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Abstract: Relativistic quantum systems that admit scattering experiments are quan-

titatively described by effective field theories, where S-matrix kinematics and symmetry

considerations are encoded in the operator spectrum of the EFT. In this paper we use the

S-matrix to derive the structure of the EFT operator basis, providing complementary de-

scriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) mo-

mentum space via an algebraic formulation in terms of a ring of momenta with kinematics

implemented as an ideal. These frameworks systematically handle redundancies associated

with equations of motion (on-shell) and integration by parts (momentum conservation).

We introduce a partition function, termed the Hilbert series, to enumerate the op-

erator basis — correspondingly, the S-matrix — and derive a matrix integral expression

to compute the Hilbert series. The expression is general, easily applied in any spacetime

dimension, with arbitrary field content and (linearly realized) symmetries.

In addition to counting, we discuss construction of the basis. Simple algorithms follow

from the algebraic formulation in momentum space. We explicitly compute the basis for

operators involving up to n = 5 scalar fields. This construction universally applies to

fields with spin, since the operator basis for scalars encodes the momentum dependence of

n-point amplitudes.
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We discuss in detail the operator basis for non-linearly realized symmetries. In the

presence of massless particles, there is freedom to impose additional structure on the S-

matrix in the form of soft limits. The most näıve implementation for massless scalars leads

to the operator basis for pions, which we confirm using the standard CCWZ formulation

for non-linear realizations.

Although primarily discussed in the language of EFT, some of our results — conceptual

and quantitative — may be of broader use in studying conformal field theories as well as

the AdS/CFT correspondence.
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1 Introduction

The basic tenets of S-matrix theory and effective field theory are equivalent: the starting

point is to take assumed particle content and parameterize all possible scattering experi-

ments. This is dictated by kinematics and symmetry principles. In the context of effective

field theory (EFT), this parameterization is embodied in the operator basis K of the EFT,

which is defined to be the set of all operators that lead to physically distinct phenomena.

The purpose of this work is to formalize the rules governing the operator basis and

investigate the structure they induce on K. By considering the set K in its own right, we

are aiming to get as much mileage from kinematics and selection rules as possible before

addressing specific dynamics. At a practical level, as well as imposing Lorentz invariance

(and other internal symmetries), it amounts to dealing with redundancies associated with

equations of motion (EOM) and total derivatives (also called integration by parts (IBP)

redundancies). At a more fundamental level, we are accounting for Poincaré covariance of

single particle states together with Poincaré invariance of the S-matrix.
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We focus on the exploration of operator bases in a wide class of relativistic EFTs in

d ≥ 2 spacetime dimensions. Our main purpose is to introduce and develop a number of

systematic methods to deal with EOM and IBP redundancies at all orders in the EFT

expansion. This treatment of course also provides a standard procedure to determine

low-order terms of an operator basis, a continuing topic of interest for various relativistic

phenomenological theories as experimental energy and precision thresholds are crossed.

One basic and very useful means of studying the operator basis is to consider the

partition function on K
H = TrKŵ =

∑

O∈K
ŵ
(
O
)
, (1.1)

where ŵ is some weighting function. We call H the Hilbert series of the operator basis, or

simply Hilbert series for short. The Hilbert series is a counting function, just as the usual

physical partition function (path integral) counts states in the Hilbert space weighted by

e−βE . In many ways, the Hilbert series can be thought of as a partition function of the S-

matrix. Loosely speaking, it captures the rank of the S-matrix by enumerating independent

observables. Hilbert series will play a central role in our study of operator bases.

Effective field theory is a description of the S-matrix, and as such can address questions

concerning the use of general physical principles to derive and implement — bootstrap —

consistency conditions with the goal of probing physical observables. A revival of older S-

matrix theory ideas, e.g. [1], in the past 25 years has seen remarkable, useful, and beautiful

results based on unitarity and causality (for recent reviews see e.g. [2, 3]). Similar types of

general considerations, also discussed last century [4–6], found concrete implementation in

d > 2 CFTs a decade ago [7], spawning the modern CFT bootstrap program (see e.g. [8] for

an overview). The AdS/CFT correspondence [9] has demonstrated underlying connections

between these two areas [10–25].

More concretely, the AdS/CFT correspondence in the flat space limit of AdS indicates

that there is a (not entirely understood) correspondence between d-dimensional scattering

amplitudes and (d− 1)-dimensional conformal correlators [10, 26–28]. In [10] it was shown

that solutions to the crossing equations for scalar four point functions in CFTd−1 are in

one-to-one correspondence with operators in d-dimensions consisting of four scalar fields

and derivatives. In our analysis, this set is described by M4 in eq. (2.12), whose solution is

(see section 5) a freely generated ring in st+ su+ tu and stu where (s, t, u) are the usual

Mandelstam variables. The initial clue in [10] was a counting argument, that showed the

number of objects in M4 is the same as the number of solutions to the crossing equations.

The Hilbert series techniques developed in this paper allow an easy and straightforward

calculation of determining the numbers of operators in more general cases, and simple

algorithms we present aid in their explicit construction.

In a similar vein, when an n-point conformal correlator involves spinning objects, the

correlator is first decomposed into tensor structures which then multiply functions of the

conformal-cross ratios [29]. The number of such tensor structures is the same as the number

of such structures for corresponding n-point amplitudes in one higher dimension [29–32].

A general procedure for counting the tensor structures was recently given in [32]. Our

Hilbert series techniques capture this information and more: they account for not only the
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tensor structures but also the Mandelstam invariants (which serve as generators that can

be applied an infinite number of times, and appear as denominators in the Hilbert series),

as well as secondary invariants which can be used only once.1

At a superficial level, EFT may also offer some novelty in connecting modern ampli-

tude and CFT ideas simply by the language typically used to discuss EFTs: EFTs are

frequently formulated in position space and discussed in terms of operators — similar to

CFT (largely on account of the operator-state correspondence) — while the actual physical

object described by the EFT is the S-matrix.

EFTs are very good at clearly isolating relevant degrees of freedom — this has given

birth to an entire zoo of EFTs in high energy physics, e.g. chiral lagrangians, HQET,

SCET, SM EFT, etc. In most discussions, however, EFTs are truncated (for very good

practical reasons), which can mask analytic properties. One hope in studying the entire set

of operators, embodied in K, is that it elucidates analytic properties more clearly. On the

other hand, the remarkable success of EFT is a serious hint that truncation is quantitatively

sensible, potentially even for studying strongly coupled field theories [33, 34].

Our presentation is somewhat lengthy — as well as containing new results and tech-

niques, it also exhibits a number of self-contained, heuristic, and physics-oriented deriva-

tions of existing results in the (mainly mathematics) literature. The following summary

aims to both clarify the structure of this paper, and to make the distinction between new

results and new derivations/interpretations of known results; for the reader’s convenience,

separate summaries are included at the end of sections 3–7 to tabulate more detailed and

explicit results and formulae from each section. Section 2 aims to establish the logic of

operator bases from physical principles, as well as provide the reader with an overview of

the main ideas we present in the bulk of this work.

Section 2: the operator basis. The operator basis follows from the construction of

the S-matrix. We introduce what we term ‘single particle modules’, which consist of all

possible Lorentz spin operators that interpolate an asymptotic single particle state. In

essence, these modules are an abstraction of a field along with a tower of its derivatives

modulo EOM by definition. From this perspective, it is clear the EOM redundancy is

simply an on-shell condition; it is precisely this EOM — as used in LSZ reduction —

which provides the freedom to perform field redefinitions [35–37]. We subsequently build

operators via (tensor) products of these modules, thus accounting for EOM redundancy

across the operator basis.

Establishing the operator basis along this line of reasoning has distinct advantages.

It derives the rules governing K using on-shell quantities, bypassing the introduction of a

Lagrangian.2 This is not merely some pleasing alternative viewpoint — it often clarifies

the validity and use of certain rules. One example is the use of the free-field EOM. Another

is why covariant derivatives behave as commuting objects in our analysis. Both these rules

1For example, something containing the epsilon tensor, like εµ1...µdp
µ1
1 · · · p

µd
d , only appears once since

two epsilon tensors multiplied together can be decomposed into products of the metric.
2Note that we are only advocating the idea of conceptually divorcing operator content (kinematics) from

Wilson coefficients (dynamics). The first can, and should, be established with only physical quantities. For

the latter, the Lagrangian remains an indispensable tool.
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are obvious from the perspective that Dkφ interpolates a single particle state. Moreover,

this picture allows us to give a physical derivation of the Hilbert series, which is outlined

at the end of section 2.

We then give an overview of the new techniques we use to further impose IBP. We find

three mathematical formulations for doing so, in terms of

(1) cohomology (O ∈ K are co-closed but not co-exact 0-forms),

(2) conformal representation theory (O ∈ K are scalar conformal primaries),

(3) an algebraic description (O ∈ K are elements of certain kinematic polynomial rings).

While all three formulations have been introduced at some level in our previous

work [38, 39], they are presented in full detail and in greater generality here.

Next, we discuss the treatment of linearly realized internal symmetries, covariant

derivatives, and topological terms; some of this methodology was pioneered in [40], and

also presented in [39]. A question about soft limits naturally leads to non-linearly realized

internal symmetries; we give an overview of what this implies for the operator basis and

take it up in full in section 7.

Section 3: conformal representations and characters. This section reviews results

in the representation theory of the conformal group in d dimensions necessary for treating

IBP via formulation (2) mentioned above. The use of character formulae for irreducible

representations of the conformal group is of particular importance. The treatment of con-

formal characters in d dimensions was worked out by Dolan in [41] and we have relied

heavily on this reference. However, we present a largely self-contained version for our pur-

poses that elaborates on derivations and includes physical intuitions that supplement [41].

As character theory plays an important role in our analysis, we note here that

appendix A tabulates character formulae for the classical Lie groups. In appendix B we

derive the Weyl integration formula and provide the measures for the classical Lie groups.

While these results are textbook material, the treatment of the Weyl integral formula is

aimed to be more physics-oriented than that which is usually encountered.

Section 4: counting operators: Hilbert series. A new and central result of this work

is a matrix integral (group integral) formula for the Hilbert series of an operator basis, in

d ≥ 2 dimensions, eq. (4.16). The use of conformal representation theory — formulation

(2) — to handle IBP redundancy allows us to obtain a complete derivation of the Hilbert

series. This treatment is valid when the single particle modules form representations of the

conformal group — this encompasses a large class of EFTs that includes gauge theories

in four dimensions, and in particular the SM EFT. This was the approach used (but only

outlined) in d = 4 in our previous work [39] where we gave the application to the SM

EFT at mass dimension > 4; here we show how to derive the Hilbert series in arbitrary

spacetime dimension, including relevant operators with mass dimension ≤ d.

More precisely, we write H = H0 + ∆H, and present a matrix integral for H0; ∆H

corresponds to a finite number of operators not properly accounted for in H0. It is only
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in formulation (2), when the single particle modules correspond to unitary representa-

tions of the conformal group, that we are able to derive an explicit formula for ∆H. In

the general case, where the single particle modules are not unitary representations of the

conformal group, we emphasize that H0 is valid and relatively straightforward to derive

(see section 2 for a physical derivation, and section 7 for a derivation utilizing differential

forms). Moreover, our observations indicate that ∆H only pertains to certain marginal or

relevant operators — the cohomology picture allows us to understand its structure more

clearly which we discuss in section 7.

Hilbert series have been previously used in the particle physics literature to study flavor

invariants [42]. They were adapted in the two papers [40, 43] to deal with the problem of

finding Lorentz invariant operators involving multiple types of field, but only for the subset

of the operator basis where no more than one derivative appears in an operator. Hilbert

series for enumerating independent operators with any number of derivatives were studied

first for scalar EFTs in 0+1 dimensions in ref. [38], and for the Standard Model (SM) EFT

in ref. [39]. They have since found application in non-relativistic EFTs [44, 45]. Counting

of conformal primaries in free CFTs in d = 4 has also been addressed using topological

field theory [46].

We also explain in detail how to impose parity on the operator basis — moving from

SO(d) to O(d) invariance. Previous documentation of the character theory of the parity

odd and even pieces of O(d) can be found, contained to a few pages, in Weyl’s original

work [47]. We expand upon this, including a self-contained discussion on the ‘folding’ of a

Dynkin diagram, which explains the — at first mysterious — appearance of the sp algebra

in d = 2r dimensions. Many of these details are contained in appendix C.

Section 5: constructing operators: kinematic polynomial rings. This section

develops an algebraic description — formulation (3) — in order to explicitly build the

operator basis. The basic idea is to construct a ring in momentum whose elements are

Feyman rules. EOM and IBP redundancies manifest as kinematic constraints of on-shell

conditions and momentum conservation — they are implemented as an ideal in the ring

of momenta. As we shall see, the Hilbert series is an indispensable tool towards explicitly

constructing the operator basis: many algorithms (as well as human intuition) for finding

a basis rely on input that comes from the Hilbert series.

After giving a precise definition of the rings relevant for an operator basis involving

scalar fields, we use four point kinematics to showcase various aspects of the effects of

dimensionality, parity, and particle indistinguishability on the construction of the operators,

and we reflect on the connection to constructing physical scattering amplitudes. We then

prove some general properties of the rings (that they are Cohen-Macaulay), and discuss the

universal properties and application of these scalar rings to cases involving spin. We provide

a connection between the elements of the ring and conformal primaries, and finally detail

a construction algorithm which we use to construct the ring with five point kinematics in

the case of indistinguishable scalars.

The application of commutative algebra to the IBP problem was first explored in our

previous work in d = 1 dimension [38]. In this paper we elucidate the algebraic modules
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(quotient rings in particle momenta) that form the operator bases of EFTs in d ≥ 2

dimensions, given in eq. (5.15), thus providing a significant generalization of [38].

Section 6: applications and examples of Hilbert series. In this section we present

some novel calculations using our developed framework. Common to all of these examples

is how the Hilbert series reveals structure in the operator basis, such as primary and

secondary invariants (generators), information on relations between invariants (spacetime

rank conditions — termed Gram conditions — are particularly interesting), etc.. The case

studies are: section 6.1, studying Hilbert series for real scalar field in d = 4 dimensions,

and the impact of indistinguishability on the structure of the operator basis; section 6.2,

deriving a closed form expression for the Hilbert series of distinguishable scalars in d = 2, 3

dimensions, where Gram conditions are more readily understood; section 6.3, exploring

Hilbert series with spinning particles, in particular the relation to those involving only scalar

particles, and how this provides information on the tensor decomposition of scattering

amplitudes of spin; and section 6.4, quantifying how much EOM, IBP, and Gram conditions

“cut down” the operator basis (EOM and IBP give polynomial reductions, Gram constraints

give exponential reduction).

Section 7: non-linear realizations. In this section we show how to include invariance

of the operator basis under non-linearly realized internal symmetry groups. We follow

a linearization procedure, à la CCZW [37, 48], and use this to give an identification of

the single particle modules. Having constructed this module (and thus dealt with EOM),

we appeal to formulation (1) and use Hodge theory to address the IBP redundancy. The

Hilbert series takes a form very similar to the case where the single particle modules coincide

with conformal irreps; here, however, we appeal to Hodge theory to determine (what turn

out to be) the relevant and marginal operators belonging to ∆H.

We conclude with a short discussion in section 8.

2 The operator basis

Under some mild physical assumptions, at low enough energies a relativistic system is

described either by an interacting CFT or an infrared free theory. We are concerned with

the latter, and we look to build the EFT to describe the S-matrix. We proceed on this

route by imposing the consequences of Poincaré symmetry.

2.1 Single particle modules

Assume that we are given a set of particles that we have asymptotic access to — i.e. these

are particles which can be part of in and out states in scattering experiments. The single

particle states are specified by their mass m2 = p2, spin under the relevant little group, and

other possible internal quantum numbers. Let |pσ〉 denote such a state with spin σ (for

now, we ignore other possible quantum numbers for simplicity of discussion). Following the

standard pathway to field theory [49], local fields Φl(x) are constructed which interpolate

this single particle state

〈0|Φl(x)|pσ〉 ∼ Uσl (p)e−ip·x, (2.1)

– 6 –
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where l is some unspecified Lorentz index structure. Up to some normalization (hence the

∼ in the above equation), the right hand side is determined purely by properties of |pσ〉
under Poincaré transformations. In turn, this dictates the field equation(s) obeyed by Φl(x).

There are many — in fact, infinite — different types of interpolating fields; equivalently,

there is an entire set of distinct wavefunctions Uσl (p) consistent with locality. To capture

the most general set of local interactions, we must take all distinct interpolating fields.

The different types of interpolating fields are not mysterious. There is some basic

field φl which has a minimum number of Lorentz indices to specify the spin component

σ. Beyond this, the only available object on the r.h.s. of (2.1) is the momentum pµ,

corresponding to derivatives acting on φl. Importantly, these derivatives can only be added

in a manner consistent with the field equations obeyed by φl(x). It is worth elaborating

on this point. From

〈0|φl(x)|pσ〉 ∼ uσl (p)e−ip·x, (2.2)

and assuming φl(x) is linear in the creation operator a†p,σ, the field equations can be

determined via consistency with |pσ〉 → U(Λ, a) |pσ〉 with U(Λ, a) a Poincaré transfor-

mation [49]. Specifically, every field obeys a Klein-Gordon equation due to the on-shell

condition p2 = m2; fields with spin will have a transverse condition pµuσµ... = 0; and

spinning, massless fields have further constraints in the form of Bianchi identities. Taken

together, they are relativistic wave equations [50]. Because |pσ〉 is an asymptotic particle

state, these look like free-field equations of motion but involve the physical mass m. They

are structurally equivalent to the linearized equation of motion obtained from the field

theory Lagrangian.3

We define the single particle module Rφl to be the set of all distinct interpolating

fields for |pσ〉, i.e. Rφl consists of φl(x) together with an infinite tower of derivatives on

top of φl modulo EOM. Equivalently, Rφl can be represented by the set of wavefunctions

{Uσl (p)}. The correspondence between these two representations — interpolating fields

Φl(x) versus wavefunctions Uσl (p) — is eq. (2.1), which is simply the starting point for

the familiar correspondence between operators and Feynman rules. In practice, it can be

thought of as simply a Fourier transform, although this slightly obscures the Hilbert space

state |pσ〉 from which these objects arise. This dual momentum space picture will prove

useful, especially in giving a concrete algorithm to obtain K. For now, however, we stick

to the position space picture in terms of interpolating fields.

To clear up the abstraction, let’s look at a specific example. Consider some scalar

particle state, σ = 0. The possible interpolating fields are

〈0|φ|p〉 ∼ e−ip·x

〈0|∂µφ|p〉 ∼ pµe
−ip·x

〈0|∂{µ1
∂µ2}φ|p〉 ∼ p{µ1

pµ2}e
−ip·x

...

, (2.3)

3Recall that it is the linearized EOM which determines the propagator and is used in LSZ reduction.
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where {· · · } denotes the symmetric, traceless component — the trace is removed because

of the on-shell condition p2 = m2. The single particle module is

Rφ =




φ

∂µφ

∂{µ1
∂µ2}φ
...



. (2.4)

For future reference, we note that Rφ coincides with the conformal representation of a free

scalar field.

As a second example, consider a massless spin-one particle. The basic interpolating

field is Fµν(x) = −Fνµ(x) giving the wavefunction uσµν(p) = pµε
σ
ν (p) − pνεσµ(p) with εσµ(p)

the polarization vector. By on-shell p2 = 0, transversality pµεσµ(p) = 0, and (obviously)

p[µpν] = 0, allowed wavefunctions take the form p{µ1
. . . pµnp[µ}ε

σ
ν]. Correspondingly, the

field equations are ∂µFµν = εµ1...µd∂µ1Fµ2µ3 = ∂2Fµν = 0, leading to the single particle

module

RF =




Fµν

∂{µ1
Fµ}ν

∂{µ1
∂µ2Fµ}ν

...



. (2.5)

In four dimensions, RF coincides with the conformal representation for a free vector. Out-

side of four dimensions RF is not a unitary conformal representation (one indication of

this is that the coupling constant in the Maxwell action,
∫
ddx 1

4g2F
2, is dimensionless only

in d = 4).

Let us briefly pause to emphasize a well known point concerning removing the EOM

redundancy. In the full fledged field theory — which requires additional structure such as

a Lagrangian and a renormalization prescription — operators proportional to the EOM

generically appear in the Lagrangian as one flows between various energy scales. Such

operators can always be removed by a field redefinition. (Here we emphasize that the valid

operation in a Lagrangian is performing a field redefinition, not plugging in the EOM.4 This

is well known and has been explicitly emphasized in the literature, e.g. [51].) The ability

to perform field redefinitions is formally justified by the LSZ reduction procedure [35–37];

it tells us that in computing the S-matrix elements, the only thing that matters is that

an interpolating field give the proper wavefunction (〈0|φl(x)|pσ〉) for creating the single

particle state. This clearly allows for redefinitions of an interpolating field.

4A generic EFT Lagrangian is a truncated expansion L = L(0) +L(1) + · · ·+L(n) with L(0) the leading

order term, L(k) suppressed by 1
Λk , and terms suppressed by more than 1

Λn dropped. An order k > 0

redundant operator 1
ΛkO δL(0)

δφ
⊂ L(k) (proportional to the leading order EOM) can be eliminated in favor

of higher order terms through the field redefinition φ→ φ− 1
ΛkO, which changes the Lagrangian by

∆L =

(
δL(0)

δφ
+
δL(1)

δφ
+ · · ·

)(
− 1

Λk
O
)

+
1

2

δ2L
δφ2

(
− 1

Λk
O
)2

+
1

6

δ3L
δφ3

(
− 1

Λk
O
)3

+ · · ·

The very first term cancels the redundant operator, while all the other terms give its higher order com-

pensation. This is clearly different from plugging in the full EOM, which amounts to keeping only the first

variation terms in the ∆L above. However, in the special case of n = k = 1, the two are equivalent.
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2.2 The operator basis via cohomology and conformal representation theory

Local operators are built by taking products of the interpolating fields. Viewing composite

operators as simply a product of other operators is a perturbative statement, which is justi-

fied in our framework because the asymptotic multi-particle states in scattering are built as

a Fock space from the single particle states.5 Let J denote the set of all operators formed

from products of the interpolating fields, i.e. J is the set of all local operators modulo

equations of motion. Mathematically, J is a differential ring formed from implementing

the equations of motion as an ideal. Explicitly, for a single scalar field

J = C[φ; ∂µ]
/
〈∂2φ〉

= C[φ, ∂µφ, ∂{µ1
∂µ2}φ, . . . ]. (2.6)

Making use of the single particle modules, J can equivalently be built by taking tensor

products of the RΦi . For the single scalar field we then have

J =

∞⊕

n=0

symn
(
Rφ
)
, (2.7)

where we take symmetric tensor products due to Bose statistics. In the case that the single

particle modules form free field representations of the conformal group, J is the set of

operators which participate in the operator state correspondence.6

The operator basis is clearly a subset of J . To select out K ⊂ J we need to apply

Poincaré invariance of the S-matrix. Use crossing symmetry to take all particles as in-

coming and let |α〉 = |p1σ1; · · · ; pnσn〉 denote an asymptotic multiparticle state. Then,

in order for 〈0|S|α〉 to be non-trivial, α must have the same quantum numbers as the

vacuum. In particular, it is a Lorentz scalar and carries no momentum, pµ1 + · · ·+ pµn = 0.

Interactions must respect this invariance as well: operators are Lorentz singlets and carry

no momentum, meaning they cannot be a total derivative.

It is at least conceptually clear how to get Lorentz singlets, although determining in-

dependent scalars can be extraordinarily difficult due to SO(d) group relations like Fierz

identities, Gram determinants, etc. What is conceptually less obvious is how to deter-

mine operators up to a total derivative. This is an equivalence relation, Ol ∼ O′l if

Ol = O′l + (∂O′′)l. Implementing this equivalence relation allows us to formally identify

the operator basis as the differential ring

K =
[J /dJ

]SO(d)
, (2.8)

where dJ denotes taking the derivative of every element of J , i.e. J
/
dJ is the set of

equivalence classes with relation ∼ defined above. The superscript SO(d) means that we

apply SO(d) invariance. Since we know that we want Lorentz scalar operators — and that

a scalar which is a total derivative must be the divergence of some vector — we can be

5In other words, this is justified because we are perturbing free fields.
6If there is a gauge symmetry, one further restricts J to gauge invariant operators.
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even more precise in the equivalence relation: the operator basis consists of co-closed but

not co-exact 0-forms.7

The construction of the single particle modules is a great hint at how to handle the

equivalence up to total derivatives. Viewing Rφl as some column vector with φl at the top

of the multiplet followed by a tower of derivatives, e.g. eqs. (2.4), (2.5), we have solved the

total derivative equivalence problem for operators in J consisting of only one φl field plus

derivatives. In building J via tensor products of the RΦi clearly we solve total derivative

equivalence if we can decompose back into a sum of multiplets consisting of a non-total

derivative operator O followed by a tower of derivatives acting on O, schematically,




φl
∂φl
∂2φl

...




⊗
n

∼
∑

O




O
∂O
∂2O

...



. (2.9)

These multiplets follow precisely the structure of conformal multiplets. Conformal repre-

sentations are reviewed in detail in section 3, but the essential feature is that the derivative

is a lowering operator within the conformal algebra. What is obviously suggested is to

use conformal representation theory to organize the total derivative equivalence: we take

tensor products of the RΦi and decompose these into conformal representations. Only the

primary operators are not total derivatives. Lorentz invariance means we take scalar oper-

ators. Therefore, we arrive at the conclusion that the operator basis is spanned by scalar,

conformal primaries.

These conclusions about the conformal group are established rigorously when the single

particle modules are unitary representations of the conformal group. This is the case for

free scalars and spinors in any dimension as well as free spin (l, . . . , l,±l) fields in even

dimensions [52] (see section 3 for notation). Note that this covers gauge fields in d = 4

where FL,R = F ± iF̃ correspond to spin (1,±1) fields. Generically, the RΦi do not

coincide with unitary representations of the conformal group.8 However, our experience

indicates that this largely does not matter for determining the majority of K. We will see

an example of this when we study non-linear realizations in section 7. We will be liberal

with terminology and say “primary” and “descendant”, although it is to be understood

that, in general, there is no special conformal generator which makes these words precise.

2.3 The operator basis as Feynman rules

The operator basis can also be described in the language of Feynman rules. The route to

this description also proceeds via the single particle modules, but this time formulated in

7Some basic definitions of Hodge theory are reviewed in section 7.2.
8In the general case, although the single particle modules mimic the structure of conformal representa-

tions, they are decisively not unitary representations. This is due to EOM shortening conditions not present

in unitary conformal representations. It is possible that these could be considered non-unitary represen-

tations, with ghosts accounting for the shortening conditions. See [53] for a related discussion concerning

Maxwell theory outside four dimensions.
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momentum space with the wavefunctions Uσl (p). Focusing on the scalar particle, the wave-

functions in eq. (2.3) are simply polynomials in pµ with p2 component removed, implying

Rφ = C[pµ]
/
〈p2〉 , (2.10)

from which

symn
(
Rφ
)

=
[
C[pµ1 , · · · , pµn]

/
〈p2

1, · · · , p2
n〉
]Sn

, (2.11)

where the superscript Sn means to take polynomials symmetric under permutations

of the momenta. To get the independent, Lorentz invariant Feynman rules we take

the SO(d) invariant polynomials and enforce equivalence under momentum conservation

pµ1 + · · ·+ pµn = 0. This last condition is accounted for by placing pµ1 + · · ·+pµn in the ideal.

Hence the independent Feynman rules in eq. (2.11) are given by the ring9

Mn ≡
[
C[pµ1 , · · · , pµn]

/
〈pµ1 + · · ·+ pµn, p2

1, · · · , p2
n〉
]SO(d)×Sn

, (2.12)

and the operator basis (for a single scalar field) is

K =
∞⊕

n=0

Mn. (2.13)

The basic physical content of Mn is that it captures the objects an n-point amplitude

can depend on. Typically we think of an amplitude as polarization tensors dotted into a

Feynman amplitude of overall spin l (the n particles have arbitrary individual spin),

Aσ1,...,σn({εσi}, {pµi }) =
(
εσ1 · · · εσn

)
l
Ml({pµi }). (2.14)

The amplitude can be decomposed into a finite number of Lorentz singlet tensor structures

(tensor structure refers to little group indices) multiplying amplitudes which are functions

purely of the Mandelstam invariants sij = pi · pj ,

Aσ1,...,σn(εi, pi) =
∑

I

gIσ1...σn(εi, pi)AI(sij). (2.15)

Here, the little group tensors gIσ1...σn are Lorentz scalar polynomials linear in each εσi . An

analogous decomposition is done for CFT correlators [29]; holographic arguments suggest

that the conformal decomposition in (d − 1) dimensions corresponds to the amplitude

decomposition in d dimensions. To this point, the number of tensor structures — the

number of gI above — coincides [29–32]. A general prescription for counting the number

of such structures was recently given in [32]. It essentially is the naive expectation: it is

the number of different helicity configurations one can take for the external particles. That

is, eq. (2.15) is the decomposition into helicity amplitudes [54].

9In section 5 we will label these rings as M
SO(d)×Sn
n,K ; as this cumbersome notation is presently unnecessary

we use the simpler Mn.
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In terms of the operator basis, the decomposition in eq. (2.15) implies that the gener-

alization of eq. (2.12) to include spinning particles will be some decomposition into poly-

nomials f I (serving as appropriate avatars for the gI) multiplying the Mn,

Mn

(
{Φli}

)
∼
⊕

I

f I
(
uσili , pi

)
Mn. (2.16)

We use a tilde here because the Mn appearing above need not be exactly identical to that

in eq. (2.12), nor even the same for each term in the sum (it is also not clear we can get

a clean direct sum decomposition). For example, SO(d) group relations could cause some

changes. The essential point is that the modules Mn in eq. (2.12) (with possibly different

permutation groups to account for identical versus distinguishable particles) are universal

to all aspects of the operator basis. This is precisely because they are analyzing possible

momentum dependence, which is an ingredient in all scattering processes. We therefore

aim in this work to develop a healthy understanding of the universal ingredient Mn, leaving

the precise description of the general case in eq. (2.16) to a future work.

2.4 Non-linear realizations

Our approach thus far has been to start with an IR free theory and use the symmetries

of the S-matrix — namely, Poincaré symmetry — to build up the operator basis. Are

there any other assumptions that we can make within this framework? The hallmark of

IR free theories is the absence of long range interactions. If there are massless particles,

this means interactions vanish as p → 0. Suppose we have some massless scalar states

|pσ = 0 i〉 ≡ |πip〉 with i = 1, . . . , n. To ensure the absence of scattering as p → 0, a

sufficient condition10 is if the interpolating fields vanish with momentum. In a suggestive

notation, the first such interpolating field in eq. (2.3) is

〈0|jiµ(x)|πjp〉 ∼ δijpµe−ip·x, (2.17)

which should be ringing bells about Goldstone’s theorem.

At this stage the field appearing in eq. (2.17) is simply some low-energy vector field

which (1) interpolates a scalar state and (2) is divergenceless because the scalar is massless.

From these two pieces of knowledge, all we can conclude is that the field has a derivative

acting in some unknown manner on a scalar function. To go further and determine this

field as some specific function requires additional input. We do not pursue this avenue

here; we refer to [55, 56] for the very interesting question about constructing EFTs from

soft-limits.

Equation (2.17) tells us that any derivatives acting on the vector interpolating field

must be traceless and symmetric, because p2 = 0. This naturally makes one guess that the

appropriate single particle module is essentially the scalar module Rφ in eqs. (2.3)–(2.4),

but without the “top” component φ ∈ Rφ, i.e. delete all modes from Rφ which do not

vanish as pµ → 0. Concretely, renaming the field in eq. (2.17) to uiµ(x),11 an ansatz for the

10At present, this claim is justified a posteriori from our field theory knowledge.
11The CCWZ construction does not directly work with the symmetry current jiµ, but instead with the

Maurer-Cartan form uiµ, see section 7. The two are related by jiµ = Tr
(
Xiξuµξ

−1
)

with ξ = eiπ
iXi

. Hence,

both uiµ and jiµ interpolate the single pion state, but differ when interpolating multi-pion states.
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appropriate single particle module is

〈0|uiµ|πjp〉 ∼ δijpµe
−ip·x

〈0|D{µ1
uiµ2}|π

j
p〉 ∼ δijp{µ1

pµ2}e
−ip·x

...

⇒ Ru =




uiµ

D{µ1
uiµ2}
...


 . (2.18)

In section 7 we will show this ansatz for Ru is correct via the conventional CCWZ La-

grangian description of non-linear realizations [37, 48].

2.5 Gauge symmetries, topological terms and discrete spacetime symmetries

If the EFT has an internal symmetry group G, then the operators in K should be G-

invariant. At an abstract level, we simply append an additional superscript to eq. (2.8),

K =
[J /dJ

]SO(d)×G
. (2.19)

Some care should be taken to identify the appropriate degrees of freedom, such as when a

symmetry is non-linearly realized, as mentioned above.

Some comments should be made about massless particles with spin, which lead to gauge

symmetries. The construction outlined presently ultimately works with simply transform-

ing objects, since it is the field strengths which interpolate single particle states. Of course,

there is a gauge potential field which the field strength is some number of exterior deriva-

tives of, schematically f ∼ dna, designed to guarantee the correct little group transforma-

tion (ensuring that the non-compact directions of ISO(d− 2) ⊃ SO(d− 2) act trivially).

For concreteness, let’s discuss the familiar vector case F = dA. The point is we work

with Fµν , not Aµ, as is apparent in eq. (2.5). Of course, we also promote ∂µ→Dµ=∂µ+Aµ.

In the case that there are multiple vector single particle states with a symmetry imposed

on them, we know this must correspond to a non-abelian gauge theory and we work with

Fµν = F aµνT
a. We first note that gauge invariance is straightforward to impose because

we work with gauge covariant quantities like Fµν and Dµφl. Second, note that for the

purposes of constructing the operator basis, the covariant derivative will behave like a

partial derivative

〈0|Dµφl|pσ〉 = 〈0|∂µφl|pσ〉 , (2.20)

because Aµ plays no role in interpolating the single particle state (for one thing, Aµφl has

two annihilation operators). This can also be justified by noting that [Dµ, Dν ] ∼ Fµν , so

we can always replace DµDν → D(µDν) + Fµν (where the brackets denote symmetrization

of the indices) when constructing operators.

An important question is whether we mis-identify or omit operators by working with

the field strengths instead of the gauge fields. The answer is yes, and it is unsurprisingly

due to topological terms. For example, in even dimensions we will pick up the theta term

εµ1···µdFµ1µ2 · · ·Fµd−1µd even though it is a total derivative, F∧· · ·∧F = d
(
A∧dA∧· · ·∧dA

)
.

Likewise, in odd dimensions we will not pick up the Chern-Simons term A∧dA∧· · ·∧dA (or

its non-abelian generalization), which is gauge invariant up to a total derivative. Similar

comments apply to other massless spinning fields, as well as to topological terms such as
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theta, Hopf, or Wess-Zumino terms in non-linear realizations (where instead of working

with pions, we work with the Maurer-Cartan forms).

