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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model was proposed in [1] and recently has been studied

vigorously not only in the context of AdS/CFT [2–5] but also in the context of non-

Fermi liquids [6–8]. The SYK model is a quantum mechanical model of N fermions with
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disordered interaction. In large N diagrammatics, the dominance of “melonic” diagram

make the model solvable at strong coupling limit [2–5, 9–12]. Also, this model features

emergent reparametrization symmetry in the strict strong coupling limit after disorder

average [3, 4, 9–12]. This reparametrization symmetry is broken spontaneously and ex-

plicitly at strong but finite coupling limit, which leads to Schwarzian effective action for

Pseudo-Nambu-Goldstone modes [3, 4, 9–12]. Due to this mode, the SYK model is maxi-

mally chaotic, and the Lyapunov exponent of out-of-time-ordered correlator saturates chaos

bound [4, 11]. The same feature has been found in unitary quantum mechanical model

of fermi tensors without disorder [13–21]. In tensor models, the “melonic” diagrams also

dominate in large N , which leads to maximal chaos like the SYK model [13–15, 19]. This

maximal chaos [22–24] indicates that both quantum mechanical models could be dual to

gravity theory near horizon limit of extremal black hole, and the dual models have been

proposed to be dilaton gravity [25, 26], Liouville theories [27] and 3D gravity [28]. Be-

cause of these attractive features, the generalizations of the SYK and the tensor models

have been studied in various context (e.g., random matrix behavior [29–34], flavor [35, 36],

lattice generalization in higher dimensions [37–45], Schwarzian effective action [46–49] and

supersymmetry [50, 51], massive field instead of random coupling [52, 53], higher point

function [54] and 1/N corrections [55, 56].)

Most generalizations of the SYK model share the same feature: bi-local in time space.

This bi-local structure is naturally appears in SYK model because the SYK model is es-

sentially a large N vector model. One of the systematic analysis of such large N models

was introduced as collective field theory in [57], which captures invariant physical degrees

of freedom and provides the effective action thereof. The collective field theory has suc-

cessfully analyzed the large N models in the context of AdS/CFT [58–67]. Especially, a

bi-local collective field theory for three-dimensional U(N)/O(N) vector model gave rich

understanding of higher spin AdS4/CFT 3 correspondence [68–78]. However, in collective

field theory, the bi-local structure is not restricted to space-time. In general, one can con-

struct bi-local space of other abstract space in addition to spacetime. For example, in the

bi-local thermofield CFT [77], the bi-local field is given by Ψ(x1, a;x2, b) where x1 and x2

corresponds to spacetime as usual. a, b(= 1, 2) represents labels of two copies of system

in thermofield CFT, which corresponds to CFT lives on the left and right boundary of

eternal black hole. Furthermore, we have also constructed bi-local field Ψ(τ1, a; τ2, b) from

the time (τ1, τ2) and replica space (a, b = 1, 2, · · · , n) in the SYK model [10].

In this paper, we will develop the bi-local collective superfield theory1 for one-

dimensional vector model by constructing bi-local superspace, especially will focus on su-

persymmetric SYK model introduced by [50]. This bi-local collective superfield theory

enable us to analyze the effective action of SUSY SYK model in large N systematically.

Furthermore, in the bi-local collective theory, the matrix structure in the bi-local space

naturally appears so that the bi-local collective theory can be seen as a matrix theory in

the bi-local space. Hence, one can analyze the SUSY SYK model in the supermatrix for-

mulation. This supermatrix formulation drastically simplifies analysis. We find that N = 1

1Note that the collective theory for large N supermatrix model was already studied in [79–81].
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superconformal generators becomes simple matrices in the supermatrix formulation. We

also study the large N classical solution and the large N expansion of the collective action

of the N = 1 SUSY SYK model. In particular, the quadratic action in large N expansion

can be easily diagonalized in the supermatrix formulations. Furthermore, the interaction

term in the SUSY SYK model can be understood as the inner product in the supermatrix

formulation. Furthermore, this also help diagonalize the rest of the quadratic action. We

also emphasize that our formulation is not restricted to the SUSY SYK model. We develop

a general framework to analyze large N SUSY vector models as supermatrix theory in the

bi-local superspace. Hence, this can be applied the generalization of the SUSY SYK models

as well as other SUSY vector models.

The outline of the paper is as follows. In section 2, we develop the bi-local collective

superfield theory for one-dimensional N = 1 SUSY vector models, and we systematically

study the collective superfield theory for N = 1 SUSY SYK model. N = 1 bi-local

superconformal generators and eigenfunctions of superconformal Casimir is analyzed in

section 3. In section 4, using these eigenfunctions, we diagonalize the quadratic action of

the collective action for N = 1 SUSY SYK model in large N . In section 5, we also develop

the bi-local collective superfield thoery for N = 2 SUSY vector models and discuss its

application to SYK model. In section 6, we give our conclusion and future work.

Note added: while this draft was under preparation, a related article [82, 83] appeared

in arXiv.

2 N = 1 supersymmetric SYK model

2.1 Bi-local superspace, superfield and supermatrix

Let us start with doubling the superspace (τ, θ) to construct bi-local superspace:

(τ, θ) −→ (τ1, θ1; τ2, θ2) (2.1)

In this super bi-local space, superfields A can be expanded as

A(τ1, θ1; τ2, θ2) ≡ A0(τ1, τ2) + θ1A1(τ1, τ2)−A2(τ1, τ2)θ2 − θ1A3(τ1, τ2)θ2 (2.2)

where the lowest component A0 could be either Grassmannian even or odd. This choice

of the signs and the ordering of Grassmann variables will lead to a natural definition of

a supermatrix and its multiplication. Furthermore, it is useful to call the superfield A to

be Grassmannian odd (or, even) if the component A1 and A2 are Grassmannian odd (or,

even, respectively). i.e.,

A∓(τ1, θ1; τ2, θ2) = A±0 (τ1, τ2) + θ1A
∓
1 (τ1, τ2)−A∓2 (τ1, τ2)θ2 − θ1A

±
3 (τ1, τ2)θ2 (2.3)

Note that the lowest component of Grassmannian odd superfield is a Grassmannian even

and vice versa. We will see later that this unusual definition is related to the fact that

the star product (matrix multiplication) in the bi-local superspace is a Grassmannian

odd operation.
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Now, we define a star product (matrix multiplication) ~ in the bi-local superspace of

two superfields A and B by

(A~B)(τ1, θ1; τ2, θ2) ≡
∫

A(τ1, θ1; τ3, θ3)dτ3dθ3B(τ3, θ3; τ2, θ2) (2.4)

where the star product ? of the components fields is the usual matrix multiplication of

the bi-local space (τ1, τ2). i.e., (Ai ? Bj)(τ1, τ2) ≡
∫
dτ3 Ai(τ1, τ3)Bj(τ3, τ2). Note that we

place the (Grassmannian odd) measure between the two superfields to obtain a consistent

star product ~ for all superfields. For example, the star product of two Grassmannian odd

superfields is

(A−~B−)(τ1, θ1; τ2, θ2) ≡
∫

A−(τ1, θ1; τ3, θ3)dτ3dθ3B
−(τ3, θ3; τ2, θ2)

= (A+
0 ? B−1 +A−2 ? B+

0 ) + θ1(A−1 ? B−1 +A+
3 ? B+

0 ) (2.5)

− (A+
0 ? B+

3 +A−2 ? B−2 )θ2 − θ1(A−1 ? B+
3 +A+

3 ? B−2 )θ2

This star product in bi-local superspace simplifies in the supermatrix formulation. We

represent the superfields A as a supermatrix as follow. i.e.,

A∓ ≡

(
A∓1 A±3
A±0 A∓2

)
(2.6)

In this definition of supermatrix, Grassmannian odd (even) superfield corresponds to Grass-

mannian odd (even) supermatrix. e.g.,

A = A0︸︷︷︸
Grassmannian Odd (Even)

+ θ1 A1︸︷︷︸
Grassmannian Even (Odd)

+ · · · ⇐⇒

(
A1 A3

A0 A2

)
︸ ︷︷ ︸

Grassmannian Even (Odd)

(2.7)

Then, the star product ~ in the bi-local superspace becomes a simple matrix product:

(A~B)(τ1, θ1; τ2, θ2) =

(
A1 A3

A0 A2

)
~

(
B1 B3

B0 B2

)
(2.8)

where the multiplication between component fields is the star product ? in the bi-local

space (τ1, τ2). One can easily see that the identity supermatrix gives the expected delta

function in the bi-local superspace. i.e.,

I(τ1, θ1; τ2, θ2) ≡

(
δ(τ1 − τ2) 0

0 δ(τ1 − τ2)

)
= (θ1 − θ2)δ(τ1 − τ2) (2.9)

Furthermore, the natural definition of the trace in the bi-local superspace is consistent with

the supertrace of a supermatrix. i.e.,∫
dτ1dθ1δ(τ12) [A0(τ1, τ2) + θ1A1(τ1, τ2)−A2(τ1, τ2)θ1] = trA1 − (−1)|A|trA2 = strA

(2.10)
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where (−1)|A| is 1 if the supermatrix A is Grassmannian even and (−1)|A| is −1 if A is

Grassmannian odd. Also, it is useful to define the superdeterminant (Berezinian) of the

supermatrix. For our formulation, since the supermatrix is not restrict to be Grassmannian

even, the supermatrix is defined by

Ber(A) = Ber

(
A1 A3

A0 A2

)
(2.11)

≡


Ber(A) = det(A1 −A3A

−1
2 A0) det(A2)−1 (A: Grassmannian even)

Ber(JA) = det(A0 −A2A
−1
3 A1) det(−A3)−1 (A: Grassmannian odd)

where the constant supermatrix J is defined by

J ≡

(
0 I

−I 0

)
. (2.12)

