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1 Introduction

Bs−B̄s oscillations are governed by the 2× 2 matrix M − iΓ/2, which contains the mass

matrix M = M † and the decay matrix Γ = Γ†. By diagonalising M − iΓ/2 one finds the

mass eigenstates BL and BH with the subscripts denoting “light” and “heavy”, respectively.

The eigenvalues ML − iΓL/2 and MH − iΓH/2 define masses and decay width of BL and

BH . The time-dependent states BL(t) and BH(t) each obey exponential decay laws with

decay constants ΓL and ΓH . By transforming back to the flavour basis (Bs, B̄s) one finds

the familiar damped oscillations between these flavour eigenstates. The mixing problem

involves five observables:

M =
ML +MH

2
, Γ =

ΓL + ΓH

2
, ∆M = MH −ML, ∆Γ = ΓL − ΓH , (1.1)

and the CP asymmetry in flavour-specific decays, afs, which quantifies CP violation in

mixing. The mass difference ∆M = (17.757 ± 0.021) ps−1 [1] has been determined very

precisely by the CDF [2] and LHCb [3] experiments from the Bs−B̄s oscillation frequency.

The experimental value of the width difference [1],

∆Γexp = (0.089± 0.006) ps−1 (1.2)
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is an average of measurements by LHCb [4, 5], ATLAS [6], CMS [7], and CDF [8]. The

average mass M ≡ MBs and the average width Γ of the mass eigenstates are simply given

by the diagonal elements of M and Γ as M = M11 = M22 and Γ = Γ11 = Γ22. The

remaining physical quantities in M − iΓ/2 are |M12|, |Γ12|, and the CP-violating phase

φ12 = arg(−M12/Γ12). These are related to ∆M , ∆Γ, and afs as

∆M = 2|M12|, ∆Γ = 2|Γ12| cosφ12 = −∆M Re
Γ12

M12
,

afs =
|Γ12|
|M12|

sinφ12 = Im
Γ12

M12
. (1.3)

In these formulas |Γ12| ≪ |M12| and |∆Γ| ≪ |∆M | is used. Within the Standard Model

(SM) one finds φ12 = 0.24◦ ± 0.06◦ [9–12], which permits to set cosφ12 = 1 in the SM

prediction for ∆Γ.

For the calculation of Γ12 one employs an operator product expansion, the heavy quark

expansion (HQE) [13]–[16], which results in a systematic expansion of Γ12 in powers of

ΛQCD/mb ∼ 0.1 and αs(mb) ∼ 0.2. Γ12 has been calculated to next-to-leading order (NLO)

in both ΛQCD/mb [17] and αs(mb) [9, 10, 18, 19]. The leading-power (i.e. (ΛQCD/mb)
0)

term involves two |∆B| = 2 operators (B denotes the beauty quantum number)

Q = (s̄ibi)V−A (s̄jbj)V−A, Q̃S = (s̄ibj)S−P (s̄jbi)S−P . (1.4)

Here the i, j are colour indices and V ±A means γµ(1±γ5) while S±P stands for (1±γ5).

The hadronic matrix elements, which must be calculated with non-perturbative methods,

are usually parameterized as

〈Bs|Q(µ2)|Bs〉 =
8

3
M2

Bs
f2
Bs
B(µ2) 〈Bs|Q̃S(µ2)|Bs〉 =

1

3
M2

Bs
f2
Bs
B̃′

S(µ2). (1.5)

Here fBs is the Bs decay constant and µ2 = O(mb) is the renormalization scale at which

the matrix elements are calculated. In a lattice-gauge theory calculation µ2 is the scale at

which the lattice-continuum matching is performed. In the expression for Γ12 the matrix

elements of eq. (1.5) are multiplied by perturbative Wilson coefficients which also depend

on µ2 such that the dependence on the unphysical scale µ2 cancels from Γ12. In the same

way the dependence on the renormalization scheme cancels between the Wilson coefficients

and B(µ2), B̃
′
S(µ2). In this paper we use the scheme of ref. [18].

∆Γ is proportional tom2
b and the theoretical prediction depends on the renormalization

scheme chosen for mb (for a detailed discussion see ref. [10]) and further on the scale

µ1 = O(mb) at which the |∆B| = 1 Wilson coefficients are evaluated. Both dependences

are unphysical and diminish order-by-order in perturbation theory. At NLO the scheme and

scale dependence is still sizable and indicates that higher orders of αs should be calculated.

With up-to-date values for quark masses and the elements of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix (stated below in section 5) one finds

∆Γ = (1.74± 0.24) f2
Bs
B + (0.40± 0.05)f2

Bs
B̃′

S + (−0.65± 0.35) f2
Bs

(1.6)
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in the scheme using the pole mass definition of mb in the prefactor of ∆Γ. Here and in the

following the hadronic parameters are understood at µ2 = mb. The last term in eq. (1.6)

is the ΛQCD/mb correction. If instead the MS scheme is used for mb one finds

∆Γ = (1.86± 0.08) f2
Bs
B + (0.42± 0.01)f2

Bs
B̃′

S + (−0.55± 0.29) f2
Bs

. (1.7)

The errors quoted in the brackets in eqs. (1.6) and (1.7) are found by varying µ1 between

mb/2 and 2mb. Ref. [11] has quoted all results for the scheme of eq. (1.7), while in ref. [12]

the average of results in the two schemes has been given. A recent lattice calculation [20]

has found

f2
Bs
B = [0.224GeV]2 (1.00± 0.06), f2

Bs
B̃′

S = [0.224GeV]2 (1.83± 0.19) . (1.8)

Here we have added two errors from different sources in quadrature. Ref. [20] has also

calculated some of the matrix elements appearing at order ΛQCD/mb and these results

went into the last terms of eqs. (1.6) and (1.7). With fBs = 0.224GeV and neglecting the

correlation of the uncertainties in B and B̃′
S we find

∆Γ =
(
0.0913± 0.020scale ± 0.006

B,B̃S
± 0.017ΛQCD/mb

)
GeV (pole)

∆Γ =
(
0.104± 0.008scale ± 0.007

B,B̃S
± 0.015ΛQCD/mb

)
GeV (MS) (1.9)

From eq. (1.9) we observe that the both scale and scheme dependences exceed the uncer-

tainties from the hadronic parameters B and B̃S . Furthermore, the theoretical uncertainty

inferred from these dependences is larger than the present experimental error. This calls

for a NNLO calculation of the perturbative coefficients multiplying Q and Q̃S . In this

paper we present the first step in this direction, the calculation of the terms of order

α2
sNf , where Nf is the number of quark flavours, neglecting quadratic and higher powers

of mc/mb. Eq. (1.9) will further improve from a future calculation of the NLO corrections

to the ΛQCD/mb part and progress in the lattice calculations of the hadronic matrix el-

ements appearing in this order. The contributions of order (ΛQCD/mb)
2, however, have

been estimated to be small [10, 21]. The theoretical prediction can be further refined,

if ∆Γ is predicted from the ratio ∆Γ/∆M and the experimental value of ∆M , which is

proportional to f2
Bs
B. This procedure eliminates the uncertainty associated with B al-

together, at the price of making the prediction sensitive to possible new physics in ∆M .

From eqs. (1.6) and (1.7) one realises that the numerically dominant term in ∆Γ/∆M will

not contain any hadronic parameter [10]. This feature also alleviates the problem that the

lattice-continuum matching is currently only known to NLO.

This paper is organized as follows: in the following section we summarize the theoret-

ical framework of the calculation. In section 3 we describe details of the renormalization

procedure and the regularization of infrared singularities. We present our analytical results

in section 4 and perform a phenomenological analysis in section 5. Finally we conclude.

Results for matrix elements and master integrals needed for the calculation are relegated

to the appendix.
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2 Theoretical framework

The effective ∆B = 1 weak Hamiltonian, relevant for our calculation, is the following [22]

H∆B=1
eff =

GF√
2
V ∗
csVcb

{
6∑

i=1

CiOi + C8O8

}
+ H.c., (2.1)

with the operators

O1 = (s̄icj)V−A (c̄jbi)V−A, O2 = (s̄ici)V−A (c̄jbj)V−A,

O3 = (s̄ibi)V−A (q̄jqj)V−A, O4 = (s̄ibj)V−A (q̄jqi)V−A,

O5 = (s̄ibi)V−A (q̄jqj)V+A, O6 = (s̄ibj)V−A (q̄jqi)V+A, (2.2)

O8 =
gs
8π2

mbs̄iσ
µν(1− γ5)T

a
ijbjG

a
µν .

Here the i, j are colour indices and summation over q = u, d, s, c, b is implied. V ±A refers

to γµ(1 ± γ5) and S ± P (which we need below) to (1 ± γ5). C1, . . . , C6 and C8 are the

corresponding Wilson coefficient functions. GF is the Fermi constant and Vjk denotes an

element of the CKM matrix. Cabbibo-suppressed contributions proportional to V ∗
ubVus are

neglected in (2.1).

To find ∆Γ ≃ 2|Γ12| we must calculate

Γ12 = Abs〈Bs| i
∫

d4x T Heff(x)Heff(0)|B̄s〉, (2.3)

where ‘Abs’ denotes the absorptive part of the matrix element and T denotes time ordering.