Let us also comment on discrete spacetime symmetries P , T , and C. For calculations

in this work, we work in Euclidean space SO(d), where we can only have P and C. We

have made some effort to incorporate parity, primarily to allow us to probe the rings Mn

in eq. (2.12) by exploring the difference between SO(d) and O(d). We have not, however,

attempted to include charge conjugation, nor to systematically address the Wick rotation

back to Minkowski space where time-reversal becomes an optional symmetry.

2.6 A partition function for the operator basis

Now that we have outlined the definition of the operator basis in sections 2.1–2.3 above, we

can sketch the form that the partition function — Hilbert series — takes on the basis. As

we might expect from a partition function, we will find the Hilbert series a very interesting

and useful object for studying operator bases. Deferring a more precise description to the

following sections, here we outline a simple physical derivation of the Hilbert series.

Take a single particle module RΦ and label the states via a character χΦ. The character

is essentially a single particle partition function with weights for the energy (q) and angular

momentum (xi) of each state in the module. The tower of states in a single particle module

arise from translations, which is reflected in the character by a factor of ‘momentum’

P (q;xi), that is χΦ ∝ P .

Since asymptotic scattering states are built as a Fock space, the multi-particle parti-

tion function is constructed from the single-particle partition function using the plethystic

exponential (PE), which is the familiar generating function for free systems in statistical

mechanics (although the name may not be familiar).12 That is, PE[χΦ] is the partition

function on J (the PE is defined below in eq. (3.12)).

To now get at states in the operator basis, we need to enforce momentum conservation

and Lorentz invariance. Consider the multiparticle states in J organized as per the r.h.s.

of eq. (2.9). Since their characters are proportional to P , it is clear that multiplying by 1/P

will remove total derivative states from J ; in essence we are removing a factor of momentum

from every multiparticle module. Finally, Lorentz invariance is simply applied by averaging

over boosts and rotations, which is implemented using an SO(d) group integral over the

angular variables xi. That is, we find the Hilbert series, H, to take the schematic form,

H ∼
∫
dµSO(d)

1

P
PE[χΦ] . (2.21)

3 Conformal representations and characters

A central tool to identifying the operator spectrum is the use of characters. To each single

particle module we associate a character which labels its states by their scaling dimen-

sions and transformation properties under the Lorentz group. When the single particle

module corresponds to a conformal representation, the associated character is a conformal

character.
12Crossing symmetry implies we can take all particles as incoming or outgoing, which is why we only

need to consider one set of multiparticle states.
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The representations of the conformal group and their characters can be used as a

powerful tool to address IBP redundancy, as we will show in section 4. For this purpose,

we review and summarize the necessary results in conformal representation theory. A

comprehensive and excellent treatment of conformal characters in arbitrary dimensions is

given by Dolan [41]; a somewhat gentler treatment in four dimensions can be found in [57].13

3.1 Unitary conformal representations

We work with the conformal group in d-dimensions SO(d, 2) ' SO(d+ 2,C).14 The SO(d)

subgroup is the usual rotation group in Euclidean space Rd: it has rank r = bd2c which

means that its representations are labeled by r spin quantum numbers l = (l1, · · · , lr). The

extra two directions in the conformal group increase the rank by one, thereby giving us

another label ∆ for representations, called the scaling dimension as it is physically asso-

ciated with the dilatation operator. As SO(d) is compact, the spin labels are quantized,

l1, · · · , lr ∈ 1
2Z; in contrast, the scaling dimension is continuous, ∆ ∈ R, as it is associated

with non-compact directions. In summary, irreducible representations (irreps) of the con-

formal group are labeled by r+ 1 quantum numbers (−∆, l1, · · · , lr), where the minus sign

is a convention due to our working with SO(d+ 2,C).15

Unitary representations of SO(d + 2,C) are constructed as follows: a highest weight

state is specified and the representation is filled out by applying the lowering operators.

In addition to the raising and lowering operators of SO(d), in SO(d+ 2,C) the translation

generators Pµ are lowering operators while the special conformal generators Kµ are con-

jugate raising operators, i.e. P †µ = Kµ. Due to the non-compact nature, the translation

operators may be applied an infinite number of times without annihilating some lowest

weight state, implying unitary irreps are infinite dimensional.

Heuristically, this picture is easy to understand in terms of field theory operators. The

physical intuition comes from conformal field theories, where the state-operator correspon-

dence implies that operators are organized into irreps of the conformal group. In essence,

unitary irreps consist of some operator Ol, called primary, of spin l and scaling dimension

∆ together with an infinite tower of derivatives acting on Ol, called descendants :

R[∆;l] ∼




Ol
∂µ1Ol

∂µ1∂µ2Ol
...



. (3.1)

13We adopt the conventions of [41] in our analysis, although we differ in notation on one point. For

characters of long and short irreducible representations [41] uses A[∆;l] and D[∆;l], respectively, while we

use χ[∆;l] and χ̃[∆;l], respectively.
14Our conventions on factors of i follow [41]. We work in the orthonormal basis, where the generators

of the Lie algebra are split into the Cartan subalgebra together with raising and lowering operators. In

this basis, weights of representations are eigenvalues of the Cartan generators. For a physics oriented

introduction, see e.g. [58]. We allow spinors, so we actually work with the covering group Spin(d + 2,C),

although we will not be careful to make this distinguishment throughout the text.
15This minus sign (with ∆ positive) leads to infinite dimensional representations for d ≥ 2. For d = 1,

∆ can be negative (the free scalar field has scaling dimension −1/2), which leads to finite dimensional

representations when ∆ ∈ −N/2 and explains the SL(2,C) structure uncovered in [38].
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Requiring a representation be unitary places conditions on ∆ and l. The conditions

on l are the familiar ones for finite dimensional irreps of SO(d): a unitary irrep is labeled

by l = (l1, · · · , lr), satisfies li ∈ 1
2Z and li − li+1 ∈ Z, with l1 ≥ · · · ≥ lr−1 ≥ |lr| for SO(2r)

and l1 ≥ · · · ≥ lr ≥ 0 for SO(2r+1).16 Then for each l satisfying these conditions, ∆ needs

to satisfy a lower bound ∆ ≥ ∆l for the irrep to be unitary. This lower bound is hence

called the unitarity bound, and is given by [41, 59]

∆ ≥ ∆l =





(d− 2)/2 for l = (0, · · · , 0)

(d− 1)/2 for l = (1
2 , · · · , 1

2)

l1 + d− pl − 1 for all other l

, (3.2)

where 1 ≤ pl ≤ r denotes the position (the serial number) of the last component in

l = (l1, l2, · · · , lr) that has the same absolute value as the first component l1, namely that

the components of l satisfy |l1| = |l2| = · · · = |lpl | > |lpl+1|.
Physically, the unitarity bound imposes representations to have scaling dimension

greater than or equal to that of free fields or conserved currents. When a bound is satu-

rated, i.e. ∆ = ∆l, some descendant obtained by applying ∂µ is annihilated: it leads to null

and subsequently negative norm states [60]. In such a case, these states are removed and

the irrep is called a short representation. Accordingly, unitary irreps that are not short

are sometimes referred to as long representations.

To gain intuition, let us specialize to l = (n, 0, · · · , 0) with n ∈ N (traceless symmetric

tensors with n indices), where the bounds read:

∆l =

{
(d− 2)/2 for n = 0

n+ d− 2 for n > 0
. (3.3)

Saturation for n = 0 corresponds to the free scalar, while for n > 0 we have conserved

currents (n = 1 and 2 are a conserved current jµ and stress-tensor Tµν , respectively, while

n ≥ 3 are generalized higher spin conserved currents). In each instance, some descendant

is annihilated by the derivative action. For example, for a free scalar field φ the EOM

dictates ∂2φ = 0; for Tµν , conservation dictates ∂µTµν = 0.

Our method involves working with free fields, using them as building blocks to con-

struct the operator basis. In odd dimensions, the only free fields are scalars and spinors; in

even dimensions, we may have scalars, chiral spinors, (anti) self-dual d2 -form field strengths,

and higher spin generalizations [52]. These representations are correspondingly labeled by

l = (s, · · · , s) with s = 0, 1
2 for odd d, and l = (s, · · · , s,±s) with s ∈ N/2 for even d. Due

to the free field EOM, e.g. ∂2φ = 0 for scalars, /∂ψ = 0 for fermions, etc., the free field

representations are short representations.

16These are the conditions such that the Dynkin labels (Λ1, · · · ,Λr) are non-negative integers. In even

dimensions d = 2r, the Dynkin labels are Λi = li − li+1 for 1 ≤ i ≤ r − 1 and Λr = lr−1 + lr. In odd

dimensions d = 2r + 1, the Dynkin labels are Λi = li − li+1 for 1 ≤ i ≤ r − 1, and Λr = 2lr. Under

this convention, for integer values of li, (l1, . . . , lr) corresponds to the usual Young diagrams used to label

representations with l1 boxes in first row, l2 boxes in the second row, etc..
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3.2 Character formulae

In this section we reproduce character formulae [41] for unitary irreps of the conformal

group. The character for a representation R is the trace of a group element in that rep-

resentation, χR(g) = TrR(g) for g ∈ G. For a connected Lie group G, any g ∈ G can

be conjugated into the maximal torus T = U(1)rank(G), i.e. there exists h ∈ G such that

h−1gh ∈ T . This is simply a diagonalization theorem, generalizing the familiar statement

for G = U(N) that any unitary matrix can be diagonalized by another unitary matrix.

Since the trace is conjugation invariant, it depends only on the rank(G) = dim(T ) pa-

rameters of the torus. For SO(d + 2,C) we parameterize the (r + 1)-dimensional torus

(recall, r = bd2c) by the following variables: q, associated with the scaling dimension, and

x = (x1, . . . , xr) for the parameters of the SO(d) torus, i.e. q = eiθq and xi = eiθi , with

θq ∈ C and θi ∈ R.

Long representations. Consider a unitary irrep R[∆;l] of scaling dimension ∆ and spin

l = (l1, · · · , lr). If the irrep does not saturate a unitarity bound, i.e. ∆ > ∆l, then it takes

the form

R[∆;l] =

scaling dim spin

Ol ∆ l

∂µ1Ol ∆ + 1 sym1( )⊗ l
∂µ1∂µ2Ol ∆ + 2 sym2( )⊗ l

...
...

...

, (3.4)

where symn( ) is the representation formed by the nth symmetric product of the vector

representation, ↔ l = (1, 0, . . . , 0), of SO(d) (the derivative is a SO(d) vector and sym-

metrization comes because partial derivatives commute). A group element g ∈ SO(d+2,C)

acting on the above representation is an infinite dimensional matrix with block diagonal

components acting on the primary and descendants. Evidently, upon tracing over such a

matrix the character χ
(d)
[∆;l](q;x) is

χ
(d)
[∆;l](q;x) =

∞∑

n=0

q∆+nχ
(d)
symn(�)(x)χ

(d)
l (x) = q∆χ

(d)
l (x)P (d)(q;x), (3.5)

where χ
(d)
l (x) denotes the character of the spin l representation of SO(d) (see appendix A

for general formulae), and we have used the fact χR1⊗R2
= χR1

χR2
. In the second equality

above, we have defined a quantity

P (d)(q;x) ≡
∞∑

n=0

qnχ
(d)
symn(�)(x), (3.6)

which can be thought of as the momentum generating function: q∆χ
(d)
l (x) is the contri-

bution from the primary block, while P (d)(q;x) generates the contributions from all the

descendants. This function can be computed as follows. In even dimensions, d = 2r, a

group element h ∈ SO(2r) in the vector representation has eigenvalues

h
(2r)
� 7→ diag(x1, x

−1
1 , · · · , xr, x−1

r ).
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Because the representation symn(�) is formed by the nth fully symmetric products of

the vector components, each distinct degree-n monomial formed by the above eigenvalues

should show up precisely once in χ
(2r)
symn(�)(x). Therefore

χ
(2r)
symn(�)(x) =

∑

a1+ā1+···+ar+ār=n

(
x1

)a1
(
x−1

1

)ā1 · · ·
(
xr
)ar(x−1

r

)ār .

Plugging this in and performing the sum in eq. (3.6) we get

P (2r)(q;x) =

r∏

i=1

1

(1− q xi)(1− q/xi)
. (3.7)

Similarly, in odd dimensions, d = 2r + 1, we have

h
(2r+1)
� 7→ diag(1, x1, x

−1
1 , · · · , xr, x−1

r ),

χ
(2r+1)
symn(�)(x) =

∑

a0+a1+ā1+···+ar+ār=n

(
1
)a0
(
x1

)a1
(
x−1

1

)ā1 · · ·
(
xr
)ar(x−1

r

)ār ,

and

P (2r+1)(q;x) =
1

1− q
r∏

i=1

1

(1− q xi)(1− q/xi)
. (3.8)

From the above, we note that for both even and odd dimension cases

P (d)(q;x) =

∞∑

n=0

qnχ
(d)
symn(�)(x) =

1

det� (1− qh(x))
. (3.9)

This identity is central to many of the calculations in this work: a generating function for

symmetric tensor products of a representation V under a group G is given by

∞∑

n=0

unχsymn(V )(g) =
1

detV (1− ug)
, (3.10)

for g ∈ G. Using log det = Tr log, the above can be rewritten into an object called the

plethystic exponential,

1

detV (1− ug)
= exp

( ∞∑

m=1

1

m
umTrV (gm)

)
≡ PE[uχV (g)]. (3.11)

With the plethystic exponential, one can define the nth symmetric product of functions,

i.e. objects like symn[f(x)]: it is the un coefficient of

PE[uf(x)] = exp

[ ∞∑

m=1

um

m
f(xm)

]
. (3.12)

For example, one readily finds

sym2
[
f(x)

]
=

1

2

[
f(x)2 + f(x2)

]
,

sym3
[
f(x)

]
=

1

6

[
f(x)3 + 3f(x)f(x2) + 2f(x3)

]
,
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and so forth. With this definition, we see from eqs. (3.10) and (3.11) that χsymn(V )(x) is

the same as symn[χV (x)].17

For anti-symmetric (exterior) tensor products, ∧n(V ), a similar identity holds:

∞∑

n=0

unχ∧n(V )(g) = detV (1 + ug). (3.13)

Note that the sum truncates since the antisymmetric product ∧n(V ) vanishes for

n > dim(V ). In physics language, the difference compared to the symmetric case is a re-

flection of the statistics — it simply generalizes the familiar case of the fermionic/bosonic

partition function given by (1 ± u)±1 respectively, with u = e−β . This fermionic generating

function can again be written into a (fermionic) plethystic exponential

detV (1 + ug) = exp

( ∞∑

m=1

(−1)m+1

m
umTrV (gm)

)
≡ PEf [uχV (g)]. (3.14)

Similarly to the definition of symn[f(x)], one can define the antisymmetric product of

functions ∧n[f(x)] as the un coefficient of PEf [uf(x)]. With this definition, we obviously

have ∧n[χV (x)] = χ∧n(V )(x). Frequently we omit the subscript on PEf , as it is usually

clear by context what is meant.

Short representations. The character formulae are modified when a unitarity bound

is saturated, i.e. when ∆ = ∆l in eq. (3.2). Let us first look at some examples. Consider

the short representation formed by the free scalar field φ, with ∆ = ∆0 ≡ (d − 2)/2 and

l = 0 ≡ (0, · · · , 0). The shortening condition comes from the EOM ∂2φ = 0, as a result

of which there are only traceless symmetric components ∂{µ1
· · · ∂µn}φ in the descendants.

Thus the representation looks like

R[∆0;0] =

scaling dim spin

φ ∆0 0

∂µ1φ ∆0 + 1

∂{µ1
∂µ2}φ ∆0 + 2

∂{µ1
∂µ2

∂µ3}φ ∆0 + 3
...

...
...

, (3.15)

with � · · ·�︸ ︷︷ ︸
n

the Young diagram labeling the traceless symmetric representation of SO(d)

with n indices, corresponding to l = (n, 0, · · · , 0). The set of components ∂{µ1
· · · ∂µn}φ is

obtained from ∂µ1 · · · ∂µnφ by contracting two of the indices while leaving the others fully

symmetric. Therefore, we have

χ
(d)
(n,0,··· ,0)(x) =





χ
(d)
symn(�)(x) n < 2

χ
(d)
symn(�)(x)− χ(d)

symn−2(�)
(x) n ≥ 2

. (3.16)

17A simple exercise to familiarize these operations is to work out some examples for SU(2). The doublet

character is χ2(α) = α+ α−1. Check familiar statements like 2× 2 = 3 + 1, sym2(2) = 3, etc.
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Using this, as well as eq. (3.6), we obtain the character for the short representation in

eq. (3.15) as

χ̃
(d)
[∆0;0](q;x) =

∞∑

n=0

q∆0+nχ
(d)
(n,0,··· ,0)(x) = q∆0(1− q2)P (d)(q;x), (3.17)

where we have used a tilde to emphasize that this is a short representation. This result is

rather simple to interpret. Using eq. (3.5) we can write it as

free φ : χ̃
(d)
[∆0;0] = χ

(d)
[∆0;0] − χ

(d)
[∆0+2;0] , (3.18)

which clearly reflects subtracting off the states (∂2φ, ∂µ∂
2φ, ∂µ1∂µ2∂

2φ, · · · ) from the long

multiplet (φ, ∂µφ, ∂µ1∂µ2φ, · · · ).
Similar interpretations can be given to other short representations. For example, a

conserved current jµ has ∆ = d − 1 and l = (1, 0, · · · , 0). Current conservation dictates

∂µjµ = 0, where ∂µjµ itself is an operator with ∆ = d, l = 0. Thus the character is given by

conserved jµ : χ̃
(d)
[d−1;(1,0,··· ,0)] = χ

(d)
[d−1;(1,0,··· ,0)] − χ

(d)
[d;0]. (3.19)

In some instances, we must subtract off another short representation, as opposed to

a long representation. An example of this is the left-handed field strength in four dimen-

sions, FLµν = Fµν + F̃µν with ∆ = 2 and l = (1, 1). The EOM and Bianchi identity

imply ∂µFLµν = 0, so that descendant states proportional to (∂ ·FL)ν should be removed.

However, the operator (∂ · FL)ν has ∆ = 3 and l = (1, 0), which is the same as a con-

served current, and therefore saturates a unitarity bound itself. Manifestly one can see

this because ∂µ(∂ ·FL)µ vanishes automatically by anti-symmetry. Hence, the character is

obtained by subtracting the short representation χ̃
(4)
[3;(1,0)] from χ

(4)
[2;(1,1)]:

4d field strength FLµν : χ̃
(4)
[2;(1,1)] = χ

(4)
[2;(1,1)] − χ̃

(4)
[3;(1,0)] (3.20a)

= χ
(4)
[2;(1,1)] − χ

(4)
[3;(1,0)] + χ

(4)
[4;(0,0)]. (3.20b)

The general shortening rule and notation for conformal characters. Let us

make some clarification about our notations on conformal characters. We will always

use χ
(d)
[∆;l](q;x), without a tilde, to denote the function in eq. (3.5). That is

χ
(d)
[∆;l](q;x) ≡ q∆χ

(d)
l (x)P (d)(q;x). (3.21)

On the other hand, we will use χ̃
(d)
[∆;l](q;x), with the tilde, to denote the actual conformal

character of the conformal representation labeled by [∆; l]. For long representations, χ̃ is

just given by χ:

χ̃
(d)
[∆;l](q;x) = χ

(d)
[∆;l](q;x) , for ∆ > ∆l . (3.22)

For short representations (∆ = ∆l), χ̃ is different from χ. As in the above examples, χ̃
(d)
[∆l;l]

is obtained from χ
(d)
[∆l;l]

by subtracting off another conformal character χ̃. The general
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shortening rule is18

χ̃
(d)
[∆l;l]

=





χ
(d)
[∆l;l]

− χ̃(d)
[∆l+2;l−]

for l = 0

χ
(d)
[∆l;l]

− χ̃(d)
[∆l+1;l−]

for l 6= 0
, (3.23)

with the lowered spin l− obtained from l by a simple replacement:

l− ≡




l for l = (1

2 , · · · , 1
2) in odd d

l with lpl → lpl − sgn
(
lpl
)

for all other cases
, (3.24)

where we recall from eq. (3.2) that lpl is defined as the last component in l that has the

same absolute value as l1, and sgn is the standard signum function:

sgn(x) ≡





1 for x > 0

0 for x = 0

−1 for x < 0

.

Explicit examples of eq. (3.23) are given in eqs. (3.18), (3.19), and (3.20). For any χ̃, one

can use eq. (3.23) iteratively until the character being subtracted off corresponds to a long

representation. So it is clear that any χ̃ is a linear combination of the χ. Note that in

this iteration, generically the χ̃ being subtracted in eq. (3.23) is a short irrep itself. This

is because generically eq. (3.24) reduces pl by 1, i.e. pl− = pl − 1; since ∆l− = ∆l + 1, the

values for ∆l− and pl− generically saturate the bound in eq. (3.2). The only exceptions are

when l = 0 and (1
2 , · · · , 1

2 ,±1
2), or when pl = 1; in these cases the χ̃ being subtracted is a

long representation and the iteration terminates.

3.3 Character orthogonality

For a compact Lie group, the characters of the irreps are orthonormal with respect to

integration over the group:

∫
dµG χ

∗
R1

(g)χR2
(g) = δR1R2 , (3.25)

where dµG is the invariant measure (Haar measure) on G. When the integrand is a class

function (conjugation invariant) — as clearly is the case for characters — the Haar measure

can be restricted to the torus and is given by the Weyl integration formula (see appendix B):

∫
dµG →

1

|W |

∮ ∏

j

dxj
2πixj

∏

α∈rt(G)

(1− xα) . (3.26)

The product over α ∈ rt(G) is taken over all the roots of G, |W | is the order of the

Weyl group, and the contours are taken along |xi| = 1. We use the shorthand notation

18The characters for all short unitary conformal irreps are given in eqs. (3.25)-(3.27) and (3.32)-(3.34)

of [41]. Here we only summarize the results, and refer the reader to [41] for the proof.
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xα ≡ xα1
1 · · ·xαrr for α = (α1, · · · , αr). The above can be simplified to a product over only

the positive roots, see eq. (B.11), which is quite useful for practical calculations. The Haar

measures for the classical groups are tabulated in appendix B.

The above results do not immediately generalize to non-compact groups, such as the

conformal group. However, for the specific representations of SO(d + 2,C) we use in this

work, there is a notion of character orthogonality that we can make use of. As we work in a

free field limit, the scaling dimension of operators coincides with the canonical dimension.

In d ≥ 2 dimensions, this implies that all values of ∆ are positive, half-integer. In this

case, the characters χ
(d)
[∆;l] defined in eq. (3.21) with ∆ ∈ Z/2 are orthonormal with respect

to integration over the maximal compact subgroup of SO(d+ 2,C), namely SO(d+ 2):

∫
dµ χ

(d) ∗
[∆; l](q;x)χ

(d)
[∆′; l′](q;x) =

∫
dµ χ

(d)
[∆; l]

(
q−1;x−1

)
χ

(d)
[∆′; l′](q;x) = δ∆∆′δll′ , (3.27)

where the Haar measure dµ (restricted to the torus) is given by19

∫
dµ =

∮
dq

2πiq

∫
dµSO(d)(x)

1

P (d)(q;x)P (d)(q−1;x−1)
. (3.28)

With the explicit expression of the character in eq. (3.21), it is trivial to check that

eq. (3.27) holds (using eq. (3.25) for the SO(d) characters). We emphasize that the modified

characters χ̃ for short irreps are not orthonormal with respect to this measure, as can be

seen from the fact that the χ̃ are linear combinations of the χ. We will have to carefully

account for this non-orthonormality.

As a technical matter, one has to keep in mind the covering group Spin(d + 2,C) in

applying the contour integrals of eqs. (3.26) and (3.28). In particular, if the theory under

consideration has either half-integer scaling dimensions or spinors, then we are in the double

cover Spin(d+2,C) of SO(d+2,C). In the characters, this appears as possible square roots

of the arguments q and x. For simplicity of discussion, let us focus on half-integer scaling

dimensions. Then the integral over q = eiθq , needs to be extended to the double cover:

∮

|q|=1

dq

2πiq
f(q) =

∫ 2π

0

dθq
2π

f(q) →
∫ 4π

0

dθq
4π

f(q) =

∮

|q|=1

dq

2πiq
f(q2) , (3.29)

that is, one leaves the dq/(2πiq) piece alone and replaces q → q2 everywhere else in the

integrand.

3.4 Summary

Conformal representations are labeled by their scaling dimension ∆ and spin l = (l1, · · · , lr).
In d ≥ 2 dimensions, unitary irreps are infinite dimensional. Structurally, they consist of a

primary operator O∆,l of scaling dimension ∆ and spin l together with an infinite number

of descendants consisting of derivatives acting on O∆,l.

19This measure is normalized so that eq. (3.27) holds. Up to a proportionality constant it is just the

measure for SO(d + 2): dµ = (2r + 2)dµSO(d+2) for both d = 2r and d = 2r + 1, with dµSO(d+2) given in

eqs. (B.14) and (B.16) (replace xr+1 → q in these formulas to obtain eq. (3.28)).
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A long irrep does not saturate a unitarity bound. Its character is given by

χ[∆;l](q, x) = q∆χl(x)P (q;x), for ∆ > ∆l, (3.30)

where χl(x) are the SO(d) spin-l characters with detailed expressions given in appendix A,

and the momentum generating function P (q;x) is

P (q;x) ≡
∞∑

n=0

qnχsymn(�)(x) =





r∏

i=1

1

(1− q xi)(1− q/xi)
d = 2r

1

1− q
r∏

i=1

1

(1− q xi)(1− q/xi)
d = 2r + 1

. (3.31)

A short irrep saturates a unitarity bound, ∆ = ∆l. In this case, some descendant state

becomes null; this state and its descendants are removed to form the short multiplet. The

general shortening rule is summarized in eq. (3.23), from which we readily see that the χ̃ are

linear combinations of the χ. Some explicit examples of this are given in eqs. (3.18), (3.19),

and (3.20); we reproduce the free scalar character here:

χ̃[∆0;0] = χ[∆0;0] − χ[∆0+2;0] = q∆0(1− q2)P (q;x). (3.32)

In the free field limit, where all scaling dimensions are positive half-integer, the charac-

ters χ[∆;l](q;x) are orthonormal with respect to an integration over SO(d+2), the maximal

compact subgroup of SO(d+ 2,C)

∫
dµχ∗[∆;l]χ[∆′;l′] = δ∆∆′δll′ , (3.33)

with the Haar measure given by eq. (3.28).

We frequently make use of symmetric and anti-symmetric products of representations.

The plethystic exponential serves as a generating function for them:

∞∑

n=0

unχsymn(V )(g) =
1

detV (1− ug)
= PE [uχV (g)] , (3.34a)

∞∑

n=0

unχ∧n(V )(g) = detV (1 + ug) = PEf [uχV (g)] , (3.34b)

Finally, a comment on notation. In this section we have used a superscript to denote

what spacetime dimensionality functions are in, e.g. χ
(d)
[∆;l](q;x) = q∆χ

(d)
l (x)P (d)(q;x). Such

a notation is cumbersome. Since the meaning is generally clear in context, we will typically

drop the superscript, as we have done in this summary.

4 Counting operators: Hilbert series

We now proceed to building the Hilbert series as a partition function on the operator basis

K. As discussed in the section 2, the essential idea is to consider the enlarged operator
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space J and select out K ⊂ J . J is built from tensor products of single particle modules

RΦi . In the special case that the RΦi are representations of the conformal group, then J
itself forms a (reducible) representation of the conformal group; decomposing J back into

conformal irreps, we identify K as the scalar primaries.

To explicitly obtain the Hilbert series, we associate characters χΦi(q, x) to the RΦi ,

allowing us to define a generating function for J . The piece corresponding to K is then

selected using character orthogonality, such that we ultimately arrive at a matrix integral

expression for the Hilbert series.

We stress that the reduction from J to K can also be addressed without recourse

to conformal representation theory. We will show in section 7.2 how the cohomological

nature of the IBP redundancy allows us to obtain the Hilbert series using the language of

differential forms.

We begin by deriving an explicit integral expression for the Hilbert series for a real

scalar in d dimensions. Along the way, we show how the physical partition function can

be obtained rather simply from our formalism. We next present the straightforward gen-

eralization to multiple fields and possible internal gauge and global symmetries. It is then

explained how to include parity if one wishes to consider parity invariant EFTs; this will

prove useful for the study of the real scalar field presented in section 5. Some of the

derivation and details in these first sections are rather technical and bear little weight on

practical computations of H. For this reason we give a summary of the main expression

for the Hilbert series in section 4.4, emphasizing its basic ingredients.

4.1 Deriving a matrix integral formula for the Hilbert series

For clarity of presentation, we will derive the Hilbert series for a real scalar field φ in

d-dimensions. The modifications to include multiple fields, symmetries etc. are described

in the following subsection.

The character generating function Z(φ, q, x) for J . We start with the single par-

ticle module for a real scalar field, eq. (2.4),

Rφ =




φ

∂µ1φ

∂{µ1
∂µ2}φ

∂{µ1
∂µ2

∂µ3}φ
...



.

The corresponding weighted character is (see eqs. (3.17) and (3.32))

χRφ(q, x) =
∞∑

k=0

q∆0+kχ(k,0,...,0)(x) .

Recall that the operator space J is constructed by taking symmetric tensor products of Rφ,

eq. (2.7). Therefore, a generating function which labels states in J is readily constructed

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
9

from χRφ with the plethystic exponential (see eqs. (3.10) and (3.11)). We call this the

character generating function and denote it by Z,

Z(φ, q, x) =

∞∑

n=0

φnχsymn(Rφ)(q, x) = PE
[
φχRφ(q, x)

]
. (4.1)

IBP addressed by conformal representation theory. The key insight is that the

single particle module forms precisely the free scalar representation of the conformal group:

Rφ = R[∆0,0], and so Z(φ, q, x) = PE
[
φχRφ

]
= PE

[
φ χ̃[∆0,0]

]
. Therefore, the operator

space J generated by Rφ will also form a conformal representation. We just need to

decompose J into conformal irreps, and then the highest weight state in each irrep, namely

the primary operator, is what will survive the IBP redundancy. Then the operator basis

K is just the operator space formed by the scalar primaries. We now follow this strategy

to define the Hilbert series H(φ, p) from the character generating function Z(φ, q, x).

Characters nicely keep track of the decomposition into conformal irreps:

symn
(
R[∆0;0]

)
=
∑

∆,l

b
(n)
∆,lR[∆;l] =⇒ χ̃symn([∆0;0]) =

∑

∆,l

b
(n)
∆,l χ̃[∆;l] , (4.2)

with b
(n)
∆,l some unknown multiplicities.20 Hence, we can rewrite the character generating

function as

Z(φ, q, x) = 1 +

∞∑

n=1

φn
∑

∆,l

b
(n)
∆,lχ̃[∆;l] = 1 +

∑

∆,l

C∆,l(φ)χ̃[∆;l], (4.3)

where we have separated out the n = 0 piece for convenience, and performed the sum over

n with the definition C∆,l(φ) ≡ ∑∞n=1 φ
nb

(n)
∆,l. Keeping only the scalar primaries amounts

to replacing each χ̃[∆;l] with p∆δl,0. Therefore, the Hilbert series is defined as

H(φ, p) ≡ 1 +
∑

∆,l

C∆,l(φ)p∆δl,0 = 1 +
∑

∆

C∆,0(φ)p∆. (4.4)

C∆,0(φ) gives the number of operators of dimension ∆, weighted by the number of fields φ

in the a given operator. For example, in four dimensions at ∆ = 8 we have two operators,

φ8 and [(∂µφ)2]2, so we anticipate that C8,0(φ) = φ8 + φ4.

Computing the multiplicities C∆,0(φ). Now it is clear that to obtain the Hilbert

series, our task is to compute the weighted multiplicities C∆,0(φ). They can be projected

out from Z(φ, q, x) using character orthonormality (eq. (3.33)), which we reproduce here:

∫
dµχ∗[∆;l]χ[∆′;l′] = δ∆∆′δll′ ,

20In general, the sum over ∆ on the r.h.s. of eq. (4.2) should be an integral over ∆, as the scaling dimension

is allowed to be continuous in the conformal group. However, as our starting point is to take tensor products

of free field representations that have integer or half-integer scaling dimensions, the representations that

show up in the decomposition have ∆ ∈ Z/2. In this sense, ∆ is effectively quantized for our purposes and

the sum in eq. (4.2), as opposed to an integral, is appropriate.
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where the Haar measure dµ is given in eq. (3.28). Note that this orthonormality relation

is among the χ, not the χ̃.21 However, the χ̃ are linear combinations of the χ, so we first

express eq. (4.3) purely in terms of the χ, and then make use of the above orthonormality

relation to project out the coefficients. Carrying out this procedure carefully, we find

∆ 6= ∆0 + 2, d : C∆,0(φ) =

∫
dµχ∗[∆;0]

(
Z − 1

)
, (4.5a)

∆ = ∆0 + 2 : C∆0+2,0(φ) =

∫
dµ
(
χ∗[∆0+2;0] + χ∗[∆0;0]

)(
Z − 1

)
, (4.5b)

∆ = d : Cd,0(φ) =

∫
dµ
(
χ∗[d;0] + χ∗[d−1;(1,0,...,0)]

)(
Z − 1

)
. (4.5c)

Eq. (4.5a) gives the generic expression for C∆,0(φ), but there are two exceptional cases

at ∆ = ∆0 + 2 and ∆ = d.22 They stem from the overlaps between the χ̃ and the χ. For

example, using

χ̃[∆0;0] = χ[∆0;0] − χ[∆0+2;0],

we have

Z − 1 ⊃ C∆0,0χ̃[∆0;0] + C∆0+2,0χ̃[∆0+2;0]

= C∆0,0χ[∆0;0] + (C∆0+2,0 − C∆0,0)χ[∆0+2;0]. (4.6)

Therefore, the coefficient C∆0+2,0 is given by eq. (4.5b).

To properly compute the C∆,0, we need to pay attention to all short irreps χ̃[∆;l] in

eq. (4.3) that include an l = 0 component when written as linear combinations of the χ[∆;l].

From eq. (3.23), it is not hard to see that apart from the χ̃[∆0;0] already discussed above,

all possible such short irreps are

χ̃[±r] ≡ χ̃[d−r;(1,1,...,1,1,±1)] = χ[±r] − χ̃[r−1],

χ̃[r−1] ≡ χ̃[d−(r−1);(1,1,...,1,1,0)] = χ[r−1] − χ̃[r−2],

χ̃[r−2] ≡ χ̃[d−(r−2);(1,1,...,1,0,0)] = χ[r−2] − χ̃[r−3], (4.7)

...
...