2.2 Calculus of bi-local collective superfield and supermatrix

Before formulating the bi-local collective superfield theory, we clarify our conventions for

the calculus of superfields. First of all, we define the functional derivatives of the same

superfield by
δf(τ, θ)

δf(τ ′, θ′)
≡ (θ′ − θ)δ(τ ′ − τ) (2.13)

We also define a change of variables and a chain rule for a superfield:

δf(τ, θ) ≡
∫
δg(τ ′, θ′)dτ ′dθ′

δf(τ, θ)

δg(τ ′, θ′)
(2.14)

δ

δf(τ, θ)
≡
∫
δg(τ ′, θ′)

δf(τ, θ)
dτ ′dθ′

δ

δg(τ ′, θ′)
(2.15)

Note that we chose this unusual position of the Grassmannian odd measure to allow for

uniform formulation independent of whether f and g are Grassmannian odd or even. This

can easily be generalized to the bi-local collective superfields which could be Grassmannian

odd or even. For example, one can check that this definition is consistent with the change

of variables and the chain rule:

δfα(τ, θ) =
∑
β

∫
δfβ(τ ′, θ′)dτ ′dθ′

δfα(τ, θ)

δfβ(τ ′, θ′)
=

∫
δfα(τ ′, θ′)dτ ′dθ′(θ′ − θ)δ(τ ′ − τ)

(2.16)

δ

δfα(τ, θ)
=
∑
β

∫
δfβ(τ ′, θ′)

δfα(τ, θ)
dτ ′dθ′

δ

δfβ(τ ′, θ′)
=

∫
(θ − θ′)δ(τ − τ ′)dτ ′dθ′ δ

δfα(τ ′, θ′)

(2.17)

where α runs over some complete basis.

Furthermore, let us consider a change of variables and a chain rule for the bi-local

superfield. In general, it is natural to define

δF (τ1, θ1; τ2, θ2)

δF (τ3, θ3; τ4, θ4)
≡ (θ3 − θ1)(θ4 − θ2)δ(τ3 − τ1)δ(τ4 − τ2) (2.18)
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Note that the r.h.s. could be different depending on the symmetry of a superfield or su-

permatrix. Also, we find that the following convention for the change of variables and the

chain rule of the bi-local superfield is consistent.

δF (τ1, θ1; τ2, θ2) =

∫
δG(τ3, θ3; τ4, θ4)dτ4dθ4dτ3dθ3

δF (τ1, θ1; τ2, θ2)

δG(τ3, θ3; τ4, θ4)
(2.19)

δ

δF (τ1, θ1; τ2, θ2)
=

∫
δG(τ3, θ3; τ4, θ4)

δF (τ1, θ1; τ2, θ2)
dτ4dθ4dτ3dθ3

δ

δG(τ3, θ3; τ4, θ4)
(2.20)

For example, in this notation, we have

δ((F~G)(τ1, θ1; τ2, θ2)) = (δF~G)(τ1, θ1; τ2, θ2) + (F~δG)(τ1, θ1; τ2, θ2) (2.21)

2.3 Bi-local collective superfield theory: Jacobian

For the collective action for the SUSY vector model(e.g., supersymmetric SYK models),

we first study the Jacobian which appears in the transformation from the fundamental

superfield to the bi-local collective superfield. Let us consider a superfield in N = 1 SUSY

SYK model:

ψi(τ, θ) ≡ χi(τ) + θbi(τ) (i = 1, 2, · · ·N) (2.22)

where χi is a Majorana fermion, and bi is a boson. This superfield transforms in the

fundamental representation of O(N):

ψi(τ, θ) −→ Oijψj(τ, θ) (2.23)

It is natural to define a bi-local collective superfield which is invariant under O(N) by

Ψ(τ1, θ1; τ2, θ2) ≡ 1

N
ψi(τ1, θ1)ψi(τ2, θ2) (2.24)

It is important to note that the bi-local superfield is anti-symmetric in the bi-local super-

space. i.e.,

Ψ(τ1, θ1; τ2, θ2) = −Ψ(τ2, θ2; τ1, θ1) (2.25)

When changing variables in the path integral from the fundamental superfield to bi-local

collective superfield, we will get a non-trivial Jacobian. To obtain the Jacobian, it is useful

to consider the following identity for an arbitrary functional F [Ψ].∑
i

∫
Dψ δ

δψi(τ1, θ1)

[
ψi(τ2, θ2)F [Ψ]e−S

]
= 0 (2.26)

Using the chain rule of the bi-local superfield in (2.20), we have

ψi(τ2, θ2)
δ

δψi(τ1, θ1)
=

∫
ψi(τ2, θ2)

δΨ(τ3, θ3; τ4, θ4)

δψi(τ1, θ1)
dτ4dθ4dτ3dθ3

δ

δΨ(τ3, θ3; τ4, θ4)

= 2

∫
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δ

δΨ(τ1, θ1; τ3, θ3)
(2.27)
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Hence, recalling our convention (2.13), (2.26) can be written as

N(θ1 − θ2)δ(τ1 − τ2)〈F 〉+ 2

∫ 〈
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δF [Ψ]

δΨ(τ1, θ1; τ3, θ3)

〉
− 2

∫ 〈
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δS[Ψ]

δΨ(τ1, θ1; τ3, θ3)
F [Ψ]

〉
= 0

(2.28)

where we used the fact that the superfield δ
δψi(τ,θ)

is Grassmannian even.

On the other hand, one can also utilize a similar identity in the bi-local collective

representation:∫
Dψ

∫
dτ3dθ3

δ

δΨ(τ1, θ1; τ3, θ3)

[
Ψ(τ2, θ2; τ3, θ3) J F [Ψ]e−S

]
= 0 (2.29)

where J = J[Ψ] is the Jacobian for the bi-local collective representation. Then, we have

1

2
(θ1 − θ2)δ(τ1 − τ2)〈F [Ψ]〉+

∫ 〈
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δ log J

δΨ(τ1, θ1; τ3, θ3)
F [Ψ]

〉
+

∫ 〈
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δF

δΨ(τ1, θ1; τ3, θ3)

〉
(2.30)

−
∫ 〈

Ψ(τ2, θ2; τ3, θ3)dτ3dθ3
δS

δΨ(τ1, θ1; τ3, θ3)
F [Ψ]

〉
= 0

Note that we used

δΨ(τ1, θ1; τ2, θ2)

δΨ(τ3, θ3; τ4, θ4)
≡ 1

2
(θ3 − θ1)(θ4 − θ2)δ(τ3 − τ1)δ(τ4 − τ2)

− 1

2
(θ3 − θ2)(θ4 − θ1)δ(τ3 − τ2)δ(τ4 − τ1) (2.31)

which is imposed by anti-symmetry of the bi-local superfield Ψ in (2.25). As usual in

supersymmetry, we do not have divergence proportional to δ(τ − τ) unlike what appears in

the bosonic bi-local collective field theory [63, 65, 68, 74]. In our formulation, this naturally

comes from the fact that the analogous (θ−θ)δ(τ−τ) for superspace, vanishes. From (2.28)

and (2.30) for an arbitrary functional of F [Ψ], we obtain a functional differential equation

for the Jacobian J:

N − 1

2
(θ1 − θ2)δ(τ1 − τ2) =

∫
Ψ(τ2, θ2; τ3, θ3)dτ3dθ3

δ log J

δΨ(τ1, θ1; τ3, θ3)
(2.32)

This differential equation can easily be solved using the supermatrix formulation in sec-

tion 2.1. In the supermatrix formulation, it is trivial to conclude that

log J = −N − 1

2
str log Ψ(τ1, θ1; τ2, θ2) (2.33)

We emphasize that anti-symmetry of the bi-local superfield2 leads to a term 1
2(θ1−θ2)δ(τ1−

τ2) in (2.30), which shifts large N to N − 1. This shift of large N in the Jacobian was

2We thank to Robert de Mello Koch for pointing out this.
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already observed in non-supersymmetric bi-local collective field theory [74], and it was

shown to play an important role in matching one-loop free energies of higher spin theories

and vector models [74, 84–87]. Though this shift is not crucial for the discussion in this

paper, it is essential to obtain the exact result. For example, one can consider a free

one-dimensional N = 1 SUSY vector model for which one knows the exact answer.3 We

confirm that the shift N − 1 gives the correct one-point function of bi-local superfield (or,

invariant two-point function of fundamental superfields) (See appendix A).

2.4 Bi-local collective superfield theory for N = 1 SUSY SYK model

In [50], the action of the supersymmetric SYK model is given by

L =
∑
i

[
1

2
χi∂χi − 1

2
bibi + i

∑
15j<k5N

Cijkb
iχjχk

]
(2.34)

where Cijk is a random coupling constant, and is totally anti-symmetric in its indices. After

the disorder average of the random coupling constant Cijk over a Gaussian distribution,4

one has an effective action [50]:

Seff =

∫
dτ

(
1

2
χi∂χi − 1

2
bibi
)
− J

2N2

∫
dτ1dτ2[bi(τ1)bi(τ2)][χj(τ1)χj(τ2)]2

− J

N2

∫
[bi(τ1)χi(τ2)][χj(τ1)bj(τ2)][χk(τ1)χk(τ2)] . (2.35)

Note that the disorder average leads to an emergent O(N) symmetry. As before, we define

the (fundamental) superfield by

ψi(τ, θ) ≡ χi(τ) + θbi(τ) (2.36)

we will express the effective action in terms of the bi-local collective superfield given by

Ψ(τ1, θ1; τ2, θ2) ≡ 1

N

N∑
i=1

ψi(τ1, θ1)ψi(τ2, θ2) (2.37)

=
1

N

N∑
i=1

[
χi(τ1)χi(τ2) + θ1b

i(τ1)χi(τ2) + χi(τ1)bi(τ2)θ2 + θ1b
i(τ1)bi(τ2)θ2

]
In terms of supermatrix notation, the bi-local superfield can be represented as

Ψ(τ1, θ1; τ2, θ2) =
1

N

N∑
i=1

(
bi(τ1)χi(τ2) −bi(τ1)bi(τ2)

χi(τ1)χi(τ2) −χi(τ1)bi(τ2)

)
(2.38)

Recall that the bi-local superfield is anti-symmetric in the bi-local superspace (see (2.25)).