The HQE expresses eq. (2.3) in terms of matrix elements of local operators. The leading

term (in powers of ΛQCD/mb) reads

Γ12 =
G2

Fm
2
b

24πMBs

(V ∗
cbVcs)

2 [G 〈Bs|Q|B̄s〉 − GS 〈Bs|QS |B̄s〉
]

(2.4)

Using the notation of refs. [9, 10, 18], the coefficients G and GS are further decomposed as

G = F + P, GS = −FS − PS . (2.5)

Here F and FS are the contributions from the current-current operatorsQ1,2 while the small

coefficients P and PS stem from the penguin operators Q3−6 and Q8. The coefficients G,GS

are calculated by expressing the bilocal matrix elements

Abs 〈 i
∫

d4x T Qi(x)Qj(0) 〉, (2.6)

(“full theory”) in terms of the local matrix elements 〈Q〉, 〈QS〉 (“effective theory”), the co-
efficients of the latter are the desired coefficients. Since G,GS are short-distance quantities,

this matching calculation can be done order-by-order in perturbation theory, with quarks

instead of mesons as external states in eq. (2.6). The NLO result of refs. [9, 10, 18, 19]

involves eq. (2.6) at the two-loop level for i, j = 1, 2. The chromomagnetic operator O8 is
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proportional to the strong coupling gs, so that for i = 8 or j = 8 a one-loop calculation

is sufficient for NLO accuracy. It is further customary to count the small penguin Wilson

coefficients C3−6 as O(αs) and only one-loop diagrams are considered for i ≥ 3 or j ≥ 3.

The first ingredient of an NNLO result are the Wilson coefficients of the ∆B = 1 weak

Hamiltonian in eq. (2.1). The NNLO Wilson coefficients involve the three-loop anomalous

dimension matrix governing the renormalization-group evolution of C1−6,8 from the elec-

troweak scale down to the scale µ1 ∼ mb, at which the matrix elements in eq. (2.6) are

evaluated. The NNLO effective hamiltonian has been calculated in refs. [23, 24], albeit in

a different operator basis than the one in eq. (2.2), which is used in the NLO calculations

of refs. [9, 10, 18, 19] and in this paper.

The NNLO contributions presented in this paper all involve a closed quark loop and

would be dominant in the case of a large number Nf of light quarks. However, the limit

Nf → ∞ is in conflict with asymptotic freedom of QCD, as the first term β0 of the QCD β

function would change sign. It has been suggested to tradeNf for β0, so that the α
2
sNf term

is replaced by a term of order α2
sβ0 (naive non-abelianization [25, 26]). In some applica-

tions this procedure gives a good approximation to the full α2
s term. However, in quantities

involving effective four-quark operators, it is pure speculation whether the original α2
sNf

term or its naively non-abelianized version ∝ α2
sβ0 approximates the full result in a better

way, because neither term cancels the scheme dependence of the operator renormalization.

That is, in one scheme the α2
sNf term may be a good approximant, while in another one

the α2
sβ0 term does better, or neither of them is sensible. For the standard NDR renormal-

ization scheme used by us, e.g. the calculation in ref. [27] revealed that the α2
sβ0 term is not

a good approximation to the full result. In light of this finding we do not advocate the use

of naive non-abelianization in our case. Nonetheless, the α2
sNf portion of the full NNLO

result is gauge invariant and therefore a meaningful quantity. One can also overcome the

scheme-dependence issue by only keeping the α2
sNf terms of the NNLO correction to the

RG-improved Wilson coefficients. However, we find that applying this procedure to the

known NLO result gives a poor approximation, so that we refrain from using it.

The desired α2
sNf contribution requires the calculation of the diagrams in figure 1. We

formally distinguish the charm mass in the lines attached to an effective operator (i.e. to

a weak vertex) from that in the charm loop correcting the gluon propagator: the latter

give rise to corrections which are linear in mc/mb and we keep a non-zero charm mass in

these loops. On the contrary, the dependence on the charm mass arising from the lines in

which the charm originates from a weak vertex is only quadratic and we use mc = 0 for

these lines. Denoting the MS-renormalized mass of the quark q with mq(µ), where µ is the

renormalization scale, we define

z =
m2

c(mc)

m2
b(mb)

= 0.095, and z̄ =
m2

c(mb)

m2
b(mb)

= 0.048. (2.7)

If the LO and NLO terms are expressed in terms of z, the error associated with the above

approximation is of order α2
sNfz log

2 z. If, however, one uses z̄ instead, the approximation

only inflicts an error of order α2
sNf z̄ and the logarithmic terms αn

s z log
n z, z = 1, . . . are

summed to all orders. This feature has been studied in refs. [10, 28]. The NLO result for ∆Γ
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E1 E2 E3 E4

D1 D2 D3 D4

D5 D6 D7

D8 D9 D10

D11 D12 D13

Figure 1. Diagrams D1 −D13 constitute the O(α2
sNf ) corrections to eq. (2.6). E1 − E4 are the

corresponding corrections to the matrix elements of local ∆B = 2 operators, which are required

for a proper factorization of infrared divergences. Not displayed are E′

1, E
′

2, D
′

1, D
′

2, D
′

5, D
′

6, D
′

7,

D′

8, D
′

10 and D′

12 which are obtained by rotating the corresponding diagrams by 1800 and diagrams

associated with QCD penguin operators. The closed fermion loop contains massive c, b quarks and

massless u, d, s quarks. The charm loop involves terms of order mc/mb, so that the charm mass

cannot be neglected here. However, in the charm quark lines attached to a weak vertex we set the

charm quark mass to zero, which induces an error of order m2
c/m

2
b .

expressed through z̄ is numerically very well reproduced if z̄ is set to zero in the NLO cor-

rection. Since we discard terms of order α2
s z̄, one may also expand the z-dependence from

the charm quark loop to order z log z and neglect terms of order z and higher. We calculate

the tree-loop diagrams with charm loop indeed as an expansion in z, but keep all terms to

order z3, to check whether the expansion is numerically under good control. Furthermore,

a future NNLO calculation keeping higher powers of z terms will benefit from these results.

3 Renormalization and infrared regularization

In this section we specify our renormalization scheme, present the various counterterms,

and clarify the regularization procedure used to isolate infrared (IR) divergences. The

latter factorize between the full-theory and effective-theory diagrams (see figure 1) and

render the desired Wilson coefficients IR-finite.

For the three-loop diagrams involving two insertions of O1,2 we need C1,2 at NNLO (i.e.

calculated with three-loop anomalous dimensions). The result of ref. [23] has been trans-

– 6 –
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formed to the traditional operator basis in eq. (2.2) in ref. [29] and we use the result of this

paper. We renormalize the operators in the usual naive dimensional regularization (NDR)

scheme. To fully specify the scheme one must further define the evanescent operators [30].

In ref. [29] the usual NLO definition of these operators has been extended to NNLO in such a

way that the diagonal RG evolution of O2±O1 is maintained at NNLO. For our calculation

we must specify the evanescent operators related to Q and Q̃S : their operational definition

involves the following replacements in the D-dimensional Dirac-structures (D = 4− 2ǫ):

[γµγν(1−γ5)]ij [γνγµ(1−γ5)]kl → (8−8ǫ)[1−γ5]il[1−γ5]kj+4ǫ2[1−γ5]ij [1−γ5]kl, (3.1)

[γµγαγν(1−γ5)]ij [γνγαγµ(1−γ5)]kl → (4−8ǫ+4ǫ2)[γµ(1−γ5)]ij [γµ(1−γ5)]kl. (3.2)

These relations, as well as their colour-flipped counterparts, extend the result of ref. [18] to

order ǫ2. Formally, the evanescent operator E1[Q] (see ref. [30]) is defined as the difference

between the expression on the left and on the right of the arrow in eq. (3.2), supplemented

with the quark field operators on the left and right of the Dirac structures, and analogously

eq. (3.1) defines E1[Q̃S ]. At NNLO the ǫ2 terms matter, and these are chosen to preserve

the Fierz symmetry, i.e. the two-loop matrix elements of Q and Q̃S are equal to the matrix

elements of the operators obtained from Q and Q̃S by 4-dimensional Fierz transformations.

In a first step of the calculation the diagrams contributing to eq. (2.6) generate three

effective operators, Q, Q̃S and QS = (s̄ibi)S−P (s̄jbj)S−P . However, one linear combination

of Q, QS , and Q̃S is 1/mb suppressed [17], so that one can choose any two of them in the

leading-power result addressed in this paper. The 1/mb-suppressed operator reads

R0 ≡ QS + α1Q̃S + α2
1

2
Q, (3.3)

with α1,2 = 1 at LO. In ref. [18] it was found that α1,2 receive corrections of order αs. To

our order α2
sNf and in the scheme defined by eqs. (3.1) and (3.2) these coefficients read:

α1=1+
αs(µ2)

4π
Cf

(
12log

µ2

mb
+6

)
+
α2
s(µ2)

(4π)2
Cf

[
NH

(
−52

3
log

µ2

mb
−8log2

µ2

mb
− 427

18
+
8π2

3

)

+NV

(
−52

3
log

µ2

mb
−8log2

µ2

mb
− 211

18
− 4π2

3
+4π2√z−24z+4π2z3/2

−1

9
z2

(
151+12π2−78logz+18log2 z

)
+

8

75
z3(19−10logz)

)

+NL

(
−52

3
log

µ2

mb
−8log2

µ2

mb
− 211

18
− 4π2

3

)]
, (3.4)

α2=1+
αs(µ2)

4π
Cf

(
6log

µ2

mb
+
13

2

)
+
α2
s(µ2)

(4π)2
Cf

[
NH

(
−26

3
log

µ2

mb
−4log2

µ2

mb
− 217

18
+
4π2

3

)

+NV

(
−26

3
log

µ2

mb
−4log2

µ2

mb
− 109

18
− 2π2

3
+2π2√z−12z+2π2z3/2

− 1

18
z2

(
18log2 z−78logz+12π2+151

)
+

4

75
z3(19−10logz)

)

+NL

(
−26

3
log

µ2

mb
−4log2

µ2

mb
− 109

18
− 2π2

3

)]
. (3.5)
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Here Cf = 4/3 is a colour factor and µ2 is the scale at which the operators in eq. (3.3) are

defined. NH = 1, NV = 1, and NL = 3 count the numbers of b, c, and light (u, d, s) quarks,

respectively. The redundant parameters NH,V are introduced for an easier recognition of

the various contributions in the formulae for the coefficients. The results for α1,2 are further

expanded in z to the third order. Later we will have to express αs(µ2) in terms of αs(µ1),

which occurs in the Wilson coefficients. To this end one can use the following formula:

αs(µ2) = αs(µ1) +
α2
s(µ1)

2π
β0 log

µ1

µ2
. (3.6)

One may freely choose two of the three operators Q, QS , and Q̃S . The choice of the

basis Q, Q̃S leads to numerically more stable results [10] than the choice Q,QS and renders

the unknown NLO corrections proportional to 〈R0〉 color-suppressed. Nevertheless the

NNLO calculation is more convenient in the latter basis and one may easily transform the

result between the bases by using eqs. (3.3) to (3.5).

