude this section with some remarks about crossing equations and the confor-

mal bootstrap. It may readily be checked that the crossing relation Fi(u, v) = Fi(u/v, 1/v)

is trivially satisfied for all Fi. This follows from the conformal block identity eq. (D.2).

The crossing identity Fi(u, v) = Fi(v, u) however is non-trivial, so e.g. for F1(u, v) we

must have ∑
O
D1111
O ·

[
G

(`O)
∆O

(u, v; ∆i)−G(`O)
∆O

(v, u; ∆i)
]

= 0 . (3.56)

The same bootstrap equation holds for F2, F4 and F5, with D1111
O replaced by D1112

O ,

D1222
O and D2222

O . Only for the function F3, we have two inequivalent conformal block

decompositions [51], namely∑
O
D1122
O ·G(`O)

∆O
(u, v; ∆i) =

∑
O
D1221
O ·G(`O)

∆O
(v, u; ∆i) . (3.57)

Summarizing, imposing that the φa four-point function is crossing symmetric leads to five

distinct bootstrap equations.

4 Holographic logCFT

In this section, we will review and derive new results on logCFTs using the AdS/CFT

correspondence. Holographic duals to logCFTs were first considered for scalar operators

in [66] and [67]; a thorough discussion is given in [68]. For the interesting spin-2 case there
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have been several investigations, mostly in 3d bulk theories, starting with [69]. A review

of this and related topics is given in ref. [47].

In all known cases, the holographic duals of logCFTs involve higher derivative equations

of motion. Before we begin a detailed analysis of some examples, let us see how such actions

can be motivated. The idea is to consider a scalar field propagating in (Euclidean) AdSd+1,

coupled linearly to a random potential V (x):

S = −
∫

dd+1x
√
g

[
1

2
φ(2−m2)φ− V φ

]
, V (x)V (y) =

v2

√
g
δ(x− y), (4.1)

Here g is the determinant of the AdS metric, and the bar represents disorder averaging.

To obtain the disorder averaged correlators of φ we use the replica trick [70]. Introducing

N copies of φ and performing the disorder average the action becomes

SN = −
∫

dd+1x
√
g

1

2

N∑
a=1

φa(2−m2)φa −
v2

2

(
N∑
a=1

φa

)2
 . (4.2)

Since this is a free theory, all correlation functions reduce at most to products of two point

functions. Furthermore, there are only two kinds of two point functions: 〈φaφa〉 and 〈φaφb〉
with a 6= b, which in the N → 0 limit become 〈φφ〉 and 〈φ〉〈φ〉 respectively. Hence, for the

purpose of computing correlation functions we can write the action in terms of two fields,

φ1 and N − 1 copies of what we will call φ2. Then in the N → 0 limit we have

SN=0 = −
∫

dd+1x
√
g

[
1

2
φ+(2−m2)φ− −

v2

2
(φ−)2

]
, (4.3)

with φ± = φ1 ± φ2. We are now free to integrate out field φ− using its equation of motion

to finally get

S = − 1

4v2

∫
dd+1x

√
g

[
1

2
φ+(2−m2)2φ+

]
. (4.4)

The action is indeed higher derivative, and as we shall see shortly it describes in fact a

boundary logCFT of rank-2. If the reader finds this derivation troublesome, notice that

the same result could have been obtained by computing the averaged correlators directly,

since this is a free theory.

It is possible to obtain higher ranks in a similar fashion but we must allow for a more

general, non-gaussian, potential. It is also straightforward to obtain a similar result for

spin-1 and linearized spin-2. Going to non-linear level at spin-2 seems more difficult but it

seems quite likely that the action (4.51) shown below may be derived along similar lines.

4.1 Scalars

Here we shall consider scalar theories in some detail. We begin by showing how to recon-

struct all two-point functions in a straightforward way which does not require holographic

renormalization [71, 72]. The procedure is general and may be applied to higher spins. We

also compute some sample three- and four-point functions, finding perfect agreement with

the general results of section 2.3 and section 3.
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4.1.1 Two point functions

Our starting point is the action

S = −
∫
dd+1x

√
g

[
1

2
φ(2−m2)rφ

]
. (4.5)

which generalizes the r = 2 case deduced at the beginning of this section. The metric is

given by:

ds2 = gµνdxµdxν =
dz2 + dxidx

i

z2
. (4.6)

Provided that r ≥ 2 the action is higher-derivative and the theory is non-unitary. One way

to see this is to think of the equation of motion satisfied by the field φ as a limiting case

of having r distinct masses. The propagator then necessarily includes modes with negative

norm. The fact that all masses are taken to be identical leads to degeneracies, which are

resolved by the appearance of logarithms. Indeed, solving the equation of motion close to

the AdS boundary at z = 0 gives

φ(z, x) ∼
z→0

z∆
r∑
i=1

φ̃
(0)
i (x)

1

(i− 1)!
lni−1(z) + zd−∆

r∑
i=1

φ
(0)
i (x)

(−1)i−1

(i− 1)!
lni−1(z) + . . . (4.7)

with ∆ the largest root of the equation m2 = ∆(∆ − d). The φ
(0)
i (x) are fixed boundary

values or sources, and the φ̃
(0)
i (x) will shortly be related to expectation values of some

operators 〈Oi〉. Acting with the dilatation generator z∂z + xµ∂µ on φ induces the map:

φ̃
(0)
i → (xµ∂µ + ∆)φ̃

(0)
i + φ̃

(0)
i+1 , (4.8)

φ
(0)
i → (xµ∂µ + d−∆)φ

(0)
i − φ

(0)
i+1 . (4.9)

This is consistent with the transformation law (2.5a) for logarithmic multiplets. One

can check the same is true under the action of the other generators, so that φ̃
(0)
i and φ

(0)
i

transform as logarithmic primaries of dimension ∆ resp. d−∆. The normalizations in (4.7)

were chosen to obtain these particularly simple transformations, which are in agreement

with our conventions.

The source terms in the expansion of the field φ can be chosen to couple to the loga-

rithmic multiplet in the following way:

Zbulk[φ
(0)
i ] = 〈exp

(
κ

∫
ddx

r∑
i=1

Or−i+1(x)φ
(0)
i (x)

)
〉logCFT . (4.10)

This form is invariant under conformal transformations, provided that operators and

sources transform appropriately as in (4.8) and (4.9). Since (4.10) defines a generating

functional for logCFT correlation functions, insertions of Oi in correlators can be obtained

by switching on sources. Delta function sources are particularly useful, and may be ob-

tained by the use of bulk-to-boundary propagators. To construct propagators appropriate
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for general rank r, we start from the ordinary bulk-to-boundary propagator K∆(z, x) sat-

isfying the r = 1 equation of motion:

K∆(z, x) = N∆
z∆

(z2 + x2)∆
∼
z→0

zd−∆ δ(x) + z∆ N∆

|x|2∆
+ . . . (4.11)

where N∆ = Γ(∆)/[πd/2Γ(∆−d/2)] was chosen so that K∆ has a pure delta function source

at the boundary. It follows that to obtain a source for the log components one can use:

1

(j − 1)!
∂j−1

∆ K∆(z, x) ⇒ φ
(0)
k (x) = δjk δ(x). (4.12)

The next step is to identify the map between asymptotic values φ̃
(0)
i and expectation values

〈Oj〉. The simplest way to do this is to consider the bulk-to-bulk propagator [73]. The

idea is that a boundary operator insertion can be obtained by taking a bulk point to the

boundary. Since the normalization of the bulk-to-bulk propagator is fixed by the action,

this will give us the desired relation. The advantage of this method is that it will avoid

us the somewhat cumbersome procedure of holographic renormalization. The propagator

satisfies the equation of motion:(
2−m2

)r
G

[r]
∆ (x1, z;x2, y) =

δd(x1 − x2)δ(z − y)
√
g

. (4.13)

Such propagators G
[r]
∆ (x1, z;x2, y) are not to be confused with the conformal blocks

G
(`)
∆ (u, v) from section 3. To solve this equation, consider first the known rank-1 bulk-

to-bulk propagator,

G
[1]
∆ (ξ) =

Γ(∆)

2π
d
2 Γ(1 + ∆− d/2)

1

ξ∆ 2F1

(
∆,

1 + 2∆− d
2

, 1 + 2∆− d,−4

ξ

)
, (4.14)

with ξ := [(z−y)2 +(x1−x2)2]/(zy). To compute the propagator for rank r ≥ 2, we notice

the following identity

(2−m2)k∂im2G
[1]
∆ =

i!

(i− k)!
∂i−k
m2 G

[1]
∆ , [i ≥ k ≥ 0] (4.15)

which follows from the r = 1 equation of motion. A solution to the rank-r equation of

motion (4.13) is therefore furnished by

G
[r]
∆ (ξ) =

∂r−1
m2 G

[1]
∆ (ξ)

(r − 1)!
. (4.16)

For instance, for ranks two and three we have:

G
[2]
∆ =

∂∆G
[1]
∆

2∆− d
, G

[3]
∆ =

∂2
∆ − 2∂∆

2(2∆− d)2
G

[1]
∆ . (4.17)

To determine the map between asymptotic values and operators, let us consider first the

rank-1 case. Taking one of the points to the boundary one obtains

G
[1]
∆ (z, x1; y, x2) ∼

z→0
z∆K∆(y, x1 − x2)

2∆− d
+ . . . (4.18)
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Since K∆ corresponds to an insertion of κO, we determine from the above that

φ̃(0)(x) =
κ〈O(x)〉
2∆− d

. (4.19)

One may then compute the two point function by reading off the expectation value as a

function of the source, by simply expanding the bulk-to-boundary propagator

K∆ ∼
z→0

z∆ N∆

|x|2∆
= z∆

κ〈O(x)〉φ(0)=δ(x)

2∆− d
= z∆κ

2〈O(x)O(0)〉
2∆− d

⇒ 〈O(x)O(0)〉 =

(
N∆(2∆− d)

κ2

)
1

|x|2∆
. (4.20)

Now let us consider the rank-2 case. Repeating the logic, with the propagators K∆, ∂∆K

corresponding to insertions of κO2, κO1 respectively, we find the dictionary

φ̃
(0)
1 =

κ〈O1〉
(2∆− d)2

− 2
κ〈O2〉

(2∆− d)3
, φ̃

(0)
2 =

κ〈O2〉
(2∆− d)2

. (4.21)

To compute the two point functions we switch on sources and work to linear order. Ex-

panding K∆ we learn

κ2〈O1(x)O2(0)〉
(2∆− d)2

=
N∆

|x|2∆
, 〈O2(x)O2(0)〉 = 0 (4.22)

and from ∂∆K we also get

κ2〈O1(x)O1(0)〉
(2∆− d)2

=
N∆

|x|2∆

(
− lnx2 +

∂∆N∆

N∆
+

2

2∆− d

)
. (4.23)

Altogether the two point functions are consistent with those of a rank-2 logCFT.

We would like to make a choice such that the two point functions take the canonical

form (2.21). For this we can use the freedom to do field redefinitions of the form Oi →
Oi +

∑
j>i αjOj (cf. eq. (2.14)). In practice we perform such a redefinition on the sources,

by writing

φ(x, z) ∼
z→0

z∆φ̃
(0)
1 (x) + z∆ ln(z)φ̃

(0)
2 (x) + z∆

(
φ

(0)
1 (x) + αφ

(0)
2 (x)

)
+ z∆ ln(z)φ̃

(0)
2 (x) + . . .