χ̃[1] ≡ χ̃[d−1;(1,0,...,0,0,0)] = χ[1] − χ[d;0],

where we have used obvious shorthand notations for the subscripts. Rewriting the χ̃ into

the χ, the recursive nature exhibited in eq. (4.7) allows us to absorb all the nontrivial

21We remind the reader, per eqs. (3.21)–(3.24), that χ (no tilde) is defined as a function while χ̃ is the

actual character for a conformal representation. This distinction is important for the next several equations

to carefully derive H(φ, p); outside of this context we typically use χ and χ̃ for characters of long and short

irreps, respectively.
22In two dimensions ∆0 + 2 = d = 2 and instead of the two equations (4.5b) and (4.5c), we have the

single equation C2,0(φ) =
∫
dµ
(
χ∗[2;0] + χ∗[1;1] + χ∗[0;0]

)(
Z − 1

)
.
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overlaps into χ̃[1]:

Z − 1 ⊃ C[±r]χ̃[±r] + C[r−1]χ̃[r−1] + C[r−2]χ̃[r−2] + · · ·+ C[1]χ̃[1] + Cd,0χ[d;0]

= C ′[1]χ̃[1] + Cd,0χ[d;0] + · · ·

= C ′[1]χ[1] +
(
Cd,0 − C ′[1]

)
χ[d;0] + · · · , (4.8)

where the + · · · terms in the second and third lines contain χ[±r], χ[r−1], . . . , χ[2], which are

orthogonal to χ[1] and χ[d;0]. Therefore, the coefficient Cd,0 is given by eq. (4.5c).

Computing H(φ, p) from the character generating function Z(φ, q, x). To com-

pute the Hilbert series, we plug the C∆,0 results in eq. (4.5) into eq. (4.4):

H(φ, p) = 1 +

∫
dµ

[∑

∆

p∆χ∗[∆;0] + p∆0+2χ∗[∆0;0] + pdχ∗[d−1;(1,0,...,0)]

]
(Z − 1) . (4.9)

Let us massage this into a more useful form. First focusing on the sum

∑

∆

p∆χ∗[∆;0] =
∞∑

n=0

(
p

q

)∆0+n
2

P
(
q−1;x−1

)
=

1

1− (p/q)1/2

(
p

q

)∆0

P
(
q−1;x−1

)
,

we get

∫
dµ

[∑

∆

p∆χ∗[∆;0]

]
(Z − 1) =

∫
dµSO(d)

∮
dq

2πi

1

q

1

P (q;x)

1

1− (p/q)1/2

(
p

q

)∆0

(Z − 1)

=

∫
dµSO(d)

1

P (p;x)
[Z(φ, p, x)− 1]

=

∫
dµSO(d)

1

P (p;x)
Z(φ, p, x)− 1− (−p)d. (4.10)

In the first line above, the square root in the integrand indicates that the proper measure

dµ is that for the double cover group. Practically, this means that we should send q → q2

in the integrand, as explained around eq. (3.29). After doing so, in the second line, the

integral evaluates to the residue at the single pole q =
√
p inside the contour |q| = 1.23

Finally, in the last line, we have used the fact that

1

P (p;x)
= det�

(
1− p h(x)

)
=

d∑

n=0

(−p)nχ∧n(�)(x), (4.11)

which follows from eq. (3.13).

With this result, we write the Hilbert series in eq. (4.9) as H(φ, p)=H0(φ, p)+∆H(φ, p)

with

H0(φ, p) ≡
∫
dµSO(d)

1

P (p;x)
Z(φ, p, x), (4.12)

∆H(φ, p) ≡ (−1)d+1pd+p∆0+2

∫
dµχ∗[∆0;0]

(
Z−1

)
+pd

∫
dµχ∗[d−1;(1,0,...,0)]

(
Z−1

)
. (4.13)

23Note that both 1/P (q;x) and Z(φ, q, x) are analytic functions inside the contour, since |x| = 1, |φ| < 1,

and |p| < 1. The expression (p/q)∆0 (Z−1) is regular at q = 0 because the expansion of (Z−1) starts with

order q∆0 , as is obvious from eq. (4.1).
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The last two terms in ∆H(φ, p) are evaluated in a similar way as above:

p∆0+2

∫
dµχ∗[∆0;0]

(
Z − 1

)
= p∆0+2

∫
dµSO(d)

∮
dq

2πi

1

q

1

P (q2;x)

1

q2∆0

(
Z(φ, q2, x)− 1

)

= p∆0+2

∫
dµSO(d) Z(φ, q2, x)

∣∣
q2∆0

= p∆0+2

∫
dµSO(d)Z(φ, q, x)

∣∣
q∆0

,

where in the first line we have sent q → q2 in the integrand as a consequence of using the

double cover measure, and in going from the first to the second line we made use of the

fact that the expansion of
(
Z(φ, q2, x)− 1

)
begins at q2∆0 . Similarly,

pd
∫
dµχ∗[d−1;(1,0,...,0)]

(
Z − 1

)
= pd

∫
dµSO(d)χ�(x)

[
1

P (q;x)

(
Z(φ, q, x)− 1

)]∣∣∣∣
q(d−1)

.

Putting them together, we find

∆H = (−1)d+1pd + p∆0+2

∫
dµSO(d)Z

∣∣
q∆0

+ pd
∫
dµSO(d)χ�(x)

[
1

P
(Z − 1)

]∣∣∣∣
q(d−1)

= (−1)d+1pd + p∆0+2φ, (4.14)

where in the second line, we have specified to the case of a single real scalar field φ.

Let us summarize what we have derived. We split the Hilbert series into two parts

H(φ, p) = H0(φ, p) + ∆H(φ, p), (4.15)

and find that

H0 =

∫
dµSO(d)

1

P (p;x)
Z(φ, p, x), (4.16a)

∆H = (−1)d+1pd+p∆0+2

∫
dµSO(d)Z

∣∣
q∆0

+pd
∫
dµSO(d)χ�(x)

[
1

P
(Z−1)

]∣∣∣∣
qd−1

. (4.16b)

The above expression for H0 is the basic skeleton for any theory one wishes to consider and

is a central result; ∆H is specific to the case where the single particle modules are conformal

representations. Eq. (4.16) expresses the Hilbert series as an integral over SO(d) matrices,

giving a concrete computational method for obtaining H. From the above expression, it is

manifest that ∆H only contains operators with mass dimension ≤ d. After explaining how

to include multiple fields and possible symmetries (next subsection), the last two terms in

∆H can be evaluated more explicitly, as shown in appendix D.

Relation of the generating function to the physical partition function. As a side

note, we mention that the character generating function Z(φ, q, x) is closely related to the

physical partition function Z(q) of the free field theory. The partition function for the free

theory is given by [61]

Z(q) =
1

(1− q∆0)(1− q∆0+1)dim[(1,0,...,0)](1− q∆0+2)dim[(2,0,...,0)] . . .

=

∞∏

n=0

1

(1− q∆0+n)dim[(n,0,...,0)]
, (4.17)
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where

dim[(n, 0, . . . , 0)] =

(
n+ d− 1

n

)
−
(
n+ d− 3

n− 2

)
, (4.18)

is the dimension of the representation l = (n, 0, . . . , 0). The form of Z(q) has a simple

interpretation: the Hilbert space is a Fock space, built from single-particle states. By the

state-operator correspondence, the single particle states correspond to ∂nφ ≡ ∂{µ1
· · · ∂µn}φ

with n = 0, 1, 2, . . .. These states have energy q∆0+n with q = e−β , which are eigenvalues

of the Hamiltonian in radial quantization (the dilatation operator). As the theory is free,

multi-particle states are simply built from products of the single particle states, hence we

arrive at (4.17) for the partition function.

The determinant form of our character generating function Z(φ, q, x) can be obtained

by combining eq. (4.1) and the identity eq. (3.34):

Z(φ, q, x) =

∞∏

n=0

1

det(n,0,...,0) (1− φq∆0+nh(x))
, (4.19)

with h ∈ SO(d). Comparing with eq. (4.17), we see that it is very simple to obtain Z(q)

from Z(φ, q, x): send φ→ 1 and x→ 1, namely

Z(q) = Z(φ = 1, q, x = 1). (4.20)

The reason for this is that Z(q) only requires information on the number of generators

of a given scaling dimension. In terms of characters, this is accomplished by setting the

arguments of the character to unity, as this measures the dimension of the representation,

dim(V ) = χV (x = 1). The relation (4.20) continues to hold when we add more fields and

gauge symmetries. The use of plethysm and the character generating function Z(φ, q, x)

provides a simple interpretation of expressions of the free-field partition function Z(q)

found in [62, 63] and related works.

4.2 Multiple fields and internal symmetries

For a general EFT we can have multiple fields {Φi} transforming under some internal sym-

metry group G. After removing the EOM redundancy, the operator space J is generated

by the single particle modules RΦi . In the following we assume:

• The fields Φi transform linearly under G, so that the single particle modules form

linear representations RG,Φi under G. The non-linear case is more subtle and we

address it in section 7.

• The RΦi form representations RSO(d+2,C),Φi of the conformal group. This assumption

is easily relaxed, as the splitting H = H0 + ∆H and the formula for H0, eq. (4.16a),

can be derived using the differential form technique described in [39] and section 7.2.

We presently stick to this assumption primarily for concreteness, where it includes

(see section 3.1) scalars φi, spinors ψi, as well as d/2-form field strengths Fi in even

dimensions.
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With these assumptions we have RΦi = RSO(d+2,C),Φi ⊗ RG,Φi with the associated

character χΦi
(q, x, y) = χ̃SO(d+2,C),Φi

(q;x)χG,Φi(y), where y = (y1, . . . , yrank(G)) collectively

denotes the coordinates of the torus of G. Specifically,

χφi(q, x, y) = χ̃[∆0;0](q;x)χG,φi(y) , (4.21a)

χψi(q, x, y) = χ̃
[∆0+ 1

2
;( 1

2
,..., 1

2
,± 1

2
)]

(q;x)χG,ψi(y) , (4.21b)

χFi(q, x, y) = χ̃[∆0+1;(1,...,1,±1)](q;x)χG,Fi(y) (d even). (4.21c)

We next construct the character generating function Z({Φi}, q, x, y) for the operator

space J . Letting

ZΦi(Φi, q, x, y) =





1

detRΦi

(
1− Φig

) = PE
[
ΦiχΦi

]
Bosonic fields

detRΦi

(
1 + Φig

)
= PEf

[
ΦiχΦi

]
Fermionic fields

(4.22)

we have

Z({Φi}, q, x, y) =
∏

i

ZΦi(Φi, q, x, y) = PE

[∑

i

ΦiχΦi(q, x, y)

]
, (4.23)

where it is understood that proper care of statistics is taken in the plethystic exponential.

The operator basis K then consists of G-invariant scalar conformal primaries in J .

Everything in the derivation of H(φ, p) in section 4.1 continues to hold when we allow for

multiple RΦi . To further project out the G-singlets, we simply integrate over G. Thus, the

results in eq. (4.16) are modified by replacing Z(φ, q, x) with Z({Φi}, q, x, y) and adding a∫
dµG(y) in front, where dµG(y) is the Haar measure of G.

Two comments/caveats about our formalism are as follows. First, for scalar fields φ

and spinor fields ψ, our Hilbert series does not count their kinetic terms |Dφ|2 = φ†(−D2)φ

or ψ̄i /Dψ, as these terms are proportional to the EOM. This is not the case for gauge fields,

as we work with Fµν as opposed to Aµ, as discussed in section 2.5 (see also comments there

on the treatment of the covariant derivative). Second, knowing the possible generating

representations, eq. (4.21), gives us the means to explicitly evaluate the last two terms

in ∆H(φ, p) of eq. (4.16b). This is worked out in appendix D. We emphasize that while

∆H(φ, p) is conceptually important, computing it is often of little practical relevance: it

only contains a handful of terms, all related to operators with ∆ ≤ d.

4.3 Parity invariance: from SO(d) to O(d)

If the EFT under consideration is parity invariant, then the spacetime rotation group is

O(d). Parity acts as a reflection in Rd, so that O(d) is a certain product of this Z2 action

times SO(d). Therefore, as a group, O(d) consists of two connected components, the parity

even component O+(d) = SO(d) and the parity odd component O−(d).

For a single real scalar field, when including parity invariance the main piece of the

Hilbert series, H0, is given by

H0(φ, p) =

∫
dµO(d) det�(1− pg)Z(φ, p, x), (4.24)
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where the integral is over all g ∈ O(d) with measure dµO(d). The det�(1 − pg) factor

reduces to the 1/P (p;x) factor of eq. (4.16a) on the parity even component. We recall

from eq. (4.19) that Z is an infinite product of l = (n, 0, . . . , 0) representations,

Z(φ, p, x) =

∞∏

n=0

1

det(n,0,...,0)(1− φp∆0+ng)
.

The integral in eq. (4.24) is split into the parity even and odd pieces of O(d),

H0(φ, p) =
1

2

∫
dµ+det�(1− pg+)Z+ +

1

2

∫
dµ−det�(1− pg−)Z−

≡ 1

2

[
H0,+(φ, p) +H0,−(φ, p)

]
, (4.25)

where g± ∈ O±(d), Z± = Z(g±), dµ± = dµO±(d) is the Haar measure normalized as∫
dµ± = 1, and the factors of 1/2 are a consequence of further normalizing

∫
dµO(d) = 1.

The parity even piece H0,+ is given by eq. (4.16a). In this subsection, our focus is on

bringing the parity odd piece,

H0,−(φ, p) =

∫
dµ−det�(1− pg−)Z−(φ, p, x), (4.26)

into a more amenable form for explicit computation.

The group O(d) is segmented into the cosets of its SO(d) subgroup. Therefore, a

general element g− ∈ O−(d) can be taken in the form g− = g+ P, with g+ ∈ SO(d) and P
denoting the parity element. The basic procedure is to make use of this relation to work

out the determinants det(n,0,...,0)(1−ag−) and the measure dµ− in eq. (4.26). This is fairly

simple in odd dimensions because we can take parity to commute with rotations so that

O(2r+1) = SO(2r+1)×Z2. In even dimensions the parity element does not commute with

general rotations so that the orthogonal group is a semidirect product O(2r) = SO(2r)nZ2.

This complicates the procedure in even dimensions; here we summarize the result and work

out the details in appendix C.

Odd dimensions: d = 2r + 1. We can take the action of parity to flip the sign of

all components of a vector, P : vµ → −vµ, i.e. ρ�(P) = −I where ρl(P) denotes the

representation matrix and I is the identity matrix. Then the action on general tensor

representations is easy to deduce: a tensor of odd rank (odd number of indices) flips sign,

while an even rank tensor is invariant:

ρl(P) = (−1)|l|I, (4.27)

where |l| ≡ l1 + · · ·+ lr. The above is valid for tensor representations, li ∈ N (see eq. (4.34)

below for spinors).

For the Hilbert series in eq. (4.26), all the determinants are over the symmetric tensor

representations l = (n, 0, . . . , 0). Using g− = g+P and eq. (4.27), we get the determinants

det(n,0,...,0)

(
1− ag−

)
= det(n,0,...,0)

(
1− (−1)nag+

)
. (4.28)
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The (n, 0, . . . , 0) representations arise from adding n derivatives on top of the field φ, so

this captures the obvious statement that ∂nφ flips sign under parity if there are an odd

number of derivatives.

The measure on O−(2r + 1) is the parity transformation of the SO(2r + 1) measure;

since the adjoint representation, l = (1, 1, 0, . . . , 0), doesn’t transform under parity, neither

does the measure. Therefore, we have dµ− = dµ+.

Let us put these together and reweight the Hilbert series in a momentum grading

scheme by sending p → t and φ → φ/t∆0 , so that t encodes how many derivatives there

are. In this scheme, eq. (4.26) gives

H
(2r+1)
0,−

(
φ

t∆0
, t

)
=

∫
dµ+ det(1,0,...,0)(1 + tg+)

∞∏

n=0

1

det(n,0,...,0) [1− φ(−t)ng+]

= H
(2r+1)
0,+

(
φ

(−t)∆0
,−t

)
. (4.29)

Even dimensions: d = 2r. In even dimensions, we take P as a reflection about the

hyperplane orthogonal to the dth axis in Rd, i.e. ρ�(P) = diag(1, . . . , 1,−1). Since P does

not commute with general rotations, more effort is required to track the action of P on

general l = (l1, . . . , lr) irreps and to work out the determinants and measure in eq. (4.26).

The details are worked out in appendix C. The end result is (see eq. (C.39))

H
(2r)
0,− (φ, p) =

∫
dµSp(2r−2)

1− p2

P (2r−2)(p; x̃)
PE

[
φp∆0P (2r−2)(p; x̃)+φ2 p

2∆0+2

1− p2
P (2r−2)(p2; x̃2)

]
,

(4.30)

where the integral is over the symplectic group Sp(2r− 2), P (2r−2) is the usual P function

but in 2r − 2 dimensions, and x̃ ≡ (x1, . . . , xr−1).

Intrinsic parity. So far we have focused on scalar fields with trivial intrinsic parity. To

show how to address intrinsic parity, we discuss two typical field contents: pseudoscalars

and spinors.

Let parity act on the spacetime coordinates (in Euclidean space) by switching the sign

of the last coordinate, (z1, . . . , zd)→ (z1, . . . , zd−1,−zd). Under this parity transformation

a scalar field φ(z) only has its arguments transform, φ(z1, . . . , zd) → φ(z1, . . . , zd−1,−zd),
while a pseudoscalar ϕ(z) also flips sign: ϕ(z1, . . . , zd) → −ϕ(z1, . . . , zd−1,−zd). We have

already explained in this section how to include parity for scalars: one splits the Hilbert

series into its contribution from even and odd pieces, H(φ, p) = 1
2

[
H+(φ, p) + H−(φ, p)

]
,

and then proceeds to computing H±(φ, p). For a pseudoscalar, the procedure is essentially

the same except that on the parity odd piece, the spurion ϕ also needs to flip sign. In

other words,

H(ϕ, p) =
1

2

[
H+(ϕ, p) +H−(−ϕ, p)

]
. (4.31)

For spinors, we need to split the cases of even and odd dimensions. In even dimensions

the spinors are chiral, and parity interchanges the two chiralities ψL ↔ ψR. Their direct

sum ψ = ψL ⊕ ψR forms a representation under O(2r). We assign a single spurion ψ for
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this representation and follow a procedure similar to the scalar case to compute H+(ψ, p)

and H−(ψ, p) (see also the gauge field example in appendix C.4). The full Hilbert series is

again given by their average

H(ψ, p) =
1

2

[
H+(ψ, p) +H−(ψ, p)

]
. (4.32)

In odd dimensions spinors are not chiral. In Minkowski signature, the two components

ψ and ψ̄, transform under parity as

Pψ(z0, . . . , z2r−1, z2r)P−1 = ±iγ2rψ(z0, . . . , z2r−1,−z2r), (4.33a)

Pψ̄(z0, . . . , z2r−1, z2r)P−1 = ∓ψ̄(z0, . . . , z2r−1,−z2r)iγ2r, (4.33b)

where iγ2r is hermitian with our metric (+,−, . . . ,−), and both signs ± ensure P 2 = 1.

Note that the signs are opposite for ψ and ψ̄. After Wick rotation, we can combine it

with 180◦ rotations in all other coordinates so that parity reverses all of the spacetime

coordinates. After switching to the (+,+, . . . ,+) metric, we find

Pψ(z)P−1 = ±ψ(−z), (4.34a)

Pψ̄(z)P−1 = ∓ψ̄(−z). (4.34b)

We see that ψ and ψ̄ transform separately under O(2r + 1), namely each of them forms

a representation of O(2r + 1), but they have opposite intrinsic parity. As a result, the

mass term ψ̄ψ is odd under parity. This is expected because the little group for a massive

fermion in odd dimensions is SO(2r), whose spinors are chiral. For the Hilbert series

calculation, one computes the parity odd piece H−(ψ, ψ̄, p) again in a similar way with

the scalar case. But to account for their intrinsic parities, we send the spurions ψ → ψ,

ψ̄ → −ψ̄ in accordance with eq. (4.34). That is, the full Hilbert series is given by

H(ψ, ψ̄, p) =
1

2

[
H+(ψ, ψ̄, p) +H−(ψ,−ψ̄, p)

]
. (4.35)

4.4 Reweighting and summary of main formulas

Given an EFT with a set of fields {Φi} and internal symmetry group G, the Hilbert series

counts the number of operators in the operator basis K. In this section we have shown

how this counting function can be explicitly computed as a matrix integral. The final takes

the form

H({Φi}, p) = H0({Φi}, p) + ∆H({Φi}, p), (4.36)

where the bulk of the Hilbert series is contained in the H0 term. The ∆H piece, with

expression given in eq. (4.16b) (see also appendix D), only contains operators of mass

dimension less than or equal to the spacetime dimensionality d. Because almost all of H

is contained in H0, we frequently refer to H0 as the Hilbert series.

This section made use of conformal representation theory to derive the Hilbert series.

We stress, however, that this is not necessary. The splitting H = H0 +∆H and the formula

for H0 below can be derived by other means — in section 7.2 we do this using Hodge theory
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(see also section 2.6 for a heuristic physical derivation of H0). In particular, the formula

for H0 is valid for all single particle modules, regardless of whether or not they are unitary

conformal representations. However, the explicit formula for ∆H in eq. (4.16b) requires

the assumption that the single particle modules are also conformal irreps.

The starting point for a practical computation of H0 is

H0({Φi}, p) =

∫
dµG(y)

∫
dµSO(d)(x)

1

P (p;x)
PE

[∑

i

ΦiχΦi(p, x, y)

]
. (4.37)

The ingredients in the above equation are

• The Haar measures for G and the Lorentz group SO(d). These measures are restricted

to the torus using the Weyl integration formula. The torus of G is parameterized

by y = (y1, . . . , yrank(G)), while that of SO(d) is parameterized by x = (x1, . . . , xb d
2
c).

Measures for the classical groups are given in appendix B.

• The 1/P (p;x) factor, with P (p;x) the function in eq. (3.31), accounts for IBP

redundancies.

• The characters χΦi
for the single particle modules RΦi . They are a product of the

weighted SO(d) character for the module times the character under G. If RΦi is

a conformal representation, then the weighted SO(d) character coincides with the

conformal character, i.e. (see eq. (4.21))

χΦi(p, x, y) = χ̃SO(d+2,C),Φi
(p;x)χG,Φi(y).

As the single particle modules already have the EOM removed, the EOM redundan-

cies are accounted for in these characters.

• The plethystic exponential is a generating function for symmetric or anti-symmetric

products (appropriately chosen according to the statistics of each Φi) of the generat-

ing representations.

• The matrix integral and the use of characters automatically accounts for group rela-

tions that stem from finite rank conditions, such as Fierz identities or Gram deter-

minant constraints.

To include parity as a symmetry of the EFT, the matrix integral for H includes an

integral over O(d) instead of SO(d). The integral splits into two pieces — the parity even

and odd components — with the parity even component given by the SO(d) expression

in (4.37). The expression for the parity odd component depends on whether d is even or

odd. Relevant formulae can be found in section 4.3 and appendix C.

One may wish to choose different weights to access certain information in the Hilbert

series. In this section, we have derived the Hilbert series H({Φi}, p) in the mass grading

scheme as a function of the weights {Φi} and p. The momentum grading scheme — which

we find frequently useful and will use in subsequent sections — is to weight operators by
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their field content as well as the number of derivatives in them. This scheme is readily

obtained from the mass grading scheme by sending

Φi →
Φi

t∆Φi

, p→ t, (4.38)

where ∆Φi is the mass dimension of Φi and t counts powers of derivatives.

5 Constructing operators: kinematic polynomial rings

The question of counting and constructing operator bases can be translated into that

of counting and constructing the kinematic quantities which form the basis of scattering

amplitudes in QFTs. In this section, we map out this translation and explore the kinematic

structure that underlies operator bases. As well as providing a concrete connection to

the physical observables of a theory — scattering amplitudes — we emphasize that this

momentum space picture is particularly powerful for the construction of the basis elements

(i.e. the forms of the operators), especially when used in conjunction with the machinery

developed in the previous sections.

We start in section 5.1 by passing to momentum space where operators are in one-to-

one correspondence with polynomials in momenta. EOM and IBP redundancies become

equivalence relations between polynomials, leading to a natural formulation of K in terms of

polynomial rings with ideals. This generalizes our previous work in d = 1 [38] to arbitrary

d. Section 5.2 exhaustively parades through the basis involving four scalar fields, exploring

the consequences of EOM and IBP redundancy, spacetime dimensionality, and permutation

symmetry. With an understanding of the ring formalism from the four point example, we

pause in section 5.3 to reflect on the physical connection to operators, contact terms, and

amplitudes. Section 5.4 returns to the rings to tackle the general case: we establish that

the rings are Cohen-Macaulay, which means we can find a finite set of generators of the ring

which allow us to construct any other element uniquely. Here we also touch upon the case

of spin, emphasizing that the scalar operators studied presently appear universally since

they dictate the kinematics of momenta. Some comments about the relationship between

elements of the ring and conformal primaries are made in section 5.5. In section 5.6

we explain a simple algorithm for constructing elements of the ring — i.e. constructing

operators in K — and use this to solve the basis for five scalar fields.

5.1 Polynomial ring in particle momenta

To begin, we pass to momentum space and consider the Fourier transform of the scalar

fields, φi, (where i is a flavor index, such that φi and φj are indistinguishable if i = j),

φi(x) =

∫
ddp φ̃i(p) e

i pµxµ . (5.1)

An operator consisting of n distinct φi fields and k derivatives then takes the general form

φ1 · · ·φn∂µ1 · · · ∂µk ∼
∫
ddp1 · · · ddpn φ̃1(p1) · · · φ̃n(pn)F (n,k)(p1, · · · , pn) exp

(
i
n∑

i=1

pµi xµ

)
,

(5.2)
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where F (n,k) is a degree k polynomial in the n momenta {pµi }, i = 1, 2, · · · , n, whose form

depends on how the derivatives act in the operator; this is a one-to-one correspondence

between operators and such polynomials (up to a constant, F (n,k) is the Feynman rule in

momentum space). Because we are interested in Lorentz scalar operators, we are concerned

with polynomials invariant under an SO(d) symmetry acting on the Lorentz indices of the

{pµi }. That is, we are interested in the polynomial ring,24

MSO(d)
n = C[pµ1 , · · · , pµn]SO(d) , (5.3)

where the superscript indicates we are imposing invariance under SO(d).

The effects of EOM and IBP lead to equivalence relations between polynomials. The

EOM ∂2φ = 0 translates to p2
i = 0,25 and the vanishing of total derivatives ∂µ(. . .) = 0 is

the statement of momentum conservation,
∑n

i=1 p
µ
i = 0. These define equivalence relations

O1 ∼ O2 + ∂2φO3 =⇒ F1({pi}) ∼ F2({pi}) + p2
iF3({pi}) , (5.4)

O1 ∼ O2 + ∂µOµ3 =⇒ F1({pi}) ∼ F2({pi}) +

(∑

i

pµi

)
Fµ3 ({pi}) . (5.5)

Such polynomial relations between elements of a ring are embodied in an ideal of the ring.

The equivalence class of polynomials under these two redundancies lie in the quotient ring

M
SO(d)
n,K =

[
C[pµ1 , · · · , pµn]/〈pµ1 + . . .+ pµn, p

2
1, · · · , p2

n〉
]SO(d)

, (5.6)

where 〈. . .〉 is the standard notation for an ideal, and the subscript K indicates EOM and

IBP equivalences are accounted for.

For the case of indistinguishable scalars, the Fourier coefficients φ̃i in eq. (5.2) become

identical, and the symmetry of the integral leads us to consider symmetric polynomials in

the indices 1, 2, · · · , n, namely polynomials invariant under Sn, where Sn acts by permu-

tations of the n momenta. In this case, the result given in eq. (5.6) generalizes to

M
SO(d)×Sn
n,K =

[
C[pµ1 , · · · , pµn]/〈pµ1 + · · ·+ pµn, p

2
1, · · · , p2

n〉
]SO(d)×Sn

. (5.7)

A word on notation. We denote the rings under consideration by MG
n,I . Here, n refers

to the number of momenta in the ring. I denotes the operator space under consideration:

I = K is the operator basis with both EOM and IBP imposed; I = J is the set of operators

with only EOM imposed (remove pµ1 + · · · + pµn from the ideals above); if I is empty we

impose neither EOM nor IBP, as in eq. (5.3). G denotes the symmetry group we impose

invariance under. Generically, G = (S)O(d) × Σ where (S)O(d) means either SO(d) or

O(d) and Σ ⊆ Sn is a permutation group acting on the momenta. We typically consider

24We work in the field C, although any characteristic zero field, such as R, is equally valid. We refer the

reader unfamiliar with commutative algebra to [38] for a primer that is relevant to our current application.
25We continue to consider Euclidean spacetime and assume complex momentum (note that for real

momenta, p2 = 0 would force pµ = 0).
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the extremes Σ = Sn (all indistinguishable fields) or Σ being trivial (all distinguishable

fields). Finally, we work in the momentum grading scheme, where the pµi are degree one

and assigned a weight parameter t. The Hilbert series of the rings are denoted as HG
n,I(t)

or H(MG
n,I , t).

Translation to a ring of Lorentz invariants. A natural way to take Lorentz in-

variance into account is to work with a ring generated by the invariants, which include

the symmetric invariants sij ≡ pi µp
µ
j , and the antisymmetric invariants εpi1pi2 ···pid ≡

εµ1µ2···µd p
µ1
i1
pµ2
i2
· · · pµdid . Then any element in this ring is automatically Lorentz invariant.

However, this feature does not come without a cost. To simplify discussion, we impose

parity — O(d) invariance, as opposed to SO(d) — which eliminates all the antisymmetric

invariants involving the ε tensor.

In d dimensions only d momenta can be linearly independent, which leads to nontrivial

relations among the sij . In particular, the Gram matrix




s11 s12 · · · s1n

s12 s22 · · · s2n

...
...

. . .
...

s1n s2n · · · snn



, (5.8)

is at most rank d. This dictates that any (d + 1) × (d + 1) sub-matrix has vanishing

determinant, which gives a set of nontrivial relations among the sij , called rank conditions

or Gram conditions. Denoting {∆} as the set of all (d+ 1)× (d+ 1) minors of the Gram

matrix, we have the ring isomorphism26

MO(d)
n = C[pµ1 , · · · , pµn]O(d) = C[{sij}]/〈{∆}〉 . (5.9)

Clearly, {∆} is nontrivial only for the case n ≥ d+ 1.

To study the effects of EOM and IBP, we begin with the case n ≤ d, such that there

are no Gram conditions to impose. Our initial ring has n(n + 1)/2 invariants sij . After

imposing EOM, sii = 0, and we are left with n(n−1)/2 Mandelstam invariants {sij , i < j}.
As we will always impose EOM, in the rest of this paper it is understood that the notation

sij has i 6= j, unless explicitly stated otherwise. Now our ring becomes

M
O(d)
n,J = C[{sij}] , n ≤ d . (5.10)

IBP is the statement of momentum conservation:
∑n

i=1 p
µ
i = 0. Contracting this with

each of the pµi gives n equations of the form

Xi ≡
∑

j 6=i
sij = 0 . (5.11)

These n equations reduce the number of independent Mandelstam invariants to n(n−1)/2−
n = n(n − 3)/2. Alternatively, this reduction can be seen as the following: imposing IBP

26In the math literature, this result is known as the first and second fundamental theorems of invariant

theory.
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conditions means we can entirely eliminate one momenta, say pµn, such that we can consider

only (n−1)(n−2)/2 Mandelstam invariants. Having done this, one relation between these

invariants remains — from p2
n = 0 — such that the number of generators of the ring after

IBP becomes (n− 1)(n− 2)/2− 1 = n(n− 3)/2.

The n equations in eq. (5.11) form the part of an ideal which accounts for IBP,

M
O(d)
n≤d,K =

[
C[{sij}]/〈X1, . . . , Xn〉

]
(distinguishable) , (5.12)

M
O(d)×Sn
n≤d,K =

[
C[{sij}]/〈X1, . . . , Xn〉

]Sn
(indistinguishable) , (5.13)

where in the indistinguishable case, permutation invariance is imposed where Sn acts on

sij via σ ∈ Sn : sij → sσ(i)σ(j). For the distinguishable case, this module can be written as

a ring freely generated by n(n− 3)/2 Mandelstam invariants. For example, we can choose

M
O(d)
n≤d,K = C[{sij}] with 1 ≤ i < j ≤ n− 1, (i, j) 6= (n− 2, n− 1).

Let us now take n > d and consider the Gram conditions. Nominally we should expect

to see their effects when n = d+ 1. However, when n = d+ 1, the Gram condition that the

full (d + 1) × (d + 1) determinant vanishes follows from momentum conservation. Thus,

when considering IBP, Gram conditions only affect the case n ≥ d+ 2.

When n ≥ d + 2, EOM, IBP and Gram conditions together imply the number of

independent generators is given by (d− 1)n− d(d+ 1)/2. In this formula (d − 1)n is the

number of independent components of the n momenta after requiring them to be on-

shell (EOM), and d(d + 1)/2 is the number of generators of the Poincaré group, each one

causing a relation between the components: d translations (IBP) and d(d − 1)/2 Lorentz

transformations. In summary, the dimensions for the rings are (note that n(n − 3)/2 =

n(d− 1)− d(d+ 1)/2 at both n = d and n = d+ 1.)

dim(MG
n,K) =

{
1
2n(n− 3) for n ≤ d+ 1

(d− 1)n− 1
2d(d+ 1) for n ≥ d

(5.14a)

dim(MG
n,J ) =

{
1
2n(n− 1) for n ≤ d

(d− 1)n− 1
2d(d− 1) for n ≥ d− 1

(5.14b)

where we have also included the dimensions for MG
n,J , obtained by similar considerations.

Phrased in terms of our initial ring and ideal, the final quotient ring we are interested

in is,

M
O(d)×Σ
n,K =

[
C[{sij}]/〈X1, . . . , Xn, {∆}〉

]Σ

, (5.15)

where Σ is a subgroup of Sn. As before, for the distinguishable case, the Xi in the ideal

can be used to eliminate n of the sij from the ring.

For the indistinguishable case, a useful result is that the sij decompose into Sn irre-

ducible representations as

sij = sji, i 6= j ↔ V(n) ⊕ V(n−1,1) ⊕ V(n−2,2), (5.16)
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where the notation refers to the partition associated with a Young diagram. Together the

(n)⊕(n−1, 1) form the natural representation of Sn, with a basis given by the variables Xi

defined in eq. (5.11). IBP completely removes these components, by eq. (5.15). Thus, (up

to dealing with the additional Gram conditions), understanding the structure of this ring re-

quires an understanding of the invariants of the (n−2, 2) representation of Sn; this is, unfor-

tunately, an open and difficult mathematical problem (see e.g. [64] and references within).

5.2 Tour of the four point ring

A lot of the subtleties in the above can already be seen in the ring when n = 4, where it

is easy to identify the generators and relations between them. Thus, we consider the four

point ring MG
n=4,I with and without IBP, in all space-time dimensions, for distinguishable

and indistinguishable scalar particles, and imposing O(d) and SO(d) invariance. We pay

particular attention to the generators of the polynomial ring, the relations between them,

and how this leads to the Hilbert series.

(i) I = J , G = O(d), d ≥ 4. We begin with d ≥ 4 such that Gram conditions do

not play a role. Consider first the case we impose parity, O(d), and where the four scalars

are distinguishable. Our initial ring has n(n + 1)/2 = 10 invariants pi · pj ; after imposing

EOM we have n(n− 1)/2 = 6 Mandelstam invariants sij . Before imposing IBP, the ring is

freely generated by these invariants, and the Hilbert series reflects this

M
O(d≥4)
4,J = C[s12, s13, s14, s23, s24, s34] , (5.17a)

H
O(d≥4)
4,J =

1

(1−qs12)(1−qs13)(1−qs14)(1−qs23)(1−qs24)(1−qs34)
→ 1

(1−t2)6
, (5.17b)

where qsij are gradings introduced to count powers of the sij generators, and in the final

expression for the Hilbert series we grade by t, counting powers of derivatives as per the

previous section.