We next discuss the infrared regularization. For the gluon propagator we use the

following expression (similar to the W boson propagator in an Rξ gauge with ξ = 0)

−iδab
k2 −m2

g + iǫ

(
gµν −

kµkν
k2

)
, (3.7)

where mg is a gluon mass. Our choice of a gluon mass as IR regulator instead of using

dimensional regularization has two advantages: in the matching procedure we do not need

the ǫ and ǫ2 parts of NLO and LO Wilson coefficients and the disapperance of mg from

the Wilson coefficients provides a non-trivial check of the calculation.

The NLO renormalization constants of the gluon mass and gs in MS scheme

read [31, 32]

δZ
(1),Nf
x = − αs

2πǫ
Nf , δZ

(1),Nf
gs =

αs

6πǫ
NfTR with TR =

1

2
. (3.8)

For the NNLO calculation we need NLO diagrams with counterterms, so that the full-

theory NLO diagrams are needed up to order O(ǫ). For this reason we have extended

the calculation of ref. [18] to order ǫ1 for mc = 0. Since the two-loop counterterms have

1/ǫ2 poles, we further need the full-theory LO diagrams to order ǫ2. The results of these

diagrams can be found in appendix A.

The NNLO-large-Nf piece of the field renormalization constant for the external quark

lines is

δZ
(2),Nf
q =

α2
s

(4π)2
4

3ǫ
Nf , q = b, s (3.9)

in the ’t Hooft-Feynman gauge.
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We now turn to the counterterms for the ∆B = 1 operators. The hamiltonian in

eq. (2.1) reads

H∆B=1
eff =

GF√
2
V ∗
csVcb

6∑

j

[CjOj ]
bare =

GF√
2
V ∗
csVcb

6∑

j

[CjOj ]
ren

=
GF√
2
V ∗
csVcb

6∑

j,k

Cbare
j ZjkO

ren
k =

GF√
2
V ∗
csVcb

6∑

j,k

Cren
j ZjkO

bare
k . (3.10)

The last lines illustrates that one can view Zjk as either renormalising the operator Ok or

the Wilson coefficient Cj . Traditionally the renormalization is attributed to the operator,

but we adopt the latter viewpoint, with Cj ≡ Cren
j and Ok ≡ Obare

k .

Writing Zjk = δjk+ δZjk and expanding δZjk = αs

4π δZ
(1)
jk +

(
αs

4π

)2
δZ

(2)
jk +O(α3

s) we find

the following counterterms (first calculated in ref. [33]) at order α2
sNf :

δZ
(2),Nf

11 = δZ
(2),Nf

22 = −1

3
δZ

(2),Nf

12 = −
(

1

3ǫ2
+

1

18ǫ

)
Nf , (3.11)

which enters the result for ∆Γ in combination with the LO (one-loop) matrix element M (0)

of the full theory given in (A.2).

For the penguin-diagram contributions we need the counterterms δZ2k related to the

mixing of O2 into the four-fermion operators O3−6, necessary to renormalize the penguin

diagram D11. There are two types of contributions. The first type induces the mixing

between O2 and O3−6. The non-zero contributions are:

δZ
(1)
42 = δZ

(1)
62 =

1

3ǫ
, (3.12)

δZ
(2),Nf

32 = δZ
(2),Nf

52 = − 2

27ǫ2
Nf , (3.13)

δZ
(2),Nf

42 = δZ
(2),Nf

62 =
2

9ǫ2
Nf . (3.14)

In the result for ∆Γ the counterterms in the first line multiply the matrix elementsM
(1)
42 and

M
(1)
62 in eq. (A.10), while the other (two-loop) counterterms multiply M

(0)
i2 , i = 3, . . . , 6, in

eq. (A.9). The second type of counterterms involves the mixing of the penguin operators

O3−6 among themselves. Together with δZ
(1)
42 and δZ

(1)
62 written above, the additional

non-zero contributions, which multiply the M
(0)
ij , i, j = 3, . . . , 6, in eq. (A.15), are:

δZ
(1)
32 = δZ

(1)
52 = − 1

9ǫ
. (3.15)

Finally we state the O(αs) counterterms needed to renormalize the penguin diagram D12.

Here the counterterms are δZ
(1)
42 and δZ

(1)
62 noted above.

In the effective theory the counterterms for gluon mass, strong coupling constant gs,

and external fields (b and s) are treated as in the full theory. For the counterterms of the

∆B = 2 operators note that here only the NNLO renormalization constants can contain

parts proportional to Nf , while the NLO renormalization constants have no pieces pro-

portional to Nf . Thus the MS renormalization of the ∆B = 2 operators at order α2
sNf

is trivial, one just has to drop the divergence from the considered two-loop diagrams with

quark loop.
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4 Results for the coefficients G, GS at order α2

s
Nf

We first discuss the contributions F ,FS to G,GS with two insertions of O1,2 (see eq. (2.5)).

We decompose F defined as

F (z) = F11(z)C
2
1 (µ1) + F12(z)C1(µ1)C2(µ1) + F22(z)C

2
2 (µ1), (4.1)

with an analogous definition of FS,ij . We further write

Fij(z) = F
(0)
ij (z)+

αs(µ1)

4π
F

(1)
ij (z)+

α2
s(µ1)

(4π)2

(
NHF

(2),NH

ij (1)+NV F
(2),NV

ij (z)+NLF
(2),NL

ij (0)
)

and similarly for FS(z). NH,V,L are defined after eq. (3.5). The argument of F
(2),NH,V,L

ij is

the ratio zq = m2
q/m

2
b , where mq is the mass of the quark running in the loop in the gluon

propagator, i.e. zq equals 1,z, or 0.

The NNLO functions F
(2),Nf

ij and F
(2),Nf

S,ij for the b quark loop read:

F
(2),NH

11 (1)=−386

9
log

µ1

mb
+
176

9
log

µ2

mb
− 40

3
log

µ1

mb
log

µ2

mb
+
20

3
log2

µ2

mb

+π2

(
−2

9

(
1+104

√
5
)
− 64

3
log

1+
√
5

2

)
+
64ζ(3)

3
+
95993

162
, (4.2)

F
(2),NH

12 (1)=
554

27
log

µ1

mb
+
352

27
log

µ2

mb
− 80

9
log

µ1

mb
log

µ2

mb
+
68

3
log2

µ1

mb
+
40

9
log2

µ2

mb

+π2

(
− 2

27

(
53+208

√
5
)
− 128

9
log

1+
√
5

2

)
+
128ζ(3)

9
+
518521

1215
, (4.3)

F
(2),NH

22 (1)=
236

27
log

µ1

mb
+
58

27
log

µ2

mb
− 32

9
log

µ1

mb
log

µ2

mb
+
20

3
log2

µ1

mb
+
16

9
log2

µ2

mb

+π2

(
4

9
log

µ1

mb
− 5

27

(
12+13

√
5
)
− 20

9
log

1+
√
5

2

)
+
14ζ(3)

9
+
99511

1215
, (4.4)

F
(2),NH

S,11 (1)=−80

9
log

µ1

mb
+
320

9
log

µ2

mb
+
128

3
log

µ1

mb
log

µ2

mb
− 64

3
log2

µ2

mb

+π2

(
−16

9

(
8+13

√
5
)
− 64

3
log

1+
√
5

2

)
+
64ζ(3)

3
+
295238

405
, (4.5)

F
(2),NH

S,12 (1)=
464

27
log

µ1

mb
+
640

27
log

µ2

mb
+
256

9
log

µ1

mb
log

µ2

mb
+
32

3
log2

µ1

mb
− 128

9
log2

µ2

mb

+π2

(
−16

27

(
19+26

√
5
)
− 128

9
log

1+
√
5

2

)
+
128ζ(3)

9
+
121724

243
, (4.6)

F
(2),NH

S,22 (1)=
704

27
log

µ1

mb
− 320

27
log

µ2

mb
− 128

9
log

µ1

mb
log

µ2

mb
+
32

3
log2

µ1

mb
+
64

9
log2

µ2

mb

+π2

(
−32

9
log

µ1

mb
+

8

27

(
30−13

√
5
)
− 32

9
log

1+
√
5

2

)
+
80ζ(3)

9
+
5836

1215
. (4.7)
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The result for the charm loop quark is expanded in z = m2
c/m

2
b up to O(z3):