As a supermatrix, the bi-local supermatrix has the following symmetry. i.e.,

JΨstJ = Ψ (2.39)

3We also thank to Robert de Mello Koch for raising this issue and confirming the result.
4Rigorously, we perform annealed average instead of a quenched average. For a proper quenched average,

one has to use the replica trick, which was also done for non-supersymmetric bi-local collective field theory

in [10].

– 8 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
2

where Ast is the supertranspose of a supermatrix A defined by

Ast ≡

(
At1 (−1)|A|At0

−(−1)|A|At3 At2

)
(2.40)

and the matrix J is given in (2.12).

For the collective action, it is useful to define a superderivative matrix:

D(τ1, θ1; τ2, θ2) ≡ Dθ1(θ1 − θ2)δ(τ1 − τ2) = δ(τ1 − τ2)− θ1∂τ1δ(τ1 − τ2)θ2

=

(
0 ∂1δ(τ1 − τ2)

δ(τ1 − τ2) 0

)
(2.41)

where the superderivative Dθ1 is defined by

Dθ1 ≡∂θ1 + θ1∂τ1 (2.42)

Note that the superderivative matrix D is Grassmannian odd supermatrix. Using the

supermatrix formulation, one can easily check that

(D~A)(τ1, θ1; τ2, θ2) =

(
∂τ1A0(τ1, τ2) ∂τ1A2(τ1, τ2)

A1 A3

)
(2.43)

and, therefore, the supertrace of the supermatrix leads to the kinetic term:

str (D~Ψ) =

∫
dτ1

[
∂τ1χ

i(τ1)χi(τ2)
∣∣
τ2→τ1 + bi(τ1)bi(τ1)

]
(2.44)

As an aside, the superderivative matrix has a similar property as the ordinary superderiva-

tive. i.e.,

(D~D)(τ1, θ1; τ2, θ2) = ∂τ1

(
δ(τ1 − τ2) 0

0 δ(τ1 − τ2)

)
= ∂τ1I(τ1, θ1; τ2, θ2) (2.45)

where I(τ1, θ1; τ2, θ2) is the identity supermatrix. Hence, one can immediately obtain the

bi-local collective action for the SUSY SYK model.

Scol = −N
2

str [D~Ψ] +
N

2
str log Ψ− JN

6

∫
dτ1dθ1dτ2dθ2[Ψ(τ1, θ1; τ2, θ2)]3 (2.46)

Also, one can rewrite the collective action completely in terms of supermatrix notation.

Scol =
N

2
str

[
−D~Ψ + log Ψ− J

3
Ψ~[Ψ]2

]
(2.47)

where we define [Ψ]2(τ1, θ1; τ2, θ2) ≡ [Ψ(τ1, θ1; τ2, θ2)]2. Note that it is also straightforward

to generalize this into general q case, which we present in section D. Note that in this paper

we drop the shift in N found in (2.33) for simplicity because it does have an effect on our

discussions. But, one should take this into account for the sub-leading calculations in 1/N .
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2.5 Large N classical solution

At large N , the variation with respect to the bi-local superfield gives the large N classical

solution. Note that in the supermatrix notation, the variation of the collective action (2.47)

can easily be performed.5 Hence, one can immediately obtain the large N saddle-point

equation of the collective action:

−D + Ψ−1 − JΨ2 = 0 (2.49)

or equivalently, by multiplying supermatrix Ψ, we have

−D~Ψ + I− J [Ψ2]~Ψ = 0 (2.50)

The most general ansatz for a scaling solution is given [50] by

Ψcl(τ1, θ1; τ2, θ2) =
c1sgn (τ12 − θ1θ2)

|τ12 − θ1θ2|2∆1
+ θ12

c2 + c3sgn (τ12)

|τ12 − θ1θ2|2∆2

=
c1

|τ12|2∆1

[
sgn (τ12) + 2∆1

θ1θ2

|τ12|

]
+ θ12

c2 + c3sgn (τ12)

|τ12|2∆2

=

 c2+c3sgn (τ12)

|τ12|2∆2
− 2∆1c1
|τ12|2∆1+1

c1sgn (τ12)

|τ12|2∆1
− c2+c3sgn (τ12)

|τ12|2∆2


≡

(
c2f

s
2∆2

(τ12) + c3f
a
2∆2

(τ12) −2∆1c1f
s
2∆1+1(τ12)

c1f
a
2∆1

(τ12) −c2f
s
2∆2

(τ12)− c3f
a
2∆2

(τ12)

)
(2.51)

where we define θ12 = θ1 − θ2 and

f sµ(τ) ≡ 1

|τ |µ
, faµ(τ) ≡ sgn (τ)

|τ |µ
(2.52)

Note that c1 is Grassmannian even while c2 and c3 are Grassmannian odd. Moreover, [Ψ]2

can also be expressed as a supermatrix:

[Ψcl]
2(τ1, θ1; τ2, θ2)

=
c2

1

|τ12|4∆1

[
1 + θ1θ2

4∆1sgn (τ12)

|τ12|

]
+ θ12

2c1(c2sgn (τ12) + c3)

|τ12|2∆1+2∆2
(2.53)

=

(
2c1

[
c2f

a
2∆1+2∆2

(τ12) + c3f
s
2∆1+2∆2

(τ12)
]

−4∆1c
2
1f

a
4∆1+1(τ12)

c2
1f

s
4∆1

(τ12) −2c1

[
c2f

a
2∆1+2∆2

(τ12) + c3f
s
2∆1+2∆2

(τ12)
]
)

Using the integrals∫
dτ

1

|τ |λ
eiwτ = 2wλ−1

∫ ∞
0

dx x−λ cosx = 2wλ−1Γ(1− λ) sin
πλ

2
(2.54)∫

dτ
sgn (τ)

|τ |λ
eiwτ = 2iwλ−1

∫ ∞
0

dx x−λ sinx = 2iwλ−1Γ(1− λ) cos
πλ

2
(2.55)

5It is sometimes simpler to vary the collective action in terms of superfield notation. For instance, the

variation of the third term in (2.46) can be expressed as

JN

2

∫
dτ1dθ1dτ2dθ2 δΨ(τ1, θ1; τ2, θ2)[Ψ(τ1, θ1; τ2, θ2)]2 =

JN

2
str
(
δΨ~[Ψ]2

)
(2.48)
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we can Fourier transform f sλ(τ) and faλ(τ) into f̃ sλw
λ−1 and f̃aλ(w)wλ−1, respectively. In

addition, one can write the star product of f ’s in terms of f̃ sλ(w) and f̃aλ(w) as follows

(fp1

λ ? fp2
ν )(τ1, τ2) =

1

2π

∫
dw e−iwτ12 f̃p1

λ f̃
p2
ν w

λ+ν−2 (p1, p2 = s, a) (2.56)

where

f̃ sλ ≡ 2Γ(1− λ) sin
πλ

2
, f̃aλ ≡ 2iΓ(1− λ) cos

πλ

2
(2.57)

Thus, the third term in (2.50) can be written as

[Ψ]2~Ψ(τ1, θ1; τ2, θ2)

=
1

2πi

∫
dw e−iwτ12

2c1

[
c2f̃

a
2∆1+2∆2

+ c3f̃
s
2∆1+2∆2

]
−4∆1c

2
1f̃

a
4∆1+1

c2
1f̃

s
4∆1

−2c1

[
c2f̃

a
2∆1+2∆2

+ c3f̃
s
2∆1+2∆2

]
×

(
c2f̃

s
2∆2

+ c3f̃
a
2∆2

−2∆1c1f̃
s
2∆1+1

c1f̃
a
2∆1

−c2f̃
s
2∆2
− c3f̃

a
2∆2

)
(2.58)

where the matrix multiplication in the integrand is ordinary matrix multiplication. Recall-

ing the action of the bi-local superderivative, the first term of (2.50) becomes

D~Ψcl =

(
∂τ1Ψcl,0(τ1, τ2) ∂τ1Ψcl,2(τ1, τ2)

Ψcl,1(τ1, τ2) Ψcl,3(τ1, τ2)

)

=
1

2πi

∫
dw e−iwτ12

(
−iwc1f̃

a
2∆1

iw[c2f̃
s
2∆2

+ c3f̃
a
2∆2

]

c2f̃
s
2∆2

+ c3f̃
a
2∆2

−2∆1c1f̃
s
2∆1+1

)
(2.59)

while the second term of (2.50) is trivially given by

I =
1

2πi

∫
dw e−iwτ12

(
1 0

0 1

)
(2.60)

Now, we will consider the strong coupling limit:

w

J
� 1 (2.61)

Note that the constants c1, c2 and c3 should be scaled with J as follows

c1 ∼ J−2∆1 , c2 , c3 ∼ J−2∆2+ 1
2 (2.62)

Requiring positive conformal dimensions, matching the power-laws of the diagonal elements

of the classical equation (2.50) gives

∆1 =
1

6
or 2∆1 + 4∆2 = 2 (2.63)

Let us consider the first case. i.e.,

∆1 =
1

6
(2.64)
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We match the leading terms of the diagonal elements in the classical equation (2.50). In

this case, the off-diagonal elements from [Ψ]2~Ψ diverge in the strong coupling limit for

∆2 < 2
3 . This divergence cannot be eliminated by tuning the coefficients. Moreover,

for ∆2 > 2
3 , these terms vanish in the strong coupling limit. However, since we want

reparametrization symmetry in the strict strong coupling limit, we had better not treat

[Ψ]2~Ψ as a perturbation. Hence, we find that the only solution is given by

1− 2
√

3πc3
1J = 0 , c2 = c3 = 0 (2.65)

Note that we do not have to find ∆2 because c2 = c3 = 0. Also, note that the kinetic

term D~Ψ is a perturbation in the strong coupling limit as in the non-supersymmetric

SYK model.