(4.24)

while keeping the form of the couplings (4.10) fixed. With this choice, an insertion of κO1

now corresponds to a bulk-to-boundary propagator of the form ∂∆K∆ + αK∆. Similarly,

the identification between subleading terms and operators also gets corrected,

φ̃
(0)
1 =

κ〈O1〉
(2∆− d)2

− 2
κ〈O2〉

(2∆− d)3
− α κ〈O2〉

(2∆− d)2
(4.25)

and so does the 〈O1O1〉 two point function

κ2〈O1(x)O1(0)〉
(2∆− d)2

= . . .+ 2
αN∆

|x|2∆
, (4.26)
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where the dots stand for the previous result. Hence, choosing

κ = (2∆− d)
√
N∆, α = − 1

(2∆− d)
− ∂∆N∆

2N∆
(4.27)

we finally obtain

〈O1(x)O1(0)〉 = − lnx2

|x|2∆
, 〈O1(x)O2(0)〉 =

1

|x|2∆
, 〈O2(x)O2(0)〉 = 0. (4.28)

It should be clear that this entire procedure can be easily generalized to any choice of

rank. Let us merely outline the most salient features of such a calculation. The general

rank-r bulk-to-bulk propagator satisfies

G
[r]
∆ (z, x1; y, x2) ∼

z→0

z∆

(2∆− d)r

r−1∑
k=0

[(
r − 1

k

)
lnk z(∂r−1−k

∆ K∆ + . . .)

]
, (4.29)

where the dots stand for terms with less derivatives of K∆. Switching on a source φ
(0)
i turns

on an operator κOr−i+1 and corresponds to a bulk-to-boundary propagator 1
(i−1)!∂

i−1
∆ K∆,

from which one identifies

φ̃
(0)
i = (r − 1)!

κ〈Oi〉
(2∆− d)r

+
∑
j>i

aij〈Oj〉 , (4.30)

for some coefficients aij . The two point functions can be determined by expanding bulk-to-

boundary propagators:

1

(i− 1)!
∂i−1

∆ K∆ → z∆N∆

i∑
k=1

[
lnk−1(z)

(−1)i−1−k lni−k x2

(i− k)!(k − 1)!
+ . . .

]
, (4.31)

where now the dots stand for smaller powers of logarithms. From this expression we can

read off the φ̃
(0)
i and deduce

(r − 1)!

(2∆− d)rN∆
κ2〈Oi(x)Oj〉 =

(−1)m

m!

lnm(x2)

|x|2∆
+ . . . , m = r + 1− i− j ≥ 0 (4.32)

and zero otherwise. This is in agreement with our general results (2.21) and also those

of [68].

4.1.2 Interactions

Let us now introduce interactions. As a simple but illuminating example, consider a cubic

interaction between rank-2 and rank-1 multiplets:

S = −1

2

∫
dd+1x

√
g
[
ψ(2−m2

0)ψ + φ(2−m2)2φ+ gNφψψ
]
. (4.33)

The field ψ couples to a single boundary operator Q with dimension ∆0. It is straightfor-

ward to compute the three point functions using Witten diagrams. One uses the bulk-to-

boundary propagators K∆,K∆0 for insertions of O2 and Q respectively, and ∂∆K∆ +αK∆
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for inserting O1, with α as in (4.27). In particular,

κ〈Q(x1)Q(x2)O2(x3)〉 = gN c(∆) P∆0∆0∆(xi), (4.34a)

κ2〈Q(x1)O2(x2)O2(x3)〉 = gN d(∆) P∆0∆∆(xi), (4.34b)

κ3〈O2(x1)O2(x2)O2(x3)〉 = gN e(∆) P∆∆∆(xi) (4.34c)

with c, d, e some non-zero constants depending among others on ∆. From these equations

we may obtain the three-point function with logarithmic operator insertions, for instance:

κ〈Q(x1)Q(x2)O1(x3)〉 = (∂∆ + α)(κ〈QQO2〉)
= gN P∆,∆0,∆0 [c(∆)τ3 + ∂∆c(∆) + α c(∆)] . (4.35)

This is in perfect agreement with (2.35), with OPE coefficients:

λQQO2 = gN

c(∆)√
N∆(2∆− d)

, λQQO1 = gN

∂∆c(∆) + α c(∆)√
N∆(2∆− d)

, (4.36)

where we have used (4.27). Other three point functions involving O1 may be obtained in

a similar fashion.

As a cross-check we would like to see that the same couplings are reproduced by the

conformal block expansion of the four-point function of Q. An exchange diagram for the

logarithmic multiplet will involve the rank-2 bulk-to-bulk propagator. Since this is in

turn given by derivatives of the ordinary propagator, we can deduce the conformal block

decomposition of the rank-2 (and indeed rank-r) starting from the one for rank-1. Consider

then the contribution to the four-point function of Q where a rank-1 multiplet is exchanged.

That is, we keep the form of the action (4.33) fixed, but simply switch the rank of the field

φ from two to one. Such a contribution will contain the conformal block for the exchange

of the field φ, ∏
i<j

|xij |2∆0/3 〈QQQQ〉r=1 ⊃ (λQQO)2G
(0)
∆ (u, v) (4.37)

with G
(0)
∆ (u, v) the conformal block (not to be confused with the bulk-to-bulk propagator).

The OPE coefficient here is λ2
QQO = c(∆)2

κ̂2 where we have put a hat on κ to emphasize

that such a constant depends on the rank. In the rank-1 case in particular, one has

κ̂2 = (2∆ − d)N∆. With this result we are ready to compute the rank-2 case. Since the

bulk-to-bulk propagator satisfies (4.17), we have∏
i<j

|xij |2∆0/3〈QQQQ〉r=2 ⊃
1

2∆− d
∂

∂∆

[
c(∆)2

N∆(2∆− d)
G

(0)
∆ (u, v)

]

= 2λQQO1 λQQO2 G
(0)
∆ (u, v) + (λQQO2 )2 ∂∆G

(0)
∆ (u, v) , (4.38)

where λQQO1,2 are the coefficients determined in eq. (4.36). This expression nicely matches

with the form of conformal block expansion that was deduced in section 3.2, in particular

in eq. (3.25).
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A final point to notice is that we have introduced a single parameter, gN, whereas we

expect there to be two independent OPE coefficients. The answer to this apparent puzzle

is that, unlike in the rank-1 case, there are now new cubic interactions involving derivatives

that cannot be removed by field redefinitions. For instance, we could include an interaction

gL(2−m2)φψ2. (4.39)

Since the operator 2−m2 annihilates the ordinary bulk-to-boundary propagator K∆, such

a term can only correct a cubic interaction sourced by at least one logarithmic insertion.

Furthermore, the action of the operator removes the logarithm from the propagator, and

hence this interaction can only correct the non-logarithmic piece of the correlator (4.35),

that is, the coefficient λQQO1 . This is exactly as it should be for consistency with the Ward

identities, which would be violated if we could do the reverse, namely modifying the coef-

ficient of the logarithmic piece without altering the normal operator three-point function.

4.2 Other spins

4.2.1 Spin-1

Here we shall for the first time construct holographic actions which describe spin-1 loga-

rithmic multiplets. Consider first the ordinary bulk action of a spin-1 field Vµ:

S =

∫
dd+1x

√
g

(
1

4
FµνF

µν +
1

2
m2VµV

µ

)
, Fµν = ∂µVν − ∂νVµ . (4.40)

In this case we have

m2 = ∆(∆− d) + (d− 1) , (4.41)

which vanishes when ∆ = d − 1, i.e. when Vµ is a gauge field and couples to a boundary

conserved current. Integrating by parts we get

S = −1

2

∫
dd+1x

√
g
(
V µD(1)

µν V
ν
)
, (4.42)

with

D(1)
µν := (2−m2)gµν −∇µ∇ν . (4.43)

As an ansatz for a higher-rank action, we can define higher-order differential operators D(r)

in a natural way,

D(1)
µν → D(r)

µν := D(1) ρ
µ D(r−1)

ρν (4.44)

and replace D
(1)
µν in (4.40) by D

(r)
µν . To see that the new action describes a logarithmic

multiplet, it is sufficient to consider the bulk-to-bulk propagator G
(r)
∆,µν . Using

[D(1)
µν , ∂∆] = (2∆− d) gµν , (4.45)
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we see that the general propagator will be again given by combinations of derivatives with

respect to the dimension of the rank-1 propagator G
(1)
∆,µν . For instance for rank-2 it is easy

to check

D(2)
µνG

(2)
∆,νρ =

δd(x1 − x2)δ(z − y)
√
g

⇒ G
(2)
∆,µν =

∂∆G
(1)
∆,µν

2∆− d
. (4.46)

Such derivatives immediately lead to logarithms in the approach to the boundary as in the

scalar case.

Let us focus on the interesting case of ∆ = d−1. The rank-2 action can now be written

S2 =
1

4

∫
dd+1x

√
g(∇aF ab∇cF cb ) = −1

4

∫
F ∧ ?dδF, δ = ?d?, (4.47)

with ? the usual Hodge-dual operator. The generalization to the rank r case is straight-

forward, namely

Sr = −1

4

∫
F ∧ ?(dδ)(r−1)F. (4.48)

We can also write an equivalent action by introduction of auxiliary fields. The action

is then

S =

∫
dd+1x

√
g

r∑
i=1

(
1

4
F (i) ∧ ?F (r−i+1) − 1

2
A(i+1) ∧ ?A(r−i+1)

)
, (4.49)

with fields A
(i)
µ , i = 1, . . . r (zero otherwise). The equations of motion are

d ? F (i) = ?A(i+1) . (4.50)

In particular notice that gauge invariance of A(1) is unbroken. This will be the field that

will couple to the conserved current operator in the logCFT. Indeed the boundary values

of the fields A(i) are identified as sources for boundary operators of the form
∫
A(i)J (r−i+1)

similarly to the scalar case, with J (r) being identified as the conserved current sitting at

the bottom of a logarithmic multiplet with spin-1 and dimension ∆ = d− 1.

4.2.2 Spin-2

Before we finish this section, let us just make a few comments on the spin-2 case. It would

be straightforward to extend the preceding examples to spin-2 by “squaring” the Fierz-Pauli

equation of motion for a massive spin-2 field. However it far more interesting to consider

the massless case, and in particular a fully non-linear action. The correspondence between

logarithmic CFTs with c = 0 and higher derivative gravity theories is nicely reviewed

in [47], with a focus on the three-dimensional bulk theories. Here we merely point out a

simple example, that of “new massive gravity” in d+ 1 dimensions [74–77]. The action is

S =
Md−1
P

2

∫
dd+1x

√
g

(
R+ 2Λ + λ

(
SµνSµν − S2

))
, (4.51)
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with Λ the cosmological constant and S the Schouten tensor

Sµν ≡
1

d− 1

(
Rµν −

1

d
gµνR

)
. (4.52)

In general the action propagates two sets of spin-2 modes, one massless and one massive.

By tuning the coupling λ the massive mode can be made massless. This happens precisely

at the point where the coefficient c measuring the two-point function of the boundary

stress-tensor becomes zero. Simultaneously, there are logarithmic modes which appear,

lifting the degeneracy between the two sets of spin-2 massless modes. We conclude that

such a theory describes a c = 0 logarithmic CFT, i.e. one where the stress-tensor has a

logarithmic partner.