F
(2),NV

11 (z)=−42.8889log
µ1

mb
+19.5556log

µ2

mb
−13.3333log

µ1

mb
log

µ2

mb
+6.66667log2

µ2

mb

−5.84736−39.4784
√
z+z(37−24logz)−39.4784z3/2

+z2(2 log2 z−63.5556logz+24.5336)

+z3
(
−14.2222log2 z+35.8963logz+69.8579

)
+O(z4), (4.8)

F
(2),NV

12 (z)= 20.5185log
µ1

mb
+13.037log

µ2

mb
−8.88889log

µ1

mb
log

µ2

mb
+22.6667log2

µ1

mb

+4.44444log2
µ2

mb
+40.0184−26.3189

√
z−z(16logz+111.333)−26.3189z3/2

+z2
(
18.3333log2 z−117.926logz+86.7372

)

+z3
(
−9.48148log2 z+20.9086logz+62.3882

)
+O(z4), (4.9)

F
(2),NV

22 (z)= 13.1272log
µ1

mb
+2.14815log

µ2

mb
−3.55556log

µ1

mb
log

µ2

mb
+6.66667log2

µ1

mb

+1.77778log2
µ2

mb
+20.858−52.6379

√
z−z(18.1739+32logz)+35.0919z3/2

+z2
(
−2.83333log2 z−16.6481logz+13.9138

)

+z3
(
−1.48148log2 z+9.29383logz+0.204084

)
+O(z4), (4.10)

F
(2),NV

S,11 (z)=−8.88889log
µ1

mb
+35.5556log

µ2

mb
+42.6667log

µ1

mb
log

µ2

mb
−21.3333log2

µ2

mb

+82.4693−157.914
√
z+136z−157.914z3/2

+z2(8 log2 z−75.5556logz+75.1571)

+z3
(
−14.2222log2 z+39.2296logz+68.3912

)
+O(z4), (4.11)

F
(2),NV

S,12 (z)= 17.1852log
µ1

mb
+23.7037log

µ2

mb
+28.4444log

µ1

mb
log

µ2

mb
+10.6667log2

µ1

mb

−14.2222log2
µ2

mb
+75.6462−105.276

√
z+26.6667z−105.276z3/2

+z2
(
13.3333log2 z−85.9259logz+83.2254

)

+z3
(
−9.48148log2 z+24.7309logz+53.0371

)
+O(z4), (4.12)

F
(2),NV

S,22 (z)=−9.01785log
µ1

mb
−11.8519log

µ2

mb
−14.2222log

µ1

mb
log

µ2

mb
+10.6667log2

µ1

mb

+7.11111log2
µ2

mb
−42.0084+105.276

√
z−174.609z+666.747z3/2

+z2
(
−57.3333log2 z+236.296logz−526.684

)

+z3
(
−2.37037log2 z+28.5235logz−32.2992

)
+O(z4). (4.13)

The contribution of each light quark u, d, s can be obtained by setting z = 0 in eqs. (4.8)

to (4.13), i.e. F
(2),NL

ij (0) = F
(2),NV

ij (0).

For the contributions of penguin diagrams and penguin operators in eq. (2.5) we write

P (z) = PNLO(z) + ∆PNNLO(z), PS(z) = PNLO
S (z) + ∆PNNLO

S (z), (4.14)

where PNLO(z) and PNLO
S (z) are the NLO results of ref. [18], while ∆P (z) and ∆PS(z) are

the NNLO corrections with z. Since we treat C3−6 as O(αs), the latter contain terms of
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order C3−6C3−6, αsC2C3−6, and terms of order α2
sC

2
2 . The large-Nf part of ∆PNNLO(z) is

decomposed as

∆PNNLO(z) = NH∆PNNLO,NH (1) +NV ∆PNNLO,NV (z) +NL∆PNNLO,NL(0),

with an analogous formula for ∆PNNLO
S (z). In the penguin contributions the charm mass

on all lines touching O2 are set to zero, while all other charm loops are kept massive. These

include not only the loop in D11−13, but also the loops connecting two penguin operators

O3−6 or one penguin operator and a charm-gluon vertex. The latter two contributions

appear in counterterm diagrams (to e.g. D11−13) and must be treated in the same way as

the diagrams which they renormalize. Consequently, the argument zq (with zq = 1, z, or 0)

in ∆PNNLO,NH,V,L(zq) refers to the mass in the loop of any of these three situations. (At

NNLO there are no diagrams with more than one loop.)

The results are:

∆PNNLO,NH (1) =
αs(µ1)

4π
G(1),NH

p (1)M ′
4(µ1) +

α2
s(µ1)

(4π)2
G(2),NH

p (1)C2
2 (µ1), (4.15)

∆PNNLO,NH

S (1) = −αs(µ1)

4π
8G(1),NH

p (1)M ′
4(µ1)−

α2
s(µ1)

(4π)2
8G(2),NH

p (1)C2
2 (µ1), (4.16)

∆PNNLO,NV (z) =
√
1− 4z

(
(1− z)M ′

1(µ1) +
1

2
(1− 4z)M ′

2(µ1) + 3zM ′
3(µ1)

)

+
αs(µ1)

4π
G(1),NV

p (z)M ′
4(µ1) +

α2
s(µ1)

(4π)2
G(2),NV

p (z)C2
2 (µ1), (4.17)

∆PNNLO,NV

S (z) =
√
1− 4z (1 + 2z)

(
M ′

1(µ1)−M ′
2(µ1)

)

− αs(µ1)

4π
8G(1),NV

p (z)M ′
4(µ1)−

α2
s(µ1)

(4π)2
8G(2),NV

p (z)C2
2 (µ1), (4.18)

with

G(1),NH
p (1) = − 1

54

(
6 log

µ1

mb
− 3

√
3π + 17

)
, (4.19)

G(2),NH
p (1) =

2

81

(
6 log

µ1

mb
− 3

√
3π + 17

)[
2 log

µ1

mb
+

2

3
+

3C8(µ1)

C2(µ1)

]
, (4.20)

G(1),NV
p (z) = − 1

54

[√
1−4z(1+2z)

(
6 log

µ1

mb
+3 log σ+2

)
+6 log

µ1

mb
−3 log z+5+12z

+
9C8(µ1)

C2(µ1)

√
1− 4z (1 + 2z)

]
, (4.21)

G(2),NV
p (z) =

1

81

[
4

3

(
3 log

µ1

mb
+1

)(√
1−4z (1+2z)

(
3 log

µ1

mb
+3 log σ+1

)
+6 log

µ1

mb

−3 log z + 5 + 12z)− 3π2
√
1− 4z (1 + 2z)

+
6C8(µ1)

C2(µ1)

(√
1−4z(1+2z)

(
6 log

µ1

mb
+3 log σ+2

)
+6 log

µ1

mb
−3 log z+5+12z

+
9C8(µ1)

2C2(µ1)

√
1− 4z(1 + 2z)

)]
, (4.22)
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where we have defined M ′
1 = 3C2

3 +2C3C4+3C2
5 +2C5C6, M

′
2 = C2

4 +C2
6 , M

′
3 = 2(3C3C5+

C3C6 + C4C5 + C4C6), M
′
4 = 2(C2C4 + C2C6) and

σ =
1−

√
1− 4z

1 +
√
1− 4z

. (4.23)

As above, ∆PNNLO,NL(0) is obtained from eqs. (4.17) and (4.18) by setting z to 0, i.e.

∆PNNLO,NL(0) = ∆PNNLO,NV (0).

In the matching procedure one has to take into account that the operators, couplings

and masses on the full-theory side are defined at the scale µ1, while the effective operators

are defined at the scale µ2. To compare both sides one must choose the same expansion

parameter on both sides, e.g. αs(µ1), and use eq. (3.6) for this. Therefore the α2
sNf results

quoted in this section also contain contributions from the α1
s parts through eq. (3.6).

5 Phenomenology of ∆Γ

In this section we show the impact of the new α2
sNf terms on ∆Γs. Our input parameters

are collected in table 1. We use the complete NNLO ∆B = 1 Wilson coefficients C1,

C2 [29] and the complete NLO expressions for C3, . . . C6, with the numerical values listed

in table 2. The α2
sN

0
f terms of the coefficients inflict a scheme dependence on ∆Γ, which

will only be cancelled once the full NNLO calculation is performed. Nevertheless we can

study whether the new large-Nf terms help to reduce scale and scheme dependences.

The coefficients G = F + P and GS = −FS − PS correspond to the pole scheme for

∆Γ. For the MS scheme we must multiply these coefficients with m̄2
b/m

pole
b and expand

this ratio to the order in αs to which G,Gs are calculated [10], in our case this is O(α2
sNf ).

In both schemes we use z̄ defined in eq. (2.7); the transformation from z to z̄ in the NLO

formula can be found in eq. (18) of ref. [28]. Since we have set z = 0 in the charm lines

attached to weak vertices, no NNLO corrections to the transformation occur.

We further must calculate mpole
b from m̄b and we use the full 2-loop result for

this [34–36]. This is a reasonable approach, if the missing α2
sN

0
f in the MS scheme have

the expected O(10%) size while being larger in the pole scheme to compensate for the

anomalously large ratio mpole 2
b /m̄2

b ∼ 1.3.