Next, we analyze the second case. I.e.,

2∆1 + 4∆2 = 2 (2.66)

For this case, the off-diagonal elements contain divergent terms of order O(w−∆1) in the

strong coupling limit. To remove this divergence, we choose

c3 = ic2 cot
π∆1

2
(2.67)

But, in this case, one cannot solve the diagonal and off-diagonal classical solution

simultaneously.

To summarize, the classical solution is found to be

Ψcl = c
sgn (τ12 − θ1θ2)

|τ12 − θ1θ2|1/3
= c

(
0 − 1

3|τ12|4/3

sgn (τ12)

|τ12|1/3 0

)
(2.68)

where

1− 2
√

3πc3J = 0 (2.69)

This classical solution was already found in [50], and corresponds to a vacuum with definite

fermion number.

2.6 Large N expansion and quadratic action

Now, we expand the collective action (2.47) for the bi-local superfield:

Ψ(τ1, θ1; τ2, θ2) ≡ Ψcl(τ1, θ1; τ2, θ2) +

√
2

N
Φ(τ1, θ1; τ2, θ2) (2.70)

where Φ(τ1, θ1; τ2, θ2) is a bi-local fluctuation around the classical solution Ψcl given by

Φ(τ1, θ1; τ2, θ2) = ϕ(τ1, τ2) + θ1η1(τ1, τ2)− η2(τ1, τ2)θ2 − θ1σ(τ1, τ2)θ2

=

(
η1(τ1, τ2) σ(τ1, τ2)

ϕ(τ1, τ2) η2(τ1, τ2)

)
(2.71)
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Note that the anti-symmetry of the bi-local field in (2.25) leads to

ϕ(τ1, τ2) = − ϕ(τ2, τ1) (2.72)

σ(τ1, τ2) = σ(τ2, τ1) (2.73)

η1(τ1, τ2) = η2(τ2, τ1) (2.74)

or, equivalently, we have

JΦstJ = Φ (2.75)

From the supermatrix notation, one can easily obtain the quadratic action:

S
(2)
col = −1

2
str (Ψ−1

cl ~Φ~Ψ−1
cl ~Φ)− J

∫
dτ1dθ1dτ2dθ2 Ψcl(τ1, θ1; τ2, θ2)[Φ(τ1, θ1; τ2, θ2)]2

(2.76)

From the classical equation, the inverse supermatrix is given by

Ψ−1
cl (τ3, θ3; τ2, θ2) =− J [Ψcl(τ3, θ3; τ2, θ2)]2 = Jc2

(
0 −2

3f
a
5/3(τ12)

f s2/3(τ12) 0

)
(2.77)

Hence, one can write the kinetic term as

1

2
str (Ψ−1

cl ~Φ~Ψ−1
cl ~Φ) (2.78)

= −J
2c4

2
tr

(
4

9
fa5/3 ? ϕ ? f

a
5/3 ? ϕ− f

s
2/3 ? σ ? f

s
2/3 ? σ +

4

3
f s2/3 ? η1 ? f

a
5/3 ? η2

)
where the cross terms are cancelled because of the supertrace. Also, the classical solution

can be written as

Ψcl(τ1, θ1; τ2, θ2) = c

[
sgn (τ12)

τ
1/3
12

+
θ1θ2

3τ
4/3
12

]
≡ c

[
fa1/3(τ12)− θ1

(
−1

3
f s4/3(τ12)

)
θ2

]

= c

(
0 −1

3f
s
4/3(τ12)

fa1/3(τ12) 0

)
(2.79)

The square of bi-local fluctuation can be also written using the supermatrix notation:

[Φ(τ1, θ1; τ2, θ2)]2 =

(
2[ϕη1](τ1, τ2) 2[ϕσ](τ1, τ2) + 2[η1η2](τ1, τ2)

[ϕ2](τ1, τ2) 2[ϕη2](τ1, τ2)

)
(2.80)

which leads to

J

∫
dτ1dτ2dθ1dθ2Ψ(τ1, θ1; τ2, θ2)[Φ]2(τ1, θ1; τ2, θ2)

= Jc tr

(
−1

3
f s4/3 ? [ϕ2]− 2fa1/3 ? [ϕσ]− 2fa1/3 ? [η1η2]

)
(2.81)

In conclusion, the quadratic action can be manipulated as follows.

S(2) =
Jc

4
√

3π
tr

(
−4

9
fa5/3 ? ϕ ? f

a
5/3 ? ϕ+ f s2/3 ? σ ? f

s
2/3 ? σ −

4

3
f s2/3 ? η1 ? f

a
5/3 ? η2

+
4
√

3π

3
f s4/3 ? [ϕ2] + 8

√
3πfa1/3 ? [ϕσ] + 8

√
3πfa1/3 ? [η1η2]

)
(2.82)
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In the section 4, we will diagonalize this quadratic action. Though we express the quadratic

action in terms of component fields for pedagogical purposes, we will not use this expres-

sion (2.82) in terms of component fields for the diagonalization of the quadratic action.

Instead, we find that the collective action of N = 1 SUSY SYK model can completely be

written in term of the supermatrix notation:

S
(2)
col = −1

2
str
(
Ψ−1

cl ~Φ~Ψ−1
cl ~Φ + 2JΦ~[ΨclΦ]

)
(2.83)

We will see that It is much easier to diagonalize the quadratic action.

3 N = 1 bi-local superconformal algebra

3.1 Bi-local N = 1 superconformal generators

In non-supersymmetric SYK models, it is useful to find eigenfunctions of the Casimir of the

SL(2) algebra in order to diagonalize the quadratic action because the Casimir commutes

with the kernel of the quadratic action. Similarly, in the SUSY SYK model, it is important

to consider generators of the N = 1 superconformal algebra given by

Pa =∂τa (3.1)

Ka =τ2
a∂τa +

1

3
τa + τaθa∂θa (3.2)

Da =τa∂τa +
1

2
θa∂θa +

1

6
(3.3)

Qa =∂θa − θa∂τa (3.4)

Sa =τa∂θa − τaθa∂τa −
1

3
θa (3.5)

where a = 1, 2. Note that the 1
3 factors appear because the fermion has conformal dimen-

sion 1
6 . We define bi-local superconformal generator as follows.

L = L1 + L2 ( L ∈ {P ,K,D,Q,S} ) (3.6)

which satisfy

[P,K] = 2D , {Q,Q} = − 2P , [D,Q] = − 1

2
Q , [P,Q] = 0

[D,P] = − P , {Q,S} = − 2D , [D,S] =
1

2
S , [K,S] = 0 (3.7)

[D,K] = K , {S,S} = − 2K , [K,Q] = − S , [P,S] = Q

The Casimir is given by

C = D2 − 1

2
(PK +KP) +

1

4
(SQ−QS) = D2 − 1

2
D −KP +

1

2
SQ (3.8)

Now, we will translate the generators as differential operators acting on superfields into

supermatrices notation. Let us consider a superfield

A∓(τ1, τ2) = A±0 + θ1A
∓
1 −A

∓
2 θ2 − θ1A

±
3 θ2 =

(
A∓1 A±3
A±0 A∓2

)
. (3.9)
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where we omit the bi-local time coordinates for a while. For example, one can consider the

action of K1 and K2 in (3.2) on the superfield A∓:

K1A
∓ =

(
τ2

1 ∂τ1 +
1

3
τ1

)
A±0 + θ1

(
τ2

1 ∂τ1 +
4

3
τ1

)
A∓1

−
(
τ2

1 ∂τ1 +
1

3
τ1

)
A∓2 θ2 − θ1

(
τ2

1 ∂τ1 +
4

3
τ1

)
A±3 θ2 (3.10)

K2A
∓ =

(
τ2

2 ∂τ2 +
1

3
τ2

)
A±0 + θ1

(
τ2

2 ∂τ2 +
1

3
τ2

)
A∓1

−
(
τ2

2 ∂τ2 +
4

3
τ2

)
A∓2 θ2 − θ1

(
τ2

2 ∂τ2 +
4

3
τ2

)
A±3 θ2 (3.11)

From the view point of super matrix, this can be written as

K1A
∓ = K~A∓ , K2A

∓ = A∓~K] (3.12)

where A] is the composite operation of the parity transpose and supertranspose of a su-

permatrix A. Namely, the parity transpose of a supermatrix A is defined by

A =

(
A1 A3

A0 A2

)
=⇒ Aπ =

(
A2 A0

A3 A1

)
(3.13)

We define A] by

A] = (Aπ)st =

(
At2 (−1)|A|At3

−(−1)|A|At0 At1

)
(3.14)

Recall that |A| denotes the parity of the supermatrix A. Repeating the same calculation

for the other generators, we find that

L1A = L~A , L2A = (−1)|L|·(|A|+1)A~L] ( La ∈ {Pa, · · · ,Sa} , L ∈ {P,K,D,Q, S})
(3.15)

where the supermatrices {P,K,D,Q, S} are defined by

P ≡

(
∂τ1δ(τ1 − τ2) 0

0 ∂τ1δ(τ1 − τ2)