It is clear that this argument generalizes. Theories with higher derivative terms (say

2n derivatives) in the action will propagate several massive spin-2 modes, and it is always

possible to tune coefficients such that their masses become zero. At this point logarithms

appear, and we expect to be able to obtain a rank-r logarithmic theory. However, we should

point out that what singles out theories such as the one above is that they have several other

nice properties. They can be derived as particular non-unitary limits [78] of the bimetric

theory of Hassan and Rosen [79], which guarantees that they are free from the Boulware-

Deser instability. They also satisfy a version of the holographic c-theorem [80]. To our

knowledge, no simple candidate satisfying these properties exists for a rank-3 logarithmic

CFT in general dimension. Finally it would be extremely interesting to find out whether

the action above can be derived by a bulk disorder averaging, as we did for a scalar theory

at the beginning of this section.

5 Examples of logCFTs

So far, we have developed a formalism to analyze correlation functions in logarithmic CFTs.

In particular, we know the constraints of conformal invariance and Bose symmetry on n-

point functions of scalar fields. We will now check how our formalism applies to several

models, most of which are familiar from the literature.

5.1 Triplet model

Our first case study is the triplet model, which is essentially the theory of a pair of symplec-

tic fermions in two dimensions. The triplet theory has been intensively studied in a series

of papers by Gaberdiel and Kausch [81–84]. In particular, various correlation functions

have been computed using purely algebraic methods, and in this section we will compare

these existing results to our formalism.

The triplet model is the Virasoro minimal model M(1, 2) of central charge c = −2

extended by a triplet of fields W 0,W± of Virasoro weight h = 3. The modes of the

W a combine with the Virasoro generators Ln to form an extended chiral algebra [85]. In

particular, the zero modes of the W 0,± generate a global SL(2) symmetry — not to be

confused of the SL(2,C) global conformal group. The model has four primary states with

respect to the chiral algebra: two SL(2) singlet representations at h = 0 and h = −1/8,
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and two SL(2) doublets of weight h = 1 and h = 3/8. The chiral theory can be uniquely

extended to a non-chiral (i.e. local) CFT. The h = −1/8 representation becomes a rank-

one scalar primary µ(x) of dimension ∆ = −1/4. Second, the h = 3/8 representation gives

rise to a scalar ναᾱ(x) of dimension ∆ = 3/4, transforming in the adjoint representation of

SL(2). Finally, the h = 0 and h = 1 multiplets combine into a larger representation R with

a rather complicated structure. We will only be interested in the lowest level of R, which

contains a logarithmic doublet ωa = (ω,Ω) of dimension ∆ = 0. The operator Ω functions

as a unit operator, as its OPE with any other operator is simply Ω × O = O. However,

conformal invariance requires that 〈Ω〉 vanishes. After a suitable rescaling, its logarithmic

partner ω(x) has a vev 〈ω〉 = 1.

In the rest of this section, we will analyze correlation functions involving the ωa(x)

doublet and µ(x). We will think of these operators as primaries of the global conformal

group SL(2,C) and forget about the underlying chiral algebra from now on.

First, let’s consider n-point functions of the rank-two scalar ωa = (ω,Ω). We will use

the convention that its two-point function is in the canonical form:

〈ωa(x)ωb(0)〉 =

(
− lnx2 1

1 0

)
, (5.1)

which is consistent with 〈ω〉 = 1. The three-point functions are given by

〈ΩΩΩ〉 = 0 , 〈ωΩΩ〉 = 1 , 〈ω(x1)ω(x2)Ω(x3)〉 = τ1 + τ2 , (5.2)

〈ω(x1)ω(x2)ω(x3)〉 = τ1τ2 + τ1τ3 + τ2τ3 , (5.3)

see eq. (14) of [84].10 Clearly this is consistent with our formula (2.45), with

λωωω1 = λωωω2 = λωωω4 = 0 , λωωω3 = 1 . (5.4)

The four-point functions 〈ωaωbωcωd〉 have appeared for instance in eq. (14) of [84]. We

have checked that they are consistent with (2.77), with Fi =: Fωi given by

Fω1 (u, v) =
1

54
ln(u/v2) ln(u2/v) ln(uv) , (5.5a)

Fω2 (u, v) = − 1

12

[
(lnu)2 − (lnu)(ln v) + (ln v)2

]
, (5.5b)

Fω3 (u, v) =
1

6
ln
(
v/u2

)
, (5.5c)

Fω4 (u, v) = 1 , Fω5 = 0 . (5.5d)

It is easy to verify that these Fωi obey the required crossing relations (2.78).

Next, let us consider four-point functions involving the twist field µ of dimension

∆ = −1/4. We can read off the mixed four-point functions 〈ωaωbµµ〉 from appendix B.1

10In the conventions of [84] we set Λ = 1, O = 2, Z = 0, and moreover we redefine ω → ω/2.
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of [84] and find that they are consistent with the formulas from section 2.4.1. Concretely,

the Fi(u, v) are:

F1(u, v) =

[
1

36
ln2(v/u2) +

2

3
ln 2 ln(v/u2) + 4(ln 2)2 − 1

4
[H(u, v)]2

]
(u2/v)1/24 , (5.6a)

F2(u, v) = −
[

1

6
ln(v/u2) + 2 ln 2

]
(u2/v)1/24 , (5.6b)

F3(u, v) = (u2/v)1/24 . (5.6c)

Here we introduce the shorthand notation

H(z, z̄) := −4 ln 2 + ln(zz̄)−
√

1− zM (1)(z)−
√

1− z̄M (1)(z̄) , (5.7)

M (1)(x) :=
∂

∂b
2F1(1, 1/2− b; 1− b;x)

∣∣
b=0

=
∞∑
n=0

(1/2)n
n!

xn
[
ψ(1 + n)− ψ(1

2 + n)− 2 ln 2
]

= −x
2

+ o(x2) , (5.8)

where we have expressed H in terms of the familiar z, z̄ coordinates:

u = zz̄ , v = (1− z)(1− z̄) . (5.9)

Again, we want to check that the four-point functions (5.6) are consistent with crossing

symmetry. For F2 and F3 this is easy, because any function of u2/v is automatically

invariant under u → u/v, v → 1/v. In the z, z̄ coordinates, this exchange is equivalent to

mapping (z, z̄)→ (z′, z̄′) with z′ = z/(z − 1) and z̄′ = z̄/(z̄ − 1). Then we remark that

√
1− x′M (1)(x′) =

√
1− xM (1)(x)− ln(1− x) , x′ := x/(x− 1) (5.10)

as follows from the hypergeometric identities. This implies that

H(z′, z̄′) = H(z, z̄) , (5.11)

which proves that F1 is crossing symmetric too.

The last correlator in the triplet model we consider will be the four-point function of

µ alone, see e.g. appendix B.3 of [84]:

〈µ(x1)µ(x2)µ(x3)µ(x4)〉 =
∏
i<j

|xij |1/6Fµ(u, v) , (5.12)

Fµ(u, v) = 1
2(uv)1/6

[
K(z)K(z̄) (8 ln 2− ln zz̄) +K(z)M (2)(z̄) +K(z̄)M (2)(z)

]
, (5.13)

where we introduced the shorthand notations

K(x) := 2F1(1/2, 1/2; 1;x) , (5.14)

M (2)(x) :=
∂

∂b
2F1(1/2− b, 1/2− b; 1− 2b;x)

∣∣
b=0

= 2

∞∑
n=0

(1/2)2
n

(n!)2
xn
[
ψ(1 + n)− ψ(1

2 + n)− 2 ln 2
]
. (5.15)
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We will first verify that this expression transforms correctly under (u, v) → (v, u), or

equivalently (z, z̄)→ (1− z, 1− z̄). According to a hypergeometric identity we have

πK(1− x) = (4 ln 2− lnx)K(x) +M (2)(x) (5.16)

which in turn implies that

Fµ(u, v) = π(uv)1/6 [K(z)K(1− z̄) +K(z̄)K(1− z)] . (5.17)

This makes the crossing symmetry Fµ(u, v) = Fµ(v, u) manifest. To prove the second

crossing symmetry Fµ(u, v) = Fµ(u/v, 1/v), it is helpful to use that with x′ = x/(x− 1)

K(x′) = (1− x)1/2K(x) , (5.18)

M (2)(x′) = (1− x)1/2
[
M (2)(x)− ln(1− x)K(x)

]
. (5.19)

5.2 Generalized free field theory

Let us now turn to an example of a higher-dimensional logCFT: the logarithmic counterpart

of the familiar generalized free field (GFF), which is defined in any dimension d [86]. This is

a theory of a rank-two multiplet φa of dimension ∆φ with a canonical11 two-point function:

〈φa(x)φb(0)〉 =
1

|x|2∆φ

(
− lnx2 1

1 0

)
ab

. (5.20)

All other correlators of φa and composite operators are defined starting from (5.20) via

Wick’s theorem. We will refer to this theory as a “logarithmic GFF”. Similarly one could

construct a logarithmic CFT starting from a higher-rank multiplet or with a different field

content (free fermions, for instance).

The logarithmic GFF has an equivalent definition as the limit of an ordinary (but

non-unitary) CFT. Take two GFFs χ1, χ2 with two-point functions

〈χ1(x)χ1(0)〉 =
1

|x|2(∆φ+ε)
, 〈χ2(x)χ2(0)〉 =

−1

|x|2∆φ
, 〈χ1χ2〉 = 0. (5.21)

Then in the limit ε→ 0, the fields

φ1 :=
1√
ε

(χ1 − µε χ2) , φ2 :=
√
ε χ2 (5.22)

transform as a logarithmic multiplet with two-point functions as in eq. (5.20). Here µ is an

arbitrary scale that we will set to unity. The advantage of this limit construction is that

it allows to do computations in a non-logarithmic GFF, for which many exact results are

known.

11Of course, it’s possible to redefine φ1 → φ1 + Zφ2 for some arbitrary Z, but this only changes the

discussion in a superficial way.
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5.2.1 Four-point functions

We will mostly be interested in the φa four-point function and its conformal block decom-

position. As a starting point, it will be useful to understand the operator content of the

φa × φb OPE. This can be found from the limit construction: the χi × χj OPE is known,

and consists of the unit operator 1 as well as a tower of “double-trace” primaries:

χi × χj ∼ ±δij1 +
∑
`,n

O(`,n)
ij (5.23)

which are schematically given by

O(`,n)
ij ∼ χi ∂µ1 · · · ∂µ`(∂

2)n χj + . . . . (5.24)

The operator O(`,n)
ij has scaling dimension [χi]+[χj ]+`+2n and spin `. Under the exchange

of the fields χi ↔ χj , it transforms as

O(`,n)
ij = (−1)`O(`,n)

ji . (5.25)

Hence for even ` and fixed n there are three different double-trace operators, whereas for

odd ` there is only one. We expect the even-spin primaries to form rank-three multiplets

in the logarithmic GFF. For the simplest case, the n = 0 scalar, this logarithmic triplet is

defined by

S1 =
1

2
:(φ1)2 : , S2 = :φ1φ2 : , S3 = :(φ2)2 : (5.26)

where : : denotes normal ordering. We leave it as an exercise to verify that Sa trans-

forms correctly and that the three-point functions 〈φaφbSc〉 are consistent with conformal

invariance. Summarizing, we expect the φa × φb OPE to contain:

• the unit operator 1;

• for every even spin ` and integer n ≥ 0, a rank-3 multiplet of dimension 2∆φ+`+2n;

• for every odd spin ` and integer n ≥ 0, a rank-1 multiplet of dimension 2∆φ+ `+ 2n .