In both MS and pole scheme we use m̄b(m̄b) = (4.18±0.03)GeV as input and calculate

mpole
b = 4.58GeV at NLO and mpole

b = 4.85GeV at order α2
s. In eq. (1.9) we find a small

scale dependence in the MS scheme, because the sizable µ1 dependence of the prefactor

m̄b(µ1)
2 cancels nicely with the µ1 dependence of G,GS . In our partial NNLO result

this efficient cancellation is less pronounced than in the NLO result of eq. (1.9). To be

conservative, we therefore use a different approach in this section: we keep m̄b(m̄b)
2 fixed

and, for consistency, also eliminate the log(µ1/m̄b) terms related to the running of m̄b from

G,GS . This leads to a larger µ1 dependence at NLO.
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m̄b(m̄b) = (4.18± 0.03)GeV [37] m̄c(m̄c) = (1.286± 0.013stat ± 0.040syst)GeV [38–40]a

m̄s(m̄b) = (0.079± 0.002)GeV [20, 41] m̄t(mt) = (165.96± 0.35stat ± 0.64syst)GeV [38]a

|Vcb| = 41.80
+0.33
−0.68 · 10−3 [38]a |Vub| = 3.714

+0.07
−0.06 · 10−3 [38]a

γ = 68◦
+0.9◦

−2.0◦ [38]a mpow
b = 4.7GeV see [10]

fBs

√
B̃′

S = 303MeV [20] B̃R0
= 0.56± 0.53 [20]

fBs

√
B = 224MeV [20]

MBs
= 5.368GeV [37] αs(MZ) = 0.1185

|V ∗

tsVtb| = 40.9 · 10−3

aWe use updated numbers from http://ckmfitter.in2p3.fr.

Table 1. Input parameters used in section 5. m̄s(m̄b) is calculated from m̄s(2GeV) = 0.094 ±
0.001GeV [41]. mpow

B is a redundant parameter calibrating the overall size of the hadronic pa-

rameters BRi
which quantify the matrix elements at order ΛQCD/mb. The translation of 〈R0〉 =

−0.19 ± 0.18GeV [20] to B̃R0
for our choice of mpow

b is done with fBs
= (0.224 ± 0.05)GeV [41].

Subsequently this result is used to rescale B̃R0
/B from the value in ref. [20] to the one in the table.

B̃S is larger than B̃′

S by a factor of M2
Bs

/(m̄b + m̄s)
2 = 1.588, so that B̃′

S/B = 1.83± 0.21.

i C
(0)
i (µb) C

(1)
i (µb) C

(2)
i (µb)

1 −0.2687 4.332 50.142

2 1.1179 −2.024 −17.114

3 0.0121 0.090 −
4 −0.0274 −0.465 −
5 0.0079 0.041 −
6 −0.0343 −0.434 −
8 −0.1508 −1.0006 −

Table 2. The LO, NLO and NNLO Wilson coefficients C
(k)
i (µb) at µb = m̄b = 4.18 GeV using

αs(m̄b) = 0.226 (implementing the formula of ref. [42] with QED effects set to zero) and the

matching scale µ0 = MW . We have used ref. [29] to compute C
(k)
1 (µb) and C

(k)
2 (µb). The NLO

piece of the Wilson coefficient C
(1)
8 is taken from the calculation in a different basis [24] and the

quoted value therefore neglects a numerically small contribution from an evanescent operator.

We find:

∆ΓNLO = (0.091± 0.020scale) GeV (pole)

∆ΓNLO = (0.104± 0.015scale) GeV (MS) (5.1)

∆ΓNNLO = (0.108± 0.021scale) GeV (pole)

∆ΓNNLO = (0.103± 0.015scale) GeV (MS) (5.2)

where the scale dependence is calculated by varying µ1 between mb/2 and 2mb and for

the quoted central values of ∆Γ we took µ1 = mpole
b and µ1 = m̄b for the pole and MS

– 14 –
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Figure 2. Renormalization scale dependence for ∆Γ at LO (dotted), NLO (dashed), and NNLO

(solid) results for the pole scheme (left) and the MS scheme (right). On the x axis is µ1 in GeV-s.

schemes, respectively. Unlike in eq. (1.9) other sources of error are neglected here. The µ1

dependence is plotted in figure 2.

We observe that the partial NNLO corrections calculated in this section decrease the

scheme dependence and give preference to the NLO result in the MS scheme. The result

also suggests that in eq. (1.9) the µ1 dependence is underestimated and that the partial

NNLO calculation does not reduce the scale dependence to a satisfactory level.

We have discussed the naive non-abelianization approach (NNA) in section 2. If we

trade Nf for β0 in G, GS and the relation between m̄b = 4.18GeV and mpole
b , we find

mpole
b = 4.87GeV, which is close to the full two-loop result, and

∆ΓNNA = (0.071± 0.020scale) GeV (pole)

∆ΓNNA = (0.099± 0.012scale) GeV (MS). (5.3)

Comparing eq. (5.2) with eq. (5.3) we find that the MS result is quite stable, if we change

the literal α2
sNf result to the NNA one, while the pole-scheme result is not.

Until a full NNLO calculation is available, we recommend to use the MS NLO value

with an enlarged µ1 dependence compared to eqs. (1.7) and (1.9):

∆Γ = (1.86± 0.17) f2
Bs
B + (0.42± 0.03)f2

Bs
B̃′

S + (−0.55± 0.29) f2
Bs
.

∆Γ =
(
0.104± 0.015scale ± 0.007

B,B̃S
± 0.015ΛQCD/mb

)
GeV (MS) (5.4)

6 Conclusions

We have calculated the contributions of order α2
sNf to the width difference in the Bs−B̄s

system in an expansion in mc/mb, neglecting terms of order (mc/mb)
2 and higher. This

calculation has involved three-loop massive master integrals with two mass scales. We find

a larger correction for the decay width difference in the pole scheme and only a minuscule

correction for the MS scheme. As a result, the scheme dependence reduces considerably

and we advocate the use of the NLO numerical values in eq. (5.4).
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A Full-theory matrix elements

In this section we collect the needed unrenormalized LO and NLO matrix elements to order

ǫ2 and ǫ, respectively. We decompose the matrix element as

M = Mcc +Mpeng, (A.1)

where the first term denotes the contribution with two insertions of the current-current

operators O1,2 and the second term comprises the diagrams with at least one penguin

operator. Recall that we count C3−6 as order αs, so that one loop less is needed for Mpeng

compared to Mcc. We expand Mcc,peng = M
(0)
cc,peng +

αs

4πM
(1)
cc,peng + . . . and quote all results

for mc = 0.

A.1 Current-current operators

The LO full-theory result M
(0)
cc is needed to order O(ǫ2):

M (0)
cc =−G2

Fm
2
b

12π
(V ∗

csVcb)
2

((
3Cb2

1 +2Cb
1C

b
2

)(1

2
〈Q〉(0)−〈Q̃S〉(0)

)
+Cb2

2

(
〈Q〉(0)+〈Q̃S〉(0)

))

·
(
1+ǫ

(
2

3
+2log

µ1

mb

)
+ǫ2

(
2log2

µ1

mb
+
4

3
log

µ1

mb
−π2

4
+
13

9

))
, (A.2)

Here and in the following 〈. . .〉(0) denote tree-level matrix elements and Cb
k =

∑
j CjZjk

are bare Wilson coefficients (see eq. (3.10)).

We decompose the NLO diagrams according to the diagrams in figure 1 and the Wilson

coefficients as

M (1)
cc = −G2

Fm
2
b

12π
(V ∗

csVcb)
2
(
M

(1)
11,D1−10

+M
(1)
12,D1−10

+M
(1)
22,D1−10

+M
(1)
D11

+M
(1)
D12

)
(A.3)

The sum of the full-theory non-penguin NLO diagrams amounts to

M
(1)
11,D1−10

=Cb2
1

(
〈Q〉(0)

[
−17

3
−4log

µ1

mb
+4log

µ1

mg
+ǫ

(
log

µ1

mb

(
8log

µ1

mg
− 125

6

)

− 12log2
µ1

mb
+4log2

µ1

mg
− 11

6
log

µ1

mg
−48ζ(3)+

4π2

3
+
565

72

)]

+〈Q̃S〉(0)
[
4

3
−16log

µ1

mb
+16log

µ1

mg
+ǫ

(
log

µ1

mb

(
32log

µ1

mg
− 28

3

)

− 48log2
µ1

mb
+16log2

µ1

mg
+
44

3
log

µ1

mg
+96ζ(3)+

16π2

3
− 671

9

)])
, (A.4)
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M
(1)
12,D1−10

=2Cb
1C

b
2

(
〈Q〉(0)

[
−13

2ǫ
− 385

18
− 82

3
log

µ1

mb
+
4

3
log

µ1

mg
+ǫ

(
log

µ1

mb

(
8

3
log

µ1

mg
− 1529

18

)

− 56log2
µ1

mb
+
4

3
log2

µ1

mg
− 11

18
log

µ1

mg
−16ζ(3)+

133π2

36
− 9263

216

)]

+ 〈Q̃S〉(0)
[
4

ǫ
+
112

9
+
32

3
log

µ1

mb
+
16

3
log

µ1

mg
+ǫ

(
log

µ1

mb

(
32

3
log

µ1

mg
+
404

9

)

+ 16log2
µ1

mb
+
16

3
log2

µ1

mg
+
44

9
log

µ1

mg
+32ζ(3)− 2π2

9
+
85

27

)])
, (A.5)

M
(1)
22,D1−10

=Cb2
2

(
〈Q〉(0)

[
−1

ǫ
− 11

18
− 5

3
π2− 8

3
log

µ1

mb
− 4

3
log

µ1

mg
+ǫ

(
log

µ1

mb

(
11

18
− 20π2

3
− 8

3
log

µ1

mg

)

− 4log2
µ1

mb
− 4

3
log2

µ1

mg
− 55

18
log

µ1

mg
−22ζ(3)− 49π2

18
+
445

24

)]