)
(3.16)

K ≡

(
(τ2

1 ∂τ1 + 4
3τ1)δ(τ1 − τ2) 0

0 (τ2
1 ∂τ1 + 1

3τ1)δ(τ1 − τ2)

)
(3.17)

D ≡

(
(τ1∂τ1 + 2

3)δ(τ1 − τ2) 0

0 (τ1∂τ1 + 1
6)δ(τ1 − τ2)

)
(3.18)

Q ≡

(
0 −∂τ1δ(τ1 − τ2)

δ(τ1 − τ2) 0

)
(3.19)

S ≡

(
0 (−τ1∂τ1 − 1

3)δ(τ1 − τ2)

τ1δ(τ1 − τ2) 0

)
(3.20)
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Note that |L| is the usual parity of the generator while |A| is the parity as a superma-

trix.6 Hence, the action of the bi-local superconformal generator on the superfield can be

represented as follows

LA = L~A+(−1)|L|·(|A|+1)A~L] ( L ∈ {P ,K,D,Q,S} , L ∈ {P,K,D,Q, S}) (3.21)

Note that the supermatrix generators are

|P| = |K| = |D| = 0 , |Q| = |S| = 1 (3.22)

Especially, P and Q satisfy

P] = −P , Q] = Q , Q~Q = P , (3.23)

and therefore, the action of P and Q are simply given by

PA = P~A−A~P , QA = Q~A+ (−1)|A|+1A~Q (3.24)

3.2 Eigenfunctions of superconformal Casimir

In non-supersymmetric SYK model, it is natural to use new coordinates given by

t =
1

2
(τ1 + τ2) , z =

1

2
(τ1 − τ2) (3.25)

In fact, this is the simplest example of the bi-local map found in [68, 75, 76, 78] for the

duality between higher spin theory in AdS4 and free vector model CFT3. This bi-local

map can be obtained by comparing the bi-local conformal generators for O(N)/U(N)

vector fields and conformal generators for higher spin fields. But, the bi-local space of

(non-supersymmetric) SYK model is so simple that we need not do such calculations.7 For

the rest of Grassmannian odd coordinates, we do not transform, but we will relabel the

coordinates by

θ1 = ζ0 , θ2 = ζ1

∂ζ0 = ∂θ1 , ∂ζ1 = ∂θ2 (3.26)

Under this bi-local map, the superconformal generators can be expressed by

P = ∂t (3.27)

K = (t2 + z2)∂t + 2tz∂z + t(ζ0∂ζ0 + ζ1∂ζ1) + z(ζ0∂ζ0 − ζ1∂ζ1) +
2

3
t

= (−t2 + z2)∂t + 2tD + z(ζ0∂ζ0 − ζ1∂ζ1) (3.28)

D = t∂t + z∂z +
1

2
ζ0∂ζ0 +

1

2
ζ1∂ζ1 +

1

3
(3.29)

Q = − 1

2
ζ0(∂t + ∂z) +

1

2
ζ1(−∂t + ∂z) + ∂ζ0 + ∂ζ1 (3.30)

S = (t+ z)∂ζ0 − (−t+ z)∂ζ1 −
1

2
ζ0(t+ z)(∂t + ∂z)−

1

2
ζ1(−t+ z)(−∂t + ∂z)

− 1

3
(ζ0 + ζ1) (3.31)

6Recall that parity of A as a supermatrix is opposite to the “usual parity” of A as a superfield.
7On the other hand, bi-local map of superspace might be non-trivial because there could be a mixing

between τ1, τ2 and θ1θ2. For N = 1 SUSY SYK model, such a mixing does not seem to be natural.
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and the corresponding Casimir operator is found to be

C = − 1

18
+

2

3
z∂z + z2(−∂2

t + ∂2
z )− z∂t(ζ0∂ζ0 − ζ1∂ζ1) +

(
z∂z +

1

6

)
(ζ0∂ζ0 + ζ1∂ζ1)

+
1

2
ζ0ζ1∂ζ1∂ζ0 − z∂ζ1∂ζ0 −

1

6
∂zζ0ζ1 −

1

4z
(−z2∂2

t + z2∂2
z )ζ0ζ1

−
(

1

2
z∂z +

1

6

)
(ζ0∂ζ1 + ζ1∂ζ0)− 1

2
z∂t(ζ0∂ζ1 − ζ1∂ζ0) (3.32)

Now, we will find (super-)eigenfunctions for the Casimir:

CA(t, z, ζ0, ζ1) = ΛA(t, z, ζ0, ζ1) (3.33)

where the (super-)eigenfunction is given by

A(t, z, ζ0, ζ1) = A0(t, z) + ζ0A1(t, z)−A2(t, z)ζ1 − ζ0A3(t, z)ζ1 (3.34)

First, we will focus on bosonic8 eigenfunction, that is, A0 is Grassmannian even. Then,

acting with the Casimir on the eigenfunction, we have

CA− =

[
− 1

18
A0 +

2

3
z∂zA0 + z2(−∂2

t + ∂2
z )A0 + zA3

]
+ ζ0

[
1

9
A1 +

5

3
z∂zA1 + z2(−∂2

t + ∂2
z )A1 − z∂tA1 −

1

2
z∂zA2 −

1

2
z∂tA2 −

1

6
A2

]
−
[

1

9
A2 +

5

3
z∂zA2 + z2(−∂2

t + ∂2
z )A2 + z∂tA2 −

1

2
z∂zA1 +

1

2
z∂tA1 −

1

6
A1

]
ζ1

− ζ0

[
7

9
A3 +

8

3
z∂zA3 + z2(−∂2

t + ∂2
z )A3 +

1

6
∂zA0 +

1

4z
(−z2∂2

t + z2∂2
z )A0

]
ζ1

(3.35)

Note that A0 (and, A1) and A3 (A2, respectively) are mixed. For A0 and A3, we will use

the following ansatz which is similar to non-supersymmetric SYK model [9, 10]:

A0 = e−iwtz
1
6Jν(wz) (3.36)

A3 = a3e
−iwtz−

5
6Jν(wz) (3.37)

We find that there are two solutions given by

a3 =
1

2

(
1

6
± ν
)

(3.38)

and the corresponding eigenvalues are

CA− = ν

(
ν ± 1

2

)
A− (3.39)

SinceQ commutes with the Casimir, QA− is also an eigenfunction if A− is an eigenfunction.

However, since that the parity of QA− is opposite to A, QA− is a fermionic eigenfunction.

8Recall that bosonic bi-local superfield corresponds to Grassmannian odd supermatrix A−.
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Furthermore, A0 and A3 components of the bosonic eigenvectors can determine the A1 and

A2 components of the fermionic eigenfuction because of parity. This is also easily seen by

the action of Q on the (bosonic) eigenfunction:

QA− = A1 +A2 + ζ0

(
−1

2
∂tA0 −

1

2
∂zA0 +A3

)
−
(

1

2
∂tA0 −

1

2
∂zA0 +A3

)
ζ1

− ζ0

(
−1

2
∂tA2 −

1

2
∂zA2 +

1

2
∂tA1 −

1

2
∂zA1

)
ζ1 . (3.40)

In the same way, one can also find the A0 and A3 components of the fermionic eigen-

functions. i.e., The action of the Casimir on the fermionic eigenfunction is

CA+ =

[
− 1

18
A0 +

2

3
z∂zA0 + z2(−∂2

t + ∂2
z )A0 − zA3

]
+ ζ0

[
1

9
A1 +

5

3
z∂zA1 + z2(−∂2

t + ∂2
z )A1 − z∂tA1 +

1

2
z∂zA2 +

1

2
z∂tA2 +

1

6
A2

]
−
[

1

9
A2 +

5

3
z∂zA2 + z2(−∂2

t + ∂2
z )A2 + z∂tA2

1

2
z∂zA1 −

1

2
z∂tA1 +

1

6
A1

]
ζ1

− ζ0

[
7

9
A3 +

8

3
z∂zA3 + z2(−∂2

t + ∂2
z )A3 −

1

6
∂zA0 −

1

4z
(−z2∂2

t + z2∂2
z )A0

]
ζ1 .

(3.41)

Using an ansatz

A0 = e−iwtz
1
6Jν(wz) (3.42)

A3 = a3e
−iwtz−

5
6Jν(wz) , (3.43)

we find that

a3 =− 1

2

(
1

6
± ν
)

(3.44)

CA+ =ν

(
ν ± 1

2

)
A+ (3.45)

Now, QA+ gives A1 and A2 components of the bosonic eigenfunctions. e.g.,

QA+ = A1 −A2 + ζ0

(
−1

2
∂tA0 −

1

2
∂zA0 −A3

)
−
(
−1

2
∂tA0 +

1

2
∂zA0 +A3

)
ζ1

− ζ0

(
−1

2
∂tA2 −

1

2
∂zA2 −

1

2
∂tA1 +

1

2
∂zA1

)
ζ1 (3.46)

We will also utilize the fermionic eigenfunctions of the Casimir in diagonalizing the

quadratic action involved with fermi components in section 4.2. We summarize all eigen-

functions in appendix B.
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4 Diagonalization of the quadratic action

In this section, we will diagonalize the quadratic action in (2.83). For this, one can directly

diagonalize the kernel as in [9] by using eigenfunctions for the Casimir found in the previous

section because the classical solution (anti-)commutes with superconformal generators. i.e.,

[L,Ψcl} = L~Ψcl + Ψcl~L] ( L ∈ {P ,K,D,Q,S} , L ∈ {P,K,D,Q, S}) (4.1)

We give this direct diagonalization in appendix C because they involve tedious integrations.