In what follows, we will test this prediction by studying the φa four-point function and its

conformal block decomposition. Let’s first review the relevant four-point functions in the

χ1,2 theory, which are given by:

〈χi(x1)χi(x2)χi(x3)χi(x4)〉 = Pwiwiwiwi(x)Hi(u, v) i = 1, 2 , (5.27a)

〈χ1(x1)χ1(x2)χ2(x3)χ2(x4)〉 = Pw1w1w2w2(x)H12(u, v) , (5.27b)

writing w1 := ∆φ + ε, w2 := ∆φ and

Hi(u, v) = (v/u2)wi/3 + (u/v2)wi/3 + (uv)wi/3 i = 1, 2 , (5.28a)

H12(u, v) = −(v/u2)(w1+w2)/6 . (5.28b)
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The other four-point functions 〈χ1χ2χ2χ2〉 and 〈χ1χ1χ1χ2〉 vanish due to the Z2 × Z2

symmetry of the χ1,2 theory. It’s easy to see that the three functions H1(u, v), H2(u, v)

and H12(u, v) obey the necessary crossing identities.

The 〈φaφbφcφd〉 four-point functions can be computed either using Wick’s theorem or

using the limit construction. We find that they have the form predicted by section 2.4.2,

with the functions Fa given by:

F4(u, v) = F5(u, v) = 0 , (5.29a)

F3(u, v) = (uv)∆φ/3 + (u/v2)∆φ/3 , (5.29b)

F2(u, v) =
1

2

∂

∂∆φ
F3(u, v) + (v/u2)∆φ/3 Φ(u, v) , (5.29c)

F1(u, v) =
1

4

∂2

∂∆2
φ

F3(u, v) + (v/u2)∆φ/3 Φ2(u, v) , (5.29d)

where we introduced the notation

Φ(u, v) :=
1

6
ln(v/u2) . (5.30)

It may be checked that these Fi obey the crossing relations from (2.78).

In passing, we remark that it’s not immediately obvious that the limit construction

gives finite results, since correlators with insertions of φ1 come with poles in 1/
√
ε. The

fact that the resulting expressions for the Fi(u, v) are finite follows from the following can-

cellations:

lim
ε→0

[H12(u, v) +H12(v, u) +H12(1/u, v/u)] = −H2(u, v) , (5.31a)

lim
ε→0

∂

∂ε

[
H1(u, v)

2
+H12(u, v) +H12(v, u) +H12(1/u, v/u)

]
= 0 . (5.31b)

5.2.2 Conformal block decompositions

We now turn our attention to the conformal block decomposition of the φa four-point func-

tions. This exercise will provide an extensive test of the formalism developed in section 3.

As a starting point, we will recall the conformal block decompositions of the 〈χiχjχkχl〉
four-point functions in the χ1,2 theory. The four-point function H12(u, v) only contains the

unit operator:

H12(u, v) = −G(0)
0 (u, v;w1, w1, w2, w2) , (5.32)

with the coefficient −1 arising from the sign of the 〈χ2χ2〉 two-point function. In the cross-

or t-channel, after exchanging χ1(x2) ↔ χ2(x4), we have the following conformal block

decomposition:

H12(v, u) = −
∞∑

`,n=0

(−1)`q(`, n;w1, w2)G
(`)
w1+w2+`+2n(u, v;w1, w2, w2, w1) , (5.33)
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with

q(`, n; ∆1,∆2) :=
2`

`!n!

(∆1 − ν)n(∆2 − ν)n(∆1)`+n(∆2)`+n
(`+ d/2)n(∆1 + ∆2 + n− d+ 1)n

× 1

(∆1 + ∆2 + `+ 2n− 1)`(∆1 + ∆2 + `+ n− d/2)n
. (5.34)

Here (x)n := Γ(x + n)/Γ(x) is the Pochhammer symbol. These coefficients were first

obtained in [87]. As expected, this is a sum over all double-trace operators O(`,n)
12 . Finally,

we can analyze the u-channel with χ1(x2)↔ χ2(x3), which yields

H12(1/u, v/u) = −
∞∑

`,n=0

q(`, n;w1, w2)G
(`)
w1+w2+`+2n(u, v;w1, w2, w1, w2) . (5.35)

For both Hi(u, v) four-point functions, we rather have the conformal block decomposition

Hi(u, v) = G
(0)
0 (u, v;wi, . . . , wi) +

∑
even `

∞∑
n=0

2q(`, n;wi, wi)G
(`)
2∆i+`+2n(u, v;wi, . . . , wi) .

(5.36)

The first term clearly corresponds to the unit operator contribution, and the rest to even-

spin double trace primaries O(`,n)
ii .

Next, we will recycle these results to compute the conformal block decompositions

of the functions F1···5(u, v). This is a straightforward exercise: we express the four-point

functions of φa as linear combinations of four-point functions of χ1,2 and take the limit ε→
0. To be precise, we stress that the χi four-point functions can depend on ε in four different

ways: 1) through the scale factors P; 2) through the OPE coefficients q(`, n;wi, wj); 3)

through the dimensions wi+wj + `+2n of the exchanged operators, and finally 4) through

the external dimensions appearing in the conformal blocks. The ε dependence of the scale

factors P is trivial, since derivatives of P simply give factors of ζ1, . . . , ζ4 via eq. (2.60).

This reduces the computation of the relevant conformal block decompositions to a

bookkeeping exercise. For F3, we get in the s- and t-channels:

F3(u, v) =
∑

even `

∞∑
n=0

2q`,nG
(`)
2∆φ+`+2n(u, v; ∆φ) , (5.37)

F3(v, u) = G
(0)
0 (u, v; ∆φ) +

∞∑
`,n=0

q`,nG
(`)
2∆φ+`+2n(u, v; ∆φ) . (5.38)

Here we’re writing q`,n ≡ q(`, n; ∆φ,∆φ) for conciseness. It is easy to rewrite these ex-

pressions as differential operators D1122 resp. D1221 acting on conformal blocks, following

the logic of section 3.6. The fact that these operators are constant — i.e. there are no ac-

tual derivatives acting on the conformal block G
(`)
∆ — means that several OPE coefficients

vanish, as will be discussed later in more detail. For F2(u, v) we find:

F2(u, v) = (v/u2)∆φ/3Φ(u, v)

+
∞∑

`,n=0

D(`,n)
1112 ·G

(`)
∆O

(u, v; ∆1,∆2,∆3,∆φ)
∣∣
∆O=2∆φ+`+2n,∆i=∆φ

, (5.39)
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with

D(`,n)
1112 = ∂∆φ

q`,n + q`,n (2∂∆O + ∂∆1 + ∂∆2 + 2∂∆3) ` even , (5.40)

D(`,n)
1112 = q`,n (∂∆1 − ∂∆2) ` odd . (5.41)

The difference between even- and odd-spin OPE coefficients comes from the factor (−1)`

in eq. (5.33). As a matter of fact, the odd ` terms vanish due to the conformal block iden-

tity (D.6). The first term in (5.39) corresponds to the unit operator contribution, namely

(v/u2)∆φ/3Φ(u, v) = lim
∆→0

(∂∆1 + ∂∆2)G
(0)
∆ (u, v; ∆1,∆2,∆φ,∆φ)

∣∣
∆1=∆2=∆φ

. (5.42)

Finally, for F1 we obtain

F1(u, v) = (v/u2)∆φ/3 Φ2(u, v)

+
∞∑

`,n=0

D(`,n)
1111 ·G

(`)
∆O

(u, v; ∆1,∆2,∆3,∆4)
∣∣
∆O=2∆φ+`+2n,∆i=∆φ

, (5.43)

with

D(`,n)
1111 = 2 ∂∆1∂∆2q(`, n; ∆1,∆2)

∣∣
∆1=∆2=∆φ

+
[
(∂∆φ

q`,n)+2∂∆O

] 4∑
i=1

∂∆i + 2(∂∆φ
q`,n)∂∆O

+ q`,n

[
(∂∆1 + ∂∆2)(∂∆3 + ∂∆4) + 2(∂∆1∂∆2 + ∂∆3∂∆4) + 2∂2

∆O

]
` even ,

(5.44)

D(`,n)
1111 = −q`,n (∂∆1∂∆3 + ∂∆2∂∆4 − ∂∆1∂∆4 − ∂∆2∂∆3)

= −q`,n (∂∆2 − ∂∆1)(∂∆4 − ∂∆3) ` odd .

(5.45)

The first term is again the unit operator contribution:

(v/u2)∆φ/3Φ(u, v)2 = lim
∆→0

(∂∆1 + ∂∆2) (∂∆3 + ∂∆4)G
(0)
∆ (u, v; ∆1,∆2,∆3,∆4)

∣∣
wi=∆φ

.

(5.46)

These results provide several non-trivial checks on the formalism developed in the previous

sections. In particular, by comparing the operators D(`,n)
ijkl with the results obtained in

section 3.6 this allows us (a) to verify that expressions for the differential operators are

internally consistent and (b) to read off some of the OPE coefficients for the logarithmic

GFF. Let us do this now.

In what follows we will denote the even-spin OPE coefficients a(`,n)
p , b(`,n)

p and c(`,n)
p

in accordance with section 3.6. Likewise, we denote the odd-spin OPE coefficients b(`,n).

Moreover, we will use the convention that all exchanged operators have a unit-normalized

two-point function, at the expense of possibly getting imaginary OPE coefficients. Let’s

first consider the odd-spin sector. From (5.38) we read off that(
b(`,n)

)2
= −q`,n (5.47)
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and we find that the expressions for D(`,n)
1111 and D(`,n)

1112 are consistent with this result. Next,

consider the even-spin sector. Because the even-spin operators transform as logarithmic

triplets, reading off the OPE coefficients is more complicated than in the odd-spin case.

For instance, conformal invariance dictates that the operator D(`,n)
2222 is of the following form

(cf. eq. (3.51e)):

D(`,n)
2222 =

3∑
p,q=1

c(`,n)
p c(`,n)

q V pq(∂∆O) (5.48)

= c
(`,n)
1 c

(`,n)
3 +

(
c

(`,n)
2

)2
+ 2 c

(`,n)
2 c

(`,n)
3 ∂∆O +

1

2

(
c

(`,n)
3

)2
∂2

∆O

where we use the definition of the matrix V pq(∂∆O). Since F5(u, v) = 0 in the logarithmic

GFF, we conclude that

c
(`,n)
2 = c

(`,n)
3 = 0 , (5.49)

for all `, n, but we cannot prove anything about the coefficients c
(`,n)
1 from F5 alone. By

repeating this exercise for the other Fi, we find:

b
(`,n)
3 = 0 ,(

b
(`,n)
2

)2
= q`,n ,

1

2
a

(`,n)
3 = c

(`,n)
1 = b

(`,n)
2 ,

a
(`,n)
2 b

(`,n)
2 + a

(`,n)
3 b

(`,n)
1 = ∂∆φ

q`,n ,

2a
(`,n)
1 a

(`,n)
3 +

(
a

(`,n)
2

)2
= 2 ∂∆1∂∆2q(`, n; ∆1,∆2)

∣∣
∆1=∆2=∆φ

. (5.50)

Summarizing, we have obtained eight (quadratic) equations for nine unknown OPE

coefficients, hence we can solve for nearly all OPE coefficients in the theory — some, like

b
(`,n)
2 , only up to a sign. It would be interesting to compare these predictions to a direct

computation. Doing so would require two steps: first, to construct the exchanged primaries

and unit-normalize them, and second to compute three-point functions of these primaries

with φa using Wick’s theorem.