(ii) I = K, G = O(d), d ≥ 3. After imposing IBP conditions we have n(n− 3)/2 = 2

Mandelstam invariants. We use familiar notations {s12 =s34, s13 =s24, s23 =s14}≡{s, t, u},
and then use the final IBP relation s+ t+ u = 0 to eliminate u. That is,

M
O(d≥3)
4,K = C[s, t] , (5.18a)

H
O(d≥3)
4,K =

1

(1− qs)(1− qt)
→ 1

(1− t2)2
. (5.18b)

(iii) I = K, G = O(d), d = 2. In d = 2, we need to account for Gram conditions.

Requiring that every 3× 3 sub-determinant of the Gram matrix,




0 s t u

s 0 u t

t u 0 s

u t s 0


 ,
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vanishes results in the condition stu = st(−s− t) = 0. That is,

M
O(2)
4,K = C[s, t]/〈s2t+ t2s〉 , (5.19a)

H
O(2)
4,K =

1− q2
sqt

(1− qs)(1− qt)
→ 1 + t2 + t4

1− t2 . (5.19b)

(A choice of ordering scheme appears in the first equality for the Hilbert series, see e.g. the

appendix in [38].)

The ring in eq. (5.19a) can be explicitly “solved” as follows. Change variables to

θ ≡ s− t and η ≡ s+ t, then the ideal 〈η3 − ηθ2〉 implies we can always eliminate powers

of η cubic or higher, e.g. η5 → η3θ2 → ηθ4. In this way, the monomials θn, ηθn, and η2θn

freely span the ring, giving the direct sum decomposition

M
O(2)
4,K = C[s, t]/〈s2t+ t2s〉 =

(
1⊕ η ⊕ η2

)
C[θ] . (5.20)

The existence of such a direct sum decomposition is a special property of so-called Cohen-

Macaulay rings, which we discuss in section 5.4. In the language of section 5.4, we say

that M
O(2)
4,K is a freely generated module over C[θ], with a basis for the module given by

{1, η, η2}.

(iv) I = J , G = O(d) × S4, d ≥ 4. Still imposing parity, we now turn to the

indistinguishable cases. Imposing only EOM, the ring is

M
O(d≥4)×S4

4,J = C[s12, s13, s14, s23, s24, s34]S4 , (5.21a)

H
O(d≥4)×S4

4,J =
1 + t6 + t8 + t10 + t12 + t18

(1− t2) (1− t4)2 (1− t6)2 (1− t8)
. (5.21b)

We give the details on the consequences of the S4 invariance of the ring in eq. (5.21a)

(which is not straightforward) and how it leads to the above Hilbert series in appendix E

(obtaining just the Hilbert series is, however, relatively simple).

(v) I = K, G = O(d)× S4, d ≥ 3. Interestingly, further imposing IBP greatly sim-

plifies the generator problem for indistinguishable particles. We again work with {s, t, u},
subject to s+ t+ u = 0. Special to n = 4, permutations in S4 of the momenta indices be-

come simple permutations in S3 of the Mandelstam invariants {s, t, u}. Hence, we construct

polynomials invariant under S3 permutations of s, t, u. Such a ring is freely generated by

the symmetric polynomials, e1 ≡ s + t + u, e2 ≡ st + su + tu, and e3 ≡ stu. Momentum

conservation simply removes the generator e1. That is,

M
O(d≥3)×S4

4,K =

[
C[s, t, u]/〈s+ t+ u〉

]S3(s,t,u)

= C[e1, e2, e3]/〈e1〉 = C[e2, e3] , (5.22a)

H
O(d≥3)×S4

4,K =
1

(1− qe2)(1− qe3)
→ 1

(1− t4)(1− t6)
. (5.22b)

where, similar to above, qe2 and qe3 are gradings introduced to count powers of the e2 =

st+ su+ tu and e3 = stu generators.
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(vi) I = K, G = O(2) × S4, d = 2. In d = 2, the Gram constraint stu = 0 simply

sets e3 = 0. That is,

M
O(2)×S4

4,K = C[e2] , (5.23a)

H
O(2)×S4

4,K =
1

(1− qe2)
→ 1

(1− t4)
. (5.23b)

(vii) I = K, G = SO(d)×Σ. Finally, we omit parity and impose SO(d), rather than

O(d), invariance. This means invariants involving the epsilon tensor are now available,

εpi1pi2 ···pid ≡ εµ1µ2...µd p
µ1
i1
pµ2
i2
. . . pµdid (5.24)

However, only one power of the epsilon tensor can appear in any element of the ring,

because of the relation

εµ1...µdεν1...νd =

∣∣∣∣∣∣∣

gµ1ν1 . . . gµ1νd
...

. . .
...

gµdν1 . . . gµdνd

∣∣∣∣∣∣∣
. (5.25)

Note that in d ≥ 4, any epsilon contraction with the pµi will be identically zero as we only

have n = 4 momenta (in d = 4, momentum conservation implies εp1p2p3p4 = 0).

For the four point ring then, SO(d) and O(d) invariance are only different for d ≤ 3.

For distinguishable particles in d = 3 there is only one independent epsilon invariant, say

εp1p2p3 , hence

M
SO(3)
4,K = C[s, t]⊕ εp1p2p3C[s, t] (5.26a)

H
SO(3)
4,K =

1 + t3

(1− t2)2
. (5.26b)

For indistinguishable particles invariance under S4 requires the additional invariant to be

εsym ≡ εp1p2p3(s12 − s13)(s12 − s23)(s13 − s23), and hence

M
SO(3)×S4

4,K = C[e2, e3]⊕ εsymC[e2, e3] , (5.27a)

H
SO(3)×S4

4,K =
1 + t9

(1− t4)(1− t6)
. (5.27b)

In two dimensions, for distinguishable particles, the SO(2) invariants are (s, t, u) and

six epsilon invariants εpipj , i < j. Momentum conservation allows us to eliminate u as well

as three of the εpipj , say the εpip4 with i = 1, 2, 3. Then, analogous to the O(2) ring in

eq. (5.20) we have

M
SO(2)
4,K =

(
1⊕ (s+ t)⊕ εp1p2 ⊕ εp1p3 ⊕ εp2p3 ⊕ (s+ t)2

)
C[s− t] (5.28a)

H
SO(2)
4,K =

1 + 4t2 + t4

1− t2 , (5.28b)

Finally, there is no difference between SO(2) and O(2) for n = 4 indistinguishable particles

since no non-vanishing S4 symmetric invariant can be formed with one power of εpipj .
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. . .

An =
X

k,α

O(n,k)
α + . . .

Figure 1. Contact interaction contributions to the n-point scattering amplitude from Feynman

diagrams associated with the operators O(n,k)
α .

5.3 Interpreting the ring in terms of operators and amplitudes

We were able to completely solve the operator basis at n = 4 in section 5.2, by which

we mean that we found a set of generators, and understood the relations among them (or

lack of relations). This enables us to easily construct the independent polynomials — i.e.

the independent operators — F
(4,k)
α in the basis (here α labels the independent operators

at the given n and k). Before proceeding to the more general case — where things get

significantly more involved — let us use the relatively simple and concrete formulas of the

n = 4 case to reflect on what this means.

The association of a polynomial equation in the momenta of the particles with a given

operator is exactly what one obtains when deriving the Feynman rule in momentum space

for an operator. That is, an operator O(n,k)
α involving n powers of φ and k derivatives gives

rise to a momentum space Feynman rule F
(n,k)
α . For example, for n = 4 distinguishable

scalars the ring in eq. (5.18a) corresponds to operators as

sntm ∈ C[s, t] ⇔ ∂µ1 . . . ∂µn∂ν1 . . . ∂νmφ1 ∂
µ1 . . . ∂µnφ2 ∂

ν1 . . . ∂νmφ3 φ4. (5.29)

Actually, to be precise, the above should have the derivatives traceless — such a construc-

tion of operators is generally cumbersome, and this is one way in which the momentum

space picture is advantageous. Another advantage is in the permutation symmetry: ele-

ments (st + su + tu)n(stu)m ∈ C[e2, e3] of eq. (5.22a) essentially correspond to the same

type of operator as above (with right number of derivatives, of course) but with the flavor

indices dropped, all φi = φ. In this case, the operator may look simpler, but it is masking

the fact that one has to go through the exercise of symmetrization (taking all possible Wick

contractions) for any quantity computed.

The polynomials F
(n,k)
α form the Feynman rules. Consider the n-point tree-level am-

plitude in the EFT of a real scalar field. The operators O(n,k)
α contribute as contact inter-

actions, as depicted in figure 1. Further contributions involving propagators are indicated

by the + . . . in the figure.

More explicitly, we can write the general n point, tree-level amplitude, An, as

An(p1, . . . , pn) =
∑

k

∑

α

cα F
(n,k)
α (p1, . . . , pn) + . . . . (5.30)

The cα are the Wilson coefficients of the operators O(n,k)
α in the Lagrangian. For example,

if we impose a Z2 symmetry φ → −φ (which eliminates the φ3 vertex), the n = 4 point
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amplitude only involves contact interactions at tree-level,

A4(p1, . . . , p4) =
∑

n,m

cn,m(st+ su+ tu)n(stu)m. (5.31)

A well-known result is that unitarity and analyticity constrain the Wilson coefficient asso-

ciated to (∂φ)4 to be positive, c1,0 > 0 [65]. This result is obtained in the forward scattering

regime where st + su + tu → −s2 and stu → 0. The structure of the operator basis in

terms of the two generators e2 = st+ su+ tu and e3 = stu suggests cn,0 > 0 for all n ≥ 1;

indeed, this is true [65].

5.4 Constructing the basis at higher n: generators and algebraic properties

With a healthy understanding of the four-point operator basis, we turn to the general n

case. Although the basis becomes notably more involved, a rich structure underlies this

complexity. A unifying theme in our discussion is how these properties are reflected in

the Hilbert series of the ring. Useful references for background and further information

are [66–68].

Intuitively, we would like to find generators for the operator basis, i.e. some finite set

of operators (Feynman rules) from which all others can be obtained, just as we did for the

n = 4 ring in section 5.2. It turns out that we can always find a particularly nice set of

generators for the rings MG
n,I such that any g ∈ MG

n,I can be expressed uniquely in terms

of the generators (the choice of generators is not unique, however). This is because the

MG
n,I are so-called Cohen-Macaulay (CM) rings.

In section 5.4.1 we prove that MG
n,I is a Cohen-Macaulay integral domain. A reader

less interested in mathematical details needs only to note the decomposition in eq. (5.32)

together with the associated definitions of “primary” and “secondary” invariants. In some

instances, such as when G = SO(d), the secondary invariants exhibit a pairing as a result

of MG
n,I being not only CM, but even Gorenstein. Useful in this regard are the Hilbert

series for MG
n,I , where a necessary and sufficient condition is that the Hilbert series exhibits

a certain palindromic form [68].

We discuss a conjecture [64] on a set of primary invariants for M
O(d)×Sn
n,I in section 5.4.2.

In section 5.4.3 we touch upon the relationship between the operator spaces J and K.

In subsection 5.4.4 we briefly consider the generalization to the case that operators

are composed of fields with spin, as well as the case that the operator itself carries spin.

An important point here is that the rings for scalar fields, MG
n,I , are also important for

understanding the spin case, due to the universal feature of kinematics which is encoded

in the MG
n,I . However, the Cohen-Macaulay property generally breaks down when spin is

involved, as a result of polarization tensors.

5.4.1 The Cohen-Macaulay property

We begin by reviewing some relevant results from invariant theory [66–68]. Let R be a

graded ring whose coordinates form a representation of some symmetry group G and let

RG denote the subring consisting of G-invariant elements of R. For the groups G under

consideration, a fundamental result is that RG is finitely generated, meaning all f ∈ RG
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can be expressed as polynomials in some finite set of generators. In general there may be

relations among the generators, so that we are not guaranteed that f can be expressed

uniquely from the generators.

Within the generators, it is always possible to identify a set {θ1, . . . , θm}, m=dim(RG),

of homogeneous elements which are algebraically independent and their freely generated

ring C[θ1, . . . , θm] forms a subring of RG. RG can therefore be taken as a finitely generated

module over C[θ1, . . . , θm]. The set {θ1, . . . , θm} is called a homogeneous system of param-

eters (HSOP). Note that a choice of HSOP is by no means unique (a simple example: we

could equally well have chosen {θ2
1, θ2, . . . , θm} as a HSOP).

The basic problem is to identify some HSOP and then determine the structure of

RG as a module over C[θ1, . . . , θm]. Broadly speaking, this entails (1) finding the rest

of the generators and (2) classifying the algebraic relations between generators (including

relations among relations, called syzygies). If RG is a free module over C[θ1, . . . , θm] task

(2) is greatly simplified, because it implies that RG has the decomposition

RG =

s⊕

i=1

ηiC[θ1, . . . , θm]. (5.32)

In other words, every g ∈ RG can be expressed uniquely as a linear combination of the ηi
with coefficients in C[θ1, . . . , θm]: g =

∑s
i=1 fi(θ1, . . . , θm)ηi. In such a case, RG is said to

be Cohen-Macaulay, and the decomposition in eq. (5.32) is called a Hironaka decomposi-

tion [66, 67]. This decomposition shows that CM rings very much resemble vector spaces.

In the decomposition in eq. (5.32) the θ1, . . . , θm are called primary invariants

and the η1, . . . , ηs secondary invariants.27 In terms of operators, the secondary in-

variants behave like seed operators — like φn or a parity violating term such as

εµ1µ2µ3∂µ1α1α2φ∂µ2α3φ∂µ3φ∂
α1α2α3φ in d = 3 (εsym in eq. (5.27a)) — upon which we

can add momenta in the form of n-point Mandelstam variables (the primary invariants).

Given a Hironaka decomposition, it is trivial to write down the Hilbert series. Defining

di ≡ deg(θi) and ej ≡ deg(ηj), we have

H(RG, t) =

∑s
j=1 t

ej

∏m
i=1(1− tdi) . (5.33)

Importantly, the numerator is a sum of strictly positive terms. For a ring which is not CM,

syzygies can lead to negative terms in the numerator (with the denominator chosen in the

form to reflect the HSOP, as in eq. (5.33)). If we compute some Hilbert series and are able

to bring it to the form in eq. (5.33), it is a good indication (although not sufficient) that

the ring is CM.

In some cases one notices a remarkable property about the numerator of the Hilbert

series in a CM ring: it is palindromic. That is, the numerator N(t) =
∑r

k=0 akt
k obeys

ak = ar−k (equivalently, N(t) = trN(1/t) where r is the maximal degree of t in N(t)). This

pairing, indicative of a duality, is enough to tell us that the ring is Gorenstein: A theorem

27Note that η1 can always be taken as η1 = 1. Moreover, {η1, . . . , ηs} may be polynomials of some smaller

set {η′1, . . . , η′r}, r ≤ s, sometimes called irreducible secondary invariants.
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of Stanley, theorem 4.4 in [68], says that a Cohen-Macaulay integral domain is Gorenstein

if and only if its Hilbert series is palindromic.28

With the above preparatory remarks we now come to the main point: the rings

MG
n,I are Cohen-Macaulay. This essentially follows from the fundamental theorem of

Hochster and Roberts which asserts that the invariant ring of a reductive group is Cohen-

Macaulay [69]. Omitting EOM and IBP constraints, it is clear that C[pµ1 , . . . , p
µ
n]G is CM

since G = (S)O(d)× Σ is reductive. We need to check that the CM property holds when

we add back in EOM and IBP.

As G is a direct product, we can apply invariance under individual groups one-by-

one and see the CM property at each step along the way. For simplicity of discussion,

we will include parity and work with O(d), although this is non-essential. Applying O(d)

invariance, per the discussion in section 5.1, we end up with

RΣ
0 ≡ C[pµ1 , . . . , p

µ
n]O(d)×Σ =

[
C[s]

/
〈{∆}〉

]Σ
, (5.34a)

RΣ
1 ≡

[
C[pµ1 , . . . , p

µ
n]
/
〈{p2

i }〉
]O(d)×Σ

=
[
C[s]

/
〈{sii}, {∆}〉

]Σ
, (5.34b)

RΣ
2 ≡

[
C[pµ1 , . . . , p

µ
n]
/
〈{p2

i },
∑

i p
µ
i 〉
]O(d)×Σ

=
[
C[s]

/
〈{sii}, {Xi}, {∆}〉

]Σ
, (5.34c)

where s collectively denotes the sij including diagonal components sii. When n ≤ d there

are no Gram constraints, {∆} = ∅, and all the above rings are isomorphic to C[V ]Σ with

V some representation of Σ (e.g. eq. (5.16)). In this case it is clear that the resulting rings

are CM as they are just invariant rings of a finite group, which are CM [66, 67].

We proceed to the case n > d, where 〈{∆}〉 is non-trivial. We will show that C[s]/I

is CM, which will subsequently be used to show that
[
C[s]/I

]Σ
is CM. We first need two

other characterizations of CM rings: (1) The fact that RG is a free C[θ1, . . . , θm]-module

implies that for every HSOP {θ′1, . . . , θ′m} then RG is a free module over C[θ′1, . . . , θ
′
m]. (2)

As a free C[θ1, . . . , θm]-module, this implies {θ1, . . . , θm} is a regular sequence in RG; an

equivalent definition of a CM ring is that it possesses a regular sequence of algebraically

independent elements and length equal to the dimension of the ring.29

First, note that {s11, . . . , snn} is a regular sequence in R0: corollary 3.2 of [68] tells us

that for a sequence {θ1, . . . , θn} in R0 we have the following inequality of Hilbert series,

H(R0, t) ≤
H
(
R0

/
〈θ1, . . . , θn〉 , t

)
∏n
i=1(1− tdegθi)

, (5.35)

with equality holding if and only if {θ1, . . . , θn} is a regular sequence. For the sequence

{s11, . . . , snn} we have

R0

/
〈s11, . . . , snn〉 = C[s]

/
〈s11, . . . , snn, {∆}〉 = R1, (5.36)

28R is an integral domain if for all non-zero x, y ∈ R then xy 6= 0.
29Given a ring R, an element f ∈ R is a non-zero divisor, or regular, if for all non-zero g ∈ R then f ·g 6= 0.

A sequence {f1, . . . , fn} is called a regular sequence if f1 is a non-zero divisor in R and fi is a non-zero

divisor in R/〈f1, . . . , fi−1〉. From these definitions, it is clear that R is particularly well behaved when

quotiented by regular elements/sequences, i.e. R is a free C[f1, . . . , fn]-module if f1, . . . , fn are algebraically

independent.
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and by the matrix integral formula for the Hilbert series,

H(R1, t) =

∫
dµO(d)(g)

[
(1− t2)

det�(1− tg)

]n
= (1− t2)nH(R0, t). (5.37)

Since eq. (5.35) is saturated, {s11, . . . , snn} is a regular sequence in R0. We further

know that R0 is CM by Hochster-Roberts’ theorem, and hence we can find a reg-

ular sequence of length dim(R0). Let {s11, . . . , snn, θ1, . . . , θN1} be such a sequence,

where N1 = dim(R0)− n = dim(R1). By definition, since {s11, . . . , snn, θ1, . . . , θN1} is

a R0-sequence, then {θ1, . . . , θN1} is a regular sequence on R0/〈s11, . . . , snn〉. But

R1 = R0/〈s11, . . . , snn〉, so {θ1, . . . , θN1} is a R1-regular sequence of length N1 = dim(R1),

and hence R1 is Cohen-Macaulay. Similar reasoning establishes R2 as CM.

Given that R1,2 are CM, we can show that RΣ
1,2 is CM via a straightforward modifi-

cation of the proof that the invariant ring of a finite group is CM (e.g. [67] theorem 3.2

or [66] section 2.3). The basic sketch is as follows. Let {θ1, . . . , θm} ∈ RΣ
i , m = dim(RΣ

i ),

be a HSOP for RΣ
i . Since dim(Ri) = dim(RΣ

i ) (finite groups do not have enough symmetry

to remove continuous degrees of freedom), {θ1, . . . , θm} is also a HSOP for Ri. Let Ui be

the set of Σ non-invariant elements of Ri. As a module over C[θ1, . . . , θm], Ri has the

direct sum decomposition Ri = RΣ
i ⊕Ui. Now, as established above, Ri is CM. This means

that Ri is a free module over any HSOP; in particular, Ri is a free C[θ1, . . . , θm]-module.

Then the direct sum decomposition of Ri as C[θ1, . . . , θm]-modules implies that RΣ
i is a

free module over C[θ1, . . . , θm] and hence CM.

The rings MG
n,I are also integral domains. Therefore, MG

n,I is Gorenstein if its Hilbert

series exhibits the palindromic form H(MG
n,I , t) = (−1)mtpH(MG

n,I , 1/t) for some integer

p. This is always the case when G = SO(d) (no permutation group), as can easily be seen

from the matrix integral formula

H
(
M

SO(d)
n,I , 1/t

)
∝
∫
dµSO(d)(x)

[
P (d)(1/t;x)

]n
= ±tkH

(
M

SO(d)
n,I , t

)
, (5.38)

for some k ∈ Z (some care needs to be taken with the contours as we send t → 1/t). For

disconnected groups, such as G = O(d) or G = (S)O(d)× Σ, we do not have a completely

general statement. When G = O(d) = SO(d) n Z2, M
O(d)
n,I is Gorenstein for either n-even

or for n-odd, depending on d = 2r versus d = 2r+ 1 and whether I = J or K (ifMO(d)
n,J is

Gorenstein, then M
O(d)
n+1,K is as well since momentum conservation effectively removes one

momentum). Including full permutations, G = (S)O(d)×Sn, we have the following. There

are no Gram conditions in J when n ≤ d and none in K when n ≤ d+1; in such cases, after

applying (S)O(d) invariance, we are left with the ring C[V ]Sn with V a representation of Sn
(for J , V = V(n)⊕V(n−1,1)⊕V(n−2,2); for K, V = V(n−2,2)). It is straightforward to see, [64]

theorem 6.2, that C[V(n)⊕V(n−1,1)⊕V(n−2,2)]
Sn is Gorenstein for n even, while C[V(n−2,2)]

Sn

is Gorenstein for n odd. For G = (S)O(d) × Sn with n > d, explicit calculations of the

Hilbert series, e.g. see section 6, indicate that the ring is usually not Gorenstein, and we

suspect this is generally the case for n sufficiently larger than d.
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5.4.2 A set of primary invariants in the absence of Gram conditions

When I = J , G = O(d) × Sn, and n ≤ d, determining the elements of M
O(d)×Sn
n≤d,J =

C[sij ]
Sn = C[V(n) ⊕ V(n−1,1) ⊕ V(n−2,2)]

Sn is equivalent to a graph isomorphism problem,

e.g. [64]. As a graph, we take n vertices so that sij corresponds to an edge between vertices

i and j. Using intuition from the fundamental theorem of symmetric polynomials, [64]

conjectured the following to be a HSOP for C[sij ]
Sn :

X1 + · · ·+Xn, . . . , X
n
1 + · · ·+Xn

n , (5.39a)

s2
12 + · · ·+ s2

n−1n, . . . , s
n(n−3)/2+1
12 + · · · sn(n−3)/2+1

n−1n , (5.39b)

where we recall Xi ≡
∑

j 6=i sij . Some evidence for this conjecture is that the Hilbert

series suggests a HSOP of minimal degree has degrees coinciding with the above. The

polynomials in eq. (5.39b) could also serve as a HSOP when the Xi have been eliminated by

momentum conservation (i.e. when I = K and we work with M
O(d)×Sn
n≤d+1,K = C[V(n−2,2)]

Sn).

The power sum polynomials in eq. (5.39b) are obviously Sn invariant: by construction,

they are invariant under the larger group Sn(n−1)/2 which permutes the sij as the defining

representation.

Having knowledge of a HSOP helps to algorithmically construct the operator basis,

see subsection 5.6. Additionally, in the absence of Gram constraints, the above can serve

as a HSOP for some generalizations discussed below.

5.4.3 Relationship between J and K

The rings MG
n,J and MG

n+1,K are closely related since momentum conservation effectively

allows us to eliminate one momentum in MG
n+1,K. Eliminating, say, pµn+1 we are left with

the n momenta pµ1 , . . . , p
µ
n subject to the on-shell conditions p2

i = 0 plus the additional

constraint p2
n+1 = (p1 + · · ·+ pn)2 = 0,

[
C[pµ1 , . . . , p

µ
n+1]

/
〈{p2

i },
∑n+1

i=1 p
µ
i 〉
]G
∼
[
C[pµ1 , . . . , p

µ
n]
/
〈{p2

i }, (
∑n

i=1 p
µ
i )2〉

]G

∼
[
Mn,J

/
〈p1 · p2 + . . . pn−1 · pn〉

]G
. (5.40)

To wit, in the absence of permutation symmetry, this relationship is clearly reflected in the

Hilbert series

H
(
M

(S)O(d)
n+1,K , t

)
=

∫
dµ

1

P (t;x)

[
(1− t2)P (t;x)

]n+1
= (1− t2)H

(
M

(S)O(d)
n,J , t

)
. (5.41)

In one-dimensional field theories we observed [38] a similar relationship and were able to

use this to arrive at consistency conditions and recursion relations. It would be interesting

to explore this relationship in more depth in the d-dimensional case studied here.

5.4.4 Generalizations with spin

Here we make a few comments when spin enters the problem. Moving beyond scalar

fields, what algebraic properties do we expect if we have fermions, gauge fields, or other

particles with spin? Physically, each field that composes an operator O ∈ K has an
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associated momentum (continuous degree of freedom) and a polarization tensor (or spinor)

parameterizing a finite number of polarization states. Hence, the appropriate algebraic

formulation will still consist of polynomials in the sij , but will also include a finite number

of terms accounting for how the polarization tensors can be contracted amongst themselves

or with the pµi to form Lorentz invariants.

The above indicates that, for fixed field content and arbitrary numbers of derivatives,

the relevant rings involving fields with spin (whose precise description we have not yet

formulated) will be finitely generated and of the same dimension as the rings involving only

scalar fields. In particular, the MG
n,I describe kinematics of the momenta — universal to all

operators — so that the primary and secondary invariants of MG
n,I will still appear and the

primary invariants {θ1, . . . , θm} can serve as a HSOP in this case as well. However, the rings

for operators composed of spinning particles in general will not be free as C[θ1, . . . , θm]-

modules, i.e. they will not be Cohen-Macaulay. This happens because Gram conditions

now involve the polarization tensors in addition to the momenta. In keeping with our

theme, these properties are reflected in the Hilbert series — see section 6 for examples.

Although this paper is focused on operators belonging to the operator basis K, which

are necessarily Lorentz scalars, a natural generalization (for example, in studying operator

content of free CFTs) is to look at operators carrying spin. The Hilbert series formula

eq. (4.37) is trivially generalized to count primary operators in the free theory of a given

spin. What about explicit construction of these operators? Let MG
n,I,l denote the set of

elements in C[pµ1 , . . . , p
µ
n]/〈{p2

i },
∑

i p
µ
i 〉 which transform as the l = (l1, . . . , lb d

2
c) represen-

tation of (S)O(d). Note that the spin does not change when we multiply a polynomial

f ∈ MG
n,I,l by an (S)O(d) invariant polynomial. Moreover, dim(MG

n,I,l) = dim(MG
n,I). We

thus see that the MG
n,I,l are finitely generated modules over MG

n,I (but, in general, not free,

and hence not CM) [70]. In particular, any HSOP for MG
n,I will also be a HSOP for MG

n,I,l.

While scalar fields may seem like a special case in field theory, the fact is that the

operator bases for scalar fields is actually encoding the kinematics of momenta. For this

broad reason, and more pointed ones hinted at above, understanding the rings MG
n,I is

essential for understanding operator spectra in more general cases.

5.5 Conformal primaries and elements of MG
n,K

Recall from section 2 that the single particle module for scalars, Rφ, is an irrep of the

conformal group. This leads to the fact that the operator basis K is spanned by scalar

conformal primaries appearing in the tensor products of Rφ (equivalently, in the OPE of

φ(x)). How does this connect with the momentum space picture in terms of the rings MG
n,K?

By construction, elements of MG
n,K correspond to operators which are not total deriva-

tives. However, this does not mean they directly correspond to conformal primaries; that

is, an element f ∈ MG
n,K may not transform as a conformal primary when acted upon

by the generator for special conformal transformations, Kµf . As a quotient ring, MG
n,K

consists of equivalence classes, and in this way any representative element f ∈ MG
n,K is in

an equivalence class containing a conformal primary.

If one wants explicit conformal primaries, one option is to construct Kµ in momen-

tum space and then enforce the correct transformation behavior. An equivalent option is
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to construct the conformal Casimir in momentum space and find polynomials which are

eigenstates of this operator. See [34] for related discussions.

A related point is the question of endowing an inner product on MG
n,K. There is

a natural inner product inherited from field theory, namely the two-point function. With

this we can orthogonalize the elements of MG
n,K since the free scalar field theory is conformal

so that primary operators obey 〈Oi(x)Oj(y)〉 ∼ δij/ |x− y|∆i+∆j . Note that elements of

different degrees in MG
n,K — regardless of whether they are actually primary or not —

are automatically orthogonal under the inner product since they are eigenvectors of the

dilatation operator with different eigenvalues.

5.6 Algorithms for operator construction and the n = 5 basis

In this section we explain a simple algorithm for explicitly constructing elements of the

operator basis with the goal of determining a set of primary and secondary invariants. We

then apply this algorithm to the case of n = 5 identical scalars in d ≥ 4 dimensions, i.e. for

M
(S)O(d≥4)×S5

5,K , determining the relevant symmetrized Mandelstam variables appropriate

for 5-point amplitudes.

We are unaware of an explicit construction of these variables in the physics literature,30

and note that such a set could be of technical use, for example, to investigate the generaliza-

tion of [10] beyond 4-point correlation functions. In the math literature, the invariant ring

C[V(3,2)]
S5
(

= M
(S)O(d≥4)×S5

5,K
)

was solved in [73]. Beyond n > 5 we are unaware of an exist-

ing solution. In these cases, algorithmic approaches [64, 66] appear to be the most straight-

forward line of attack. Freely available computer programs, like Singular [74, 75] and

Macaulay2 [76] have dedicated packages for these problems; see the end of this subsection

for an example using Singular. The algorithm we outline is lower-level, although it benefits

from its conceptual simplicity and flexibility to handle the varying cases of interest to us.

For concreteness, we take I = K and G = O(d) × Sn and work with M
O(d)×Sn
n,K . As

representations of Sn the sij decompose into V(n) ⊕ V(n−1,1) ⊕ V(n−2,2) with the basis for

V(n)⊕V(n−1,1) given by Xi =
∑

j 6=i sij and a basis x1, . . . , xm, m = n(n− 3)/2, for V(n−2,2)

given by the orthogonal linear combinations of sij . We can take this basis to coincide with

the usual one built from tabloids of the standard tableaux (e.g. [77]),

i j · · ·
k l

→ sij − sil − sjk + skl. (5.42)

Fixing an order ~s = (s12, s13, . . . , s1n, s23, . . . , sn−1n) and letting S denote the change of

basis matrix we have, for example, at n = 4

(
X

x

)
= S~s →




X1

X2

X3

X4

x1

x2




=




1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1 0 −1 −1 0 1

0 1 −1 −1 1 0







s12

s13

s14

s23

s24

s34



. (5.43)

30After posting a preprint of this paper we became aware of [71], which addresses kinematics (in the

absence of Gram conditions) with similar tools as presented here. See also [72].
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For an element σ ∈ Sn, we obtain the representation matrices ρ(σ) as

Sρsij (σ)S−1 =

(
ρ(n)⊕(n−1,1)(σ) 0

0 ρ(n−2,2)(σ)

)
. (5.44)

In terms of the coordinates x1, . . . , xm we have

M
O(d)×Sn
n,K =

[
C[x1, . . . , xm]

/
〈∆(xa)〉

]Sn
, (5.45)

where the Xi have been removed by momentum conservation and the Gram conditions are

expressed in terms of the xa.

We first outline how to determine a basis for elements of fixed degree in M
O(d)×Sn
n,K .

At a fixed degree k, this is done by first symmetrizing over the degree k elements of

C[x1, . . . , xm]. This produces an overcomplete basis for degree k elements of M
O(d)×Sn
n,K . If

n ≤ d + 1, one can find the linearly independent elements by numerically evaluating the

elements on enough randomly chosen points (x1, . . . , xm) ∈ Rm. If n > d + 1 we account

for Gram conditions by instead picking random values for pµ1 , . . . , p
µ
n and then evaluate the

xa as functions of the pµi per eq. (5.42).

Now let’s explain in more detail. For simplicity, we set deg(sij) = deg(xa) = 1. First,

one computes the Hilbert series and brings it to the form as in eq. (5.33) to reflect the

degrees of a set of primary and secondary invariants,

H
O(d)×Sn
n,K (t) =

∑s
j t
ej

∏m
i=1(1− tdi) =

∑

k=0

ckt
k. (5.46)

The Taylor expansion tells us that there are ck independent degree k elements in the ring.

Let ∗ denote the Reynolds operator which symmetrizes a polynomial:

f(x) 7→ f∗(x) =
1

n!

∑

σ∈Sn

f
(
ρ(n−2,2)(σ)x

)
. (5.47)

At a fixed degree k, C[x1, . . . , xm] is spanned by the monomials xα ≡ xα1
1 . . . xαmm with

|α| = α1 + · · ·+αm = k. Let A(k) denote the set of polynomials obtained by symmetrizing

the monomials. Since we are symmetrizing, we can restrict α to be in the set of partitions

of k into at most m parts,

A(k) =
{

(xα)∗ | α1 ≥ · · · ≥ αm ≥ 0, |α| = k
}
. (5.48)

The set A(k) is an overcomplete span of the degree k elements in C[x1, . . . , xm]Sn . To

find a set of linear independent elements in A(k) is just a linear algebra problem. A simple

method is to evaluate the elements numerically on (at least) ck random points. If there

are no Gram constraints (n ≤ d + 1 ⇔ the ideal 〈{∆}〉 is trivial) then these can be ck
random points (x1, . . . , xm) ∈ Rm. When {∆} is non-trivial (n > d+ 1), one instead picks

ck random values for the momenta pµ1 , . . . , p
µ
n subject to p2

i and
∑

i p
µ
i = 0. This in turn

provides ck points (x1, . . . , xm) via eq (5.42) and sij = pi ·pj . By working directly with the

momenta, finite rank conditions are automatically accounted for. Following this procedure,
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we let B(k) denote a set of degree k, linearly independent elements which span the degree

k elements in M
O(d)×Sn
n,K . Note

∣∣B(k)
∣∣ = ck with the ck given in eq. (5.46).