Instead, we present the diagonalization in a pedagogical way based on an observation from

the result of the direct evaluation.

The basic idea is to diagonalize separately two terms in the quadratic action

S
(2)
col = −1

2
str
(
Ψ−1

cl ~Φ~Ψ−1
cl ~Φ + 2JΦ~[ΨclΦ]

)
. (4.2)

Indeed, we will see that the second term

str [Φ~[ΨclΦ]] (4.3)

is nothing but the inner product of two eignfunctions. In addition, in order to diagonalize

the first term

str [Ψ−1
cl ~Φ~Ψ−1

cl ~Φ] , (4.4)

we will use a similar calculation as in [10]. That is, for each eigenfunction uνw, we will find

a function ũνw such that

Ψcl~ũνw~Ψcl = g(ν)uνw (4.5)

where w is a frequency related to the eigenvalue of P, and ν is a representation of the

superconformal algebra. In addition, g(ν) is a function of ν, which will determine the

spectrum of the SUSY SYK model.

4.1 Eigenfunctions of the quadratic action: bosonic components

Eigenfunctions: we begin with eigenfunction u1
νw of the superconformal Casimir

in (B.1). This can be written as

e−iwtz
1
6Jν(|wz|)

(
0 −ν− 1

6
2|z|

sgn (z) 0

)
(4.6)

Here, we demand that the eigenfunction u1
νw obeys the symmetry of the supermatrix of

the N = 1 SYK model in (2.39). i.e.,

J ust
νwJ = uνw (4.7)

In general, we also have a second solution involved with J−ν because the superconformal

Casimir related to this eigenfunction is reduced to Bessel’s differential equation. For the

given ν and w, we have such an eigenfunction in the same representation in (B.2) given by

e−iwtz
1
6J−ν(|wz|)

(
0 −ν− 1

6
2|z|

sgn (z) 0

)
(4.8)
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where we also demand the symmetry of the eigenfunction in (4.7). Hence, one has to

find a relative coefficient of the eigenfunctions (4.6) and (4.8) to diagonalize the kernel of

the quadratic action. This coefficient is usually determined by boundary condition. In

particular, it is useful to think of the IR boundary condition (i.e., z → ∞). From the

asymptotic behavior of the Bessel function, we have

Jν(z) + ξJ−ν(z) ≈
√

2

πz

(
cos

π

2
(ν + 1/2) + ξ sin

π

2
(ν + 1/2)

)
cos z

+

√
2

πz

(
sin

π

2
(ν + 1/2) + ξ cos

π

2
(ν + 1/2)

)
sin z (4.9)

where ξ is a relative coefficient. In the non-supersymmetric SYK model, after direct di-

agonalization of the kernel, it turns out that the eigenfunction behaves like z−
1
2 cos z in

large z. In this section, we demand the generalized boundary condition thereof by brute

force, but we also confirmed in appendix C that this eigenfunctions indeed diagonalizes

the quadratic action. In addition to the asymmptotic behavior z−
1
2 cos z, it would also

possible to demand z−
1
2 sin z in large z. Hence, demanding those two boundary conditions,

we generalize the function Zν(z) introduced in [9]:

Z∓ν (z) ≡ Jν(z) + ξ±νJ−ν(z) (4.10)

where ξν is defined by

ξν ≡
tan πν

2 + 1

tan πν
2 − 1

(4.11)

Note that at large z, they behave as

Z−ν (z) ∼ cos z√
z

, Z+
ν (z) ∼ sin z√

z
(4.12)

Now, we will consider UV boundary condition (z → 0). In [9], the Bessel’s differential

equation from the Casimir operator was interpreted as a Schordinger-like equation to claim

that a real ν corresponds to a discrete bound state, and pure imaginary ν’s are consist of

continuum spectrum. Likewise, one can also expect that there are bound states for real ν.

Furthermore, we can also demand that the such eigenfunctions do not diverge as z goes to

zero. This gives a discrete series of possible ν’s for each Z∓ν . i.e.,

Z−ν (z) : ν = 2n+
3

2
(n = 0, 1, 2, · · · ) (4.13)

Z+
ν (z) : ν = 2n+

1

2
(n = 0, 1, 2, · · · ) (4.14)

Now, since there are two independent linear combination of (4.6) and (4.8), we have to

determine which UV/IR boundary condition is possible for them. For this, we utilize the

zero mode of the kernel involved with reparametrization. In non-supersymmetric SYK

model, the zero mode can be evaluated [12] by

u0(τ1, τ2) ≡
δΨcl,f (τ1, τ2)

δf(τ)

∣∣∣∣
f(τ)=τ

(4.15)
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where Ψcl is the large N classical solution of non-supersymmetric SYK model, and Ψcl,f is

transformed classical solution by reparametrization f(τ). i.e.,

Ψcl,f =
∣∣f ′(τ1)f ′(τ2)

∣∣ 1
q Ψcl(f(τ1), f(τ2)) (4.16)

In the SUSY SYK model, one can quickly obtain the zero mode from the classical solution

in (2.68) by using the reparametrization instead of super-reparametrization. We found

u0 ∼

(
0 − 4

3|τ12|
sgn (τ12)

)
(4.17)

It was already known that this zero mode corresponds to the eigenfunction Z−3
2

(z) [50]. On

the other hand, we have two types of eigenfunctions (B.1) or (B.5). For ν = 1
2 or ν = 3

2 ,

we found that only (B.1) with ν = 3
2 can become the zero mode in (4.17). Hence, we can

deduce that (B.1) satisfy the boundary condition of Z−ν , and therefore, we can write the

eigenfunction as

u1
νw(t, z) = e−iwt|Jz|

1
6Z−ν (|wz|)

(
0 −ν− 1

6
2|z|

sgn (z) 0

)
(4.18)

or equivalently,

u1
νw(τ1, τ2) =

e−
iw
2

(τ1+τ2)

√
8π

∣∣∣∣J τ1 − τ2

2

∣∣∣∣ 1
6

Z−ν

(∣∣∣∣w2 (τ1 − τ2)

∣∣∣∣)
 0 − ν− 1

6

2| 12 (τ1−τ2)|
sgn (τ1 − τ2) 0


(4.19)

where the representation ν can be either a pure imaginary continuum value or a discrete

real value for UV boundary condition as in [9]. i.e.,

ν =
3

2
+ 2n (n = 0, 1, 2, · · · ) (4.20)

ν = ir (r = 0) (4.21)

For the other UV/IR boundary condition, we have the eigenfunction (B.6) corresponding

to Z+
ν :

u2
νw(t, z) =

e−iwt√
8π
|Jz|

1
6Z+

ν (|wz|)

(
0

ν+ 1
6

2|z|
sgn (z) 0

)
(4.22)

or equivalently,

u2
νw(τ1, τ2) =

e−
iw
2

(τ1+τ2)

√
8π

∣∣∣∣J τ1 − τ2

2

∣∣∣∣ 1
6

Z+
ν (|w

2
(τ1 − τ2)|)

 0
ν+ 1

6

2| 12 (τ1−τ2)|
sgn (τ1 − τ2) 0

 (4.23)

where we also demanded the symmetry of eigenfunctions in (4.7), and the representation

ν’s are

ν =
1

2
+ 2n (n = 0, 1, 2, · · · ) (4.24)

ν = ir (r ∈ R) (4.25)
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Diagonalization of the second term: it is useful to find orthogonality of the functions

Z∓ν ’s because the second term in the quadratic action in (2.83) is, in fact, reduced to an

inner product of Z∓ν ’s. i.e.,

str
(
uν,w~[Ψcluν′,w′ ]

)
∼ δ(w + w′)

∫ ∞
0

dz

z
Zαν (z)Zα

′
ν′ (z) (4.26)

where α, α′ = ∓. First, it is easy to see that Z−ν is orthogonal to Z+
ν because they have

different eigenvalues for Casimir. By a similar analysis to [9], we found that∫ ∞
0

dz

|z|
Zαν (|wz|)Zαν′(|w′z|) = δαα′Nνδ(ν − ν ′) (4.27)

where

Nν =


1

2ν

(
ν = 3

2 + 2n for Z−, or ν = 1
2 + 2n for Z+ (n = 0, 1, 2, · · · )

)
2 sinπν

ν
(for ν = ir (r ∈ R))

(4.28)

For real ν, Z∓ν is a real function so that we can immediately see that (4.26) is diagonalized.

On the other hand, for pure imaginary value ν = ir, the complex conjugate of the function

Z∓ν can be written as

Z∓ν = J−ν(z) + ξ∓νJν(z) = ξ∓ν [Jν(z) + ξ±νJ−ν(z)] = ξ∓νZ
∓
ν (z) (4.29)

where we used a useful identity for ξν :

ξ−νξν = 1 (4.30)

Hence, we have∫ ∞
0

dz

|z|
Z∓ir(|wz|)Z

∓
ir′(|w

′z|) = Ñ∓ir δ(r − r
′) (Ñ∓ir ≡ ξ±irNir) (4.31)

and, (4.26) is also diagonalized. We emphasize that (4.26) leads to an induced inner product

for the supermatrix formulation. i.e.,

〈uν,w, uν′,w′〉 ≡ str
(
uν,w~[Ψcluν′,w′ ]

)
(4.32)

Diagonalization of the first term: next, let us consider the first term in (2.83). To

diagonalize it, for each uνw, we will find a function ũνw such that

Ψcl~ũνw~Ψcl = g(ν)uνw (4.33)

where g(ν) is a function of ν. In appendix C, one can directly find ũ for each u1
νw and u2

νw.

But, in this section, we present a new method to find ũ.