5.3 Self-avoiding walks and the O(n → 0) model

The O(n) model with order parameter φi is described by the Landau-Ginzburg action

L =
z

2
(∂φi)

2 +
r

2
:φ2
i : +

g

8
:(φ2

i )
2 : . (5.51)

The normalization z is chosen such that 〈φi(x)φj(0)〉 = δij |x|2−d at the free massless point

r = g = 0. In d = 4 − ε dimensions this theory has a weakly coupled critical point at

g∗ = O(ε), although we will consider d to lie in the entire range 2 ≤ d < 4. For fixed d, we

can analytically continue the O(n) fixed point to fractional n, at the expense of breaking

unitarity [88]. In particular we can take the limit n→ 0, which describes a special type of

polymer statistics, called self-avoiding walks [6, 70, 89]. LogCFT aspects of this limit have

been studied in refs. [5, 11, 90]. In the rest of this section, we will review the evidence that

the n = 0 theory is a logCFT and how it fits into our formalism.
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Because we will be interested in the φi four-point function, our discussion is restricted

to the φi × φj OPE. The latter can only contain operators in the singlet (S), rank-two

traceless symmetric tensor (T ) and rank-two antisymmetric (A) irreps of O(n). Correlation

functions of these operators will have a tensor structure that is fixed by O(n) invariance,

e.g. for a tensor primary operator Tij we have

〈Tij(x)Tkl(0)〉 = cT (n)

[
δikδjl + δilδjk −

2

n
δijδkl

]
1

|x|2∆T (n)
. (5.52)

We allow both the normalization cT (n) and the scaling dimension ∆T (n) to depend on n.

The coefficient cT (n) is of course arbitrary, although we can imagine fixing it by specifying

a renormalization scheme, say minimal subtraction. We will assume that cT (n) has a finite

limit as n → 0, in which case the correlator (5.52) is ill-defined at n = 0 due to the 1/n

pole. Without loss of generality, we will set cT (n) = 1 in what follows, which is justified in

a neighborhood around n = 0.

There is a simple mechanism to obtain a finite limit in (5.52). Suppose that there exists

a scalar S in the singlet channel of O(n) whose dimension ∆S(n) satisfies ∆T (0) = ∆S(0)

i.e. there is a degeneracy in the spectrum of the theory at n = 0. The two-point function

of S can be written as

〈S(x)S(0)〉 =
2n cS(n)

|x|2∆S(n)
, (5.53)

where we have extracted a factor of 2n in the normalization of S for convenience.12 We

will assume that cS(n) also has a finite limit as n→ 0, and as above we will set cS(n) = 1

for simplicity. Now define the operator

T ij := Tij +
1

n
µ∆T−∆S δij S , (5.54)

where we were forced to introduce a scale µ. By construction, T has a finite two-point

function in the limit n→ 0:

〈T ij(x)T kl(0)〉 ∼
n→0

1

|x|2∆T (0)

[
(δikδjl + δilδjk)− 2α δijδkl lnµ2x2

]
(5.55)

where α is defined as

α := lim
n→0

1

n
[∆S(n)−∆T (n)] . (5.56)

We see that resolving the 1/n pole in (5.52) has given rise to a logarithm. Moreover,

we have

〈T ij(x)S(0)〉 ∼
n→0

2δij |x|−2∆T (0) and 〈S(x)S(0)〉 ∼
n→0

0 . (5.57)

This implies that the operators T ij and S := αS form a logarithmic rank-two multiplet of

dimension ∆T (0) in the n = 0 theory.

12In minimal subtraction, many operators of interest, such as :φ2
i :, have a two-point function proportional

to n, at least to leading order in epsilon. For such operators, we have cS(n) ∼ 1 in the normalization of (5.53).
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However, if T and S combine into a logarithmic multiplet, their three-point functions

with φi must also be related. For symmetry reasons, at finite n the latter are of the form

〈φi(x1)φj(x2)Tkl(x3)〉 = λT (n)

[
δikδjl + δilδjk −

2

n
δijδkl

]
P∆φ∆φ∆T (n) , (5.58a)

〈φi(x1)φj(x2)S(x3)〉 = 2nλS(n) δij P∆φ∆φ∆S(n) , (5.58b)

where we have extracted a factor of 2n for convenience. We will assume that λT (0) is finite.

But then the only way to cancel the 1/n pole in 〈φφT 〉 is if

λS(n) ∼
n→0

λT (0)

n
+ λ̃+ O(n) . (5.59)

In that case, we obtain

〈φi(x1)φj(x2)T kl(x3)〉 ∼
n→0

[
λT (0) (δikδjl + δilδjk)

+ 2δijδkl

(
λ̃− λ′T (0) + αλT (0)τ3

)]
P∆φ∆φ∆T (0) , (5.60a)

〈φi(x1)φj(x2)S(x3)〉 ∼
n→0

2αλT (0) δij P∆φ∆φ∆T (0) , (5.60b)

consistent with conformal invariance. In (5.60), we have set µ = 1 for simplicity.

Finally, let’s consider the contributions of Tij and S to the φi four-point function. By

writing down the φi × φj ∼ Tij + S OPEs, it follows that at finite n these are given by∏
i<j

|xij |2∆φ/3 〈φiφjφkφl〉 ⊃
(
λT (n)

)2 [
δikδjl + δilδjk−

2

n
δijδkl

]
G

(0)
∆T (n)(u, v; ∆φ, . . . ,∆φ)

+ 2n
(
λS(n)

)2
δijδklG

(0)
∆S(n)(u, v; ∆φ, . . . ,∆φ) . (5.61)

Taking the limit n→ 0, this becomes(
λT (0)

)2
[δikδjl + δilδjk]G

(0)
∆T (0)(u, v; ∆φ, . . . ,∆φ)

+ 2δijδkl

[
2λT (0)

(
λ̃− λT (0)

)
+ α

(
λT (0)

)2
∂∆

]
G

(0)
∆ (u, v; ∆φ, . . . ,∆φ)

∣∣
∆=∆T (0)

. (5.62)

Eq. (5.62) shows that the contribution of S and Tij to the four-point function at n = 0

is governed by a logarithmic conformal block: a linear combination of a normal block

G
(0)
∆ (u, v) together with its derivative ∂∆G

(0)
∆ (u, v), in agreement with the fact that T ij

and S form a rank-two multiplet. In passing, we notice that eq. (5.62) could have been

obtained by simply reading off the OPE coefficients from (5.60).

5.3.1 O(n) in perturbation theory

Let us now specify the general discussion of the previous section to a concrete example.

Here we will study the O(n) model at leading order in the quartic coupling λ. Let us

consider the model defined in eq. (5.51) with r = 0. We are interested in the leading order

correction to the four point function in the neighbourhood of d = 4, where there is a weakly

coupled fixed point:

〈φiφjφkφl〉g = 〈φiφjφkφl〉g=0 −
g

8

∫
ddy〈φiφjφkφl : (φa(y)2)2 :〉g=0 +O(g2) , (5.63)
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and we have suppressed the arguments of the external fields x1, x2, x3, x4. The first piece

is the free, disconnected four point function:

|x12|d−2|x34|d−2 〈φiφjφkφl〉λ=0

= δijδkl + u
d−2

2 δikδjl + (u/v)
d−2

2 δilδjl

≡ 2nδijδkl S(u, v)+

(
δilδjk + δikδjl−

2

n
δijδkl

)
T (u, v)+(δilδjk−δikδjl)A(u, v) . (5.64)

The functions S(u, v) and T (u, v) admit the following conformal block decomposition:

S(u, v) =
∑
` even

(λS` )2 Ĝ
(`)
`+d−2(u, v) , T (u, v) =

∑
` even

(λT` )2 Ĝ
(`)
`+d−2(u, v) , (5.65)

where

(λT` )2 =
p`
2
, (λS` )2 =

p`
2n2

. (5.66)

For convenience we are working with the conventional conformal blocks Ĝ
(`)
∆ in this section.

The coefficients p` can be expressed in terms of the coefficients q from eq. (5.34), however

their value will not matter for this discussion. Notice that the coefficients λS` and λT` are

in agreement with the asymptotics of eq. (5.59), with λ̃ = 0.

Next we compute the leading correction to the four point function. First, notice that

1

8

∫
ddy〈φiφjφkφl : (φa(y)2)2 :〉g=0 = (δijδkl + δikδjl + δilδkj)

∫
ddy

4∏
i=1

1

|y − xi|d−2
. (5.67)

At one-loop order in the epsilon expansion, this integral must be evaluated at d = 4.

Although the resulting integral is finite, it will be useful to rewrite it as follows:∫
ddy

∏
i=1,2

1

|y − xi|∆
∏
i=3,4

1

|y − xi|d−∆
(5.68)

where we have in mind that in the end the limit d → 4, ∆ → 2 must be taken. Follow-

ing [63], this yields:

πd/2

|x12|∆|x34|d−∆

[
Γ(d/2−∆)

Γ(∆)

Γ(∆/2)2

Γ((d−∆)/2)2
Ĝ

(0)
∆ (u, v)

+
Γ(∆− d/2)

Γ(d−∆)

Γ((d−∆)/2)2

Γ(∆/2)2
Ĝ

(0)
d−∆(u, v)

]
. (5.69)

Near ∆ = d/2 the above formula reduces to a linear combination of Ĝ
(0)
d/2 and ∂∆Ĝ

(0)
∆ |∆=d/2.

Finally, after taking the limit d→ 4 we obtain

− 1

8

∫
d4y〈φiφjφkφl : (φa(y)2)2 :〉g=0

= −2π2 (δijδkl + δikδjl + δilδjl)

|x12|2|x34|2

(
Ĝ

(0)
2 (u, v)− ∂

∂∆
Ĝ

(0)
∆ (u, v)

∣∣
∆=2

)
. (5.70)
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We conclude that the only effect of this leading-order contribution to the four-point function

is the following: it modifies the OPE coefficients of the leading tensor and singlet scalar

operators, and it gives rise to two anomalous dimensions:

S(u, v)g 6=0 = (λS0 )2 Ĝ
(0)
2+γS

(u, v) +
∑

`≥2 even

(λS` )2 Ĝ
(`)
`+2(u, v) +O(g2) , (5.71a)

T (u, v)g 6=0 = (λT0 )2 Ĝ
(0)
2+γT

(u, v) +
∑

`≥2 even

(λT` )2 Ĝ
(`)
`+2(u, v) +O(g2) (5.71b)

where

(λT0 )2 =
p0

2
− 2π2g , (λS0 )2 =

p0

2n2
− π2g

n+ 2

n2
, γT =

4π2g

p0
, γS =

2π2g(n+ 2)

p0
.

(5.72)

Here g must be tuned to its critical value g∗ = O(ε) and we use that

Ĝ
(0)
2+γ(u, v) = Ĝ

(0)
2 (u, v) + γ

∂

∂∆
Ĝ

(0)
∆ (u, v)

∣∣
∆=2

+ O(γ2) . (5.73)

All OPE coefficients λS,T` with ` ≥ 2 are not modified compared to their values in the

free theory. Let us now focus on the scalar primaries with dimension ' 2 in the S and

T channel. Notice that γS/γT = (n + 2)/2, consistent with the standard ε-expansion

prediction:

γS =
n+ 2

n+ 8
ε , γT =

2

n+ 8
ε . (5.74)

In the n→ 0 limit we see that the conditions (5.56) and (5.59) are satisfied, with

α =
2π2g

p0
, λT (0)2 =

p0

2
− 2π2g , λ′T (0) = 0 , λ̃ =

2π2g

p2
0

. (5.75)

which can now be plugged back into (5.62). We stress that the appearance of the derivative

∂∆Ĝ∆ of a conformal block in (5.70) is an artifact of working in perturbation theory. At

finite n, resumming all terms in the epsilon expansion would eliminate such derivatives.