To determine primary and secondary invariants, we go degree-by-degree. Let kmin be

the lowest degree for which B(k) is non-empty. The Hilbert series will indicate how many

elements in B(kmin) should be considered primary invariants and how many secondary, and

one then splits up the elements of B(kmin) accordingly. We then increment the degree and

repeat. At degree k, the Hilbert series may indicate that B(k) contains new primary and/or

secondary invariants: one identifies these by finding the elements of B(k) which are linearly

independent from degree k polynomials built from already identified primary and secondary

invariants (see below for an example). The Hilbert series provides much information on

where to look for primary and secondary invariants. Finally, one needs to make sure that

a candidate set of primary invariants is algebraically independent. This is easily done by

computing the Jacobian determinant, which is non-vanishing if and only if the polynomials

are algebraically independent. This algorithm terminates when the Hilbert series indicates

no further primary or secondary invariants remain.

5.6.1 The n = 5 operator basis

We now use the above algorithm to obtain the operator basis for n = 5 identical scalars

in d ≥ 4 dimensions, i.e. find a set of primary and secondary invariants for M
(S)O(d≥4)×S5

5,K .

This ring is isomorphic to the invariant ring C[x1, . . . , x5]S5 where the xi are a basis for

the S5 representation V(3,2), eq. (5.42).31

The Hilbert series is readily calculated as

H
(S)O(d≥4)×S5

5,K =
1 + t6 + t7 + t8 + t9 + t15

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)
(deg(sij) = 1) (5.50a)

= 1 + t2 + t3 + 2t4 + 2t5 + 5t6 + 4t7 + 8t8 + 9t9 + 13t10 + . . . , (5.50b)

where, for simplicity, we set deg(sij) = deg(xa) = 1 (send t → t2 to obtain our con-

ventional grading deg(sij) = 2). The Hilbert series indicates that a minimal set of gen-

erators consists of five primary invariants {θ2, θ3, θ4, θ5, θ6} and six secondary invariants

{η0, η6, η7, η8, η9, η15} where the subscript indicates the degree. The degree-zero secondary

is just the trivial element, η0 = 1. We note in passing the palindromic nature of the

numerator, which indicates the ring is Gorenstein.

31Explicitly, the change of basis is

X1

X2

X3

X4

X5

x1

x2

x3

x4

x5


=



1 1 1 1 −1 −1 −1 −1

1 −1 1 1 1

−1 1 1 1 1

1 1 1 1

1 1 1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1





s12

s13

s14

s15

s23

s24

s25

s34

s35

s45


. (5.49)
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Eq. (5.50b) indicates there are no degree one elements. Indeed, all degree one elements

of C[x1, . . . , x5] vanish under symmetrization, e.g. (x1)∗ = 1
5!

∑
σ∈S5

ρ(3,2)(σ)x1 = 0.

The degree two elements of C[x1, . . . , x5] are spanned by the monomials xaxb; we

symmetrize over these to obtain elements of C[x1, . . . , x5]S5 . We only need to symmetrize

over x2
1 and x1x2, so that the set in eq. (5.48) is

A(2) = {(x2
1)∗, (x1x2)∗},

where the symmetrization gives32

(x2
1)∗ = (x1x2)∗ = 3x2

1 − 2x1x2 + 3x2
2 − 2x1x3 − 2x2x3 + 3x2

3 − 2x1x4

− 2x2x4 + 2x3x4 + 3x2
4 + 4x1x5 − 4x3x5 − 4x4x5 + 4x2

5. (5.51)

The linear dependence between (x2
1)∗ and (x1x2)∗ is trivial to solve and we may simply take

B(2) = {(x2
1)∗}. The Hilbert series tells us this element is a primary invariant, so we set

θ2 = (x2
1)∗. (5.52)

We note that θ2, as given in eq. (5.51), is precisely what is obtained by taking

s2
12 + s2

13 + · · ·+ s2
45 and converting the sij → (Xi, xa) (using eq. (5.49)) and setting Xi = 0.

At degree three we consider A(3) = {(x3
1)∗, (x2

1x2)∗, (x1x2x3)∗}. The first two elements

vanish; the last one does not and we can take it to be the primary invariant θ3,

θ3 = (x1x2x3)∗ = x3
1 − x2

1x2 − x1x
2
2 + x3

2 − x2
1x3 + 4x1x2x3 − x2

2x3 − x1x
2
3 − x2x

2
3

+ x3
3 − x2

1x4 + 2x1x2x4 − x2
2x4 − x1x3x4 − x2x3x4 + x2

3x4 − x1x
2
4

− x2x
2
4 + x3x

2
4 + x3

4 + 2x2
1x5 − 3x1x2x5 + 3x2x3x5 − 2x2

3x5 + 2x1x4x5

+ x2x4x5 − 2x3x4x5 − 2x2
4x5 − x2x

2
5 + 2x4x

2
5 (5.53)

This is precisely what is obtained by taking s3
12+· · ·+s3

45 and using eq. (5.49), setting Xi=0.

At degree four A(4) = {(x4
1)∗, (x3

1x2)∗, (x2
1x

2
2)∗, (x2

1x2x3)∗, (x1x2x3x4)∗}. By direct

calculation, the first four elements are equal to each other; therefore, we can take

B(4) = {(x4
1)∗, (x1x2x3x4)∗}. The Hilbert series indicates there is a new primary invari-

ant at degree four, while the other degree four element comes from θ2
2. Therefore there

must be some linear combination such that a1(x4
1)∗ + a2(x1x2x3x4)∗ = θ2

2.

Let us use the numerical evaluation described above to find the relationship between

θ2
2 and the elements of B(4) (although the relationship is not hard to find by hand in this

case). Since
∣∣B(4)

∣∣ = 2, we need two random points x(i) ≡ (x
(i)
1 , . . . , x

(i)
5 ) ∈ R5, i = 1, 2, to

evaluate the polynomials on:

RowReduce

[(
(x4

1)∗
∣∣
x(1) (x1x2x3x4)∗|x(1) θ2

2

∣∣
x(1)

(x4
1)∗
∣∣
x(2) (x1x2x3x4)∗|x(2) θ2

2

∣∣
x(2)

)]
=

(
1 0 3

0 1 2

)
.

32Throughout this section, we take the symmetrization operation up to a constant. We choose to

normalize f∗ so that all terms in f∗ have the smallest possible integer coefficients, e.g. if (x2
1)∗ =

1
5!

∑
σ∈S5

(ρ(3,2)(σ)x1)2 = 2
15

(3x2
1 + . . . ) we drop the 2

15
factor and take (x2

1)∗ = 3x2
1 + . . .. In particu-

lar, equalities like eqs. (5.51) or (5.6.1) should be understood under this convention.
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The relationship lies in the kernel of this matrix,

NullSpace

[(
1 0 3

0 1 2

)]
=
(

3 2 −1
)
⇒ 0 = 3(x4

1)∗ + 2(x1x2x3x4)∗ − θ2
2.

(We have cast the above equations as Mathematica commands.) We then choose some

other linear combination to serve as the primary invariant θ4, e.g.

θ4 ≡ 5(x4
1)∗ − 2(x1x2x3x4)∗. (5.54)

(This is the linear combination that comes from converting s4
12 + · · ·+s4

45 into a polynomial

in the xa.)

This algorithm proceeds in a straightforward manner. We make a few final comments

Primary invariants. Per the discussion around eq. (5.39b), the primary invariants can

be chosen to be the polynomials si12 + · · ·+ si45, i = 2, . . . , 6. This will always be true

when there are no Gram conditions to consider. Of course, the above algorithm can

always be used. For example, we found a different degree six invariant that has a

more compact form (in terms of the xa).

(
x1x3x4 − x2x3x4 − x1x2x5 + x2x3x5 + x2x4x5 − x2x

2
5

)2
.

(We found this by noting the degree three polynomial in parentheses is invariant

under the alternating group A5 but odd under S5, so that its square is invariant

under S5.) Expanding s6
12 + · · ·+ s6

45 into x1, . . . , x5 results in an expression over half

a page long, so the above is quite a simplification.

Algebraic independence. One needs to ensure that the candidate primary invariants are

algebraically independent, e.g. by checking the rank of the Jacobian matrix. Another

option is to run an elimination routine using, for example, Gröbner bases.

Secondary invariants. There are six secondaries {η0 = 1, η6, η7, η8, η9, η15}. It turns

out we can take η15 = η6η9 or η7η8, so a set of irreducible secondary invariants

can be given by {η6, η7, η8, η9}. The expressions for the secondary invariants are,

unfortunately, too long to include in this paper.

Computer packages. The software Singular contains algorithms devoted to describing

invariant rings [74, 75]. With a few lines of input, it returns a set of primary and

secondary invariants:

>LIB ‘‘finvar.lib’’;

>ring R=0,(x1,x2,x3,x4,x5),dp;

>matrix A[5][5] = ... (input matrices which generate the group, e.g. A,B,C,D

corresponding to the permutations (12), (23), (34), (45))

>matrix P,S,IS = invariant ring (A,B,C,D);

The output matrices P, S, and IS give a set of primary, secondary, and irreducible

secondary invariants, respectively.
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5.7 Summary

Operators O(n,k) composed of n scalar fields and k derivatives have a one-to-one corre-

spondence with homogeneous degree k polynomials F (n,k) in the momenta pµ1 , . . . , p
µ
n. This

leads to a formulation of the operator basis in terms of a polynomial ring quotiented by an

ideal to account for EOM (on-shell, p2
i = 0) and IBP (momentum conservation,

∑
i p
µ
i = 0)

redundancies. Phrased in terms of Lorentz invariants sij = pi · pj , this quotient ring is

M
O(d)×Σ
n,K =

[
C[{sij}]

/
〈X1, . . . , Xn, {∆}〉

]Σ
, (5.55)

where the sii = p2
i = 0 are removed by EOM, the Xi =

∑
j 6=i sij are the Lorentz invariant

consequences of momentum conservation, {∆} are the set of Gram conditions (vanishing

of (d+ 1)× (d+ 1) minors in sij), and Σ ⊆ Sn is a possible permutation group in the case

the particles are indistinguishable.

In the n = 4 case, we obtained explicit solutions to these rings with relative ease

in section 5.2, showing that the rings are generated by the familiar Mandelstam variables

{s, t, u} (or symmetric combinations thereof). The insight gained here provides the founda-

tion for understanding the rings at higher n, where the structure of the rings MG
n,I become

significantly more involved.

We showed that there is a precise notion of generators for the rings MG
n,I in section 5.4:

we can always find a direct sum decomposition of the rings into primary invariants and

secondary invariants,

MG
n,I =

s⊕

i=1

ηiC[θ1, . . . , θm]. (5.56)

In other words, any f ∈ MG
n,I can be expressed uniquely as a linear combination of the

secondary invariants ηi whose coefficients are polynomials in the primary invariants θj .

The kinematic nature of the rings MG
n,I imply that they are fundamental to under-

standing general operator spectra, including when operators are composed of fields with

spin. Here we expect the same primary and secondary invariants of the MG
n,I to show up,

supplemented by some additional generators physically connected to polarization tensors.

In the case of spin, however, we generally will not have a clean direct sum decomposition

like that in eq. (5.56).

The description of the operator basis in terms of quotient rings immediately lends itself

to algorithmic approaches for constructing the basis. We outlined a simple algorithm in

section 5.6, and then used this to find a set of primary and secondary invariants for the

ring M
O(d≥4)×S5

5,K .

6 Applications and examples of Hilbert series

In this section we compute the Hilbert series in several cases of interest using the matrix

integral formula derived in section 4. The case studies we examine are as follows.

In section 6.1 we detail the case of a single real scalar field in d = 4, and tabulate the

Hilbert series for the rings M
(S)O(4)×Sn
n,K of section 5 up to n = 8.
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In section 6.2 we compute a closed form expression for the Hilbert series for n dis-

tinguishable scalars in d = 2, 3 dimensions. Both the above examples highlight how the

Hilbert series reflects properties of the operator bases — such as dimensionality, primary

and secondary invariants, the role of gram conditions, etc. — as well as the marked increase

in difficulty when particles are identical.

In section 6.3 we examine the Hilbert series when the particles carry spin. The number

of tensor structures in the amplitude decomposition eq. (2.15) is encoded in the Hilbert

series. This reproduces the recent determination of these numbers [32], which were ob-

tained using a different technique. (For completeness, we re-derive the results of [32] in

appendix F.)

In section 6.4 we examine the number of operators as a function of mass dimension

as we turn on various constraints. The main (and, perhaps at first, surprising) result is

that EOM and IBP redundancies give a polynomial suppression in the total number of

operators, while Gram conditions give an exponential suppression.

6.1 Hilbert series for a real scalar field in d = 4

We work in d = 4 dimensions with the EFT of a single real scalar field and compute the

Hilbert series for fixed powers of φ and arbitrary numbers of derivatives. This corresponds

to computing the Hilbert series for the rings M
(S)O(4)×Sn
n,K discussed in section 5. Although

the computation is straightforward, the permutation symmetry makes it somewhat difficult;

operationally, the plethystic exponential accounts for this symmetry in the integrand, but

leads to more complicated contour integrals (compare to the next subsection).

We first discuss the SO(4) case, and subsequently include parity. As in section 5, we

use the momentum weighting scheme eq. (4.38). In this scheme, eq. (4.37) takes the form

H(φ, t) =

∫
dµSO(4)

1

P (t;x)
PE
[
φ(1− t2)P (t;x)

]
+ ∆H, (6.1)

with

P (t;x) =
1

(1− tx1)(1− t/x1)(1− tx2)(1− t/x2)
,

the measure given by (see eq. (B.16))

dµSO(4) =
1

4

dx1

2πix1

dx2

2πix2

(
1− x1x2

)(
1− 1

x1x2

)(
1− x1

x2

)(
1− x2

x1

)
,

and, as per eq. (4.14),

∆H = −t4 + φt2,

i.e. ∆H only contributes to the φ0 and φ1 terms in H(φ, t). The basic idea to enumerate

all terms for a fixed power of φ is to expand the plethystic exponential to order φn and

then evaluate the SO(4) contour integrals using the residue theorem.
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As a concrete example, take n = 4.33 Expanding PE
[
φ(1− t2)P (t;x)

]
to O(φ4) gives

the fourth symmetric product of the argument of the plethystic exponential,

sym4[f(z)] =
1

4!

[
f(z)4 + 6f(z)2f(z2) + 3f(z2)2 + 8f(z)f(z3) + 6f(z4)

]
, (6.2)

where in place of f(z) we use φ(1− t2)P (t;x); e.g. the f(z4) term corresponds to

φ4(1− t8)P (t4;x4) = φ4 (1− t8)x4
1x

4
2

(1− t4x4
1)(x4

1 − t4)(1− t4x4
2)(x4

2 − t4)
.

These factors are then inserted into eq. (6.1) and the contour integrals, taken around

|xi| = 1, are evaluated using the residue theorem recalling that |t| < 1.

Carrying out the above procedure, we obtain

H(φ, t)|φ4 = φ4 1

(1− t4)(1− t6)
= φ4(1 + t4 + t6 + t10 + 2t12 + . . . ) , (6.3)

in agreement with eq. (5.22b) (recall that SO(4) and O(4) give the same result for n = 4).

In the expansion above we can begin to read off the operators in the basis. For example,

the φ4, φ4t4, and φ4t6 terms respectively correspond to the representative operators φ4,

[(∂µφ)2]2, and (∂{µ∂ν}φ)2(∂σφ)2. They have momentum space Feynman rules 1, st+su+tu,

and stu (up to s+t+u = 0) — i.e. they are the first three elements of the ring in eq. (5.22a).

For the O(4) case we also need to include parity (see section 4.3 and appendix C).

Under parity, we assume φ is scalar in the strict sense, namely not a pseudo-scalar. The

Hilbert series is

HO(4)(φ, t) =
1

2
(H+(φ, t) +H−(φ, t)) , (6.4)

where H+ is the parity even contribution given in eq. (6.1). H− takes the form (eq. (4.30)

in the momentum weighting scheme)

H−(φ, t) =

∫
dµSp(2)

1− t2
P (2)(t;x)

PE

[
φP (2)(t;x) + φ2 t2

1− t2P
(2)(t2;x2)

]
+ ∆H−, (6.5)

with

P (2)(t, x) =
1

(1− tx)(1− t/x)
, dµSp(2) =

1

2

dx

2πix

(
1− x2

)(
1− 1

x2

)
, ∆H− = t4 + φt2.

It is straightforward to check that H−|φn = H+|φn for n ≤ 4, so that in the average eq. (6.4)

we obtain the expected result HO(4)|φn = HSO(4)|φn for n ≤ 4.

For n > 4 the Hilbert series becomes increasingly more intricate. We write

H(φ, t)

∣∣∣∣
O(φn)

= φn
N (n)(t)

D(n)(t)
, (6.6)

33The n = 1, 2, and 3 cases are, of course, easier to compute. The results end up being trivial: H(φ, t)|φ =

φ, H(φ, t)|φ2 = φ2, and H(φ, t)|φ3 = φ3, which is related to the fact that the 1-, 2-, and 3-point amplitudes

are trivial in massless theories.
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for some numerator N (n)(t) and denominator D(n)(t). These functions are, of course, not

unique since one can always multiply and divide eq. (6.6) by any function of t. A useful

choice (which can always be done) is to bring the denominator to the form D =
∏m
i=1(1−tdi)

so that it reflects some set of algebraically independent generators (primary invariants) of

degree di with m the dimension of the ring.34 Since the rings under consideration are

Cohen-Macaulay, the numerator can be written as a strictly positive sum whose terms

reflect the degrees of the secondary invariants, see eq. (5.33).

Table 1 gives the Hilbert series for n = 5, 6, 7, 8 (for which a straightforward Mathe-

matica implementation of the evaluation of eqs. (6.1) and (6.5) is tractable). We leave a

detailed study of the invariants to a future work, but point out a few pieces of information

reflected in the Hilbert series.

The denominator is a product of dim(M
(S)O(4)×Sn
n,K ) = 3n − 10 (n ≥ 4) terms. In the

absence of Gram conditions, the dimension of the ring would be n(n− 3)/2 with primary

invariants of degree 4, 6, 8, . . . , n(n − 3) + 2 [64], see eq. (5.39b); the Hilbert series sheds

light on how Gram conditions cut down these invariants. Per the numerators, only N
(5)
O(4)

is palindromic, so we can conclude M
O(4)×S5

5,K is Gorenstein while the rest are not (see the

discussion around eq. (5.38); also compare to the next subsection).35

As an example of getting information on secondary invariants, we see that the Hilbert

series always contains a single parity non-invariant operator with ten derivatives (the t10

term present in the SO(4) but not O(4) Hilbert series numerators) — it corresponds to

φn−4εµνρσ(∂µφ)(∂ν∂
αφ)(∂ρ∂

β∂γφ)(∂σ∂α∂β∂γφ). As seen in the table, results for n ≥ 5

become very lengthy; the marked increase in complexity over the O(φ4) Hilbert series

reflects the increased complexity in moving beyond the simple kinematics of four-point

scattering amplitudes.

6.2 Closed form Hilbert series for n distinguishable scalars in d = 2, 3

In order to examine the interplay of EOM, IBP, and Gram conditions, it is illuminating

to omit the permutation symmetry and consider the case of distinguishable particles, i.e.

study the rings M
(S)O(d)
n,K . In this case, it is straightforward to evaluate the matrix integral

and obtain a closed form expression for the Hilbert series for arbitrary n. We will look at

d = 2 and 3 dimensions — the techniques extend in an obvious way, although massaging

the equations gets more difficult.

The integrand of the matrix integral eq. (4.37) (in the momentum weighting scheme

eq. (4.38)) contains the plethystic exponential PE[
∑

i φi(1− t2)P (t;x)]; to get the Hilbert

series for distinguishable scalars we take the term linear in each φi, namely36

H
(
M

SO(d)
n,K ; t

)
=

∫
dµSO(d)

1

P (t;x)

[
(1− t2)P (t;x)

]n
. (6.7)

34The dimension of the ring is unambiguously determined from the Hilbert series as the order of the

pole as t → 1, i.e. the number of (1 − t) factors in the denominator when the Hilbert series is maximally

factorized; in the math literature this is properly called the Krull dimension.
35A similar calculation in d = 2 and 3 dimensions reveals that at n = 5 both the SO(·) and O(·) cases

are Gorenstein; at n = 6, O(2) and SO(3) are Gorenstein, while SO(2) and O(3) are not.
36Strictly speaking, we need to include the ∆H ⊃ t2

∑
i φi+t

d−2∆0
∑
i<j φiφj terms, eqs. (D.2) and (D.3),

which adds a +t2 to the n = 1 and n = 2 cases. We will not be careful to consistently denote these

exceptional cases in this subsection.
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n = 5

D =
(
1− t4

) (
1− t6

) (
1− t8

) (
1− t10

) (
1− t12

)

NSO(4) = 1 + t10 + t12 + 2t14 + 2t16 + t18 + t22 + t24 + t28 + t30

NO(4) = 1 + t12 + t14 + t16 + t18 + t30

n = 6

D =
(
1− t4

) (
1− t6

)2 (
1− t8

)3 (
1− t10

) (
1− t12

)

NSO(4) = 1 + 3t10 + 6t12 + 11t14 + 17t16 + 22t18 + 31t20 + 36t22 + 48t24 + 53t26 + 58t28 + 58t30 + 48t32 + 38t34 + 23t36

+14t38 + 6t40 + 4t42 + 2t44 + t46

NO(4) = 1 + 2t10 + 5t12 + 7t14 + 9t16 + 11t18 + 13t20 + 14t22 + 21t24 + 24t26 + 28t28 + 32t30 + 26t32 + 22t34 + 13t36

+7t38 + 3t40 + t42 + t44

n = 7

D =
(
1− t4

) (
1− t6

)2 (
1− t8

)3 (
1− t10

) (
1− t12

) (
1− t14

) (
1− t20

) (
1− t24

)

NSO(4) = 1 + 5t10 + 14t12 + 29t14 + 68t16 + 131t18 + 254t20 + 464t22 + 820t24 + 1332t26 + 2115t28 + 3136t30 + 4485t32

+6134t34 + 8108t36 + 10309t38 + 12778t40 + 15297t42 + 17841t44 + 20258t46 + 22387t48 + 24111t50 + 25356t52

+25974t54 + 25975t56 + 25389t58 + 24151t60 + 22454t62 + 20336t64 + 17933t66 + 15385t68 + 12855t70 + 10365t72

+8140t74 + 6150t76 + 4479t78 + 3130t80 + 2096t82 + 1317t84 + 798t86 + 442t88 + 229t90 + 109t92 + 44t94 + 13t96 + 3t98

NO(4) = 1 + 4t10 + 11t12 + 19t14 + 41t16 + 73t18 + 134t20 + 237t22 + 413t24 + 664t26 + 1052t28 + 1563t30 + 2231t32 + 3055t34

+4039t36 + 5136t38 + 6372t40 + 7637t42 + 8909t44 + 10125t46 + 11193t48 + 12058t50 + 12687t52 + 13000t54 + 13005t56

+12711t58 + 12095t60 + 11240t62 + 10178t64 + 8975t66 + 7696t68 + 6429t70 + 5184t72 + 4064t74 + 3068t76 + 2232t78

+1555t80 + 1043t82 + 654t84 + 396t86 + 220t88 + 114t90 + 55t92 + 23t94 + 7t96 + 2t98

n = 8

D =
(
1− t4

) (
1− t6

)2 (
1− t8

)4 (
1− t10

) (
1− t12

) (
1− t14

) (
1− t16

) (
1− t20

) (
1− t24

) (
1− t30

)

NSO(4) = 1 + 7t10 + 20t12 + 49t14 + 134t16 + 319t18 + 775t20 + 1741t22 + 3743t24 + 7525t26 + 14516t28 + 26494t30 + 46454t32

+78002t34 + 126172t36 + 196794t38 + 297183t40 + 434786t42 + 618293t44 + 855582t46 + 1154256t48 + 1520246t50

+1957689t52 + 2467159t54 + 3046857t56 + 3690302t58 + 4387179t60 + 5123633t62 + 5881714t64 + 6640351t66

+7377142t68 + 8067728t70 + 8688015t72 + 9216173t74 + 9631884t76 + 9919148t78 + 10067172t80 + 10069631t82

+9926275t84 + 9643336t86 + 9231191t88 + 8705813t90 + 8087214t92 + 7397387t94 + 6660141t96 + 5900232t98

+5139908t100 + 4400687t102 + 3700557t104 + 3053776t106 + 2470701t108 + 1958189t110 + 1518091t112 + 1149962t114

+849837t116 + 611610t118 + 427825t120 + 290332t122 + 190531t124 + 120626t126 + 73466t128 + 42807t130 + 23806t132

+12559t134 + 6229t136 + 2886t138 + 1246t140 + 476t142 + 171t144 + 50t146 + 12t148 + 2t150

NO(4) = 1 + 6t10 + 17t12 + 35t14 + 84t16 + 184t18 + 419t20 + 911t22 + 1924t24 + 3816t26 + 7309t28 + 13298t30 + 23251t32

+39007t34 + 63068t36 + 98330t38 + 148496t40 + 217271t42 + 308982t44 + 427618t46 + 576946t48 + 759929t50

+978683t52 + 1233454t54 + 1523340t56 + 1845114t58 + 2193616t60 + 2561887t62 + 2940999t64 + 3320380t66

+3688794t68 + 4034121t70 + 4344269t72 + 4608338t74 + 4816179t76 + 4959773t78 + 5033731t80 + 5034902t82

+4963167t84 + 4821641t86 + 4615506t88 + 4352773t90 + 4043446t92 + 3698498t94 + 3329885t96 + 2949931t98

+2569776t100 + 2200207t102 + 1850175t104 + 1526820t106 + 1235322t108 + 979101t110 + 759067t112 + 575035t114

+424988t116 + 305868t118 + 213980t120 + 145221t122 + 95301t124 + 60345t126 + 36750t128 + 21406t130 + 11906t132

+6274t134 + 3110t136 + 1441t138 + 620t140 + 237t142 + 86t144 + 26t146 + 7t148 + 2t150

Table 1. Hilbert series of the form N/D (see eq. (6.6)) at fixed order φn, and to all-orders in the

power of derivatives. Results are for both SO(4) and O(4) spacetime groups.
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In two dimensions the above takes the form

H
SO(2)
n,K = (1− t2)n

∮
dx

2πix

[
1

(1− tx)(1− t/x)

]n−1

, (6.8)

namely it has a pole of order n− 1 at x = t. Define

fk,l(x, t) ≡
xk

(1− tx)l
, (6.9)

and let f
(m)
k,l denote the mth derivative with respect to x. Then, by the residue theorem,

the above integral is equal to
∮

dx

2πi
fn−2,n−1

1

(x− t)n−1
=

1

(n− 2)!
f

(n−2)
n−2,n−1

∣∣∣
x=t

. (6.10)

To evaluate f
(m)
k,l , note that the first derivative is given by

∂

∂x
fk,l = k fk−1,l+1 + (l − k) t fk,l+1. (6.11)

Making use of this recursively, one readily finds

1

m!
f

(m)
k,l =

m∑

i=0

(
k

m− i

)(
l − k +m− 1

i

)
ti fk−m+i,l+m, (6.12)

with
(
a
b

)
denoting a binomial coefficient.

With this, the Hilbert series in eq. (6.8) is

H
SO(2)
n,K =

1

(1− t2)n−3

n−2∑

i=0

(
n− 2

i

)2

t2i. (6.13)

The denominator reflects the dimensionality of the ring and indicates the anticipated result

that some choice of n(d − 1) − d(d + 1)/2 = n − 3 (see eq. (5.14)) linear combinations of

the sij serve as primary invariants. The reflection property of the binomial coefficient tells

us that the numerator is palindromic; in fact, we see Pascal’s triangle:

n = 3 : 1 + t2

n = 4 : 1 + 4t2 + t4

n = 5 : 1 + 9t2 + 9t4 + t6

n = 6 : 1 + 16t2 + 36t4 + 16t6 + t8

n = 7 : 1 + 25t2 + 100t4 + 100t6 + 25t8 + t10

(6.14)

The total number of secondary invariants is given by
∑n−2

i=0

(
n−2
i

)2
=
(

2(n−2)
n−2

)
.

We can include parity and work out the O(2) case. While this follows from the machin-

ery worked out in appendix C, it is easiest to recognize P = 1/det�(1− tg) and use the fact

that on the parity odd component g is conjugate to
(

1
−1

)
so P (g−) = 1/(1− t2); hence,

H
O(2)
n,K =

1

2

[
H

SO(2)
n,K + (1− t2)

]
.
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Using the binomial expansion (1 − t2)n−2 =
∑

i=0

(
n−2
i

)
(−t2)i we have

H
O(2)
n,K =

1

(1− t2)n−3

n−2∑

i=0

1

2

(
n− 2

i

)[(
n− 2

i

)
+ (−1)i

]
t2i. (6.15)

The first few numerators are (they are palindromic for even n)

n = 3 : 1

n = 4 : 1 + t2 + t4

n = 5 : 1 + 3t2 + 6t4

n = 6 : 1 + 6t2 + 21t4 + 6t6 + t8

n = 7 : 1 + 10t2 + 55t4 + 45t6 + 15t8

(6.16)

The total number of secondary invariants is 1
2

(
2(n−2)
n−2

)
, i.e. half of the secondary invariants

in the SO(2) ring are parity invariant, while the other half are parity odd (implying they

are proportional to the ε-tensor).

In two dimensions, the Gram constraints are the vanishing of the 3 × 3 minors of sij .

They reduce the dimensionality of the ring from n(n− 3)/2 to n− 3, i.e. (n− 2)(n− 3)/2

primary invariants are removed due to the Gram conditions. However, since the Gram

constraints are O(s3
ij), these primary invariants are not completely removed from the ring

— they should still be present in some ways as secondary invariants. Indeed, the t2 term

in the sum in eq. (6.15) is equal to
(
n−2

2

)
; moreover, the t4 term is equal to

((n−2
2 )+1

2

)
,

as we can use each of these terms twice without hitting a Gram constraint. The Gram

constraints kick in at O(t6) in the numerator, making it more difficult to unravel what is

going on.

The same basic technique — making use of eq. (6.12) — gives a straightforward way

to evaluate eq. (6.7) in higher dimensions. Let us work out the d = 3 case. Using the

SO(3) measure in eq. (B.17), the Hilbert series is given by

H
SO(3)
n,K = (1− t2)n

∮
dx

2πix
(1− x)

[
1

(1− tx)(1− t)(1− t/x)

]n−1

=
(1− t2)n

(1− t)n−1

∮
dx

2πi

[
fn−2,n−1

1

(x− t)n−1
− fn−1,n−1

1

(x− t)n−1

]
. (6.17)

Making use of the residue theorem and eq. (6.12), one readily finds

H
SO(3)
n,K =

1

(1− t2)2n−6

(1 + t)n−3

(1− t)2

n−2∑

i=0

[(
n− 2

i

)2

− t
(
n− 1

i+ 1

)(
n− 3

i

)]
t2i. (6.18)

We stripped off the factor (1− t2)−(2n−6), which corresponds to the dimension of the ring,

eq. (5.14). The polynomial in the sum vanishes at t = 1, as does its first derivative; this indi-

cates that we can factor a (1−t)2 term out of this sum. After some manipulation we obtain,

H
SO(3)
n,K =

N
SO(3)
n,K (t)

(1− t2)2n−6
, (6.19)
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where the polynomial in the numerator is

N
SO(3)
n,K (t) ≡ (1 + t)n−3

n−3∑

i=0

[(
n− 3

i

)2

− t
(
n− 3

i+ 1

)(
n− 3

i

)]
t2i . (6.20)

The first few terms for the numerator are

n = 3 : 1

n = 4 : 1 + t3

n = 5 : 1 + t2 + 4t3 + t4 + t6

n = 6 : 1 + 3t2 + 10t3 + 6t4 + 6t5 + 10t6 + 3t7 + t9

n = 7 : 1 + 6t2 + 20t3 + 21t4 + 36t5 + 56t6 + 36t7 + 21t8 + 20t9 + 6t10 + t12

(6.21)

We see that the numerators are palindromic, indicating these rings are Gorenstein. The

total number of secondary invariants is proportional to the Catalan number Cn−3,37

N
SO(3)
n,K (t→ 1) = 2n−3

[(
2(n− 3)

n− 3

)
−
(

2(n− 3)

n− 2

)]
= 2n−3Cn−3. (6.22)

In the case of O(3), the parity odd piece of the Hilbert series is obtained simply by

sending t→ −t in SO(3) Hilbert series (see section 4.3). That is,

H
O(3)
n,K (t) =

1

2

(
H

SO(3)
n,K (t) +H

SO(3)
n,K (−t)

)
. (6.23)

We note that the numerators are palindromic for n-odd.

6.3 Hilbert series for spinning particles

Consider an n-point amplitude involving particles with spin. As discussed in section 2 —

see eq. (2.15) — the amplitude can be decomposed into a finite number of tensor structures

(which depend on the polarization tensors) multiplying scalar functions of the Mandelstam

invariants. In this helicity amplitude decomposition [54] there is a tensor structure for each

independent helicity configuration.38

In this section we explore how the Hilbert series reflects this amplitude decomposition.

Recently, [32] developed a general procedure for counting these tensor structures. We will

show how the Hilbert series also computes this number, as well as provides information

about the underlying algebra, in connection with section 5.4.4. The authors of [32] obtain

their results primarily in the language of decomposing conformal correlation functions (the

correspondence is between CFTd−1 and QFTd [10, 26–28, 32]); to aid in accessibility, in

appendix F we re-derive the results of [32] from the scattering viewpoint.

We ask what operators belong to the operator basis K for a fixed number n of fields

Φ1, . . . ,Φn (possibly with spin, possibly identical, etc.) and arbitrary numbers of deriva-

tives. Let HG
spin(t) be the Hilbert series for this set, i.e. HG

spin(t) =
∑

k ckt
k where ck is

37Cm = 1
m+1

(
2m
m

)
=
(

2m
m

)
−
(

2m
m+1

)
. The appearance of the Catalan numbers appears common in any

dimensionality: in d = 2 we found above
(

2(n−2)
n−2

)
= (n− 1)Cn−2, while in d = 4 one finds Cn−3Cn−4.

38For our purposes, the word “helicity” refers to the spin states under the relevant little group, SO(d−1)

for massive particles or SO(d− 2) for massless particles.
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Hilbert series for n = 4 gauge fields in d = 4, 5

G G Numerator G # tensor

SO(4) 4(3 + t2) 16

O(4) 2(3 + t2) 8

SO(5) 6 + 9t+ 4t2 19

O(5) 6 + 4t2 10

SO(4)× S4 3 + 5t2 + t4 − 2t6 7

O(4)× S4 2 + 3t2 + t4 − t6 5

SO(5)× S4 2 + 3t2 + 2t4 7

O(5)× S4 2 + 3t2 + 2t4 7

Table 2. Hilbert series for n = 4 gauge fields in d = 4, 5 dimensions. The top half of the table is

for distinguishable gauge fields; the bottom identical (accounts for S4 permutations). The second

column lists the numerators of the Hilbert series; the denominators are given by (1 − t2)2 and

(1 − t4)(1 − t6) for the distinguishable and identical cases, respectively. The last column lists the

number of tensor structures in the 4-point amplitude for gauge fields, see eq. (6.24).

the number of independent operators schematically of the form Φ1 · · ·Φn∂
k. As usual,

G = (S)O(d) × Σ, Σ ⊆ Sn, is the symmetry group we impose invariance under. Further,

let HG
scalar(t) denote the Hilbert series corresponding to n scalar fields.