+ 〈Q̃S〉(0)
[
8

ǫ
− 8

3
π2+

320

9
+
112

3
log

µ1

mb
− 16

3
log

µ1

mg
+ǫ

(
log

µ1

mb

(
1324

9
− 32

3
π2− 32

3
log

µ1

mg

)

+ 80log2
µ1

mb
− 16

3
log2

µ1

mg
− 44

9
log

µ1

mg
−16ζ(3)− 92π2

9
+
3443

27

)])
. (A.6)

and for the penguin diagrams

M
(1)
D11

=−5〈Q〉(0)+8〈Q̃S〉(0)
9

C2
b2

(
1

ǫ
+
4

3
+4log

µ1

mb
+ǫ

(
10

3
− 5

6
π2+

16

3
log

µ1

mb
+8log2

µ1

mb

))
,

M
(1)
D12

=−1

3
(5〈Q〉(0)+8〈Q̃S〉(0))Cb

2C
b
8

(
1+ǫ

(
2

3
+2log

µ1

mb

))
. (A.7)

A.2 Penguin operators

For the matrix elements with two QCD penguin operators we write

Mpeng = −G2
Fm

2
b

12π
(V ∗

csVcb)
2




6∑

j=3

Mj2 +

6∑

j=3

j≤k

Mjk


 (A.8)

As usual we expand Mjk as Mjk = M
(0)
jk + αs

4πM
(1)
jk + . . .. The unrenormalized LO and NLO

matrix elements necessary for the renormalization of the penguin diagrams D11 and D12

are the following:

M
(0)
32 = 2Cb

2C
b
3F3, M

(0)
42 = 2Cb

2C
b
4F4,

M
(0)
52 = 0, M

(0)
62 = 0, (A.9)

M
(1)
42 = 2Cb

2C
b
4(F1 + F2), M

(1)
62 = 2Cb

2C
b
6(F1 + F2) (A.10)

– 17 –
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where

F1=−1

9
(8〈Q̃S〉(0)+5〈Q〉(0))

[
1

2ǫ
+2log

µ1

mb
+
1

6

(
19−3

√
3π

)
(A.11)

+ǫ

(
1

4

√
3π log3−π2

12
+

(
19

3
−
√
3π

)(
2log

µ1

mb
+
3

2

)
+4log2

µ1

mb

−3

2
i
√
3

(
Li2

(
1

2
− i

2
√
3

)
−Li2

(
1

2
+

i

2
√
3

)))]
,

F2=−1

9
(8〈Q̃S〉(0)+5〈Q〉(0))

[
1
2+

√
1−4z

(
1
2+z

)

ǫ
+2log

µ1

mb
+
7

6
+2z− 1

2
log(1−4z) (A.12)

+log(1−σ)− logσ

2
+
1

6

√
1−4z

(
7+20z+3(2z+1)

(
4log

µ1

mb
+logσ−log(1−4z)

))

+ǫ
1

12

(
34−π2+80z−2log(1−4z)

(
12log

µ1

mb
+7+12z+6log(1−σ)−3logσ

)

+8(7+12z+6log(1−σ)−3logσ) log
µ1

mb
+48log2

µ1

mb
+3log2(1−4z)

+(2log(1−σ)−logσ)(24z+6log(1−σ)−3logσ+14)

+
√
1−4z

(
34+108z+2(20z+7)

(
4log

µ1

mb
−log(1−4z)+logσ

)

+ 3(2z+1)

((
4log

µ1

mb
−log(1−4z)+logσ

)2

−4Li2(σ)−2log2σ−3π2

)))]
,

and

F3=

(
1

2
〈Q〉(0)−〈Q̃S〉(0)

)[
1+ǫ

(
2

3
+2log

µ1

mb

)
+ǫ2

(
2log2

µ1

mb
+
4

3
log

µ1

mb
−π2

4
+
13

9

)]
,

(A.13)

F4=
(
〈Q〉(0)+〈Q̃S〉(0)

)[
1+ǫ

(
2

3
+2log

µ1

mb

)
+ǫ2

(
2log2

µ1

mb
+
4

3
log

µ1

mb
−π2

4
+
13

9

)]
.

(A.14)

We only need the LO contributions M
(0)
jk for j, k ≥ 3 :

M
(0)
33 = 3Cb2

3 F̂5, M
(0)
34 = 2Cb

3C
b
4F̂5,

M
(0)
35 = 6Cb

3C
b
5F̂7, M

(0)
36 = 2Cb

3C
b
6F̂7,

M
(0)
44 = Cb2

4 F̂6, M
(0)
45 = 2Cb

4C
b
5F̂7, (A.15)

M
(0)
46 = 2Cb

4C
b
6F̂7, M

(0)
55 = 3Cb2

5 F̂5,

M
(0)
56 = 2Cb

5C
b
6F̂5, M

(0)
66 = Cb2

6 F̂6,
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We need the coefficient functions up to ǫ2, finding

F̂5=
√
1−4z

[
1

2
〈Q〉(0)(1−4z)−〈Q̃S〉(0)(2z+1)

+
1

3
ǫ

(
1

2
〈Q〉(0)(1−4z)

(
5+6log

µ1

mb
−3log(1−4z)

)

−〈Q̃S〉(0)
(
5+16z−3(2z+1)

(
2log

µ1

mb
−log(1−4z)

)))

+
1

36
ǫ2

(
1

2
〈Q〉(0)(1−4z)

(
112−9π2+60

(
2log

µ1

mb
−log(1−4z)

)

+18

(
2log

µ1

mb
−log(1−4z)

)2
)

−〈Q̃S〉(0)
(
112+416z−9π2(2z+1)+12(16z+5)

(
2log

µ1

mb
−log(1−4z)

)

+18(2z+1)

(
2log

µ1

mb
−log(1−4z)

)2
))]

, (A.16)

F̂6=
√
1−4z

[
〈Q〉(0)(1−z)+〈Q̃S〉(0)(2z+1)

+
1

3
ǫ

(
〈Q〉(0)

(
5−2z+3(1−z)(2 log

µ1

mb
−log(1−4z))

)

+〈Q̃S〉(0)
(
5+16z+3(2z+1)

(
2log

µ1

mb
−log(1−4z)

)))

+
1

36
ǫ2

(
〈Q〉(0)

(
112−16z−9π2(1−z)+12(5−2z)

(
2log

µ1

mb
−log(1−4z)

)

+18(1−z)

(
2log

µ1

mb
−log(1−4z)

)2
)

+〈Q̃S〉(0)
(
112+416z−9π2(2z+1)+12(16z+5)

(
2log

µ1

mb
−log(1−4z)

)

+18(2z+1)

(
2log

µ1

mb
−log(1−4z)

)2
))]

, (A.17)

F̂7= 〈Q〉(0)z
√
1−4z

(
3+3ǫ

(
2+2log

µ1

mb
−log(1−4z)

)

+
3

4
ǫ2
(
π2−16+2

(
4+2log

µ1

mb
−log(1−4z)

)(
2log

µ1

mb
−log(1−4z)

)))
. (A.18)

The M
(0)
25 and M

(0)
26 (due to the (V − A) ⊗ (V + A) chiral structure) are proportional to

m2
c and vanish in our approximation mc = 0 for the charm lines attached to weak vertices.

– 19 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
1

B Results of master integrals

We have reduced the Feynman diagrams shown on figure 1 to master integrals by means

of the program FIRE [43]. For the full-theory diagrams we have calculated the absorptive

part of master integrals, i.e. the 2-, 3-, 4- particle cuts with a massive c-, b-quarks in the

closed fermion loop, with a massive gluon in infrared singular diagrams and a massless c-

quark in the weak loop, using formulas for phase space integrals derived in [44]. For some

integrals, with massive charm, we used a Mellin-Barnes representation [45] and expanded

in terms of the small parameter z = m2
c/m

2
b . The master integrals, which include mg, are

expanded over zg = m2
g/m

2
b . The results of master integrals have been checked numerically

by means of the program SecDec-3 [46].

The results for diagrams with massless u-, d-, s-quarks in the closed fermion loop are

obtained by taking the limit mc → 0 in the results with a massive c-quark in the closed

fermion loop.

From the results below one can see that the first three orders in the expansion over z

already exhibit a good convergence.

Our convention for the loop measure is

∫
[dk] =

∫
dkd1
(2π)d

∫
dkd2
(2π)d

∫
dkd3
(2π)d

. (B.1)

Some of the integrals in the following subsections have more than one cut (e.g. 2, 3

and 4 particle cuts). The following subsections quote the results of the various cuts. We

write

Im = Im (2) + Im (3) + Im (4)

to separate the contributions from these cuts.