Summarizing, we have confirmed that to leading order in perturbation theory, the φi
four-point function of the O(n → 0) model behaves as it would in a logarithmic CFT. In

particular, the scaling dimensions of all operators in the S and T channels of O(n) collide

as n→ 0, i.e. we have limn→0 ∆S(n)−∆T (n) = 0. Provided that this persists to all orders

in perturbation theory, the O(n→ 0) model is a logCFT.

Note that at leading order in epsilon, only two operators obtained a nonzero anomalous

dimension. At the 3d critical point — which is nonperturbative — all operators in the φi×φj
OPE (except for the stress tensor) are expected to have a finite anomalous dimension. The

fact that all of them must collide pairwise in the limit n→ 0 is clearly a strong constraint

on the spectrum of the O(n) model.

5.4 Percolation and the Q → 1 Potts model

The Q-state Potts model can be thought of as the theory of an order parameter field φa(x)

with a = 1, . . . , Q, with interactions invariant under a global symmetry group SQ, the
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permutation group acting on Q elements. The order parameter satisfies
∑Q

a=1 φa = 0,

and it forms an irreducible representation of SQ. The model is described by the Landau-

Ginzburg action

L =
1

2

∑
a

(∂µφa)
2 +

r

2

∑
a

φ2
a +

g

3!

∑
a

φ3
a , (5.76)

which has a weakly coupled fixed point in 6 − ε dimensions for sufficiently small Q.

We will be interested in the Q → 1 limit, which is known to describe the theory of

percolation in 2 ≤ d < 6 dimensions. As with the O(n) model, logarithmic behavior in

the Q → 1 Potts model arises due to group-theoretical considerations. The irreducible

representations appearing in the OPE of the field φa with itself were worked out a long

time ago [91], with a more detailed analysis appearing in [92, 93]. We can schematically

write the OPE13

φa × φb = Pab S +

(
Pab −

1

Q

)
(Va + Vb) + F[ab] + T(ab) , (5.77)

with the projector Pab being defined by

Pab := δab −
1

Q

Q∑
a=1

Pab = 0. (5.78)

One should understand the above as a sum of scalar, vector, antisymmetric, and tensorial

representations, with dimensions 1, (Q−1), (Q−1)(Q−2)
2 and Q(Q−3)

2 respectively. Two point

functions of the fields appearing in these components must take the form

〈SS〉 ∝ 1 〈VaVb〉 ∝ Pab 〈FabFcd〉 ∝ Pa[cPd]b 〈TabTcd〉 ∝ Pabcd , (5.79)

with

Pabcd := δa 6=bδc 6=d

[
δacδbd + δadδbc −

1

Q− 2
(δac + δad + δbc + δbd) +

2

(Q− 1)(Q− 2)

]
.

(5.80)

The field φa itself is not logarithmic: its two-point function is of the form

〈φa(x)φb(0)〉 ∝ Pab

|x|2∆φ(Q)
, (5.81)

hence it is finite at Q = 1. However, in the OPE φa×φb there will be logarithmic operators,

with the simplest logarithmic doublet built out of φ2 and φ2
ab, the “watermelon” or two-leg

operators14 which are the leading operators in S and Tab. The fact that various operators

organize themselves in logarithmic multiplets at Q = 1 also follows from the four point

13Note added: we thank Bernardo Zan for discussions and clarifications regarding these formulae.
14In [93], these are written as φ2 ≡ t(0,2) and φ2

ab ≡ t(2,2). In [11], φ2
ab is written φ̂

(2)
ab , and φ

(2)
ab is the

finite Q→ 1 limit combination.

– 50 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

function of φa:

〈φa(x1)φb(x2)φc(x3)φd(x4)〉 =
∏
i<j

1

|xij |2∆φ/3

(
PabPcd S(u, v)

+

(
Pab −

1

Q

)(
Pcd −

1

Q

)
(Pac + Pad + Pbc + Pbd) V(u, v)

+ Pa[cPd]bF(u, v) + Pabcd T (u, v)

)
. (5.82)

The divergence of the projector Pabcd as Q→ 1 implies that the scalar and tensor compo-

nents in the OPE must combine as

T ab := Tab +
1

Q− 1
µ∆T−∆S S (5.83)

Thus the story here is almost exactly the same as for the previous section, and we will

not repeat it. Let us note however that in particular, a smooth Q→ 1 limit requires that

the dimensions of the operators φ2, φ2
ab agree when Q → 1. Wallace and Young [91] have

shown this is true to all orders in perturbation theory. For instance, to leading order we

have [94, 95]:

∆φ2 −∆free

φ2 = − 5(Q− 2)

3(10− 3Q)
ε ∼
Q→1

5

21
ε , (5.84)

∆φ2
ab
−∆free

φ2
ab

=
Q+ 4

3(10− 3Q)
ε ∼
Q→1

5

21
ε . (5.85)

To finish this section, let us mention that the Q → 2 limit reproduces the logarithmic

extension of the Ising model [11, 96]. In that case, logarithms appear in OPEs of higher-

dimensional operators, for instance in φ2
ab × φ2

cd. Another case of interest is the Q → 0

limit of the Potts model, which has a geometrical interpretation in terms of spanning

forests [97–101].

6 Discussion

In this paper we pursued a systematic discussion of logarithmic CFTs in d dimensions,

exploiting constraints imposed by the global conformal group SO(d + 1, 1). Our work

is complementary to most of the existing literature on 2d logCFTs, which uses Virasoro

and W algebra techniques. We obtained the most general form of correlation functions

consistent with logarithmic conformal invariance in a number of cases. Special attention

was paid to four-point functions. In particular we examined the consequences of Bose

symmetry for these correlators and we showed that logarithmic multiplets contribute to

them via “logarithmic” conformal blocks that can be computed in terms of derivatives of

ordinary conformal blocks with respect to scaling dimensions. Along the way, we made

explicit how to reconcile scale invariance with the presence of logarithms in correlation

functions. As discussed in detail in section 2.6, the running of coefficients appearing in

two- and three-point functions compensates for the non-trivial scale transformations of

logarithms, giving rise to RG-invariant correlation functions.
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The formalism developed in this paper applies to any spacetime dimension, in par-

ticular to two dimensions. In this context we want to address some remarks made in the

literature which we believe are incorrect. Let us consider a rank-two scalar primary φa of

dimension ∆φ > 0. The two-point function 〈φ2φ2〉 of its bottom component φ2 vanishes,

as shown in section 2.2. It was argued in [13] that for cluster decomposition to hold, all

n-point functions of φ2 must vanish as well:

〈φ2(z1) · · ·φ2(zn)〉 = 0 . (6.1)

This is certainly not required by global conformal invariance. The argument that this

is required by cluster decomposition cannot be correct, since in any conformally invariant

theory (including logarithmic ones), cluster decomposition is automatically satisfied thanks

to the OPE as long as all operator dimensions are positive. Indeed, the fact that the two

point function vanishes does not prevent φ2 from having a non-zero OPE. Section 4.1

provides a specific holographic example of this fact, see for instance eq. (4.34).

Nevertheless, the φ2 four-point function vanishes in many 2d examples. This can

be understood from the following argument. What is definitely true is that the identity

operator does not contribute to the φ2 × φ2 OPE. This holds both when the identity

operator is of rank one and when it’s part of a larger logarithmic multiplet, and it is a

simple consequence of the results derived in this paper. In 2d CFTs, this means that

the Virasoro conformal block of the identity operator is absent from the φ2 four-point

function. This does not necessarily imply that the full four-point function vanishes, since

other Virasoro blocks may appear in principle. One should only expect the φ2 four-point

function to vanish if all primaries in the theory belong to an extended bosonic chiral

algebra, as is the case for the logarithmic minimal models — since in that case, all possible

contributions to the four-point function are related to that of the identity.

In section 4 we discussed some holographic models of logarithmic CFTs. Two results

stand out. First, we have shown how some of these models can be derived by coupling

an ordinary bulk theory to disorder. It would be interesting to understand this in more

detail, including interactions, and to extend these results to spin two at the non-linear level.

We also derived for the first time models of logarithmic spin-1 fields, including conserved

currents. Altogether, there now exists a logarithmic generalization of Einstein-Maxwell-

scalar theory in the bulk, variations of which have been extensively used in holographic

models of condensed matter phenomena. Using our new models, it seems likely that a

range of similar applications can now be made for strongly coupled, disordered, boundary

theories. For instance, it would be very interesting to study a disordered analog of a

holographic superconductor.

Finally, our results lay the groundwork for any future bootstrap applications. An

interesting question for the immediate future is whether a logarithmic bootstrap analysis

of the O(n→ 0) model can reproduce or even improve known critical exponents [102–104]

for self-avoiding walks in 3d. The 3d O(n) model at finite n has already been studied in

great detail using numerical bootstrap methods [52, 65, 105, 106]. Likewise, it would be

interesting to study the Potts model in 2 ≤ d < 6 in the limit Q → 1 using bootstrap
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techniques. Any results could be compared to predictions coming from the 6− ε expansion

or Monte Carlo methods [107–109].

Unfortunately, since logCFTs are non-unitary, bootstrapping them is not quite

straightforward. One possibility is to study the logarithmic theories directly using the

determinant method developed by Gliozzi [110, 111]. A different workaround comes from

the fact that many logCFTs arise as limits of ordinary CFTs. This was exploited in an

interesting recent paper [112] where the O(n→ 0) critical point was studied by computing

bootstrap constraints at fractional n < 1 and extrapolating these results to n = 0. In

the paper in question unitarity was assumed for fractional n, although in principle unitar-

ity violations occur [88]. This does not necessarily lead to large errors: for instance, the

Wilson-Fisher fixed point in 4 − ε dimensions is known to be nonunitary [113] although

a bootstrap analysis of the same model gave results consistent with RG predictions [114].

The reason for this was that unitarity violations only affected high-dimension operators in

the CFT spectrum. It may be an interesting problem to quantify the unitarity violations in

the O(n) model at fractional n and to see to which extent they affect low-lying operators,

and mutatis mutandis for the Q-state critical Potts model.

In this paper we have scratched the surface of the theory of logarithmic CFTs in d

dimensions. There are many obvious extensions in this direction, for instance by considering

supersymmetric theories or defects and boundaries. We are optimistic that the near future

will bring breakthroughs both in understanding formal properties of these theories and in

cornering concrete examples through the conformal bootstrap.
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A Simplifications for the two-point function

In section 2.2, two statements about two-point functions in logCFTs were made but not

proven: first, that two-point functions of operators in different multiplets vanish, and

second that two-point functions can be brought to a canonical form. Here we will discuss

these claims in more detail. For simplicity we consider the scalar (` = 0) case, but for

higher spins the analysis is similar.
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Let Oa be a primary of rank r and Õa a primary of rank r′. Then we will argue

that after a suitable change of basis the two-point function 〈Oa(x)Õb(x)〉 vanishes. The

argument goes as follows. Without loss of generality we can assume that r ≤ r′ and the two

primaries have equal scaling dimension ∆. Conformal invariance requires that the different

two-point functions depend on 2r + r′ parameters k1···r, ρ1···r and k̃1···r′ as follows:

〈Oa(x)Ob(0)〉 =
1

|x|2∆

r−n∑
m=0

kn+m
(−1)m

m!
(lnx2)m [n = a+ b− r − 1] , (A.1a)

〈Oa(x)Õb(0)〉 =
1

|x|2∆

r−n∑
m=0

ρn+m
(−1)m

m!
(lnx2)m [n = a+ b− r − 1] , (A.1b)

〈Õa(x)Õb(0)〉 =
1

|x|2∆

r′−n∑
m=0

k̃n+m
(−1)m

m!
(lnx2)m [n = a+ b− r′ − 1] . (A.1c)

It’s convenient to combine the two multiplets into one vector OI = (Oa, Õb), with I =

1, . . . , r + r′. The dilatation operator acts on OI as follows:

D|OI〉 = −iD J
I |OJ〉, D J

I =

(
∆r×r 0r×r′

0r′×r ∆r′×r′

)
, (A.2)

where the matrix ∆ is defined in eq. (2.3).