The number of tensor structures is read off by taking the ratio of spin to scalar Hilbert

series and sending t→ 1:

# tensor structures = lim
t→1

HG
spin(t)

HG
scalar(t)

(6.24)

This formula follows from the notion — discussed in section 5.4.4 — that the appropriate

algebra when spin is involved is finitely generated over the algebra for scalars.

Table 2 lists the Hilbert series for n = 4 gauge fields in d = 4, 5 dimensions, while table 3

does the same for n = 5 gauge fields. In these tables we arranged the denominators of the

Hilbert series to be equal to the denominators of the corresponding scalar Hilbert series.

In every case, the number of tensor structures agrees precisely with [32] (the corresponding

problem in CFTd−1 is for conserved currents).

As an example, take n = 4 identical photons in d = 4. The Hilbert series is39

H
SO(4)×S4

F 4 (t) =
3 + 5t2 + t4 − 2t6

(1− t4)(1− t6)
. (6.25)

The d = 4 Hilbert series for n = 4 identical scalars is 1/(1− t4)(1− t6). Hence, the number

of SO(4) tensor structures for n = 4 identical gauge fields is equal to 7,

(
3 + 5t2 + t4 − 2t6

)∣∣
t→1

= 7

39In terms of chiral fields FL,R — special to 4d — we have HF4
L

= HF4
R

= (1 + t2 − t6)/[(1− t4)(1− t6)],

HF3
L
FR

= HFLF
3
R

= t2/[(1− t4)(1− t6)], and HF2
L
F2
R

= 1/[(1− t2)(1− t4)].
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Hilbert series for n = 5 gauge fields in d = 4, 5

G G Numerator G # tensor

SO(4) 32(1 + 5t2 − 4t4) 32

O(4) 16(1 + 5t2 − 4t4) 32

SO(5) 22 + 95t+ 145t2 + 65t3 − 35t4 − 39t5 − 10t6 243

O(5) 22 + 145t2 − 35t4 − 10t6 122

SO(4)× S5 2
(
2t4 + 7t6 + 17t8 + 28t10 + 35t12 + 42t14 + 39t16 + 28t18 32

+18t20 + 4t22 − 7t24 − 8t26 − 7t28 − 7t30 − t32 + 2t34
)

O(4)× S5 2t4 + 7t6 + 17t8 + 28t10 + 35t12 + 42t14 + 39t16 + 28t18 32

+18t20 + 4t22 − 7t24 − 8t26 − 7t28 − 7t30 − t32 + 2t34

SO(5)× S5 t+ 5t3 + 4t4 + 16t5 + 16t6 + 30t7 + 36t8 + 51t9 + 63t10 + 73t11 243

+89t12 + 92t13 + 110t14 + 103t15 + 117t16 + 103t17 + 108t18

+91t19 + 88t20 + 71t21 + 59t22 + 49t23 + 32t24 + 27t25 + 13t26

+12t27 + 2t28 + 3t29 − 3t30 − 2t32 − t33

O(5)× S5 4t4 + 16t6 + 36t8 + 63t10 + 89t12 + 110t14 + 117t16 + 108t18 122

+88t20 + 59t22 + 32t24 + 13t26 + 2t28 − 3t30 − 2t32

Table 3. Same as table 2, but for n = 5 gauge fields. The denominators of the Hilbert series are

(1 − t2)5 for distinguishable fields and (1 − t4)(1 − t6)(1 − t8)(1 − t10)(1 − t12) for identical. The

corresponding HG
scalar have numerators given by SO(4) : 1 + q4; O(4), (S)O(5) : 1; (S)O(4) × S5 :

table 1; (S)O(5)×S5 : exercise for the reader. For the tensor structures, we point out that 32 = 25,

243 = 35, and 122 = (35 + 1)/2 (see text).

Note that the Hilbert series contains a negative sign in the numerator; in particular, it is

impossible to bring eq. (6.25) to a form like eq. (5.33) with a numerator of strictly positive

terms. This implies the underlying algebra is not Cohen-Macaulay.

As a second example, the O(4) × S5 Hilbert series for n = 5 identical gauge fields is

shown in table 3. The number of terms in the numerator is

(
O(4), n = 5 gauge numerator

)∣∣
t→1

= 192

The O(4) Hilbert series for n = 5 identical scalars is given in table 1; in particular, the

numerator indicates there are 6 secondary invariants. Therefore, the number of tensor

structures is equal to 192/6 = 32 = 25.

The number of tensor structures is simply the number of independent helicity am-

plitudes. Intuitively, when setting up a scattering experiment one picks a helicity state

for each external particle; therefore, the number of independent helicity configurations is

bounded by N
(n)
h,max ≡

∏n
i=1 hi, where hi is the number of possible helicity states for the

ith particle. Symmetry may relate configurations and reduce this number, as long as the

symmetry operation preserves the kinematics of the scattering configuration.

An explicit counting of the independent helicity amplitudes is straightforward to obtain

by using momentum conservation and Lorentz transformations to fix a scattering config-
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uration [32] — see appendix F where we re-derive the results of [32]. If our interest is in

low-dimensional field theories, then the most applicable result is the intuitive one:

If n > d > 4 : #tensor structures = N
(n)
h,max =

n∏

i=1

hi. (6.26)

The reason every helicity configuration is independent in this case is because we exhaust

all of the symmetry by rotating the momenta into some configuration. When n = d > 4,

parity can still act on the polarization tensors, and this will leave us with N
(n)
h,max/2 or

(N
(n)
h,max + 1)/2, for N

(n)
h,max even or odd, independent tensor structures in O(d). These

results and the other cases are explained in appendix F.

6.4 Quantifying the effects of EOM, IBP, and Gram redundancy

It is interesting to explore some basic quantification of the effects of EOM, IBP, and Gram

redundancy. For concreteness, we do this in the context of the EFT of a real scalar field.

Asymptotic behavior of the full partition function of scalar field theory is known —

for a free scalar in d-dimensions the number of all operators of mass dimension ∆ grows

exponentially at large ∆ [61],

ρ
(d)
all ops(∆) ≈ ad(∆) exp

(
βd∆

1−1/d
)
. (6.27)

One can show that the density of scalar operators, as well as scalar primaries, have the same

exponential growth but differ in the prefactor (which is a power law in ∆). This implies

that enforcing Lorentz invariance (scalar operators) and then momentum conservation

(primaries) leads to power law suppression of the overall number of operators. However,

note that enforcing finite rank conditions leads to exponential suppression: not accounting

for linear dependencies amounts to taking d→∞ in the above equation.

We can already illustrate the comparison between the polynomial suppression of EOM

and IBP with the exponential suppression of Gram constraints by explicit evaluation of the

Hilbert series up to moderately high orders. To illustrate the Gram constraints, we take two

extreme cases: d = 2 and d→∞. For the d = 2 case we evaluate the formulas we presented

above, including or omitting EOM and IBP redundancies through inclusion/omission of

the shortening of the character of the scalar field and inclusion/omission of the momentum

(1/P ) factor in the integrand. For the d→∞ we apply Molien’s formula as in [64, 78].

In order to make a reasonable comparison, we choose to work away from the canonical

scaling dimension [φ] = (d− 2)/2 and grade the Hilbert series with [φ] = 1 and [∂] = 1 for

both d = 2 and d → ∞ and evaluate up to grading dimension 80. For the d = 2 case we

do this with and without parity invariance; for the d→∞ case, both SO(d) and O(d) give

equivalent results.

The results of this are plotted in figure 2, and exhibit the expected exponential sup-

pression between the d → ∞ (red) results and the d = 2 (green (O(2)), blue (SO(2)))

results. This is in contrast with the polynomial suppression that is apparent between the

curves enforcing neither EOM or IBP (dotted), EOM only (dashed), and EOM and IBP
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Figure 2. Growth of the number of independent scalar operators with grading dimension ([φ] = 1

and [∂] = 1) in the EFT of a real scalar field, up to dimension 80. Red curves are when spacetime

rank conditions (Gram conditions) are not enforced, which is equivalent to considering spacetime

dimension d� 1; green and blue curves include these rank conditions in d = 2 dimensions, with and

without parity (O(2) and SO(2)) imposed on the operator basis, respectively. The solid curves are

after imposing both EOM and IBP redundancy; the dashed curves are after only imposing EOM;

the dotted curves are without EOM and IBP imposed.

(solid).40 We leave a more detailed analysis of the precise scaling (i.e. coefficients ad and

βd in eq. (6.27)) to future work.

7 Non-linear realizations

The formalism for computing the Hilbert series described in section 4 was based on the

assumption that the fields Φi transform linearly under the internal symmetry group G.

However, many phenomenological theories are built from a non-linear realization of G,

most famously chiral perturbation theory [79–84], in which the building blocks of the

Lagrangian transform in a more complicated way under G.

As mentioned in section 2.4, for theories of pions, scattering in the soft limit places

an additional requirement on the fields interpolating the single particle states such that

they vanish with momentum. We expect these considerations to lead directly to the sin-

gle particle module Ru in eq. (2.18). In section 7.1 we give a derivation of Ru using

40That the d = 2 dotted curve looks exponentially bigger than the dashed and solid curves is an artifact

of taking [φ] = 1 in our comparison. The canonical dimension [φ] = 0 leads to an infinity of operators at

any mass dimension; removing the (1 − φ)−1 zero mode in the Hilbert series and then using [φ] = 0 gives

d = 2 curves with the same exponential behavior and relative polynomial suppression.
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the CCWZ [37, 48] description of non-linearly realized symmetries, providing a concrete

justification for the form of this single particle module.

This module forms the starting point for building the Hilbert series; section 7.2 presents

the derivation mirroring the approach taken in section 4. We first construct the enlarged

operator space J by taking tensor products of the modules. In going from J to K, however,

we can no longer straightforwardly appeal to conformal representation theory, as in this

case Ru does not correspond to a conformal representation. Instead we use the differential

form technique described in [39] as an alternative approach to compute the Hilbert series.

We have applied our non-linear realization counting formalism to the chiral Lagrangian

under the symmetry breaking scenario of G = SU(N)L×SU(N)R broken to H = SU(N)V .

We found a smaller number of O(p6) operators compared with the results in [84]. It turns

out that there is a redundancy in the list of operators presented in [84]. We will report the

details elsewhere.

7.1 Linearly transforming building blocks

Consider a spontaneous symmetry breaking G → H ⊂ G, with Xi ∈ g/h denoting the

broken generators. We are interested in the EFT of the Goldstone bosons πi(x). In a non-

linear realization, the building block of the EFT Lagrangian is the unitary representation

matrix [37, 48]

ξ(x) = eiπ
i(x)Xi/fπ , (7.1)

and its derivatives; namely, the Lagrangian is a G-invariant polynomial of ξ, ξ−1, and their

derivatives.

As a non-linear realization, under a transformation g ∈ G, ξ is stipulated to trans-

form as

gξ = ξ′h(g, ξ), i.e. ξ → ξ′ = gξh−1(g, ξ), (7.2)

where we require h(g, ξ) ∈ H. In this section, we only consider global transformations g.

However, observe that h(g, ξ) is local, as it depends on ξ(x). To better see what polynomials

are invariant under the transformation eq. (7.2), it is helpful to define the Maurer-Cartan

form

wµ ≡ ξ−1∂µξ = uiµX
i + vaµT

a = uµ + vµ, (7.3)

with T a ∈ h denoting the unbroken generators.41 Note in particular that wµ is valued in

the Lie algebra g, with vµ ∈ h belonging to the unbroken algebra and uµ ∈ g/h in the coset

space. Following eq. (7.2), it is easy to see that the Maurer-Cartan form transforms as

wµ → hwµh
−1 + h(∂µh

−1). (7.4)

Since h(∂µh
−1) ∈ h, the components of wµ must transform as

uµ → huµh
−1, (7.5a)

vµ → hvµh
−1 + h(∂µh

−1). (7.5b)

41The typical convention includes a factor of i in the definition, wµ = −iuµ − ivµ, so that uµ and vµ are

Hermitian. Formulas that follow are easily modified to adhere to the standard convention.
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We see that uµ transforms homogeneously while the transformation of vµ is inhomogeneous,

similar to a gauge field. If we put vµ together with the derivative ∂µ, namely if we define

Dµ ≡ ∂µ + vµ,

then the transformation of Dµ is homogeneous:

Dµ → hDµh
−1.

This can be understood from a different perspective by regarding the transformation of ξ

in eq. (7.2) as a bi-linear transformation under a larger group G ×H, with G global and

H local. From this point of view, vµ is the gauge field for the local group H, and Dµ

the covariant derivative. As usual, the covariant derivative also leads to a field strength

Fµν ≡ [Dµ, Dν ] which transforms homogeneously.

Now we see that the linearly transforming building blocks of the Lagrangian are ξ, uµ,

Dµ, and Fµν , with their transformation properties under the group G×H as

ξ → gξh−1, (7.6a)

uµ → huµh
−1, (7.6b)

Dµ → hDµh
−1, (7.6c)

Fµν → hFµνh
−1. (7.6d)

Note that ξ is the only component that retains explicit dependence on g ∈ G under a

transformation. However, eq. (7.3) implies we can always trade derivatives of ξ for products

of ξ and uµ,

Dµξ = ∂µξ − ξvµ = ξuµ,

Dµξ
−1 = ∂µξ

−1 + vµξ
−1 = −uµξ−1,

i.e. ξ only enters without derivatives. Then to make invariant terms under G, we have to

form the combination ξ−1ξ. But since ξ−1ξ = 1, ξ drops out of the Lagrangian. Therefore,

we are left with the building blocks uµ, Dµ, and Fµν . Because these building blocks only

transform under H, imposing H-invariance is equivalent to the original G-invariance.

It seems that we have converted the original non-linear realization theory of the global

symmetry G into a linearly realized theory of the local group H with a “matter field”

uµ, covariant derivative Dµ, and field strength Fµν . However, a crucial feature is that —

contrary to a usual gauge theory — the gauge field vµ (and hence the field strength Fµν)

is actually not an independent degree of freedom from the field uµ. To see this, consider

the identity of the Maurer-Cartan form

∂µwν − ∂νwµ + [wµ, wν ] = 0, (7.7)

which trivially follows from ∂µ(ξ−1ξ) = 0. In terms of uµ, Dµ, and Fµν this reads

Dµuν −Dνuµ + [uµ, uν ] + Fµν = 0. (7.8)
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Recalling that

[T a, T b] ∈ h,

[T a, X i] ∈ g/h,

we clearly have Fµν ∈ h and Dµuν−Dνuµ ∈ g/h. But [uµ, uν ] could have both components:

[uµ, uν ] = [uµ, uν ]h + [uµ, uν ]g/h.

Splitting into components, eq. (7.8) reads42

Fµν = −[uµ, uν ]h, (7.9a)

Dµuν −Dνuµ = −[uµ, uν ]g/h. (7.9b)

Eq. (7.9a) shows that the field strength Fµν is fully determined by the field uµ. This

result is expected. Recall that H is considered as a local group because in the transforma-

tion eq. (7.2), h(g, ξ) is local, as it depends on ξ(x). However, this also means that while the

group H is considered as “gauged”, its local transformation parameter is not introduced

as a free parameter, but instead fully fixed by the field ξ(x). Therefore, the gauge field

should not be expected as an independent field from the “matter” field uµ.

To sum up, in a non-linear realization of the global symmetry G, all local operators

can be built from just two building blocks, uµ and the covariant derivative Dµ. These

objects transform linearly under the unbroken group H. By forming operators invariant

under the unbroken group H, we are guaranteed that these are G-invariant as well.

7.2 Computing the Hilbert series

We identified above the building blocks of operators to be the linearly transforming objects

uµ and Dµ. By virtue of eq. (7.9a), antisymmetric combinations of the covariant derivatives

can always be eliminated for polynomials in the uµ. Moreover, (7.9b) implies a similar

result for the curl of uµ. So, up to equation of motion, all operators are built from uµ and

symmetrized derivatives acting on uµ, i.e. out of uµ, D(µ1
uµ2), D(µ1

Dµ2uµ3), etc.

The equation of motion for uµ is

Dµuµ = 0, (7.10)

which can obtained from variation of the action with respect to ξ (see appendix G). Given

that the divergence and curl (eq. (7.9)) of the field uµ are constrained, we can expect its

harmonic behavior to be determined. Concretely, the EOM and eq. (7.9) imply that D2uµ

42If G/H is a symmetric space, [X,X] ∼ T ∈ h, then [uµ, uν ]g/h = 0, and this further simplifies to

Fµν = −[uµ, uν ],

Dµuν −Dνuµ = 0.

Note that the usual chiral symmetry breaking patterns are symmetric spaces.
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can always be eliminated in favor of polynomials of uµ and D{µuν}.
43 Below we will use

cohomology to address IBP redundancy; we point out here that we can discuss cohomology

with the covariant derivative D instead of the usual derivatives ∂ because D ∧ D can be

rewritten using uµ and therefore effectively be treated as zero in our analysis.

The character generating function Z(u, q, x, y) for J . The above considerations

lead us to the following single particle module

Ru =




uµ

D{µ1
uµ2}

D{µ1
Dµ2

uµ3}
...



. (7.12)

The corresponding weighted character can be constructed as follows. First consider the

block Dkuµ ≡ D{µ1
· · ·Dµk}uµ. As [uµ] = 1, this block possesses mass dimension k + 1. If

we introduce the weight variable q to keep track of the mass dimension, the appropriately

q-weighted SO(d) character of this block should be

χu,k(q, x, y) = qk+1χ(k+1,0,··· ,0)(x)χH,u(y), (7.13)

where following the notation in section 4, we have used χH,u(y) to denote the character of

uµ under the internal symmetry group H. Then, the q-weighted SO(d) character for the

full generating tower Ru can be obtained by summing over k:

χu(q, x, y) =
∞∑

k=0

χu,k(q, x, y) =
[
(1− q2)P (q;x)− 1

]
χH,u(y), (7.14)

where we have used eq. (3.17). Therefore, the generating function for the operator space

J =
⊕∞

n=0 symn(Ru) is

Z(u, q, x, y) =

∞∑

n=0

unχsymn(Ru)(q, x, y) = PE [uχu(q, x, y)] , (7.15)

where we have assigned a weight u to the field uµ.

IBP addressed by Hodge theory. The operator basis K consists of operators in J that

are (1) Lorentz scalars, (2) invariant under the unbroken group H, and (3) independent

under integration by parts. With the SO(d) character generating function Z(u, q, x, y) at

hand, the first two conditions are straightforward to impose (by integrating over SO(d)

and H). Now we explain how to address IBP redundancy by counting differential form

operators in J . This method has its footing in Hodge theory.

43The general expression is straightforward to obtain, although the final result is not very enlightening.

However, for a symmetric space it takes a simple form:

symmetric coset: D2uµ =
[
uν
[
uν , uµ

]]
. (7.11)
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IBP redundancy imposes an equivalence relation among the scalar operators in J ,

Oa0 ∼ Ob0 if Oa0 = Ob0 + ∂ · Oc1, (7.16)

where, anticipating our language, the subscript denotes that scalars are 0-forms, taken

equivalent up to the divergence of a 1-form. The wording of this equivalence relation

becomes more familiar by taking the Hodge dual.44 The dual of any 0-form is a d-form.

The dual of a scalar which is the divergence of a 1-form is an exact d-form, i.e. it is given

by the exterior derivative d acting on a (d− 1)-form. In the dual picture, the equivalence

relation (7.16) reads

Õad ∼ Õbd if Õad = Õbd + dÕcd−1, (7.17)

where ω̃d−k = ∗ωk denotes the Hodge dual. In words: two d-forms are taken equivalent if

they differ by an exact d-form. So the precise statement about IBP redundancy (formulated

in the dual picture) is that operators in the basis are closed but not exact d-forms.

To proceed, we need a little more terminology. The exterior derivative takes a k-

form to a (k + 1)-form. Hodge duality gives a natural adjoint to d: the codifferential

δ = ∗d∗ (we are ignoring minus signs in definitions), which takes a k-form to a (k − 1)-

form. Intuitively, one thinks of δ as taking a divergence, similar to the intuition that d

takes a curl. Unsurprisingly, δ2 = 0 (the double divergence of some form vanishes by

antisymmetry). If δωk = 0, then ωk is said to be co-closed. If ωk = δβk+1, in which case

δωk = 0 follows trivially, ωk is said to be co-exact.

With this language, eq. (7.16) reads Oa0 ∼ Ob0 if Oa0 = Ob0 +δOc1. Now we can formulate

the IBP redundancy in the original picture (as opposed to the dual picture): the operator

basis K consists of all 0-forms that are not co-exact. Namely, for counting we have

#
(
operators

)
= #

(
0-forms

)
−#

(
co-exact 0-forms

)
. (7.18)

Co-exact 0-forms come from 1-forms that do not vanish when acting with δ, i.e. 1-forms

that are not co-closed:

# (co-exact 0-forms) = # (1-forms) −# (co-closed 1-forms) (7.19)

= # (1-forms)−# (co-closed but not co-exact 1-forms)

−# (co-exact 1-forms) . (7.20)

We can iterate the logic for # (co-exact 1-forms), ultimately arriving at the sequence:

#
(
operators

)
=

{
d∑

k=0

(−1)k#
(
k-forms

)
}

+

{
d∑

k=1

(−1)k+1#
(
co-closed but not co-exact k-forms

)
}
.

44A k-form ωk on a d-dimensional manifold in coordinates is ωk = 1
k!
ωµ1...µkdxµ1 ∧· · ·∧dxµk . The Hodge

dual ∗ωk is a (d− k)-form,

∗ωk =
1

k!
ωµ1...µk ∗

(
dxµ1 ∧ · · · ∧ dxµk

)
=

1

k!(d− k)!
ωµ1...µkε

µ1...µk
µ1...µkµk+1...µd

dxµk+1 ∧ · · · ∧ dxµd ,

i.e. the (d− k)-form ∗ωk is essentially obtained by contraction with the epsilon tensor. Minus signs, tensor

densities, raised/lowered indices, etc. are not important for our discussion, so we will ignore these.
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rank operators contributions to ∆H

1-forms u and ∗
(
∧d−1u

)
p2uχH,u and pdud−1 ∧d−1 (χH,u)

2-forms ∗
(
∧d−2u

)
(−1)3pdud−2 ∧d−2 (χH,u)

3-forms ∗
(
∧d−3u

)
(−1)4pdud−3 ∧d−3 (χH,u)

...
...

...

k-forms ∗
(
∧d−ku

)
(−1)k+1pdud−k ∧d−k (χH,u)

...
...

...

d-forms ∗1 (−1)d+1pd

Table 4. Co-closed but not co-exact k-forms, k = 1, . . . , d, for non-linear realizations and their

contributions to ∆H.

As indicated in the equation, the counting is naturally divided into two sets: one which

counts all possible forms (with appropriate signs) and another which corrects exceptional

cases misidentified in the first set. This leads to splitting the Hilbert series into two pieces:

H(u, p) = H0(u, p) + ∆H(u, p),

exactly as in eq. (4.36). We additionally gain the interpretation of ∆H as counting co-closed

but not co-exact k-form operators.

For the H0 piece, it is straightforward to count all k-forms which appear in Z(u, q, x, y)

using SO(d) character orthogonality. Note that we also need to include a factor pk in front of

the number of k-forms to properly weight the mass dimension. Therefore, while integrating

over the SO(d) Haar measure, we should multiply Z(u, q, x, y) by the factor

d∑

k=0

pk(−1)kχ∧k(�)(x) =
1

P (p;x)
, (7.21)

where we have used eq. (4.11). To further project out invariants of the unbroken group H,

we integrate over the Haar measure dµH(y). So in the end, H0 is given by

H0(u, p) =

∫
dµH(y)

∫
dµSO(d)(x)

1

P (p;x)
Z(u, p, x, y), (7.22)

which is structurally identical to eq. (4.37).

To compute the ∆H piece, we enumerate all the co-closed but not co-exact forms. For

each rank k, the type of these forms and their contributions to ∆H are listed in table 4. The

1-form u is co-closed (i.e. its divergence is zero) due to the equation of motion Dµuµ = 0.

The Hodge dual of the wedge products, ∗
(
∧d−ku

)
, are co-closed essentially because the

curl of uµ vanishes:

Dµ1 (εµ1···µd−kν1···νkuν1 · · ·uνk) =

k∑

i=1

εµ1···µd−kν1···νkuν1 · · ·uνi−1 (Dµ1uνi)uνi+1 · · ·uνk = 0.
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Finally, ∗1 is co-closed as it is a constant whose divergence must be zero. Clearly, none of

the operators in the list can be written as a divergence of another operator, simply because

there is no derivative involved in any of these operators. So they are all co-closed but not

co-exact forms. We do not have a proof that this list exhausts all the possibilities, but we

conjecture this is the case.

In the contributions to ∆H column, the antisymmetric product of the character func-

tion ∧k
[
χH,u(y)

]
gives the character of the representation ∧k(RH,u). The power of u is

given by the power of uµ in the corresponding operator, while the power of p is given by

the mass dimension of the operator plus the rank of the form (the number of divergences

needed to bring it into a 0-form). Putting all the listed contributions together, we get

∆H(u, p) =

∫
dµH(y)

[
p2uχH,u(y) + pd

d∑

k=1

(−1)k+1ud−k ∧d−k
[
χH,u(y)

]
]
. (7.23)

Clearly, ∆H only contains operators with mass dimension ≤ d.

7.3 Summary

For a non-linearly realized theory of a global symmetry G broken to a subgroup H, the

single particle module takes the form

Ru =




uµ

D{µ1
uµ2}

D{µ1
Dµ2

uµ3}
...



, (7.24)

where uµ transforms linearly under the subgroup H and Dµ is the covariant derivative.

Ru is structurally identical to the single particle module of a scalar field, Rφ, but without

the “top” component φ ∈ Rφ. This structure follows from the CCWZ formalism and is

physically related to soft limits of pion amplitudes.

The character χu(q, x, y) for Ru and the generating function Z(u, q, x, y) for the oper-

ator space J are

χu(q, x, y) =
[
(1− q2)P (q;x)− 1

]
χH,u(y), (7.25)

Z(u, q, x, y) = PE [uχu(q, x, y)] , (7.26)

where χH,u(y) is the character of uµ under the unbroken group H.

Making use of differential forms, the IBP redundancy is recast as an equivalence of

scalar (0-form) operators up to a co-exact 0-form. Counting the number of such equivalence

classes leads to a natural splitting of the Hilbert series as

H(u, p) = H0(u, p) + ∆H(u, p), (7.27)

where

H0(u, p) =

∫
dµH(y)

∫
dµSO(d)(x)

1

P (p;x)
Z(u, p, x, y), (7.28a)

∆H(u, p) =

∫
dµH(y)

[
p2uχH,u(y) + pd

d∑

k=1

(−1)k+1ud−k ∧d−k
[
χH,u(y)

]
]
. (7.28b)
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The splitting H = H0 + ∆H and the formula for H0 are universally valid, arising from

a natural inclusion/exclusion accounting of IBP redundancy. In the general case, the

derivation of these results also tells us that ∆H counts co-closed by not co-exact k-form

operators, k = 1, . . . , d. The formula for ∆H in eq. (7.28b) is specific to a theory consisting

solely of pions which non-linearly realize G. We explicitly identified the operators in ∆H

associated to each term in the integrand of eq. (7.28b), and we conjecture these are the

only such operators.

8 Discussion

In this paper we have introduced a number of systematic techniques that allowed us to study

and eliminate redundancies in the operator bases of relativistic EFTs. Most particularly,

we have shown how to treat the redundancies associated with EOM and IBP identities;

in this way we detailed the construction of operator bases that properly account for the

independence of all (in-principle) physical measurements one can make in a relativistic

quantum theory. This can be seen as a final squeeze of the EFT approach — making full

use of all a priori kinematic selection rules arising from the full Poincaré symmetry of the

S-matrix.

We presented quite general results for EFTs in d dimensions, with scalars, fermions,

and d/2-form fields, and detailed the inclusion of parity invariance on the theory. Our

results easily include invariances under linear internal/gauge groups, and we included a

discussion of how to deal with non-linearly realized internal symmetries. Throughout the

paper we made use of character theory; we found a direct and useful connection to conformal

representation theory in the case of linearly realized symmetries, and a slight modification

of these ideas for the non-linear story.

After making use of Poincaré invariance of the S-matrix to construct the operator

basis, the natural question is: what do unitarity and analyticity of the S-matrix imply?

This transitions us beyond pure kinematics into the realm of dynamics. In this context,

the constraint of causality/analyticity has been shown to enforce positivity constraints on

Wilson coefficients, see [65] and e.g. [85, 86].

Through requiring locality, and by further considering the behavior of scattering am-

plitudes in the soft limit, a systematic classification of Lorentz invariant single scalar EFTs

in d < 6 dimensions has also been recently obtained [55, 56]. This suggests that it should

be possible to impose such behavior at the level of the single particle module, as discussed

in section 2. This would be in the vein of imposing a priori requirements of shift sym-

metries on theories. We did not follow this line of thought here, instead identifying the

building blocks that form the single particle modules for non-linear theories via a CCWZ

construction, but it would be interesting to make this connection.

Of course, a whole wealth of new structure appears in going from considering the

operator basis to the full, dynamical EFT. It would, for instance, be interesting to study

the phenomena of the holomorphy of the SM EFT [87], and general non-renormalization

theorems [88] in our operator basis language.
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The formulation in terms of a polynomial ring of kinematic variables that we developed

for scalar fields was very useful for explicitly constructing the operator basis (or equiva-

lently, constructing the independent Feynman rules). We believe that developing a similar

ring picture for spinning particles would be very useful to understand more about the

structure of these amplitudes; this would go beyond the more basic counting of the tensor

and Mandelstam structures that was presented in section 6.

Finally, as far as the enumeration of operators in bases is concerned, much remains to

study about the Hilbert series. Can we obtain a fully closed form for a relativistic theory

in d > 1 dimensions? What can we learn from asymptotics? One motivation to explore

along these lines is to capture analytic properties that are not evident in any truncated

EFT expansion, similar to the recursion relations and properties found in d = 1 dimensions

in our previous work [38]. As with the other facets of the operator basis evidenced in this

paper, here too one expects a richer structure as we move from quantum mechanics to

quantum field theory.

Note added. During the finalization of this manuscript, the preprints [89, 90] appeared,

with some overlap with the ideas of this paper.
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A Character formulae for classical Lie groups

The Weyl character formula (WCF) provides an explicit formula to obtain the characters

of irreducible representations. The WCF is covered in most group theory textbooks, for

example [91, 92]; here, we only review the bare bones of the formula and then specify

directly to SO(d) characters.

Let G be a compact, connected Lie group of rank r. We denote the coordinates of the

torus by x = (x1, . . . , xr). Let l = (l1, . . . , lr) be the highest weight vector — in the or-

thonormal basis — of an irreducible representation. Let ρ be the half-sum of positive roots,

ρ =
1

2

∑

α∈rt+(G)

α. (A.1)

The WCF then gives the character for the irreducible representation to be

χl(x) =
Aρ+l

Aρ
, (A.2)

where Aλ is an antisymmetric sum of the Weyl group W acting on the vector λ,

Aλ =
∑

w∈W
(−1)wxw(λ), (A.3)

where (−1)w = sgn(w) is the sign of group element w ∈W .

Aρ in eq. (A.2) can be shown to be equal to a certain product over the positive roots

(this is sometimes referred to as Weyl’s denominator formula):

Aρ =
∏

α∈rt+(G)

(xα/2 − x−α/2) = xρ
∏

α∈rt+(G)

(1− x−α), (A.4)

where the second equality follows from the definition of ρ, eq. (A.1). In particular, the prod-

uct A∗ρAρ = A−ρAρ is equal to the Jacobian factor that shows up in the Weyl integration

formula,

A∗ρAρ =
∏

α∈rt+(G)

(1− xα)(1− x−α) =
∏

α∈rt(G)

(1− xα). (A.5)

The WCF for the classical groups can be cast into a more “user-friendly” expression

involving determinants. The basic identity is that the anti-symmetric sum of permutations

gives a determinant, ∑

σ∈Sr

(−1)σxλ1

σ(1) . . . x
λr
σ(r) = det(x

λj
i ). (A.6)

Since the Weyl group contains the permutation group, this allows us to rewrite the sum

over W in eq. (A.3) in terms of various determinants. For further details on how to obtain

these, as well as other useful formulas, see [91].
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WCF for SO(d). For even dimensions, d = 2r, the Weyl group consists of permuta-

tions together with an even number of sign flips: WSO(2r) = Sr n (Zr2/Z2) where the Zr2
are the r different sign flips we can perform on λ = (λ1, . . . , λr) and the modding out

by Z2 is requiring only even numbers of sign flips. The half-sum on positive roots is

ρ = (r − 1, r − 2, . . . , 0).

The numerator A
SO(2r)
ρ+l can be computed from eq. (A.3) by first summing over the sign

flips and then the permutations in the Weyl group [91]:

A
SO(2r)
λ =

∑

σ∈Sr

(−1)σ
∑

even flips

xλ1

σ(1) · · ·x
λr
σ(r)

=
∑

σ∈Sr

(−1)σ
1

2


 ∑

all flips

xλ1

σ(1) · · ·x
λr
σ(r)+


 ∑

even flips

−
∑

odd flips


xλ1

σ(1) · · ·x
λr
σ(r)




=
1

2

∑

σ∈Sr

(−1)σ
[(
xλ1

σ(1)+x−λ1

σ(1)

)
· · ·
(
xλrσ(r)+x−λrσ(r)

)
+
(
xλ1

σ(1)−x
−λ1

σ(1)

)
· · ·
(
xλrσ(r)−x

−λr
σ(r)

)]

=
1

2

(
det
[
x
λj
i +x

−λj
i

]
+det

[
x
λj
i −x

−λj
i

])
, (A.7)

where λ = ρ + l, and we have applied the determinant formula eq. (A.6). Note that the

second determinant above vanishes if lr = 0. Using the special case l = (0, · · · , 0) in the

above, we obtain the denominator:

ASO(2r)
ρ =

1

2
det
[
x
ρj
i + x

−ρj
i

]
=

∣∣∣∣∣∣∣∣

xr−1
1 + x

−(r−1)
1 · · · x1 + x−1

1 1
...

...
...

xr−1
r + x

−(r−1)
r · · · xr + x−1

r 1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

(
x1 + x−1

1

)r−1 · · · x1 + x−1
1 1

...
...