Suppose that there exist ũνw to satisfy (4.33). Then, the first term in (2.83) becomes

str (uν′w′~Ψ−1
cl ~uνw~Ψ−1

cl ) =
1

g(ν)
str (uν′w′~ũνw) (4.34)
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one may find a function ˜̃uνw such that

ũνw(τ1, τ2) = [Ψcl ˜̃uνw](τ1, τ2) (4.35)

where the product on the r.h.s. is the usual product of superfields. Then, (4.34) becomes

str (uν′w′~Ψcl~uνw~Ψcl) = 〈uν′w′ , ˜̃uνw〉 (4.36)

where 〈 · , · 〉 is the induced inner product of supermatrix defined in (4.32). Hence, if the

first term is diagonalized by uνw, we should have

ũνw(τ1, τ2) ∼ [Ψcluνw](τ1, τ2) (4.37)

Of course, this is confirmed by direct calculation for q = 3 case as well as general q case

where Ψcl on the r.h.s. of (4.37) and (4.32) is replaced by Ψq−2
cl . The remaining calculation

is to fix the coefficient and the function g(ν) where one cannot avoid evaluating integrations.

We found that

ũ1
νw(τ1, τ2) =− 2A√

8π
J
e−

iw
2

(τ1+τ2)∣∣J
2 (τ1 − τ2)

∣∣ 1
6

Z−ν

(∣∣∣∣w2 (τ1 − τ2)

∣∣∣∣)
0 − ν+ 1

6

2| 12 (τ1−τ2)|sgn (τ1 − τ2)

1 0


(4.38)

ũ2
νw(τ1, τ2) =

2A√
8π
J
e−

iw
2

(τ1+τ2)∣∣J
2 (τ1 − τ2)

∣∣ 1
6

Z+
ν

(∣∣∣∣w2 (τ1 − τ2)

∣∣∣∣)
0

ν− 1
6

2| 12 (τ1−τ2)|sgn (τ1 − τ2)

1 0

 (4.39)

where A =
(

1
4
√

3π

) 1
3

and

g1(ν) =− 2−
1
3

Γ
(

5
3

)
Γ
(

5
12 −

ν
2

)
Γ
(

5
12 + ν

2

)
Γ
(

4
3

)
Γ
(

13
12 −

ν
2

)
Γ
(

1
12 + ν

2

) (4.40)

g2(ν) =− 2−
1
3

Γ
(

5
3

)
Γ
(

5
12 −

ν
2

)
Γ
(

5
12 + ν

2

)
Γ
(

1
2

)
Γ
(

1
3 −

h
2

)
Γ
(

13
12 + h

2

) (4.41)

which agrees with [50]. Note that ũνw’s in (4.38) and (4.39) have different symmetry from

uνw. i.e.,

J~ũst
νw~J = −ũνw (4.42)

This can be easily seen from the definition of ũνw in (4.33):

J (Ψcl~ũνw~Ψcl)
st~J = −Ψcl~J~ũst

νw~J~Ψcl = Ψcl~ũνw~Ψcl (4.43)

Now, we expand the fluctuation Φ in (2.83) in terms of u1
νw and u2

νw:

Φ =
∑
w

 ∑
ν=2n+ 3

2
n=0,1,···

A1
νwu

1
νw +

∑
ν=2n+ 1

2
n=0,1,···

A2
νwu

2
νw +

∑
ν=ir
r=0

(
A1
νwu

1
νw + A2

νwu
2
νw

)
 (4.44)
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Note that the reality condition of the component fields leads to

Ψ = −Ψ (4.45)

which imposes the following constraint.

A1
νw = −A1

ν−w for ν = 2n+
3

2
(n = 0, 1, 2, · · · ) (4.46)

A2
νw = −A2

ν−w for ν = 2n+
1

2
(n = 0, 1, 2, · · · ) (4.47)

A1
νw = −ξνA1

ν−w for ν = ir (r = 0) (4.48)

A2
νw = −ξ−νA2

ν−w for ν = ir (r = 0) (4.49)

Then, we found that the quadratic action in (2.83) can be written as

S
(2)
col =

2J

2
2
3 3

1
6π

1
3

∑
w=0

∑
ν=2n+ 3

2
or ν=ir

νNν
1− g1(ν)

g1(ν)

∣∣A1
νw

∣∣2
+

2J

2
2
3 3

1
6π

1
3

∑
w=0

∑
ν=2n+ 1

2
or ν=ir

νNν
1− g2(ν)

g2(ν)

∣∣A2
νw

∣∣2 (4.50)

where we absorbed the factor ξ±ν in the normalization Ñ±ν = ξ±νNν into the reality con-

dition. This leads to two-point function of bi-local collective superfields (or, invariant

four-point function of fundamental superfield). The summation over ν = ir can be un-

derstood as a contour integral along the imaginary axis. Repeating the same procedure

in [10, 11], one can expect that the contour integral will pick up simples poles comes from

1− g1(ν) and 1− g2(ν) and the residues from other simple poles will cancel with the con-

tribution from discrete series of ν. Hence, the half of the spectrum of the N = 1 SUSY

SYK model is given by two equations

g1(ν) = 1 , g2(ν) = 1 (4.51)

which was shown in [50].

One can also diagonalize the quadratic action with the following fermionic

eigenfunctions:

u3
νw(t, z) = e−iwt|Jz|

1
6Z−ν (|wz|)

(
0 Bνw

ν− 1
6

2|z|
Bνwsgn (z) 0

)
(4.52)

u4
νw(t, z) =

e−iwt√
8π
|Jz|

1
6Z+

ν (|wz|)

(
0 −Bνw

ν+ 1
6

2|z|
Bνwsgn (z) 0

)
(4.53)

where Bνw is a Grassmannian odd constant. Comparing to u1
νw and u2

νw in (4.18)

and (4.22), one can see that the only difference is the sign of θ1θ2 components. More-

over, because Bνw is Grassmannian odd, one can ends up with the same calculations as

those in bosonic Grassmannian eigenfunctions except for an overall minus sign.

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
2

4.2 Eigenfunctions of the quadratic action: fermionic components

After obtaining the bosonic eigenfunctions and the corresponding eigenvalues for the kernel,

the diagonalization by fermionic components of bosonic eigenfunction is straightforward

because of supersymmetry. In this section, we work out this diagonalization in detail.

Also, we double-checked a part of the diagonalization by direct calculation in appendix C.

We claim that Quaνw (a = 3, 4) diagonalize the quadratic action with the same eigen-

value as uaνw. First, note that the classical solution Ψcl is annihilated by the bi-local

supercharge Q which we have discussed in (3.1)

QΨcl = Q~Ψcl + Ψcl~Q = 0 (4.54)

where Q is defined in (3.19).

Now, we will find an analogous identity to (4.33). We will act with QB~ on the both

sides of (4.33) where B is a constant Grassmannian odd supermatrix defined by

B =

(
B 0

0 B

)
B : Grassmannian odd constant. (4.55)

Note that the supermatrix B commutes with Q,P and Ψcl. Using (3.24) and (4.54), it

becomes

gQ(B~u) = Q(Ψcl~B~ũ~Ψcl) = Q~Ψcl~B~ũ~Ψcl −Ψcl~B~ũ~Ψcl~Q
= − (Ψcl~Q~B~ũ~Ψcl −Ψcl~B~ũ~Q~Ψcl) = −Ψcl~[Q(B~ũ)]~Ψcl

(4.56)

where we omit ν and w. Hence, for the given uνw, Q(B~uνw) and Q(B~ũνw) satisfy (4.33)

with the same g(ν), but with an additional minus sign. i.e.,

g(ν)Q(B~uνw) = −Ψcl~Q(B~ũνw)~Ψcl (4.57)

This simplify the first term in (2.83), and we need to evaluate str [Q(B~u)~Q(B~ũ)].

Using (3.23) and (3.24), we have

str [Q(B~u)~Q(B~ũ)] = str [(Q~B~u− B~u~Q)~(Q~B~ũ− B~ũ~Q)]

= − str [−Q~Q~(B~u)~(B~ũ) + (B~u)~Q~Q~(B~ũ)]

+ str [Q~(B~u)~Q~(B~ũ)−Q~(B~u)~Q~(B~ũ)]

= − str [P~(B~u)~(B~ũ)− (B~u)~P~(B~ũ)]

= − str [(P(B~u))~(B~ũ)] (4.58)

where we used the following property of the supertrace in the second line

str (XY ) = (−1)|X|·|Y |str (Y X) (4.59)

Therefore, the first term in the quadratic action can be written as

− 1

2
str [Q(Bν′w′~uν′w′)~Ψ−1

cl ~Q(Bνw~uνw)~Ψ−1
cl ]

= − 1

2g(ν)
str [(P(Bν′w′~uν′w′))~Bνw~ũνw] (4.60)

– 25 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
2

and, this corresponds to diagonalization of Grassmannian odd eigenfunctions in the previ-

ous section.

In a similar way, one can also show the Qu will diagonalize the second term of (2.83).

For this, we need to move the differential operator Q by using integration by parts in the

superspace integration. But, in the supermatrix formulation, this is nothing but property

of supertrace. e.g.,

str [(QX)~Y ] = str [Q~X~Y ] + (−1)|X|+1str [X~Q~Y ]

= (−1)|X|+1str [X~(QY )] (4.61)

Thus, the inner product of two Q(B~u) is given by

〈Q(B~u),Q(B~u)〉 = − str [B~u~Q(ΨclQ(B~u))]

= − str [B~u~(ΨclQ2(B~u))] = str [B~u~(ΨclP(B~u))]

=

∫
dτ1dθ1dτ2dθ2 Ψcl(τ1, θ1; τ2, θ2)

× [B~u](τ1, θ1; τ2, θ2)[P(B~u)](τ1, θ1; τ2, θ2) (4.62)

In the same way as before, we expand the fluctuation Φ in terms of Q(B1
νw ? u

3
νw) and

Q(B1
νw ? u

4
νw), and the diagonalization is exactly the same as those of u3

νw and u4
νw which

we shortly discussed before.