Next, we will need to consider for which values of the parameters km, ρm and k̃m the

Hilbert space is non-degenerate. This will require the Gram matrix, which will be discussed

in more detail in appendix C. We will consider the cases r < r′ and r = r′ separately.

If r < r′, the determinant of the Gram matrix equals ±(kr)
r(k̃r′)

r′ , so requiring that

there are no null states imposes that kr 6= 0 and k̃r′ 6= 0. Then consider the following

change of basis:

|OI〉 → |O′I〉 = C J
I |OJ〉, C J

I =



1r×r 0r×r′

α1 α2 · · · αr
0 α1 · · · αr−1

...
. . .

... 1r′×r′

0 0 · · · α1

0(r′−r)×r


, (A.3)

which depends on r parameters α1, . . . , αr. The matrix C commutes with D defined in

eq. (A.2), hence the matrix 〈O′I(x)O′J(0)〉 is of the same form as 〈OI(x)OJ(0)〉, only with

coefficients that depend on the choice of α1···r. Using the assumption that kr 6= 0, there

exists a suitable choice of parameters α1, . . . , αr such that

〈O′I(x)O′J(0)〉 =

(
∗ 0r×r′

0r′×r ∗

)
, (A.4)

implying that the off-diagonal two-point functions in the new basis are vanishing. We have

not found a compact expression for the parameters αi, although it is straightforward to
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find the explicit change of basis using computer algebra. This is consistent with a counting

of parameters: there are r adjustable parameters αi that we use to set r coefficients ρi
to zero.

Next, we consider the case r = r′. In that case, the absence of null states requires that

kr k̃r 6= (ρr)
2. We can isolate three subcases: (a) kr 6= 0, (b) k′r 6= 0 and (c) kr = k′r = 0 but

ρr 6= 0. (When both kr and k̃r are non-zero, both cases (a) and (b) apply.) In case (a) we

can recycle the previous argument. In case (b) the same holds, after swapping Oa ↔ Õa.
Finally, for case (c) we consider a different change of basis:

|OI〉 → |O′I〉 = E J
I |OJ〉, E J

I =


1r×r 1r×r

β1 β2 · · · βr
0 β1 · · · βr−1

...
. . .

... 1r×r
0 0 · · · β1

 , (A.5)

which depends on r parameters β1···r. Notice that the upper right corner in (A.5) is non-

zero, hence E is of a different form than C from eq. (A.3). Again one can find a suitable

choice of parameters βi that makes all off-diagonal matrix elements in 〈O′IO′J〉 vanish. The

fact that such a change of basis exists is consistent with the counting of degrees of freedom:

there are r coefficients ρi that need to be set to zero and r adjustable parameters βi.

Next, consider a single primary multiplet Oa of rank r. By conformal invariance, its

two-point function is of the following form:

〈Oa(x)Ob(0)〉 =
1

|x|2∆

r+1−a−b∑
m=0

km+a+b−1
(−1)m

m!
(lnx2)m . (A.6)

The determinant of the Gram matrix is equal to ±(kr)
r, hence we will assume that kr 6= 0.

We want to prove that after a suitable change of basis |Oa〉 → |O′a〉 = R b
a |Ob〉, we have

〈O′a(x)O′b(0)〉 =
(−1)n

n!

kr
|x|2∆

(lnx2)n if n = r + 1− a− b ≥ 0 (A.7)

and 〈O′aO′b〉 = 0 if a+b > r+1, corresponding to the “canonical form” shown in eq. (2.21).

To achieve this, consider the following change of basis:

R b
a =


1 R1 R2 · · · Rr−1

0 1 R1 · · · Rr−2

...
...

...
. . .

...

0 0 0 1 R1

0 0 0 0 1

 , (A.8)

which depends on r− 1 parameters R1, . . . , Rr−1. Since R b
a commutes with the matrix ∆

from (2.3), it follows that the two-point function 〈O′a(x)O′b(0)〉 is of the same form as (A.6)

but with shifted coefficients km → k′m(R) for m = 1, . . . , r − 1. The coefficient kr does

not change, since the diagonal elements of the matrix R b
a are equal to one. Again, it is

possible to adjust the parameters Ri to achieve the desired form (A.7), consistent with the

counting of parameters.
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B Logarithmic OPE

In this appendix we use the formal replacement introduced in eq. (2.9) to compute the

OPE φ1 × χ1 of the upper components of two distinct rank-2 scalar multiplets φa, χa. We

only focus on the contribution of a spin-1 non-logarithmic operator, since this result is used

in the main text. The analysis presented in this section can be easily generalized to higher

rank cases. In the following we assume that the exchanged operator is unit-normalized i.e.:

〈Oµ(x)Oν(0)〉 =
1

|x|2∆
Iµν(x) . (B.1)

where ∆ is the dimension of Oµ(x). We will also denote γ = ∆φ −∆χ and ν = (d− 2)/2.

Recalling the notation introduced in eq. (2.33), the general structure of the three point

function can be parametrized as:

〈φ1(x1)χ1(x2)Oµ(0)〉 =

[
λφχO11 +

λφχO+

2
(τ1+τ2)+

λφχO−
2

(τ1−τ2)+λφχO22 τ1τ2

]
P∆φ∆χ∆ Xµ ,

(B.2)

where λφχO± = λφχO12 ±λφχO21 , while P∆φ∆χ∆ and Xµ are defined in eq. (2.27) and eq. (2.28).

First, let us recall that the OPE of the bottom components has the standard form:

φ2(x)χ2(0) =
1

|x|∆1+∆2−∆O+1

∑
n,j

[
An,j |x|2nxµ(x · ∂)j2n+Bn,j |x|2n+2∂µ(x · ∂)j2n

]
Oµ(0) .

(B.3)

We report the first terms of the above series for the sake of completeness:

A0,0 = 1, A1,0 = − (∆ + `+ γ)(∆ + `− γ)

16(∆ + `)(∆ + `+ 1)(∆− ν)
,

A0,1 =
∆ + γ + `

2(∆ + `)
, A0,2 =

(∆ + γ + `)(∆ + γ + `+ 2)

8(∆ + `)(∆ + `+ 1)
, (B.4)

B0,0 =
γ

2(∆ + 1)(∆− d+ 1)
, B0,1 =

(γ + ∆ + 1)(−2γ∆− 3γ + γd+ d−∆− 1)

4(∆ + 1)(∆ + 2)(d− 2∆− 2)(d−∆− 1)
.

Using the derivative trick of eq. (2.9) to express both φ1 and χ1 as derivatives of φ2 and

χ2 and finally matching with the three point function (B.2) we obtain:

φ1(x)χ1(0) =
1

|x|∆1+∆2−∆+1
Dµ(x, ∂)Oµ(0) , (B.5)

where

Dµ(x, ∂) =
(
λφχO11 − λφχO+ lnx+ λφχO22 (lnx)2

) [
xµ +

1

2
xµ x · ∂ + . . .

]
+ λφχO−

[
1

2(∆ + 1)
xµ(x · ∂) +

1

2(∆ + 1)(∆− d+ 1)
x2∂µ + . . .

]
+ λφχO22 [subleading non-logarithmic terms] . (B.6)
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C Partial wave decomposition

In this appendix we will prove two claims that are needed in section 3.4.

C.1 Gram matrix and proof of eq. (3.41)

We have in mind a primary operator Op of rank r, hence the label p runs over 1, . . . , r. For

simplicity we take Op to be a scalar primary, although the result generalizes to spin ` ≥ 1

without difficulty. Recall that a primary state is defined by inserting the operator Op at

the origin, i.e.

|Op〉 := Op(0)|0〉 . (C.1)

All descendants within the multiplet of Op are obtained by acting with Pµ, the generator

of translations. We will denote them as follows:

|Op;α〉 := Pα|Op〉 , (C.2)

where α is a multi-index, and Pα is actually Pα1Pα2 . . . Pαk with k = |α| . We can always

decompose descendants into irreps of rotations, and so we may choose α symmetric and

traceless. Out-states are defined by means of the inversion xµ → xµ/|x|2. For a logarithmic

operator, we have

〈Op| = lim
w→∞

|w|2∆
r−p∑
m=0

(lnw2)m

m!
〈0|Op+m(w) , (C.3)

assuming that Op is hermitian. We will denote descendant out-states as

〈Op;α| := 〈Op|Kα . (C.4)

Let’s assume that the two-point function of Op has been brought to its canonical

form (2.21), with coefficient kO. Then the Gram matrix restricted to the primaries is

given by

〈Op|Oq〉 = kO


0 0 · · · 0 1

0 0 · · · 1 0
...

... . .
. ...

...

0 1 · · · 0 0

1 0 · · · 0 0

 = kO δp+q,r+1 . (C.5)

It is easy to see that 〈Op|Oq〉 has br/2c eigenvalues −kO and dr/2e eigenvalues +kO.

Assuming that r ≥ 2, this proves that there is at least one negative-norm state in any

logarithmic multiplet, proving that logCFTs are non-unitary.

Next, we need to compute the Gram matrix for the descendants, namely

Gpα;qβ := 〈Op;α|Oq;β〉 = 〈Op|KαPβ |Oq〉 . (C.6)

It is easy to see that this vanishes unless α = β. However, the Gram matrix Gpα;qβ

does not completely factorize. In order to compute (C.6), we can use the commutation
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relations (2.1) to eliminate Pµ and Kµ in favor of Mµν and D. Since Mµν |Op〉 = 0 in the

scalar case, we can express the result as follows:

〈Op|KαPβ |Oq〉 = δαβ 〈Op|gα(iD)|Oq〉 (C.7)

cf. eq. (3.2). The functions gα(iD) are all polynomials in D, and in general transform as

SO(d) tensors. If Op were a non-logarithmic operator, then the above would evaluate to

〈O|gα(iD)|O〉 = kO gα(∆) [O non-logarithmic] . (C.8)

In order to generalize this to logarithmic multiplets, we first compute that

〈Op|(iD)n|Oq〉 = kO (∆n · I)pq = kO×


(
n

m

)
∆n−m if m ≡ r + 1− p− q ≥ 0

0 otherwise

. (C.9)

This can be rewritten using the following identity:(
n

m

)
∆n−m =

1

m!

∂m

∂∆m
∆n . (C.10)

The latter allows us to write

Gpα;qβ = kO δαβ Vpq

(
∂

∂∆

)
gα(∆), Vpq(∂∆) =

{
1/m! (∂∆)m if m ≡ r+1−p−q ≥ 0

0 otherwise
.

(C.11)

For the partial wave decomposition, we need the resolution of the identity, restricted to

the multiplet of O. This is given by

r∑
p,q=1

∑
α,β

Gpα;qβ |Op;α〉〈Oq;β| , (C.12)

where Gpα;qβ is the inverse Gram matrix:∑
s,γ

Gpα,sγ Gsγ,qβ = δpq δ
α
β . (C.13)

Using eq. (C.11), the inverse Gram matrix evaluates to

Gpα,qβ = δαβ k−1
O V pq(∂∆) · gα(∆)−1 , (C.14)

introducing the matrix V pq defined as follows:

V pq(∂∆) =

{
1/n! ∂n∆ if n ≡ p+ q − r − 1 ≥ 0

0 if n < 0
. (C.15)

This proves eq. (3.41).