...(
xr + x−1

r

)r−1 · · · xr + x−1
r 1

∣∣∣∣∣∣∣∣
= V (x1 + x−1

1 , . . . , xr + x−1
r ), (A.8)

where V (y1, . . . , yr) is the Vandermonde determinant

V (y1, . . . , yr) =
∏

1≤i<j≤r
(yi − yj). (A.9)

Using yi − yj = xi
(
1− x−1

i xj
) (

1− x−1
i x−1

j

)
, one gets

ASO(2r)
ρ = xr−1

1 xr−2
2 . . . xr−1

∏

1≤i<j≤r

(
1− x−1

i x−1
j

)(
1− x−1

i xj
)
, (A.10)

which manifestly agrees with eq. (A.4). Putting it all together, the character for an irre-

ducible representation of SO(2r) labeled by l is given by

χ
(2r)
l (x) =

1
2

(
det
[
x
λj
i + x

−λj
i

]
+ det

[
x
λj
i − x

−λj
i

])

V (x1 + x−1
1 , . . . , xr + x−1

r )
, (A.11)

with λj = ρj + lj = r − j + lj .
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For odd dimensions, d = 2r + 1, the Weyl group consists of permutations together

with any number of sign flips: WSO(2r+1) = Sr n Zr2 . The half-sum on positive roots is

ρ = (r − 1
2 , r − 3

2 , . . . ,
1
2). Following a similar procedure to the above, we get [91]

A
SO(2r+1)
ρ+l = det

[
x
λj
i − x

−λj
i

]
, (A.12)

where λ = ρ+ l so that λj = r − j + 1
2 + lj . When specifying to l = (0, · · · , 0), we get

ASO(2r+1)
ρ = V (x1 + x−1

1 , . . . , xr + x−1
r )

(
x

1
2
1 − x

− 1
2

1

)
. . .

(
x

1
2
r − x−

1
2

r

)
(A.13)

Combining it all together, the character is given by

χ
(2r+1)
l (x) =

det
[
x
λj
i − x

−λj
i

]

V (x1 + x−1
1 , . . . , xr + x−1

r )
∏r
i=1

(
x

1
2
i − x

− 1
2

i

) , (A.14)

with λj = r − j + 1
2 + lj .

Explicit formulas for certain representations. For reference, here we record the

specific characters of SO(d) irreps that are either utilized frequently in this work or may

be useful for Hilbert series calculations.

The character of the vector representation, l = (1, 0, . . . , 0), in even and odd dimen-

sions is

χ
(2r)
(1,0,...,0)(x) =

r∑

i=1

(
xi +

1

xi

)
, (A.15a)

χ
(2r+1)
(1,0,...,0)(x) = 1 +

r∑

i=1

(
xi +

1

xi

)
. (A.15b)

The properties of spinors depends on d mod 8. In odd dimensions, spinors are either

real or pseudo-real; therefore, the characters of spinors in odd dimensions are always self-

conjugate. The d = 3, 5, 7, and 9 spin 1/2 characters are

d = 3 : χ
(3)

( 1
2

)
=
√
x + c.c.,

d = 5 : χ
(5)

( 1
2
, 1
2

)
=
√
x1x2 +

√
x1

x2
+ c.c.,

d = 7 : χ
(7)

( 1
2
, 1
2
, 1
2

)
=
√
x1x2x3 +

√
x1x2

x3
+

√
x1x3

x2
+

√
x2x3

x1
+ c.c.,

d = 9 : χ
(9)

( 1
2
, 1
2
, 1
2
, 1
2

)
=
√
x1x2x3x4 +

√
x1x2x3

x4
+

√
x1x2x4

x3
+

√
x1x3x4

x2

+

√
x2x3x4

x1
+

√
x1x2

x3x4
+

√
x1x3

x2x4
+

√
x1x4

x2x3
+ c.c.,

(A.16)

where + c.c. means + complex conjugate, x∗i = x−1
i . In even dimensions, spinors are chiral.

These spinors may be real, pseudo-real, or complex. They are complex in d = 2 mod 8
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and d = 6 mod 8 (i.e. d = 2 mod 4); in this case the characters for the chiral spinors are

conjugate: χ
(4k+2)
(l1,...,−l2k+1) =

(
χ

(4k+2)
(l1,...,l2k+1)

)∗
. In d = 4 mod 8 spinors are pseudo-real, while

they are real in d = 8 mod 8; in both cases, the characters for the chiral representations

are self-conjugate: χ
(4k+4)
(l1,...,±l2k+2) =

(
χ

(4k+4)
(l1,...,±l2k+2)

)∗
. One readily sees these properties in

the equation below, which gives the characters for spinors in d = 2, 4, 6, and 8:

d = 2 :
χ

(2)

( 1
2

)
=
√
x

χ
(2)

(− 1
2

)
=

1√
x

d = 4 :
χ

(4)

( 1
2
, 1
2

)
=
√
x1x2 + c.c.

χ
(4)

( 1
2
,− 1

2
)

=

√
x1

x2
+ c.c.

d = 6 :

χ
(6)

( 1
2
, 1
2
, 1
2

)
=
√
x1x2x3 +

√
x1

x2x3
+

√
x2

x1x3
+

√
x3

x1x2

χ
(6)

( 1
2
, 1
2
,− 1

2
)

=
1√

x1x2x3
+

√
x2x3

x1
+

√
x1x3

x2
+

√
x1x2

x3

d = 8 :

χ
(8)

( 1
2
, 1
2
, 1
2
, 1
2

)
=
√
x1x2x3x4 +

√
x1x2

x3x4
+

√
x1x3

x2x4
+

√
x1x4

x2x3
+ c.c.

χ
(8)

( 1
2
, 1
2
, 1
2
,− 1

2
)

=

√
x1

x2x3x4
+

√
x2

x1x3x4
+

√
x3

x1x2x4
+

√
x4

x1x2x3
+ c.c.

(A.17)

As a side comment we remind the reader that if we include fermions we are actually working

with the covering group Spin(d) of SO(d). Computations in this paper frequently involve

integrating over the group using contour integrals; as discussed at the end of section 3.3,

we need to make sure to do this properly for the covering group. In practice, this is simply

achieved by sending xi → x2
i , so that all the square roots in the above characters disappear.

Finally, we mention that the fundamental weights in the orthonormal basis have

highest weight vectors l = (1, 0, . . . , 0), (1, 1, 0, . . . , 0), (1, 1, 1, 0, . . . , 0), etc. They cor-

respond to the vector and anti-symmetric representations. For even d, the d
2 -forms have

l = (1, 1, 1, . . . ,±1).

Character formulae for SU(r+1) and Sp(2r). We reproduce results found in e.g. [91]

for character formulae in the orthogonal basis for the remaining classical groups.

The character for the representation of SU(r + 1) with highest weight vector

l = (l1, . . . , lr) can be written as a ratio determinants of (r + 1)× (r + 1) matrices,

χ
SU(r+1)
l (x) =

det
[
xli+r+1−i
j

]

det
[
xr+1−i
j

] , (A.18)

where l = (l1, . . . , lr, 0), and xr+1 =
∏r
i=1 x

−1
i . Leaving xr+1 independent, this is the

character formula for U(r + 1) and is a Schur polynomial.
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The character for a representation of Sp(2r) with highest weight vector l = (l1, . . . , lr)

can be written as a ratio of determinants of r × r matrices,

χ
Sp(2r)
l (x) =

det
[
x

(li+r+1−i)
j − x−(li+r+1−i)

j

]

det
[
x

(r+1−i)
j − x−(r+1−i)

j

] . (A.19)

B Weyl integration formula

In this appendix we explain the Weyl integration formula, focusing especially on how the

factor |W |−1∏
α∈rt(G)(1 − xα) in eq. (3.26) appears. The Weyl integration formula is

covered in many group theory texts; chapter IV of [92] gives a very thorough explanation.

We hope to summarize and pseudo-derive some of the main features in a way that is more

easily read by physicists. After doing this, we then explain how, for the cases that interest

us, the usual Weyl integration formula essentially calculates the same thing |W | times; we

can remove this redundancy, which can significantly ease computations. Finally, we record

the Haar measures, when restricted to the torus, for the classical groups SU(N), SO(N),

and Sp(2N).

Let G be a compact, connected Lie group with dim(G) = n and rank(G) = r. It is a

fact, which we will not prove, that every element g ∈ G can be conjugated into a maximal

torus T ⊂ G, i.e. g can be diagonalized by another group element: h−1gh ∈ T .

In fact, g is conjugate to multiple elements in T . The different elements are basically

related by permutations of the eigenvalues of g. The discrete subgroup in G which carries

out these permutations is called the Weyl group W .45 Thus, g is conjugate to |W | elements

in T , where |W | is the order of the Weyl group (the number of elements in W ). For example,

for G = SU(N) the Weyl group is the permutation group SN with |SN | = N !.

Let f be a function on the group. We consider averaging over this function,
∫

G
dµ(g) f(g),

where dµ is the Haar measure on G normalized as
∫
G dµ = 1. We will elaborate on this

measure below. Since every g ∈ G can be written as g = hth−1, for t ∈ T and h ∈ G/T ,

we can rewrite the above integral to be over T and G/T ,
∫

G
dµ(g) f(g) ∝

∫

T
dµ(t)

∫

G/T
dµ(h) (Jacobian)f(hth−1), (B.1)

where there is a Jacobian factor from using g = hth−1 and switching domains of integration

from G to G/T × T . The proportionality constant is fixed by noting that the mapping

45Precisely, let N(T ) be the normalizer of T in G,

N(T ) = {g ∈ G | gTg−1 ∈ T},

i.e. N(T ) consists of all group elements which, acting by conjugation, leave elements of the torus within the

torus. Obviously, N(T ) contains T since the torus acts trivially on itself (as all elements of T commute).

The elements which act non-trivially make up the Weyl group, i.e. W = N(T )/T . As is obvious by the

definition, the elements of W belong to G/T .
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G/T × T → G, (h, t) 7→ hth−1 ∈ G covers G |W | times. Below we will explicitly compute

the Jacobian. Upon doing so, we arrive at the Weyl integration formula,
∫

G
dµ(g) f(g) =

1

|W |

∫

T
dµ(t) det(1−Adt)|g/t

∫

G/T
dµ(h) f(hth−1). (B.2)

In the Jacobian Ad is the adjoint map, which acts on the Lie algebra g by Adt(g)= tgt−1.

Note that the determinant is restricted to the g/t subspace, where t is the Cartan

subalgebra.46

The Weyl integration formula is particularly useful when f is a class function, so that

f(hth−1) = f(t). In this case, the integral over G/H is trivial and we have
∫

G
dµ(g) f(g) =

1

|W |

∫

T
dµ(t) det(1−Adt)|g/t f(t). (B.3)

As T = U(1)r, the measure of the torus is simply

∫

T
dµ(t) =

∫ 2π

0

r∏

i=1

dθi =

∮

|xi|=1

r∏

i=1

dxi
2πixi

. (B.4)

The determinant is equal to the product over the roots of G, det(1 − Adt)|g/t =

Πα∈rt(G)(1−xα), so that the above coincides with the expression given in eq. (3.26).

Let us now compute the Jacobian from the change of variables g = hth−1. First, it

is helpful to recall some facts about the Haar measure, which is the unique left and right

invariant measure on G. It can be constructed from the Maurer-Cartan forms

iω ≡ g−1dg ≡ δg .

Note that ω = ωAtA is valued in the Lie algebra g, where tA are the generators of g.

The metric

ds2 = Tr
(
δg δg−1

)
,

where δg−1 = dg−1g, is invariant under left and right multiplication and therefore provides

an invariant measure on the group.47 From 0 = d(g−1g) we have δg−1 = −δg, so that the

metric is

ds2 = −Tr
(
δg δg

)
= δABωAωB, (B.5)

where we have normalized the generators as Tr(tAtB) = δAB. Just as the invariant volume

on a metric space ds2 = ηµνdx
µdxν is

√
|det η|dnx, we have the invariant volume on

the group

dµG = dnω = ω1 ∧ · · · ∧ ωn =
1

n!
εA1...Anω

A1 ∧ · · · ∧ ωAn .
With the explicit parameterization of the measure on G by δg it is straightforward to

find the induced measure on G/T ×T when we change variables to g = hth−1. We rewrite

the measure as

ds2 = Tr
(
δg δg−1

)
= Tr

(
dg dg−1

)
= Tr

(
h−1dghh−1dg−1h

)
.

46In plainer language, this is the determinant in the adjoint representation with zero’s omitted.
47δg is invariant under left multiplication, g → g′g: δg → δg, while it is conjugated under right multipli-

cation, g → gg′: δg → g′−1δgg′. The trace ensures invariance under both left and right multiplication.
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Inserting g = hth−1 we have

h−1 dg h = h−1
(
dh t h−1 + h dt h−1 + h t dh−1

)
h

= δh t+ t δh−1 + dt

= [δh, t] + dt,

where we defined δh ≡ h−1dh and used δh−1 = −δh in the last line. Similarly,

h−1 δg−1 h = [δh, t−1] + dt−1,

so that

ds2 = Tr
(
[δh, t][δh, t−1]

)
+ Tr

(
dt dt−1

)
+ Tr

(
[δh, t]dt−1

)
+ Tr

(
dt[δh, t−1]

)
. (B.6)

Consider the commutator

[δh, t] =
(
δh− t δh t−1

)
t .

While δh ∈ g, the subtraction δh − t δh t−1 is valued in g/t. This means the third trace

in (B.6) vanishes since t dt−1 ∈ t. Similarly, Tr
(
[δh, t−1]dt

)
= 0.

We write

δh− t δh t−1 = [1−Adt](δh) ,

where Adt(δh) = t δh t−1 is the adjoint action on the Lie algebra. Then the metric is

given by

ds2 = Tr
[
[1−Adt](δh) [1−Adt](δh

−1)
]

+ Tr
[
δt δt−1

]
, (B.7)

where δt ≡ t−1dt. Since δt ∈ t while [1 − Adt](δh) ∈ g/t, we have achieved a parameteri-

zation of the algebra as the direct sum g = t⊕ g/t. In matrix form the metric reads,

ηAB =

(
[1−Adt]

2

1

)
,

and hence √
|det η| = det(1−Adt)|g/t, (B.8)

where the determinant is restricted to the g/t subspace.

With this Jacobian factor, we arrive at the Weyl integration formula
∫

G
dµ(g) f(g) =

1

|W |

∫

T
dµ(t) det(1−Adt)|g/t

∫

G/T
dµ(h) f(hth−1),

where we recall that the |W |−1 factor arises because the map G/T × T → G: (h, t) 7→ hth−1

is a |W |-fold covering of G. The Jacobian factor is the determinant in the adjoint repre-

sentation, restricted to the g/t subspace. This means it is picking up the roots of G,

so that

det(1−Adt)|g/t =
∏

α∈rt(G)

(1− xα), (B.9)

where the product is over the roots of G. Upon inserting this for the Weyl integration

formula when f(g) is a class function, eq. (B.3), we arrive at the formula quoted in the

main text.
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B.1 A simplification when f(g) is Weyl invariant

Let us assume that the function we integrate over is Weyl invariant: f(h−1gh) = f(g) for

h ∈ W ⊂ G/T . In this case the Weyl integration formula is, in some sense, redundant:

since the G/T × T → G map is a |W |-fold covering of G, with each covering related by a

Weyl transformation, we are picking up the same contribution |W | times. To only pick up

the contribution once, we can replace

1

|W |
∏

α∈rt(G)

(1− xα)→
∏

α∈rt+(G)

(1− xα) (B.10)

in the Weyl integration formula. Note that the product on the right hand side is over only

the positive roots.

The key to proving the above replacement is to take the Jacobian factor,∏
α∈rt(G)(1− xα) =

∏
α∈rt+(G)(1− xα)(1− x−α), and show that it is equal to a sum over

Weyl transformations of
∏
α∈rt+(G)(1− xα),48

∏

α∈rt+(G)

(1− xα)(1− x−α) =
∑

w∈W

∏

α∈rt+(G)

(1− xw(α)).

If f(g) is Weyl invariant, then for each term in the sum above we can perform the inverse

Weyl transformation so that we end up with |W | copies of
∏
α∈rt+(G)(1− xα).

Note that all class-functions are Weyl invariant; in particular, characters obey this

property. Therefore, for all computations described in the main text we can do this re-

placement. Explicitly, if the function we integrate over is Weyl invariant, we can take the

Haar measures to be
∫
dµG =

∮

|xi|=1

[
r∏

i=1

dxi
2πixi

] ∏

α∈rt+(G)

(
1− xα

)
. (B.11)

This simplification can significantly ease computations, especially for large rank groups

(on a computer, it essentially reduces computation time by a factor of |W |, which grows

factorially with the rank of the group).

48To show this, use the Weyl denominator formula (see appendix A) for the
∏
α∈rt+(G)(1− x

−α) factor:∏
α∈rt+(G)

(1− xα)(1− x−α) =
∑
w∈W

x−ρ(−1)wxw(ρ)
∏

α∈rt+(G)

(1− xα)

=
∑
w∈W

xw(ρ)
[
(−1)w

∏
α∈rt+

(
x−

1
2
α − x

1
2
α)]

=
∑
w∈W

xw(ρ)
∏

α∈rt+(G)

(
x−

1
2
w(α) − x

1
2
w(α))

=
∑
w∈W

∏
α∈rt+(G)

(1− xw(α)).

In the first line we used the Weyl denominator formula; in the second line we used the definition eq. (A.1)

that ρ is the half-sum of positive roots to bring x−ρ into the product; the third line follows from the action

of the Weyl group on the root system (algebraically, the Weyl group is generated by reflections of the simple

roots and it maps the root system into itself); to arrive at the fourth line we again used the definition of ρ

to bring a factor of x−w(ρ) out of the product.
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B.2 The measures for the classical Lie groups

The root systems for classical Lie groups are contained in any group theory textbook, so it

is very simple to write down the Haar measures when restricted to the torus. For reference,

we record these measures here. First we record them as the product over all roots (with

an overall |W |−1 factor), and then as a product only over the positive roots (without the

|W |−1 factor). We use that the measure on the torus, dµT , is as in eq. (B.4); we omit the

measure dµG/T below since it is never necessary for our analyses (since we only ever deal

with class functions).

When restricted to the torus, the group measure is given as the measure on the torus

times a product of the roots of the group.

∫
dµG =

1

|W |

∮

|xi|=1

r∏

i=1

dxi
2πixi

∏

α∈rt(G)

(
1− xα

)
(B.12)

SU(r + 1). The Weyl group is Sr+1 and the measure is

dµSU(r+1) =
1

(r + 1)!

r∏

i=1

dxi
2πixi

∏

1≤i<j≤r+1

(
1− xi

xj

)(
1− xj

xi

)
(B.13)

where xr+1 ≡
r∏

i=1

1

xi
.

SO(2r + 1). The Weyl group is Sr n Zr2 and the measure is

dµSO(2r+1) =
1

r!2r

r∏

i=1

dxi
2πixi

r∏

i=1

(
1− xi

)(
1− 1

xi

)

×
∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)(
1− 1

xixj

)(
1− xj

xi

)
(B.14)

Sp(2r). The Weyl group is Sr n Zr2 and the measure is

dµSp(2r) =
1

r!2r

r∏

i=1

dxi
2πixi

r∏

i=1

(
1− x2

i

)(
1− 1

x2
i

)

×
∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)(
1− 1

xixj

)(
1− xj

xi

)
(B.15)

SO(2r). The Weyl group is Sr n (Zr2/Z2) and the measure is

dµSO(2r) =
1

r!2r−1

r∏

i=1

dxi
2πixi

×
∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)(
1− 1

xixj

)(
1− xj

xi

)
(B.16)
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Restricting only to the positive roots, as in eq. (B.11), the measures for the classical

groups are

dµSU(r+1) =
r∏

i=1

dxi
2πixi

∏

1≤i<j≤r+1

(
1− xi

xj

)
, (B.17a)

dµSO(2r+1) =

r∏

i=1

dxi
2πixi

r∏

i=1

(
1− xi

) ∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)
, (B.17b)

dµSp(2r) =
r∏

i=1

dxi
2πixi

r∏

i=1

(
1− x2

i

) ∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)
, (B.17c)

dµSO(2r) =
r∏

i=1

dxi
2πixi

∏

1≤i<j≤r

(
1− xixj

)(
1− xi

xj

)
, (B.17d)

where, as above, for SU(r + 1) we define xr+1 ≡
∏r
i=1 x

−1
i .

C Parity

In this appendix, we show how to address parity in even dimensions d = 2r.49 We start

in section C.1 by discussing the general irreducible representations (irreps) and characters

of O(2r) [47]. Parity acts as an outer automorphism of the Lie algebra so2r; we show in

section C.2 how the parity odd characters arise by folding so2r by the outer automorphism.

We also discuss two notions of folding which are not typically made clear in the literature.

In section C.3, we describe how to compute the Hilbert series when including parity as

a symmetry. A central result is a plethystic exponential formula for the determinant

[detl(1− ag)]−1 in an arbitrary representation l = (l1, . . . , lr), eq. (C.29). Finally, we give

two explicit computation examples in section C.4 — the real scalar field in d = 2r and the

gauge field in d = 4.

C.1 Representations and characters of O(2r)

We adopt the convention that the parity element P flips the last component of the vec-

tor, i.e. its representation matrix is ρ�(P) = diag(1, . . . , 1,−1). P does not commute

with generic rotations, and hence the orthogonal group O(2r) is a semidirect product of

its two subgroups SO(2r) and Z2 = {e,P}, i.e. O(2r) = SO(2r) n Z2. One can seg-

ment O(2r) by the cosets of its subgroup SO(2r), which yields two connected components

O(2r) = {O+(2r) ≡ SO(2r), O−(2r) ≡ SO(2r)P}. In other words, g− ∈ O−(2r) can be

taken in the form g− = g+P with g+ ∈ SO(2r).50

49In odd dimensions, parity is simpler to deal with since it can be taken to commute with rotations; the

relevant details were explained in section 4.3.
50We note that the results in this appendix apply for spinor representations as well. We will not be

careful to distinguish between O(2r) and its covering group Pin(2r) (or the fact that there is a choice in

this covering). For the character theory required here, it is enough to take the Spin(2r) characters together

with the definition of parity as an outer-automorphism of the Lie algebra.

– 84 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
9

The defining representation and the torus of the parity odd component. The

defining/vector representation matrix ρ�(g−) for any parity odd element g− can be brought

to the form



(
c1 s1

−s1 c1

)
0 · · · 0 0

0

(
c2 s2

−s2 c2

)
· · · 0 0

...
...

. . .
...

...

0 0 · · ·
(

cr−1 sr−1

−sr−1 cr−1

)
0

0 0 · · · 0

(
1 0

0 −1

)




(C.1)

by an orthogonal transformation, i.e. by a group conjugation, where ci = cos θi, si = sin θi.

The corresponding eigenvalues are

x1, x
−1
1 , x2, x

−1
2 , . . . , xr−1, x

−1
r−1,+1,−1 , (C.2)

with xi = eiθi . An immediate consequence is that the character χ−l ≡ Trl(g−) only depends

on these (r − 1) arguments, which we collectively denote by

x̃ ≡ (x1, . . . , xr−1). (C.3)

General irreps and characters. The irreps of O(2r) can be induced from the irreps of

its subgroup SO(2r) (e.g. [92]). Instead of following this standard technical procedure, let

us understand it in a more heuristic way.

Consider the SO(2r) representation space Rl labeled by l = (l1, . . . , lr). When lr 6= 0,

parity exchanges the two chiral spaces R(l1,...,lr−1,lr) and R(l1,...,lr−1,−lr), and hence the direct

sum of the two is an irrep of O(2r). In this case, the parity even character χ+
l is a sum of

the two SO(2r) characters, while the parity odd character χ−l vanishes as its representation

matrix is off block diagonal.

When lr = 0, Rl itself forms an irrep of O(2r), with parity exchanging chiral subspaces

within Rl. We can assign an intrinsic parity to these representations — as an SO(2r)

representation, Rl actually induces two inequivalent irreps of O(2r), e.g. scalar vs pseudo-

scalar, vector vs pseudo-vector, etc. In this case, the parity even character χ+
l is the SO(2r)

character, while the parity odd character χ−l coincides with a character of Sp(2r − 2) (up

to an overall sign reflecting the intrinsic parity assignment), a result worked out a Weyl

ago [47]. This coincidence might be a bit mysterious; in the next subsection, we explain

how it arises from folding the Lie algebra so2r.

In summary, the general irreducible representations of O(2r) are labeled by

l = (l1, . . . , lr) with l1 ≥ · · · ≥ lr ≥ 0,

lr > 0 : R
O(2r)
(l1,...,lr−1,lr)

= R
SO(2r)
(l1,...,lr−1,lr)

⊕RSO(2r)
(l1,...,lr−1,−lr), (C.4a)

lr = 0 : R
O(2r)
(l1,...,lr−1,0) = R

SO(2r)
(l1,...,lr−1,0) with ± intrinsic parity, (C.4b)
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with corresponding characters

lr > 0 : χ+
l (x) = χ(l1,··· ,lr)(x) + χ(l1,...,−lr)(x) , χ−l (x̃) = 0, (C.5a)

lr = 0 : χ+
l (x) = χl(x) , χ−l (x̃) = ±χSp(2r−2)

(l1,...,lr−1)(x̃). (C.5b)

Throughout this appendix, we use the label l to denote the O(2r) irrep with positive

intrinsic parity assignment. It is straightforward to modify formulae for the case of a

negative intrinsic parity assignment (see the discussion in section 4.3).

C.2 Understanding the parity odd character: folding so2r

At first glance it is rather surprising that the symplectic group shows up in the character

formulae for O−(2r), especially considering that Sp(2r − 2) is not a subgroup of O(2r)

except for r ≤ 2. In this subsection, we provide an understanding of this.

Computing characters from the weights. Consider the parity even character χ+
l (x),

which is the trace of g+ in the O(2r) representation Rl. In the basis with the Cartan

generators Hk (k = 1, 2, . . . , r) diagonal, each state |µ〉 is labeled by its eigenvalues µk
under Hk, called the weight µ = (µ1, µ2, . . . , µr), namely

Hk |µ〉 = µk |µ〉 . (C.6)

The character is given by a sum over all the weights µ in the representation Rl:

χ+
l (x) = Trl(g+) =

∑

µ∈Rl

〈µ| ei
∑r
k=1 θkHk |µ〉 =

∑

µ∈Rl

xµ, (C.7)

with xµ ≡ xµ1
1 · · ·xµrr and xk = eiθk as usual. Using g− = g+P, the parity odd character

χ−l (x̃) is

χ−l (x̃) = Trl(g+P) =
∑

µ∈Rl

〈µ| ei
∑r
k=1 θkHkP |µ〉 . (C.8)

As a Z2 action, parity either acts trivially on a state, or exchanges two different |µ〉. Since

〈µ | µ′〉 = δµµ′ , only states invariant under P contribute to the character χ−l (x̃):

χ−l (x̃) =
∑

µ∈RPl

〈µ| ei
∑r
k=1 θkHk |µ〉 =

∑

µ∈RPl

xµ, (C.9)

where RPl denotes the set of states invariant under P.

In order to compute χ−l (x̃), we therefore need to identify all the states invariant under

parity. For lr > 0 this is fairly easy: because Rl is a direct sum of two chiral spaces (see

eq. (C.4)) that get exchanged under parity, there is simply no state invariant under parity.

Hence, χ−l (x̃) = 0 for O(2r) irreps with lr > 0. The case of lr = 0 is more complicated and

requires a closer check on how the states in Rl transform under parity. This is achieved by

studying the action of parity on the root system of so2r, which we explain below.
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· · ·Dr

(a)

· · ·Br−1

(b)

· · ·Cr−1

(c)

Figure 3. Relevant Dynkin diagrams: (a) The Dr Dynkin diagram possesses a reflection symmetry

about the horizontal axis. This symmetry corresponds to the outer automorphism of the so2r Lie

algebra under the parity transformation. (b) The Dynkin diagram Br−1 (corresponding to Lie

algebra so2r−1) obtained by folding the roots of so2r by the outer automorphism. (c) The Dynkin

diagram of Cr−1 (corresponding to Lie algebra sp2r−2) obtained by folding the co-roots of so2r by

the outer automorphism.

Root system of so2r and the parity outer automorphism. We adopt the follow-

ing convention. The simple roots for so2r are αi = ei − ei+1 for i = 1, . . . , r − 1 and

αr = er−1 + er, i.e.

α1 = (1,−1, 0, . . . , 0, 0, 0)

α2 = (0, 1,−1, . . . , 0, 0, 0)

...

αr−2 = (0, 0, 0, . . . , 1,−1, 0)

αr−1 = (0, 0, 0, . . . , 0, 1,−1)

αr = (0, 0, 0, . . . , 0, 1,+1), (C.10)

with the complete set of roots given by ±ei ± ej and ±ei ∓ ej , i 6= j. Parity exchanges

the last two simple roots, which corresponds to the reflection of the Dynkin diagram Dr

around the horizontal axis (see figure 3(a)), an outer automorphism of the Lie algebra so2r:

P : αr−1 ↔ αr. (C.11)

Strings of lowering operators and folding so2r. In an O(2r) irrep with lr = 0, the

highest weight state l = (l1, . . . , lr−1, 0) is invariant under parity, P |l〉 = |l〉. Starting from

this highest weight state, all the other states are obtained by applying a string of lowering

operators Ei associated with the simple roots αi:

|µ〉 = Em1
1 Em2

2 · · ·Emrr |l〉 . (C.12)

We wish to determine if P |µ〉 = |µ〉. Since P |l〉 = |l〉, this amounts to studying if the

string of lowering operator is invariant under the conjugation:

PEm1
1 Em2

2 · · ·Emrr P−1. (C.13)
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From the action of parity on the simple roots, we have

PEiP−1 = Ei, i = 1, 2, . . . , r − 2, (C.14a)

PEr−1P−1 = Er, (C.14b)

PErP−1 = Er−1. (C.14c)

Note that Er−1 and Er commute with each other, and they both commute with all Ei except

Er−2, as is obvious from the Dynkin diagram. It then follows that a parity invariant string

must contain an equal number of Er−1 and Er in between Er−2. Namely Er−1 and Er
pair up

· · · (Er−1Er)
s1 Et1r−2 · · · (Er−1Er)

s2 Et2r−2 · · · . (C.15)

The crucial feature is that Er−1 and Er only ever enter in the combination (Er−1Er). They

therefore act together, effectively giving the combined lowering operator Ẽr−1 associated

to the new simple root

α̃r−1 = αr−1 + αr = (0, . . . , 0, 2, 0). (C.16)

So in the procedure of finding the parity invariant states from the highest weight state, we

effectively work with a new set of parity symmetrized simple roots α1, . . . , αr−2, α̃r−1. This

is precisely the root system for sp2r−2 shown in figure 3(c) (note that α̃r−1 is long relative

to the other roots). Pictorially, we “fold” the Dynkin diagram for so2r (figure 3(a)) and

obtain the diagram for sp2r−2. This is why we have χ−(l1,...,lr−1,0)(x̃) = χ
Sp(2r−2)
(l1,...,lr−1)(x̃).

Two definitions of folding. The folding of a Dynkin diagram is a procedure to use

an outer automorphism of a Dynkin diagram and hence its root system to obtain a new

root system. It is discussed, for example, in the Wikipedia page. However, it is probably

less known in the community that there are two kinds of folding one can define [93].51

Operationally, the two versions correspond to averaging over an outer automorphism versus

taking orbits of the automorphism. The two procedures are dual to each other: doing one

on the roots is equivalent to doing the other on the co-roots.

The version in Wikipedia is to find a Lie subalgebra that is invariant under the outer

automorphism. Therefore we are looking for a smaller group invariant under the outer

automorphism. For the root system, it corresponds to taking the average of the orbit of

the roots under the outer automorphism,

α̃i =
1

n

n∑

i′=1

αi′ , (C.17)

where αi′ denote all the simple roots that αi can transform into under the outer automor-

phism, and n is the total number of them. Note that root vectors that are transformed

among each other by the outer automorphism are supposed to be orthogonal to each other.

The nontrivial new simple root has n = 2 for most cases (An, Dn 6=4, E6), and n = 3 for D4.

51We additionally found some math.stackexchange posts helpful (one, two) as well as a set of notes [94].

We point out that Kostant [95] generalized Weyl’s character formula to disconnected groups.
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In our case of so2r, the subalgebra invariant under parity is obviously so2r−1. The

outer automorphism flips the sign of the last component of the root vectors. Indeed, the

averaging affects the simple roots αr−1 and αr in eq. (C.10) and we find a new simple root

α̃r−1 =
1

2
(αr−1 + αr) = (0, . . . , 0, 1, 0). (C.18)

This is a short root. α̃r−1 together with α1, . . . , αr−2 form the basis for the root lattice

of so2r−1, namely Br−1 shown in figure 3(b). Note that this is a new root system, not a

sublattice of the original root lattice because of the non-integer coefficients.

There is an alternative way to define the folded Dynkin diagram and the corresponding

root (weight) lattice. We take the sublattice of the root and weight lattices that consist

of vectors invariant under the outer automorphism. This is what we need if we want to

include the outer automorphism as a part of the group, namely the group is extended

by the outer automorphism, and we want to identify the weights that contribute to the

characters. For this purpose, we introduce the new set of simple roots by the sum, without

averaging:

α̃i =

n∑

i′=1

αi′ . (C.19)

Obviously they are on the original root lattice because the coefficients are integers. Namely

all vectors generated by the new set of simple roots α̃ are subset of the original root lattice,

and these vectors are invariant under the outer automorphism. Correspondingly, all the

weights in the new sublattice are invariant.

This second procedure picks up all the weights in a given representation that are

invariant under the outer automorphism and hence contribute to the character. Therefore,

this is the correct version of folding relevant to our discussions. The new simple root is

then a long root, and Dr folds to Cr−1 shown in figure 3(c), namely sp2r−2. Note that

sp2r−2 is not a subalgebra of so2r. Yet the characters are given by the weights of the sp2r−2

weight lattice. This is why χ−(l1,...,lr−1,0)(x̃) = χ
Sp(2r−2)
(l1,...,lr−1)(x̃).

It is easy to see that two definitions of folding lead to dual lattices. Using the convention

that every roots are normalized to length two for simply-laced root lattices Ar, Dr and

Er, the first definition of folding leads to a new root with squared length 2/n, hence short

roots, while the second definition leads to a long root with squared length 2n. They are

related by roots and co-roots. Therefore, it is natural that the first folding of Dr leads to

Br−1, while the second to Cr−1.

C.3 Hilbert series with parity

We now show how to compute the Hilbert series when including parity as a symmetry. For

a general field Φ, the main piece of the Hilbert series, H0, is given by

H0(Φ, p) =

∫
dµO(d) det�(1− pg)Z(Φ, p, x), (C.20)

with the character generating function

Z(Φ, p, x) =
∞∏

n=0

1

detl(n)(1− Φp∆Φ+ng)
, (C.21)
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where l(n) denotes the O(d) representation formed by ∂nΦ. As the group O(d) is segmented

into the parity even and odd pieces O±(d), this integral can be split accordingly:

H0(Φ, p) =
1

2

[
H0,+(Φ, p) +H0,−(Φ, p)

]
, (C.22a)

H0,±(Φ, p) =

∫
dµ±det�(1− pg±)Z±, (C.22b)

where g± ∈ O±(d), Z± = Z(g±), dµ± = dµO±(d) is the Haar measure normalized as∫
dµO(d) =

∫
dµ± = 1. The key ingredients we need to discuss are how to evaluate a

determinant of the form detl(1− ag−) as well as the integration measure dµ±.

Evaluating detl(1− ag−). The evaluation of this determinant is a bit subtle, because

the usual plethystic exponential identity does not apply:

1

detl(1− ag−)
= exp

[ ∞∑

n=1

an

n
Trl(g

n
−)

]
6= PE

[
aχ−l (x̃)

]
. (C.23)

The reason is that the trace evaluation for the parity odd element is nontrivial:

Trl(g
n
−) 6= χ−l (x̃n), (C.24)

as opposed to the usual paradigm, e.g. Trl(g
n
+) = χ+

l (xn). To see this, let us take a close

look at the structure of g− = g+P.