B.1 Results for the four-particle cuts of the master integrals

Im (4)

∫
[dk]

1

(k22−m2
b)k

2
3 ((k1−pb)2−m2

c)((k1−k2)2−m2
c)(k2−k3)2

=
m2−6ǫ

b

8192π5

[
2z7(35logz+611)

1225
+

1

200
z6(20logz+151)+z5

(
logz

5
+
559

900

)

+z4
(
logz

2
+

7

24

)
+z3

(
2logz− 11

3

)
+z2

(
log2 z−7logz+

27

2

)

− 2

3
z
(
6logz+π2+6

)
+
π2

3
− 7

2

+ǫ
(
z7 (−0.0792168logz−1.3829)+z6 (−0.138629logz−1.04665)

+z5 (−0.277259logz−0.861043)+z4 (4.3logz−8.65202)+z3 (−1.33333logz−14.4059)

+z2
(
− log3 z+4.5log2 z−11.6595logz+33.472

)
+z

(
2log2 z−32logz−102.311

)

−3.00788z7/2−21.0552z5/2+105.276z3/2−2.50034
)]

+O
(
z8, ǫ2

)
, (B.2)
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Im (4)

∫
[dk]

1(
k22−m2

g

)
(k23−m2

c)(k1−pb)2(k1−k2)2 ((k2−k3)2−m2
c)

=
m2−6ǫ

b

8192π5

[
−2π2z

3
+
1

2

√
1−4z(2z−9)+2z log2σ−8zLi2(−σ)

+logσ
(
−1−4z−2z2−8z log(1−σ)+4z log(1−4z)

)

+zg

(
4Li2(−σ)−2logσ(z+2+log(1−4z)−2log(1−σ))+

√
1−4z(1−58z)

6z
+
π2

3
−log2σ

)

+z2g

(√
1−4z

(
128z2+166z+3

)

180z2
+

(
1

3z
+1

)
logσ

)

+z3g

(√
1−4z(384z3−512z2+464z+15)

6300z3
+
logσ

30z2

)]
+O

(
z4g , ǫ

1
)
, (B.3)

Im (4)

∫
[dk]

1

(k23−m2
c)(k1−pb)2(k1−k2)2 ((k2−k3)2−m2

c)

=
m4−6ǫ

b

49152π5

[
−48z2Li2(−σ)+12z2 logσ(2 log(1−4z)−4log(1−σ)+logσ)

−4π2z2+
√
1−4z

(
12z2+20z+1

)
+12(1−z)(2z+1)z logσ

]
+O

(
ǫ1
)
, (B.4)

Im (4)

∫
[dk]

1(
k22−m2

g

)
(k23−m2

c)(k1−pb)2 ((k2−pb)2−m2
b)(k1−k2)2 ((k2−k3)2−m2

c)

=
m−6ǫ

b

8192π5

[
z6

(
logz

55
+

958

3025

)
+z5

(
logz

30
+
1349

5400

)
+z4

(
logz

14
+

761

3528

)

+z3
(
logz

5
+

13

150

)
+z2

(
logz− 13

6

)
+z

(
log2 z−10logz+30

)
−4π2

√
z+2logz+

π2

3
+8

+zg

(
z6

(
logz

286
+

90943

613470

)
+z5

(
logz

165
+

17189

163350

)
+z4

(
logz

84
+

1867

21168

)
+z3

(
logz

35
+

904

11025

)

+
1

100
z2(10logz+1)+z

(
logz− 11

3

)
+
π2

√
z

2
− log2 z

2
+2logz−6+

π2

2
√
z
− 1

3z

)

+z2g

(
π2

32z3/2
+z6

(
logz

1430
+

3319103

42942900

)
+z5

(
logz

858
+

544943

11042460

)
+z4

(
logz

462
+

119729

3201660

)

+z3
(
logz

210
+

4573

132300

)
+z2

(
logz

70
+

799

22050

)
+

z

50
(5logz−7)+

π2
√
z

32
+
1

6
(2−3logz)

− π2

16
√
z
+
3logz−4

18z
− 1

30z2

)]
+O

(
z7, z3g , ǫ

1
)
, (B.5)

Im (4)

∫
[dk]

1

k21(k1−pb)2 ((k2−pb)2−m2
b)(k1−k2)2 (k23−m2

c)((k2−k3)2−m2
c)

=
m−6ǫ

b

8192π5

[
z5(0.075logz+0.385)+z4(0.166667logz+0.310185)+z3(0.5logz−0.166667)

+z2(3 logz−9.5)+z
(
−0.333333log3 z+log2 z+4.57974logz+9.84495

)
−0.710132

]

+O
(
z6, ǫ1

)
, (B.6)

Im (4)

∫
[dk]

1

k21k
2
2(k1−pb)2(k2−pb)2 ((k1−k3)2−m2

c)((k2−k3)2−m2
c)

=
m−6ǫ

b

2048π5

[
z7

(
logz

(
44logz+

27634

315

)
−22π2− 209379

1225

)
+
1

6

(
π2−6

)

+z6
(
− logz

(
84logz

5
+
466

15

)
+
42π2

5
+
75343

1125

)
+z5

(
logz

(
7log(z)+

172

15

)
− 7π2

2
− 104551

3600

)
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+z4
(
− logz

(
10logz

3
+
13

3

)
+
5π2

3
+
511

36

)
+z3

(
logz

(
2logz+

4

3

)
−π2− 161

18

)

+z2
(
2(1−logz) logz+π2+5

)
+
1

3
z
(
logz

(
(logz−3) logz−2π2+6

)
−30ζ(3)+2π2−6

)]

+O
(
z8, ǫ1

)
, (B.7)

Im (4)

∫
[dk]

(k3.pb)

(k23−m2
c)(k1−pb)2(k1−k2)2 ((k2−k3)2−m2

c)

=
m6−6ǫ

b

49152π5

[
2z

(
−5z3+6z2−3z+1

)
logσ+

1

12

√
1−4z

(
60z3−62z2+26z+3

)

+ǫ

(
71

24
+z8

(
−858logz

35
− 570523

7350

)
+z7

(
−88logz

5
− 70991

1575

)
+z6

(
−84logz

5
− 8177

300

)

+z5
(
541

60
−28logz

)
+z4

(
−67logz

3
+
35π2

3
+
737

12

)
+z3

(
62logz−14π2+

91

3

)

+z2
(
3log2 z−36logz+6π2− 105

2

)
+z

(
− log2 z+15logz−2π2+

427

18

))]

+O
(
z9, ǫ2

)
, (B.8)

Im (4)

∫
[dk]

k21
k22(k1−pb)2 ((k1−k3)2−m2

c)((k2−k3)2−m2
c)

=
m6−6ǫ

b

294912π5

(
24z

(
−5z3+6z2−3z+1

)
logσ+

√
1−4z

(
60z3−62z2+26z+3

))

+O
(
ǫ1
)
. (B.9)

B.2 Results for the three-particle cuts of the master integrals

Im (3)

∫
[dk]

1

(pb − k1)2(k1 − k2)2k22(k
2
3 −m2

c)
(B.10)

=
m4−6ǫ

b z

8192π5

[
−1

ǫ
+ log z − 15

2
+

1

4
ǫ
(
30 log z − 2 log2 z + 3π2 − 145

)

+
1

24
ǫ2

(
45

(
3π2 − 77

)
+ 2 log z

(
log z(2 log z − 45)− 9π2 + 435

)
+ 264ζ(3)

)]
+O(ǫ3),

Im (3)

∫
[dk]

1

(pb − k1)2(k1 − k2)2(k22 −m2
g)(k

2
3 −m2

c)

=
m4−6ǫ

b z

8192π5

[
z2g − 2zg log zg − 1

ǫ
+ log z − 15

2

+ zg

(
2 log zg (log z − 4) + log2 zg +

4

3

(
π2 − 3

))

+z2g

(
− log z + log zg −

5

2

)
+

2z3g
3

]
+O(z4g , ǫ

1), (B.11)

Im (3)

∫
[dk]

1

(pb − k1)2(k1 − k2)2(k22 −m2
g)(k

2
3 −m2

c)
(
(pb − k2)2 −m2

b

)

=
m2−6ǫ

b z

4096π5

[−2π
√
zg + zg(4− log zg) + 2

2ǫ

– 22 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
1

− log z + 8 + π
√
zg (log z + log(4zg)− 5)

+
1

12
zg

(
6(log zg − 4) log z + 3(log zg − 1)2 + 4π2 − 15

)]
+O(z3/2g , ǫ1), (B.12)

Im (3)

∫
[dk]

1

(pb − k1)2(k1 − k2)2(k22 −m2
g)(k

2
3 −m2

c) ((k2 − k3)2 −m2
c)

=
m2−6ǫ

b

8192π5

[
z2g − 2zg log zg − 1

ǫ
− 13

2
+ log z

+ zg

(
2 log zg (log z − 3)− 1

6z
+ log2 zg +

4

3

(
π2 − 3

))

+z2g

(
−(1− 3z) log zg

3z
− log z − 1

60z2
− 7

2

)]
+O(z3g , ǫ

1), (B.13)

Im (3)

∫
[dk]

1(
k22 −m2

g

)
(k23 −m2

c)(k1 − pb)2
(
(k2 − pb)2 −m2

b

)
(k1 − k2)2 ((k2 − k3)2 −m2

c)

=
m−6ǫ

b

4096π5

[−2π
√
zg + zg(4− log zg) + 2

2ǫ

− log z + 7 + π
√
zg (log z + log(4zg)− 4)

+
1

12
zg

(
6(log zg − 4) log z + 3 log2 zg + 4π2 − 36 +

2

z

)]
+O(z3/2g , ǫ1), (B.14)

B.3 Results for the two-particle cuts of the master integrals

Im (2)

∫
[dk]

1

k21k
2
2(k1−pb)2(k2−pb)2 ((k1−k3)2−m2

c)((k2−k3)2−m2
c)

=
m−6ǫ

b

8192π5

[
2

ǫ2
+
14

ǫ
−z8

(
1144

7
π2+

324314461

617400
− 54031

105
logz− 1716

7
log2 z

)

+z7
(
176π2

3
+
2168531

11025
− 55268

315
logz−88log2 z

)
−z6

(
112π2

5
+
88799

1125
− 932

15
logz− 168

5
log2 z

)

+z5
(
28π2

3
+
31363

900
− 344

15
logz−14log2 z

)
−z4

(
40π2

9
+
953

54
− 26

3
logz− 20

3
log2 z

)

+z3
(
8π2

3
+
98

9
− 8

3
logz−4log2 z

)
−z2

(
8π2

3
+6+4logz−4log2 z

)