– 58 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
1

C.2 Proof of eq. (3.43)

Next, we want to show that eq. (3.41) can be written as (3.43). Let us restate the problem

here. We are given two differential operators

Kabp =

r1−a∑
k=0

r2−b∑
l=0

r−p∑
m=0

λ12O
(a+k)(b+l)(p+m)

1

k!l!m!

∂k

∂∆k
1

∂l

∂∆l
2

∂m

∂∆m
, (C.16a)

K ′cdq =

r3−c∑
k=0

r4−d∑
l=0

r−q∑
m=0

λ34O
(c+k)(d+l)(q+m)

1

k!l!m!

∂k

∂∆k
3

∂l

∂∆l
4

∂m

∂∆m
, (C.16b)

that depend on r1 × r2 × r OPE coefficients λ12O
abp and r3 × r4 × r OPE coefficients λ34O

cdq .

Then we need to show that

r∑
p,q=1

Kabp · M[α,∆,∆1,∆2]

[
V pq

(
∂

∂∆

)
· gα(∆)−1

]
K ′cdq · M′[α,∆,∆3,∆4]

=

r1−a∑
l1=0

r2−b∑
l2=0

r3−c∑
l3=0

r4−d∑
l4=0

r∑
p,q=1

λ12O
(a+l1)(b+l2)p λ

34O
(c+l3)(d+l4)q

4∏
i=1

1

li!

∂li

∂∆li
i

V pq

(
∂

∂∆

)
×
[
M[α,∆,∆1,∆2] gα(∆)−1 M′[α,∆,∆3,∆4]

]
. (C.17)

In order to obtain (3.43), it is sufficient to sum the above expression over all descendant

states α.

Let us now prove the above identity. First notice that we can trivially rewrite the l.h.s.

of (C.17) as

r1−a∑
l1=0

r2−b∑
l2=0

r3−c∑
l3=0

r4−d∑
l4=0

4∏
i=1

1

li!

∂li

∂∆li
i

r∑
p,q=1

F (l1l2)
p · M

[
V pq

(
∂

∂∆

)
· gα(∆)−1

]
H(l3l4)
q · M′ . (C.18)

with

F (l1l2)
p =

r−p∑
m=1

λ12O
(a+l1)(b+l2)(p+m)

1

m!

∂m

∂∆m
, H(l3l4)

q =

r−q∑
n=1

λ34O
(c+l3)(d+l4)(q+n)

1

n!

∂n

∂∆n
.

(C.19)

Next, we will rewrite the sum over p, q. To do so, we appeal to the following lemma:

Lemma. Suppose that we are given two sets of constants µi, µ
′
i with 1 ≤ i ≤ r. Let’s

define the following families of differential operators:

Cp :=

r−p∑
m=0

1

m!
µp+m

∂m

∂∆m
, C ′q :=

r−q∑
n=0

1

n!
µ′q+n

∂n

∂∆n
, p, q = 1, . . . , r. (C.20)

Then for any functions h1, h2, h3 of ∆ we have

r∑
p,q=1

(Cp · h1) (V pq(∂∆) · h2)
(
C ′q · h3

)
=

r∑
p,q=1

µp µ
′
q V

pq(∂∆) · h1h2h3 . (C.21)

Proof : a direct computation using the explicit form of the matrix V pq, see eq. (3.17).
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To conclude, we apply this lemma to eq. (C.18) with µp = λ12O
(a+l1)(b+l2)p, µ

′
q =

λ34O
(c+l3)(d+l4)q and

h1 =M[α,∆1,∆2,∆], h2 = ga(∆)−1, h3 =M′[α,∆3,∆4,∆] . (C.22)

The result evaluates to the r.h.s. of (C.17), so we are done.

D Conformal block identities

The conformal blocks G
(`)
∆ (u, v; ∆1,∆2,∆3,∆4) obey various identities which follow from

the properties of the Ĝ
(`)
∆ (u, v; ρ1, ρ2) [57, 62, 63]. These identities are used to simplify

various equations in this work. First, since the conventional blocks only depend on ρ1 and

ρ2, different partial derivatives with respect of the external dimensions ∆i are related:(
∂

∂∆1
+

∂

∂∆2

)
G

(`)
∆ (u, v; ∆i) =

(
∂

∂∆3
+

∂

∂∆4

)
G

(`)
∆ (u, v; ∆i) =

1

6
ln
(
v/u2

)
G

(`)
∆ (u, v; ∆i).

(D.1)

Moreover, under the coordinate change (u, v)→ (u/v, 1/v) the blocks transform as

G
(`)
∆ (u/v, 1/v; ∆i) = (−1)`G

(`)
∆ (u, v; ∆i)

∣∣
∆1↔∆2

= (−1)`G
(`)
∆ (u, v; ∆i)

∣∣
∆3↔∆4

, (D.2)

which implies that

G
(`)
∆ (u, v; ∆1,∆2,∆3,∆4) = G

(`)
∆ (u, v; ∆2,∆1,∆4,∆3) . (D.3)

The invariance of the conventional blocks Ĝ under ρ1 ↔ ρ2 translates to

G
(`)
∆ (u, v; ∆1,∆2,∆3,∆4) = G

(`)
∆ (u, v; ∆4,∆3,∆2,∆1) . (D.4)

Finally, the conventional blocks satisfy

∂

∂ρ1
Ĝ

(`)
∆ (u, v; ρ1, 0)

∣∣
ρ1=0

=
∂

∂ρ2
Ĝ

(`)
∆ (u, v; 0, ρ2)

∣∣
ρ2=0

= − ln v

2
Ĝ

(`)
∆ (u, v; 0, 0) , (D.5)

which implies that for arbitrary η we have

∂

∂∆1
G

(`)
∆ (u, v; ∆1, η, η, η)

∣∣
∆1=η

= . . . =
∂

∂∆4
G

(`)
∆ (u, v; η, η, η,∆4)

∣∣
∆4=η

=
1

12
ln(v/u2)G

(`)
∆ (u, v; η, η, η, η) . (D.6)

This can also be proved by combining eqs. (D.3) and (D.1).

E Free field limit of logarithmic GFF

In this appendix we consider the logarithmic GFF in the limit ∆φ → (d − 2)/2, which is

the scaling dimension of a free field, describing various interesting features that arise in

this limit.
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First, recall what happens to a normal GFF χ of dimension ∆χ in this limit. The

conformal block decomposition of the four-point function 〈χχχχ〉 is controlled by the coef-

ficients q(`, n; ∆χ,∆χ) from eq. (5.34). In the free field limit ∆χ → (d−2)/2, the coefficients

with n = 0 remain finite, but all coefficients q(`, n ≥ 1,∆χ,∆χ) vanish. The reason is that

nearly all double-trace operators decouple, due to the equation of motion ∂2χ = 0 which

holds iff ∆χ = (d− 2)/2.

Naively, one may expect that the same decoupling persists in the logarithmic GFF.

To be precise, suppose that we set q(`, n ≥ 1) ≡ 0 in eqs. (5.47) and (5.50), which define

the relevant OPE coefficients. This does not give rise to the correct four-point function

〈φaφbφcφd〉, as can be traced back to an order-of-limits issue. The reason is the follow-

ing. Remark that several OPE coefficients in (5.50) feature derivatives of the coefficients

q(`, n,∆1,∆2). It is no longer true that all of these derivatives vanish if n ≥ 1. For instance,

∂

∂∆φ
q(`, n = 1,∆φ,∆φ) ∼

∆φ→ν
finite , ν ≡ (d− 2)/2 , (E.1)

although the above coefficient with n ≥ 2 still vanishes in the free field limit. Such coeffi-

cients appear in the CB decomposition of F2(u, v). The conformal block decomposition of

F1(u, v) is even more subtle. Let us parametrize the free field limit as ∆φ ≡ ν + δ, hence

we are interested in the limit δ → 0. We remark that the following coefficient diverges as

δ → 0:

2 ∂∆1∂∆2q(`, 1; ∆1,∆2)
∣∣
∆1=∆2=ν+δ

∼
δ→0

ρ`
δ

+ O(1) , ρ` =
2`−2 (ν)2

`

`! (`+ 2ν)`

`+ 2ν

`+ ν + 1
. (E.2)

This coefficient multiplies a conformal block of dimension 2∆φ + ` + 2 and spin `. We

conclude that there is an infinite tower of divergent contribution to F1(u, v), namely:

F1(u, v) ⊃ 1

δ

∑
even `

ρ`G
(`)
`+d(u, v; ν, ν, ν, ν) + O(1) + odd spins . (E.3)

But this is paradoxical: the function F1(u, v) has a finite, well-defined free field limit. To

resolve this paradox, we will look for any divergences in the odd-spin sector. The odd-spin

OPE coefficients b(`,n) — see eq. (5.47) — all remain finite as δ → 0; as we remarked

before, only the coefficients with n = 0 survive. However, the odd-spin conformal blocks

appearing in F1(u, v) will diverge. Concretely, we have

lim
δ→0

(∂∆2 − ∂∆1)(∂∆4 − ∂∆3)G
(`)
`+d−2+δ(u, v; ∆1,∆2,∆3,∆4)

∣∣
∆i=ν

=∞ , (E.4)

for all odd `. By subtracting finite terms, the divergence in eq. (E.4) can be traced back

to a divergence in the conventional conformal blocks Ĝ
(`)
∆ as follows:

(∂∆2 − ∂∆1)(∂∆4 − ∂∆3)G
(`)
`+d−2+δ(u, v; ∆1,∆2,∆3,∆4)

∣∣
∆i=ν

∼
δ→0

−1

2
(v/u2)ν/3

∂

∂ρ1

∂

∂ρ2
Ĝ

(`)
`+d−2+δ(u, v; ρ1, ρ2)

∣∣
ρ1=ρ2=0

+ O(1) , (E.5)
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which diverges as 1/δ. This divergence can be understood by noting that in the limit

δ → 0 a level-one descendant of spin `−1 becomes null. A standard argument of conformal

representation theory [65, 115–117] then predicts that

− 1

2

∂

∂ρ1

∂

∂ρ2
Ĝ

(`)
`+d−2+δ(u, v; ρ1, ρ2)

∣∣
ρ1=ρ2=0

∼
δ→0

κ`
δ
Ĝ

(`−1)
`+d−1(u, v; 0, 0) + O(1) , (E.6)

for some constant κ`. A short computation shows that this is indeed the case, and the

constant of proportionality is

κ` =
`(`+ 2ν − 1)

4(`+ ν − 1)(`+ ν)
. (E.7)

In conclusion, we have a tower of divergent contributions to F1 given by

F1(u, v) ⊃ 1

δ

∑
odd `

(−1)κ` q(`, 0; ν, ν)G
(`−1)
`+d−1(u, v; ν, ν, ν, ν) + O(1) + even spins. (E.8)

The minus sign comes from eq. (5.47).

Finally, we need to confirm that the divergences coming from even (E.3) and odd (E.8)

operators cancel, such that F1(u, v) is finite. We claim that this cancellation happens term

by term, i.e. the contributions of spin ` = 2k and ` = 2k + 1 cancel out. This easy to see

— it’s an immediate consequence of the identity

ρ2k = κ2k+1 q(2k + 1, 0; ν, ν) , k = 0, 1, 2, . . . . (E.9)

Open Access. This article is distributed under the terms of the Creative Commons
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[76] H. Lü and C.N. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011)

181302 [arXiv:1101.1971] [INSPIRE].
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