As explained before, in a general representation, the eigenvalues of g+ are xµ =

xµ1
1 · · ·xµrr . The parity action exchanges the coordinate xr ↔ x−1

r , which corresponds

to flipping the last component of the weights µr ↔ −µr. Therefore, all the weights µ

fall into two categories, the ones invariant under parity µI , and the ones paired up under

parity µP±. The invariant weights must have µIr = 0, while the paired up weights have the

structure µP± = (µP1 , . . . , µ
P
r−1,±µPr ). However, note that µPr does not have to be nonzero.

For notational convenience, let52

x ≡ (x1, . . . , xr−1, 1), (C.25)

52Although cumbersome, we are trying to be careful with our notation. Introducing x = (x1, . . . , xr−1, 1)

allows us to compare equations depending on the r variables x = (x1, . . . , xr) with those depending

on the r − 1 variables x̃ = (x1, . . . , xr−1), e.g. eq. (C.28). Note that x implements a restriction, i.e.

χ+
l (x) = Tr(Res

SO(2r)

SO(2r−1)g+).
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then in the basis with g+ diagonal, g− takes the form

g− = g+P =




. . .

xµ
I

. . .

. . .

xµ
P
+

(
x
µPr
r 0

0 x
−µPr
r

)

. . .







. . .

1
. . .

. . . (
0 1

1 0

)

. . .




7→




. . .

xµ
I

. . .

. . .

xµ
P
+

(
1 0

0 −1

)

. . .




, (C.26)

where in the second line we made a further diagonalization. Note that the dependence

on xr in g− is completely washed out, as expected. It is now clear that the mismatch in

eq. (C.24) happens only for even powers:

Trl(g
n
−) =

{
χ+
l (xn) = χ−l (x̃n) + 2Γl(x̃

n) for n = 2k

χ−l (x̃n) for n = 2k + 1
, (C.27)

where we have defined

Γl(x̃) ≡ 1

2

[
χ+
l (x)− χ−l (x̃)

]
. (C.28)

The determinant then follows:

1

detl(1− ag−)
= exp

[ ∞∑

n=1

an

n
Trl(g

n
−)

]
= exp

[ ∞∑

n=1

an

n
χ−l (x̃n) +

∞∑

k=1

a2k

2k
2Γl(x̃

2k)

]

= PE
[
aχ−l (x̃) + a2Γl(x̃

2)
]
. (C.29)

Equation (C.29) is the central result for handling determinants on the parity odd compo-

nent of O(2r). It is easily generalized to the fermionic case:

detl(1 + ag−) = exp

[ ∞∑

n=0

−(−a)n

n
Trl(g

n
−)

]
= exp

[
−
∞∑

n=1

(−a)n

n
χ−l (x̃n)−

∞∑

k=1

a2k

2k
2Γl(x̃

2k)

]

= PEf

[
aχ−l (x̃)

]
PE
[
− a2Γl(x̃

2)
]
. (C.30)
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The vector representation determinant in eq. (C.22b) can be easily obtained from

eq. (C.29), or even more straightforwardly from eq. (C.2):

det�(1− pg−) = (1− p2)

r−1∏

i=1

(1− pxi)(1− p/xi) =
1− p2

P (2r−2)(p; x̃)
. (C.31)

Integration measure. The integral over O(2r) splits into two separate integrals over

the components O±(2r),

∫
dµO(2r)f(g) =

1

2

∫
dµ+f(g+) +

1

2

∫
dµ−f(g−)

=
1

2

∫
dµSO(2r)f(g+) +

1

2

∫
dµSp(2r−2)f(g−) , (C.32)

where the factors of 1/2 are from normalizing
∫
dµ =

∫
dµ± = 1. The measure on O+(2r)

is obviously that of SO(2r). The measure of O−(2r) can be computed using the Weyl

integration formula given in appendix B. As the folded root system is that of Sp(2r − 2),

the end result is simply dµ− = dµSp(2r−2).

C.4 Examples

To compute the Hilbert series, one follows eq. (C.22). From above, we know that

dµ+ = dµSO(2r)(x) , det�(1− pg+) =
1

P (2r)(p;x)
, (C.33a)

dµ− = dµSp(2r−2)(x̃) , det�(1− pg−) =
1− p2

P (2r−2)(p; x̃)
. (C.33b)

Our task is to compute the functions Z± for some given field content. In the following, we

show two explicit examples — the real scalar field in d = 2r and the gauge field in d = 4

dimensions.

Real scalar field in d = 2r. Our first example is the real scalar field φ, whose derivative

∂nφ forms the representation l(n) = (n, 0, . . . , 0) of SO(2r) and hence is also a representa-

tion of O(2r). According to eq. (C.5), the characters are

χ+
(n,0,...,0)(x) = χ(n,0,...,0)(x), (C.34)

χ−(n,0,...,0)(x̃) = χ
Sp(2r−2)
(n,0,...,0) (x̃). (C.35)

The Z+(φ, p, x) function is given in eq. (4.1). Focusing on the Z− function, we use

eq. (C.29):

Z−(φ, p, x̃) =
∞∏

n=0

1

det(n,0,...,0)(1− φpn+∆0g−)

= PE

[
φp∆0

∞∑

n=0

pnχ−(n,0,...,0)(x̃) + φ2p2∆0

∞∑

n=0

p2nΓ(n,0,...,0)(x̃
2)

]
. (C.36)
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The two sums are evaluated as follows:

∞∑

n=0

pnχ−(n,0,...,0)(x̃) =
∞∑

n=0

pnχ
Sp(2r−2)
(n,0,...,0) (x̃) =

∞∑

n=0

pnχ
Sp(2r−2)
symn(1,0,...,0)(x̃) = PE

[
pχ

Sp(2r−2)
(1,0,...,0) (x̃)

]

=
r−1∏

i=1

1

(1− pxi)(1− p/xi)
= P (2r−2)(p; x̃) , (C.37a)

∞∑

n=0

pnΓ(n,0,...,0)(x̃) =
1

2

[ ∞∑

n=0

pnχ+
(n,0,...,0)(x)−

∞∑

n=0

pnχ−(n,0,...,0)(x̃)

]

=
1

2

[
(1−p2)P (2r)(p;x)−P (2r−2)(p; x̃)

]
=

p

1−pP
(2r−2)(p; x̃). (C.37b)

Eq. (C.37a) uses the Sp(2r − 2) representation relation R(n,0,...,0) = Rsymn(1,0,...,0) as well

as χ
Sp(2r−2)
(1,0,...,0) (x̃) =

∑r−1
i=1 (xi + x−1

i ). In the second equation, the first sum in the brackets is

the scalar conformal character, eq. (3.17), evaluated on x. In the end we obtain

Z−(φ, p, x̃) = PE

[
φp∆0P (2r−2)(p; x̃) + φ2 p

2∆0+2

1− p2
P (2r−2)(p2; x̃2)

]
. (C.38)

Gathering it all together yields the final result for the parity odd piece of the Hilbert series

H
(2r)
0,− (φ, p) =

∫
dµSp(2r−2)

1− p2

P (2r−2)(p; x̃)
PE

[
φp∆0P (2r−2)(p; x̃)+φ2 p

2∆0+2

1− p2
P (2r−2)(p2; x̃2)

]
.

(C.39)

Gauge fields in d = 4. As a second example, we consider gauge fields in four dimensions.

In addition to its physical interest, this case is an example of how to address representations

with lr 6= 0.

Gauge fields are handled by working with their field strengths Fµν which are the

rank 2 antisymmetric representation of SO(2r) corresponding to l = (1, 1, 0, . . . , 0). In

four dimensions we can split Fµν into chiral components by defining the chiral components

FL,R = F±F̃ ,53 which transform as the l = (1,±1) representations of SO(4). The conformal

representations for FL,R contain derivatives ∂nFL,R in the (n + 1,±1) representation of

SO(4), whose direct sum gives the O(4) representation l(n) = (n+ 1, 1). By eq. (C.5), the

characters are

χ+
(n+1,1)(x1, x2) = χ(n+1,1)(x1, x2) + χ(n+1,−1)(x1, x2), (C.40)

χ−(n+1,1)(x) = 0. (C.41)

Using these, we obtain for the parity even piece

Z+(F, p, x1, x2) = PE

[ ∞∑

n=0

Fp2+nχ+
(n+1,1)(x1, x2)

]
= PE

[
F
(
χ̃[2;(1,1)] + χ̃[2;(1,−1)]

)]
,

53In Minkowski signature there is a factor of i, FL,R = F ± iF̃ .
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with the conformal characters

χ̃[2;(1,1)] = χ[2;(1,1)] − χ[3;(1,0)] + χ[4;(0,0)]

= p2

[(
x1x2 + 1 +

1

x1x2

)
− p

(
x1 +

1

x1
+ x2 +

1

x2

)
+ p2

]
P (4)(p;x1, x2),

χ̃[2;(1,−1)] = χ[2;(1,−1)] − χ[3;(1,0)] + χ[4;(0,0)]

= p2

[(
x1

x2
+ 1 +

x2

x1

)
− p

(
x1 +

1

x1
+ x2 +

1

x2

)
+ p2

]
P (4)(p;x1, x2).

The Z− factor is computed using eq. (C.29). Noting that

Γ(n+1,1)(x) =
1

2

[
χ+

(n+1,1)(x, 1)− χ−(n+1,1)(x)
]

= χ(n+1,1)(x, 1), (C.42)

we have

Z−(F, p, x) = PE

{ ∞∑

n=0

[
Fp2+nχ−(n+1,1)(x) + F 2p2(2+n)Γ(n+1,1)(x

2)
]}

= PE

[
F 2

∞∑

n=0

p2(2+n)χ(n+1,1)(x
2, 1)

]
= PE

[
F 2χ̃[2;(1,1)](p

2;x2, 1)
]
. (C.43)

Combining the Z± results with eq. (C.33), the Hilbert series for gauge fields in 4d looks like

H0(F, p) =
1

2

[
H0,+(F, p) +H0,−(F, p)

]
(C.44)

with54

H0,+ =

∫
dµSO(4)(x1, x2)

1

P (4)(p;x1, x2)
PE
[
Fχ̃[2;(1,1)](p;x1, x2) + Fχ̃[2;(1,−1)](p;x1, x2)

]
,

H0,− =

∫
dµSp(2)(x)

1− p2

P (2)(p;x)
PE
[
F 2 χ̃[2;(1,1)](p

2;x2, 1)
]
.

D Computation of ∆H

In this appendix, we explicitly evaluate ∆H({Φi}, p) for general field content, i.e. based on

general generating representations of eq. (4.21). Generalizing ∆H from eq. (4.16b) to the

general field content, we have

∆H = (−1)d+1pd + ∆H1 + ∆H2, (D.1a)

∆H1 = p∆0+2

∫
dµG(y)

∫
dµSO(d)(x)

[
Z({Φi}, q, x, y)

]∣∣∣
q∆0

, (D.1b)

∆H2 = pd
∫
dµG(y)

∫
dµSO(d)(x)χ�(x)

[
1

P (q;x)

(
Z({Φi}, q, x, y)− 1

)]∣∣∣∣
qd−1

, (D.1c)

where our focus is obviously on ∆H1 and ∆H2.

54This is somewhat schematic; for example, if gauge field is non-abelian there are other pieces pertaining

to the gauge group. See section 4.2.
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For ∆H1, we need the coefficient of q∆0 in Z({Φi}, q, x, y). As ∆0 is the minimum

allowed scaling dimension, saturated by the scalars φi, a non-zero coefficient of q∆0 in Z

can only come from scalar fields. It is easy to see that

Zφi(φi, q, x, y) = 1 + q∆0φiχG,φi(y) +O(q∆0+ 1
2 ),

and hence

∆H1 = p∆0+2

∫
dµG

∑

i

φiχG,φi(y). (D.2)

This is non-zero only if there are scalars which are singlets under G.

The other term ∆H2 can be evaluated by similar considerations. However, as the field

content depends on the spacetime dimensionality — whether d is even or odd — so does

the result. Furthermore, the results pertaining to fermions depend on r mod 4, due to

various properties of spinors in SO(d).

For even dimensions, d = 2r, the contribution of scalars φi, and the d
2 -form field

strengths Fa and F̄a, are independent of r. And we find

∆H
(2r)
2 ⊃ pd

∫
dµG

[∑

i<j

φiφjχG,φiχG,φj +
∑

i

φ2
i ∧2 (χG,φi) + (−1)r−1

∑

a

(Fa+F̄a)χG,Fa

]
,

(D.3)

In many instances, the scalar terms in (D.3) will survive the integral over G: if φ is in a

complex or pseudo-real representation, then the theory necessarily contains φ†. In this case

it is guaranteed that one of the φi in the first term of (D.3) is conjugate to φj , and hence the

product χG,φiχG,φj will contain the singlet representation, χG,φiχG,φj =χ∗G,φjχG,φj ⊃1+· · ·.
Spinors in SO(2r) are chiral, and the properties of these irreps depend on r mod 4.

Accounting for this we find:

∆H
(2r)
2 ⊃





r mod 4 = 2, 4 : pd
∫
dµG

∑

i,j

ψiψ̄jχG,ψiχG,ψ̄j ,

r mod 4 = 3 : pd
∫
dµG

[∑

i<j

ψiψjχG,ψiχG,ψj +
∑

i<j

ψ̄iψ̄jχG,ψ̄iχG,ψ̄j

+
∑

i

ψ2
i sym2

(
χG,ψi

)
+
∑

i

ψ̄2
i sym2

(
χG,ψ̄i

)
]
,

r mod 4 = 1 : pd
∫
dµG

[∑

i<j

ψiψjχG,ψiχG,ψj +
∑

i<j

ψ̄iψ̄jχG,ψ̄iχG,ψ̄j

+
∑

i

ψ2
i ∧2

(
χG,ψi

)
+
∑

i

ψ̄2
i ∧2

(
χG,ψ̄i

)
]
.

(D.4)

Note that the difference between r mod 4 = 3 and r mod 4 = 1 is only in the last terms,

whether they are symmetric or antisymmetric combinations of the χG,ψi .
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The situation for odd dimensions d = 2r + 1 is simpler and we find:

∆H
(2r+1)
2 ⊃





r mod 4=1, 4 : pd
∫
dµG

[∑

i<j

ψiψjχG,ψiχG,ψj+
∑

i

ψ2
i ∧2 χG,ψi

]
,

r mod 4=2, 3 : pd
∫
dµG

[∑

i<j

ψiψjχG,ψiχG,ψj+
∑

i

ψ2
i sym2χG,ψi

]
.

(D.5)

Each piece in ∆H2 has an intuitive meaning in terms of conserved currents. The SO(d)

integral weighted by χ(1,0,...,0) projects out terms which correspond to the exterior derivative

of a current that vanishes through EOM. For example, consider two real scalars φ1 and φ2

transforming trivially under G: from eq. (D.3) we find a contribution ∆H ⊃ pdφ1φ2. This

corresponds to the operator ∂µjµ, where jµ = (φ1∂µφ2 − φ2∂µφ1) is a conserved current

after use of the EOM. This operator is over-subtracted when accounting for integration

by parts in H0 — it is precisely a term which, in the language of section 7, comes from a

non-exact form yet is zero through the EOM when an exterior derivative acts upon it.

E Hilbert series for C[s12, s13, s14, s23, s24, s34]S4

The consequences of S4 invariance (acting on the indices of the Mandelstam invariants) on

the ring in eq. (5.21a),

Rdisting.
EOM = C[s12, s13, s14, s23, s24, s34]S4 , (E.1)

have been explored in ref. [96], where a Hironaka decomposition (the form given below in

eq. (E.4)) of the ring is presented, from which the Hilbert series eq. (5.21b),

H(t) =
1 + t6 + t8 + t10 + t12 + t18

(1− t2) (1− t4)2 (1− t6)2 (1− t8)
, (E.2)

follows trivially.

Before reproducing this result, however, we mention two ways in which just the Hilbert

series can be obtained straightforwardly without finding such a decomposition (to our

knowledge, such decompositions are unknown for n ≥ 5). The first way is to simply

use our formalism for the Hilbert series, for the parity even case (in d ≥ n dimensions,

to avoid Gram conditions), but exclude the ‘1/P ’ factor in the integrand that accounts

for IBP/momentum conservation. A second way would be to compute matrices Mx
ab,

a, b = 1, . . . , n(n − 1)/2, which describe the action of each element x ∈ Sn on the sij ,

and then use Molien’s formula,

H(t) =
1

n!

n!∑

x=1

1

det(1− t2Mx)
. (E.3)

We now turn to the Hironaka decomposition of eq. (E.1). Defining

g2 = s12s34 + s13s24 + s14s23 ,

g3 = s12s23s31 + s12s24s41 + s13s34s41 + s23s34s42 ,

g4 = s12s23s34s41 + s12s24s43s31 + s13s32s24s41 ,

h3 = s12s13s14 + s12s23s24 + s23s13s34 + s24s34s14 ,
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and setting

t2 = e2 − g2 , t3 = e3 − g3 − h3 , t4 = e4 − g4 ,

where ei denotes the ith elementary symmetric polynomial in the variables sij , a Hironaka

decomposition of eq. (E.1) is,

C[s12, s13, s14, s23, s24, s34]S4 =
6⊕

i=1

fiC[y1, . . . , y6] , (E.4)

with yi being e1, g2, t2, g3, h3, g4, and fi being 1, t3, t4, e5, t23, t33.

F Counting helicity amplitudes

In this appendix we re-derive the results of reference [32] for determining the number of

independent tensor structures in the amplitude decomposition eq. (2.15) (= number of

helicity amplitudes [54]).

The basic setup is described in section 6.3, where we consider n-point configurations

from fields Φ1, . . . ,Φn. We recall that polarization tensors are transverse and are specified

by the little group SO(d − 2) for massless particles and SO(d − 1) for massive particles.

For a given set of fields Φ1, . . . ,Φn, we let hi be the number of allowed helicity states for

the ith particle and use N
(n)
h to denote the number of independent tensor structures.

Following the logic of [32], we first fix a scattering frame by using the Poincaré symme-

try to bring the momenta pµ1 , . . . , p
µ
n to some configuration, and then examine the helicity

configurations in this frame. If there is some remaining symmetry which does not change

the momenta, i.e. stabilizes the scattering frame, then this may relate various helicity con-

figurations. If no such symmetry exists, then the number of independent helicity amplitudes

is simply N
(n)
h = N

(n)
h,max ≡

∏n
i=1 hi. Otherwise, this number may be reduced.

We go case-by-case, beginning with the situation where there is no remaining symmetry

and work our way up in complexity. For n ≥ d we can obtain explicit formulas for N
(n)
h in

terms of the hi. For n < d there is no general expression in terms of the hi, but N
(n)
h can

be easily computed from a group integral, see eq. (F.9).

n > d > 4: no symmetry. We begin with the case n > d > 4. Because n > d, one uses

all the Poincaré generators to adjust the momenta of particles. For example, if we consider

2→ n− 2 scattering, we can rotate to the following scattering configuration55




p0
1

p

0
...

0




+




p0
2

−p
0
...

0




=




p0
3

p1
3

p2
3

0
...

0




+ · · ·+




p0
d−1

p1
d−1
...

pd−1
d−1

0




+




p0
d

p1
d

...

pdd




+ · · ·+




p0
n

p1
n

...

pdn




. (F.1)

55In words the steps are (Mµν are Lorentz generators): (1) use translation generators to set momentum

conservation (pµ1 + pµ2 = pµ3 + · · · + pµn); (2) use boosts M0µ to get to the COM frame (pµ1 + pµ2 = (p0
1 +

p0
2, 0, · · · , 0)); (3) use M1i, i > 1, to rotate pµ3 into (12) plane; (4) use M2i, i > 2, to rotate pµ4 into (123)

plane; etc. Note that this procedure leaves us with n(d− 1)− d(d+ 1)/2 independent variables, eq. (5.14).
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Because we have used all of the Poincaré symmetry to achieve this configuration, there are

no further operations that can be done to relate the various external polarization tensors.

Hence, the number of helicity amplitudes is just N
(n)
h,max =

∏n
i=1 hi.

n > d > 4 : N
(n)
h =

n∏

i=1

hi (F.2)

n = d > 4: parity. When parity is a symmetry of the theory it can relate helicity

configurations when n ≤ d. Here we explain the case for n = d, where parity is the only

spacetime symmetry which stabilizes the scattering frame. The case of n < d is covered

below (when n < d parity is part of a larger spacetime symmetry O(m) that stabilizes the

scattering frame).

When n = d > 4, the last component of pµd in eq. (F.1) vanishes by momentum conser-

vation. If the theory possesses O(d) symmetry, the parity element diag(1, . . . , 1,−1) acts

trivially on the configuration,56 and therefore can be used to relate different polarization

states. In the invariant description, we can form εµ1...µdp
µ1
i1
· · · pµdid only for n > d (when

n = d these vanish by momentum conservation). Therefore, for n ≤ d, contractions with

the ε-tensor necessarily involve polarization tensors.

To determine independent amplitudes, we take orbits of the polarization configurations

under the action of parity. As parity is a Z2 action, these orbits involve at most two different

helicity configurations, so the number of O(d) invariant tensor structures is essentially

N
(n)
h,max/2.

More precisely, parity acts trivially only if the configuration is all spin-0 helicity states;

moreover, there is at most one such configuration, and it exists if and only if N
(n)
h,max is odd

(i.e. all hi odd). Hence, for n = d > 4, the number of O(d) invariant tensor structures is

N
(n)
h,max/2 or (N

(n)
h,max + 1)/2 if N

(n)
h,max is even or odd, respectively.

n ≤ 4: permutation symmetry. If we have a permutation group Σn ⊆ Sn, there can

be permutations that stabilize the momenta configuration and therefore can be used to

relate polarization configurations. Call this permutation subgroup Σkin
n ⊆ Σn. Recall that

the Mandelstam invariants sij , when subject to on-shell and momentum conservation, fill

out the V(n−2,2) representation of Sn, eq. (5.16). The various cases to consider are:

n ≤ 3: On-shell and momentum conservation fix all Mandelstam invariants (V(n−2,2) does

not exist for n ≤ 3), so all σ ∈ Sn stabilize the configuration. Hence, Σkin
n = Σn ⊆ Sn

for n ≤ 3.

n = 4: The V(2,2) representation of S4 is isomorphic to the V(2,1) representation of S3; this

is just a fancy way of saying the usual (s, t, u), s + t + u =
∑

im
2
i , are permuted

according to S3. In particular, the permutations

Skin
4 ≡ {(e), (12)(34), (13)(24), (14)(23)} ∈ S4 (F.3)

56We are working back in Euclidean space, as we have done throughout this paper. In Minkowski space,

the following results hold for applying both parity and time-reversal symmetry.
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stabilize the kinematics. Any nontrivial subgroup of Skin
4 is a Z2 group, e.g.

{(e), (13)(24)}. Therefore, Σkin
4 matters only if all four particles are identical,

Σkin
4 = Skin

4 , or if we have two pairs of identical particles.

n > 4: After fixing a momentum configuration, there are no σ ∈ Sn which stabilize this

configuration. In other words, all σ ∈ Sn act non-trivially on V(n−2,2), and therefore

Σkin
n = 1 is trivial for n > 4.

We determine the independent helicity configurations from the distinct orbits under Σkin
n .

For example, for n = 4 identical gauge bosons in d = 4, the orbit of (+ + −−) is∑
σ∈Skin

4
σ ◦ (+ +−−) = 2(+ +−−) + 2(−−++); in this way one finds seven distinct or-

bits for SO(4) and five orbits for O(4) when we include parity, as in table 2. Below we give

a concrete formula for counting these orbits in general.

n < d: leftover rotational symmetry. When n < d, we can bring all the momenta

into some hyperplane, leaving rotations in the orthogonal submanifold. It is not hard to

see this is a (d − n + 1)-dimensional submanifold for n ≥ 3, e.g. from fixing a scattering

frame as in eq. (F.1). Hence, there is a remaining SO(m) symmetry, m ≡ d− n+ 1.57

As polarizations are transverse to momenta, this SO(m) symmetry acts non-trivially

on some of the polarization states. For example, picking a scattering frame for n = 4 the

remaining SO(d− 3) acts as:




p0
1

p

0

0
...

0




+




p0
2

−p
0

0
...

0




=




p0
3

k1

k2

0
...

0




+




p0
4

−k1

−k2

0
...

0




SO(d− 3) acts

on polarizations

living here

polarizations

living here are

SO(d− 3) singlets
(F.4)

In order for the amplitude to be Lorentz invariant, the polarization configurations need to

be invariant under SO(m) (and a possible Σkin
n ).

The number of such invariants is counted with our favorite routine: character orthog-

onality. The idea is to take the representation of a particle under its little group, restrict

to the subgroup of SO(m) rotations — as visualized in the above equation — and impose

SO(m) invariance for the n particles tensored together.

Let Glit
i be the relevant little group for the ith particle, Vi its representation under

Glit
i , and ζi ≡ TrVi(g) the character of Vi. We will typically denote this as ζi(x) where

x = (x1, . . . , xs) parameterize the torus of Glit
i , s = rank(Glit

i ). Note that hi = ζi(1).

57For n = 2 it is a remaining SO(d− 2) symmetry; for n = 1 it is the little group for the particle.
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For example, in d = 5 the characters for a graviton and a massive vector — little

groups SO(3) and SO(4), respectively — are

d = 5 graviton: ζ(x1) = χ
(3)
(2)(x1) = x2

1 + x1 + 1 + x−1
1 + x−2

1 , (F.5a)

d = 5 massive vector: ζ(x1, x2) = χ
(4)
(1,0)(x1, x2) = x1 + x−1

1 + x2 + x−1
2 . (F.5b)

We remind the reader that χ
(n)
l (x) is our usual notation for SO(n) characters, appendix A

(also, if needed, O(n) characters are explained in appendix C and section 4.3).

SO(m) only acts on a subspace of Vi, e.g. eq. (F.4). Let V i denote the SO(m) repre-

sentation obtained by restricting the group action to this subspace,

V i ≡ Res
Glit
i

SO(m)Vi . (F.6)

The character TrV i(g) is readily obtained from ζi(x1, . . . , xs) by setting the appropriate

xi = 1. Specifically, embedding SO(m) into Glit
i so that x1, . . . , xr are coordinates for

the torus of SO(m), then the restriction is obtained by setting xr+1 = · · · = xs = 1

(i.e. setting θi = 0 in xi = eiθi , i = r + 1, . . . , s). Introducing the shorthand notation

x ≡ (x1, . . . , xr, 1, . . . , 1), the relevant character is given by

ζi(x) ≡ ζi(x1, . . . , xr, 1, . . . , 1). (F.7)

For example, if d = 5 and n = 4 then restricting the characters in eq. (F.5) to SO(2) gives

Restrict d = 5 graviton to SO(2) : ζ(x) = x2
1 + x1 + 1 + x−1

1 + x−2
1 , (F.8a)

Restrict d = 5 massive vector to SO(2) : ζ(x) = x1 + 2 + x−1
1 . (F.8b)

We are now in a position to write down the number of independent polarization con-

figurations. If the kinematic permutation group Σkin
n is trivial, then we simply multiply all

the restricted characters, eq. (F.7), together and average over SO(m):

N
(n)
h =

∫
dµSO(d−n+1)ζ1(x) · · · ζn(x). (F.9)

(See eq. 5.8 in [32].) If parity is a symmetry, then the group integral is over O(m).

In fact, as is hopefully clear, the present discussion actually applies to all cases, not

just n < d. When n ≥ d there is no remaining rotational symmetry, i.e. SO(m) is trivial.58

In particular, the restricted characters in eq. (F.7) become ζi(1) = hi and the integral in

eq. (F.9) becomes trivial,

∫
dµSO(m)ζ1(x) · · · ζn(x)→ ζ1(1) · · · ζn(1) =

n∏

i=1

hi ,

up to a possible average over the parity action when n = d.

58In a very particle physics language, the momentum configuration in eq. (F.1) “higgses” or “breaks”

the entire Poincaré symmetry, while when n < d the scattering frame, e.g. eq (F.4), breaks Poincaré =

SO(d− 1, 1) n T d → SO(d− n+ 1).
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If Σkin
n is non-trivial we do the following. Recall that taking the symmetric product of a

representation, symnV , is a recipe for symmetrizing indices. For example, if ρ(g), g ∈ G, is

the representation matrix acting on V as vi → ρij(g)vj , then the appropriate representation

acting on sym2V is 1
2!

∑
σ∈S2

ρi1jσ(1)
ρi2jσ(2)

= 1
2(ρi1j1ρi2j2 + ρi1j2ρi2j1). Taking the trace

by contracting with δi1j1δi2j2 , we obtain the familiar formula Trsym2V (g) = 1
2

(
TrV (g)2 +

TrV (g2)
)
, which has usually been phrased in this work as an action on the character

sym2[χ(x)] = 1
2

(
χ(x)2 + χ(x2)

)
.

The point of reviewing the symmetric products is that it is the exact same procedure

to take tensor products with any type of permutation symmetry. In particular, for n = 4

the possible non-trivial permutation groups are Skin
4 in eq. (F.3) if all particles are identical

or Σkin,pairs
4 ≡ {(e), (13)(24)} if two pairs of particles are identical (here we picked the pairs

to be 1,3 and 2,4). Taking the tensor product with, for example, Skin
4 gives the character

δi1j1 · · · δi4j4 1

4

∑

σ∈Skin
4

ρi1jσ(1)
· · · ρi4jσ(4)

=
1

4

(
Tr(ρ)4 + 3Tr(ρ2)2

)
. (F.10)

Extending this to an action on functions, Skin
4 [f(x)], we have for the characters

Skin
4

[
ζ(x)

]
=

1

4

(
ζ(x)4 + 3ζ(x2)2

)
. (F.11)

(One may wish to compare this to formula for the fourth symmetric product, eq. (6.2).)

Similarly, for Σkin,pairs
4 :

Σkin,pairs
4

[
ζ1(x), ζ2(x)

]
=

1

2

(
ζ1(x)2ζ2(x)2 + ζ1(x2)ζ2(x2)

)
. (F.12)

To obtain the appropriate counting for these cases, we average eqs. (F.11) and (F.12)

over SO(d− 3), as in eq. (F.9). That is,

n = 4, all identical: N
(h)
4 =

∫
dµSO(d−3)

1

4

(
ζ(x)4 + 3ζ(x2)2

)
, (F.13)

and

n = 4, two pairs identical: N
(h)
4 =

∫
dµSO(d−3)

1

2

(
ζ1(x)2ζ2(x)2 + ζ1(x2)ζ2(x2)

)
. (F.14)

We have been a bit cavalier in the above by ignoring the underlying statistics of the

particles. For n = 4 this turns out to okay and the results in eqs. (F.13) and (F.14) hold

whether the particles are bosons or fermions, but for n = 3 one has to be more careful. We

refer to [32] for details.

d = 4 cases. Let us enumerate the cases in d = 4. We assume that Φ1, . . . ,Φn contains

at least one particle with spin (if they are all scalars, then trivially the number of tensor

structures is just one). The little group for massless particles is SO(2), so that all massless

Φi have two polarization states.59 The little group for massive particles is SO(3), so that

59Really, it is the covering group U(1), but CPT ensures that all one-dimensional representations come

in pairs.
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a massive Φi with spin li has hi = 2li + 1. If n > 4 we simply have

N
(h)
n>4 =

n∏

i=1

hi . (F.15)

If n = 4, we need to distinguish the cases when parity and/or Σkin
4 is non-trivial:

(1) No parity, Σkin
4 = 1. N

(h)
4 = N

(h)
4,max =

∏4
i=1 hi.

(2) With parity, Σkin
4 = 1. As discussed above, the answer is simply N

(h)
4,max/2 or

(N
(h)
4,max + 1)/2 depending on whether N

(h)
4,max is even or odd. We can also derive

this result from eq. (F.9) with O(n − d + 1) = O(1) = {1,P}. Here, {1,P} are

the identity and parity elements restricted from their representations in the little

groups O(2) or O(3). The integral in eq. (F.9) simply becomes a sum over these two

elements,

1

2

∑

g∈{1,P}

ζ1(g) · · · ζ4(g) =
1

2

(
4∏

i=1

hi + ζ1(P) · · · ζ4(P)

)
. (F.16)

For all massless particles with spin, parity in O(2) represents as diag(1,−1), which is

remains the same upon restricting to O(1). For O(3) we can take parity to represent

on the vector as diag(−1,−1,−1) (whose restriction to O(1) is diag(1, 1,−1)). It

is easy to see that for any integer spin ζi(P) = 1, while for any half-integer spin

ζi(P) = 0. Therefore, the second term in eq. (F.16) is non-zero only if all particles

with spin are massive and have integer spin, in which case ζ1(P) · · · ζ4(P) = 1 and

we recover the stated result.

(3) No parity, Skin
4 . We use eq. (F.13) with the integral being trivial. We have

ζ(1) = ζ(12) = h (recall that ζi(x
2) means TrV i(g

2)). Therefore we obtain

N
(h)
4 = h2

4 (h2 + 3). If the four particles are massless this gives N
(h)
4 = 7, as in table 2.

(4) With Parity, Skin
4 . Analogous to cases (2) and (3) above, we obtain N

(h)
4 = h2

8 (h2 +

6), which reproduces the entry in table 2.

(5) No parity, Σkin,pairs
4 . N

(h)
4 = 1

2h1h2(h1h2 + 1).

(6) With parity, Σkin,pairs
4 . N

(h)
4 = 1

4h1h2(h1h2 + 2).

G EOM for non-linear realizations

In this appendix, we show that the EOM (at the leading order of the EFT) in non-linear

representation is

Dµuµ = 0. (G.1)

At the leading order, the non-linear Lagrangian is

LK = f2
πtr
(
Dµξ−1Dµξ

)
= −f2

πtr (uµuµ) . (G.2)
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Let us consider a variation in ξ (which is of course induced by variations in π fields):

ξ → ξ + δξ. This variation will result in a variation in uµ = ξ−1Dµξ as

δuµ =
(
δξ−1

)
Dµξ + ξ−1Dµ (δξ) = −ξ−1 (δξ) ξ−1Dµξ + ξ−1Dµ (δξ) . (G.3)

It is straightforward to compute the variation of LK :

δLK = −2f2
πtr (uµδuµ)

= −2f2
πtr
{
uµ
[
−ξ−1 (δξ) ξ−1Dµξ + ξ−1Dµ (δξ)

]}

= 2f2
πtr
[
uµξ−1 (δξ)uµ +Dµ

(
uµξ−1

)
δξ
]

= 2f2
πtr
[
uµu

µξ−1 (δξ) + uµ
(
Dµξ

−1
)
δξ + (Dµu

µ) ξ−1δξ
]

= 2f2
πtr
[
uµu

µξ−1 (δξ)− uµξ−1 (Dµξ) ξ
−1δξ + (Dµu

µ) ξ−1δξ
]

= 2f2
πtr
[
(Dµu

µ) ξ−1δξ
]
. (G.4)

The EOM is the requirement that for any variation δξ, we have δLK = 0. Since ξ−1δξ

span the space of g/h, we conclude that the EOM is

Dµu
µ = 0. (G.5)
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