+z

(
16ζ(3)− 8π2

3
+8+8

(
π2

3
−1

)
logz+4log2 z− 4

3
log3 z

)
− 25π2

6
+66

]
+O(z9, ǫ1), (B.15)

Im (2)

∫
[dk]

1

k21(k1−pb)2(k23−m2
c)((k2−pb)2−m2

b)((k2−k3)2−m2
c)

=
m2−6ǫ

b

8192π5

[−2z−1

ǫ2
+
2z (2 logz−5)− 9

2

ǫ
+z8

(
73

14112
− logz

84

)

+z7
(

107

11025
− 2

105
logz

)
+z6

(
37

1800
− logz

30

)
+z5

(
47

900
− logz

15

)

+z4
(
13

72
− logz

6

)
+z3

(
11

9
− 2

3
logz

)
+z2

(
−2π2

3
− 7

2
+3logz−log2 z

)

+z

(
3π2

2
−30+20logz−2log2 z

)
− 7π2

12
− 47

4

]
+O(z9, ǫ1), (B.16)
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Im (2)

∫
[dk]

1

k21(k1−p)2(k22−m2
g)(k

2
3−m2

c)((k2−pb)2−m2
b)((k2−k3)2−m2

c)

=
m−6ǫ

b

8192π5

[
− 1

ǫ2
+
2π

√
zg+zg(logzg−2)−7

ǫ
+z6

(
181

54450
− logz

165

)

+z5
(

121

16200
− logz

90

)
+z4

(
73

3528
− logz

42

)
+z3

(
37

450
− logz

15

)
+z2

(
13

18
− 1

3
logz

)

+4π2
√
z+z

(
−2π2

3
−14+6logz−log2 z

)
− 7π2

12
−33

]
+O(z7, ǫ1), (B.17)

Im (2)

∫
[dk]

1

k21(k1−pb)2(k22−m2
g)(k

2
3−m2

c)((k2−k3)2−m2
c)

=
m2−6ǫ

b

8192π5

[−2z−zg
ǫ2

+
2z(2 logz−5)+zg(2 logzg−5)

ǫ

+
1

6
z
(
−24log2 z+120logz+π2−204

)

+zg

(
−2logz(logzg−2)+log2 z−log2 zg+6logzg+

π2

12
−9

)]
+O(z2g , ǫ

1), (B.18)

Im (2)

∫
[dk]

1

k21(k1−pb)2(k22−m2
g)((k2−pb)2−m2

b)(k
2
3−m2

c)

=
m2−6ǫ

b z

8192π5


− 2

ǫ2
+
2(logz−5)− 1

4πz
3/2
g +

z2

g

6 +2π
√
zg+zg(logzg−2)

ǫ

−log2 z+10logz+
π2

6
−34−2π

√
zg(logz+log(4zg)−5)

+
1

2
zg

(
−2logz logzg+4logz−log2 zg+6logzg−4

)
+
1

4
πz3/2g (logz+log(4zg)−3)

+
1

6
z2g (− logz−3log(4zg)+19−log4)


+O(z5/2g , ǫ1), (B.19)

Im (2)

∫
[dk]

1

k21(k1−pb)2(k23−m2
c)((k2−pb)2−m2

b)((k2−k3)2−m2
c)

=
m2−6ǫ

b

4096π5


z+

1
2

ǫ2
+
z(5−2logz)+ 9

4

ǫ
+z8

(
logz

168
− 1

28224
73

)
+z7

(
logz

105
− 107

22050

)

+z6
(
logz

60
− 37

3600

)
+z5

(
logz

30
− 47

1800

)
+z4

(
logz

12
− 13

144

)
+z3

(
logz

3
− 11

18

)

+z2
(
log2 z

2
− 3

2
logz+

π2

3
+
7

4

)
+z

(
log2 z−10logz− 3π2

4
+15

)
+
7π2

24
+
47

8

+ǫ

(
− 16

315
π2z9/2− 16

105
π2z7/2− 16

15
π2z5/2+

16

3
π2z3/2− 16π2z15/2

2145
− 16π2z13/2

1287
− 16

693
π2z11/2

+z8
(
890041logz

30270240
+

π2

168
− 113307356143

10908183686400

)
+z7

(
62281logz

1455300
+

π2

105
− 344223461

20170458000

)

+z6
(
2473logz

37800
+
π2

60
− 1403863

47628000

)
+z5

(
661

6300
logz+

π2

30
− 44969

882000

)

+z4
(

29

180
logz+

π2

12
− 49

1200

)
+z3

(
π2

3
+
17

9
− 2

9
logz

)

+
1

8
z2

(
−4log3 z+18log2 z−10logz+32ζ(3)−67

)

– 24 –
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+z

(
−1

3
log3 z+5log2 z+

(
π2

6
−34

)
logz−11ζ(3)− 15π2

4
+33

)

+
5

2
ζ(3)+

133

16
+
21π2

16

)
+O(z9, ǫ2), (B.20)

Im (2)

∫
[dk]

1

k21(k1−pb)2k22(k2−pb)2(k23−m2
c)((k3−pb)2−m2

c)

=
m−6ǫ

b

4096π5

[√
1−4z+2

ǫ2
+

√
1−4z(2 logσ−log(1−4z)+6)−2logz+12

ǫ

+log2 z−12logz− 3π2

2
+48+

√
1−4z

(
4Li2

(
1

2
− 1

2
√
1−4z

)
− log2σ

2
+12logσ

− log(1−4z)(logσ+logz+4)−logσ logz+
1

2
log2(1−4z)+

log2 z

2
− 7π2

2
+20

)]

+O(ǫ1). (B.21)

B.4 Results for integrals with a b quark

The master integrals with a heavy b quark have only one cut which contributes to the

imaginary part.

Im

∫
[dk]

1

(pb − k1)2(k1 − k2)2(k22 −m2
g)(k

2
3 −m2

b)
(
(k2 − k3)2 −m2

b

)

=
m2−6ǫ

b

2(4π)5

[
zg2

4 − 1
2zg log zg − 1

4

ǫ
+ zg

2

(
log zg
6

− 211

240

)

+
1

24
zg

(
6 log2 zg − 36 log zg + 8π2 − 25

)
− 13

8

]
+O

(
z3g , ǫ

1
)
, (B.22)

Im

∫
[dk]

1

(pb − k1)2(k1 − k2)2(k22 −m2
g)(k

2
3 −m2

b)((k2 − k3)2 −m2
b)
(
(pb − k2)2 −m2

b

)

=
m−6ǫ

b

2(4π)5



−π

√
zg

2 + zg

(
1− log zg

4

)
+ 1

2

ǫ
+

7

2

+
1

24
zg

(
3 log2 zg + 4π2 − 34

)
+

1

2
π
√
zg(log zg − 4 + log 4)


+O

(
z3/2g , ǫ1

)
, (B.23)

Im

∫
[dk]

1

(pb − k1)2k21(k
2
2 −m2

g)(k
2
3 −m2

b)
(
(k2 − k3)2 −m2

b

)

=
m2−6ǫ

b

2(4π)5

[
zg
4 + 1

2

ǫ2
+

1
4zg(5− 2 log zg) +

5
2

ǫ
+

1

24

(
204− π2

)

+
1

48
zg

(
12 log2 zg − 72 log zg − π2 + 108

)
]
+O

(
z2g , ǫ

1
)
, (B.24)
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Im

∫
[dk]

1

(pb − k1)2k21(k
2
2 −m2

g)(k
2
3 −m2

b)
(
(k2 − k3)2 −m2

b

) (
(pb − k2)2 −m2

b

)

=
m−6ǫ

b

2(4π)5

[
1

4ǫ2
+

−π
√
zg

2 + 1
4zg(2− log zg) +

7
4

ǫ
− 17π2

48
+

33

4

−π
√
zg + zg

(
1− log zg

2

)]
+O

(
z3/2g , ǫ1

)
, (B.25)

Im

∫
[dk]

1

(pb − k1)2k21(k
2
3 −m2

b)
(
(k2 − k3)2 −m2

b

) (
(pb − k2)2 −m2

b

) (B.26)

=
m2−6ǫ

b

2(4π)5

[
3

4ǫ2
+

29

8ǫ
+

1

16

(
175− π2

)
+ ǫ

(
765

32
− 9

4
ζ(3) +

35π2

96

)]
+O(ǫ2),

Im

∫
[dk]

1

(pb − k1)2k21(k1 − k2)2(k23 −m2
b)
(
(k2 − k3)2 −m2

b

) (
(pb − k2)2 −m2

b

) (B.27)

=
m−6ǫ

b

2(4π)5

[
1

ǫ2
+

5

ǫ
− π2

12
− 4ζ(3) + 15

]
+O(ǫ1),

Im

∫
[dk]

1

(pb − k1)2k21(pb − k2)2k22
(
(k2 − k3)2 −m2

b

) (
(k1 − k3)2 −m2

b

) (B.28)

=
m−6ǫ

b

2(4π)5

[
1

2ǫ2
+

7

2ǫ
+

33

2
+ π2

(
−17

24
− 1√

5
− 4

5
log

1 +
√
5

2

)
+

4ζ(3)

5

]
+O(ǫ1),

Im

∫
[dk]

k23
(pb − k1)2k21(pb − k2)2k22

(
(k2 − k3)2 −m2

b

) (
(k1 − k3)2 −m2

b

) (B.29)

=
m2−6ǫ

b

2(4π)5

[
13

8ǫ2
+

149

16ǫ
+

1203

32
− π2

(
157

96
+

7

4
√
5
+

2

5
log

1 +
√
5

2

)
+

2ζ(3)

5

]
+O(ǫ1).
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