5 N = 2 supersymmetric SYK model

In this section, we will generalize N = 1 bi-local collective superfield theory to N = 2 case.

5.1 Bi-local chira/anti-chiral superspace, superfield and supermatrix

We begin with the bi-local superspace for N = 2 SUSY vector models. At first glance,

it seems that we have a larger Grassmannian space because there are two Grassmannian

coordinates θ and θ̄. However, since we will focus on the chiral or anti-chiral superfields,

the construction is almost the same as for N = 1 case. First, let us focus on superfield A

which is chiral with respect to the first superspace and anti-chiral in the second superspace:

D1A(τ1, θ1, θ̄1; τ2, θ̄2, θ2) = D2A(τ1, θ1, θ̄1; τ2, θ̄2, θ2) = 0 (5.1)

where the superderivatives are given by

D ≡ ∂θ + θ̄∂τ , D̄ ≡ ∂θ̄ + θ∂τ (5.2)

Hence, the superfield A depends only on (σ1, θ1; σ̄2, θ̄2) where

σ ≡ τ + θθ̄ , σ̄ ≡ τ − θθ̄ (5.3)

and, one can expand the superfield A as follows.

A(σ1, θ1; σ̄2, θ̄2) = A0(σ1, σ̄2) + θ1A1(τ1, σ̄2)−A2(σ1, τ2)θ̄2 − θ1A3(τ1, τ2)θ̄2 (5.4)

= A0(σ1, σ̄2) + θ1A1(σ1, σ̄2)−A2(σ1, σ̄2)θ̄2 − θ1A3(σ1, σ̄2)θ̄2 (5.5)
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This bi-local superfield naturally appears in the U(N) vector models because chiral su-

perfields and anti-chiral superfields transform in the fundamental and anti-fundamental

representations of U(N), respectively so that they form a U(N) invariant bi-local field.

Hence, it is natural to construct the following bi-local superspace for such bi-local U(N)

superfields.

(σ1, θ1; σ̄2, θ̄2) (5.6)

Now, we will define a star product in this bi-local superspace. However, it is difficult

to construct the consistent star product of two chiral/anti-chiral bi-locals because the first

and the second superspace have opposite chirality. Hence, we also introduce conjugate

anti-chiral/chiral bi-local super field:

B̄(σ̄1, θ̄1;σ2, θ2) = B̄0(σ̄1, σ2) + θ̄1B̄1(σ̄1, σ2)− B̄2(σ̄1, σ2)θ2 − θ̄1B̄3(σ̄1, σ2)θ2 (5.7)

We found that a consistent star product between A(σ1, θ1; σ̄2, θ̄2) and B̄(σ̄1, θ̄1;σ2, θ2) is

given by

A~̄B̄ ≡
∫
A(σ1, θ1; σ̄3, θ̄2)dτ3dθ̄3B̄(σ̄3, θ̄3;σ2, θ2) (5.8)

which was already recognized in [50] to analyze the Schwinger-Dyson equation. Similarly,

we also define

B̄~A ≡
∫
B̄(σ̄1, θ̄1;σ3, θ3)dτ3dθ3A(σ3, θ3; σ̄2, θ̄2) (5.9)

Note that A~̄B̄ is a chiral/chiral superfield while B̄~A is an anti-chiral/anti-chiral super-

field. As in N = 1 case, the punchline is that the supermatrix formulation drastically

simplifies this complicated star product in the bi-local superspace into matrix multiplica-

tion. First, we represent the bi-local superfields A and B̄ as the following supermatrix.

A(σ1, θ1; σ̄2, θ̄2) = A0(σ1, σ̄2) + θ1A1(σ1, σ̄2)−A2(σ1, σ̄2)θ̄2 − θ1A3(σ1, σ̄2)θ̄2

≡

(
A1(σ1, σ̄2) A3(σ1, σ̄2)

A0(σ1, σ̄2) A2(σ1, σ̄2)

)
(5.10)

B̄(σ̄1, θ̄1;σ2, θ2) = B̄0(σ̄1, σ2) + θ̄1B̄1(σ̄1, σ2)− B̄2(σ̄1, σ2)θ2 − θ̄1B̄3(σ̄1, σ2)θ2

≡

(
B̄1(σ̄1, σ2) B̄3(σ̄1, σ2)

B̄0(σ̄1, σ2) B̄2(σ̄1, σ2)

)
(5.11)

Then, one can show that the star product of superfields becomes the following matrix

product:

A~̄B̄ =

(
A1 A3

A0 A2

)
~̄

(
B̄1 B̄3

B̄0 B̄2

)
, B̄ ? A =

(
B̄1 B̄3

B̄0 B̄2

)
~

(
A1 A3

A0 A2

)
(5.12)

These matrix products ~ and ~̄ are a combination of the usual matrix product and star

product ? in bi-local time space (τ1, τ2) like the N = 1 case:(
A1 A3

A0 A2

)
~̄

(
B̄1 B̄3

B̄0 B̄2

)
=

(
(A1 ? B̄1 +A3 ? B̄0) (A1 ? B̄3 +A3 ? B̄2)

(A0 ? B̄1 +A2 ? B̄0) (A0 ? B̄3 +A2 ? B̄2)

)
(5.13)
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However, in the star product ? between components, we replace σ or σ̄ in the intermediate

integration variables with τ . i.e.,

(A1 ? B̄1)(σ1, σ2) ≡
∫
dτ3A1(σ1, τ3)dτ3B̄1(τ3, σ2) (5.14)

It is natural to consider chiral/chiral (or, anti-chiral/anti-chiral) supermatrices, too. They

also follow the same multiplication rule in the supermatrix formulation. In general, the

star product of supermatrices A and B is possible when the chirality of the second index

of A is the same as the chirality of the first index of B:

Au,v~
vBv,w = Cu,w (u, v, w ∈ {chiral , anti-chiral}) (5.15)

Before discussing the N = 2 collective superfield theory, let us present useful formu-

lae for the calculus of the bi-local superfield in N = 2 which generalize the formulae of

section 2.2. First, the functional derivative of the same fundamental superfield is given by

δf(σ, θ)

δf(σ′, θ′)
= (θ′ − θ)δ(σ′ − σ) ,

δf̄(σ̄, θ̄)

δf̄(σ̄′, θ̄′)
= (θ̄′ − θ̄)δ(σ̄′ − σ̄) (5.16)

We define the change of variables and chain rule for the fundamental superfield as follows.

δfα(σ, θ) =
∑
β

∫
δfβ(σ′, θ′)dσ′dθ′

δfα(σ, θ)

δfβ(σ′, θ′)
(5.17)

δ

δfα(σ, θ)
=
∑
β

∫
δfβ(σ′, θ′)

δfα(σ, θ)
dσ′dθ′

δ

δfβ(σ′, θ′)
(5.18)

δf̄α(σ̄, θ̄) =
∑
β

∫
δf̄β(σ̄′, θ̄′)dσ̄′dθ̄′

δf̄α(τ̄ , θ̄)

δf̄β(τ̄ ′, θ̄′)
(5.19)

δ

δf̄α(σ̄, θ̄)
=
∑
β

∫
δf̄β(σ̄′, θ̄′)

δf̄α(σ̄, θ̄)
dσ̄′dθ̄′

δ

δf̄β(σ̄′, θ̄′)
(5.20)

where α, β label some basis, and the summation runs over a complete basis. For bi-local

superfields, we have the analogous formulae:

δF (σ1, θ1; σ̄2, θ̄2)

δF (σ3, θ3; σ̄4, θ̄4)
≡ (θ3 − θ1)(θ̄4 − θ̄2)δ(σ3 − σ1)δ(σ̄4 − σ̄2) (5.21)

δF̄ (σ̄1, θ̄1;σ2, θ2)

δF̄ (σ̄3, θ̄3;σ4, θ4)
≡ (θ̄3 − θ̄1)(θ4 − θ2)δ(σ̄3 − σ̄1)δ(σ4 − σ2) (5.22)

δFα(σ1, θ1; σ̄2, θ̄2) =
∑
β

∫
δFβ(σ3, θ3; σ̄4, θ̄4)dσ̄4dθ̄4dσ3dθ3

δFα(σ1, θ1; σ̄2, θ̄2)

δFβ(σ3, θ3; σ̄4, θ̄4)
(5.23)

δ

δFα(σ1, θ1; σ̄2, θ̄2)
=
∑
β

∫
δFβ(σ3, θ3; σ̄4, θ̄4)

δFα(σ1, θ1; σ̄2, θ̄2)
dσ̄4dθ̄4dσ3dθ3

δ

δFβ(σ3, θ3; σ̄4, θ̄4)
(5.24)

δF̄α(σ̄1, θ̄1;σ2, θ2) =
∑
β

∫
δF̄β(σ̄3, θ̄3;σ4, θ4)dσ4θ4dσ̄3dθ̄3

δF̄α(σ̄1, θ̄1;σ2, θ2)

δF̄β(σ̄3, θ̄3;σ4, θ4)
(5.25)

δ

δF̄α(σ̄1, θ̄1;σ2, θ2)
=
∑
β

∫
δF̄β(σ̄3, θ̄3;σ4, θ4)

δF̄α(σ̄1, θ̄1;σ2, θ2)
dσ4dθ4dσ̄3dθ̄3

δ

δF̄β(σ̄3, θ̄3;σ4, θ4)
(5.26)
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5.2 N = 2 bi-local collective superfield theory

Consider Grassmannian odd chiral and anti-chiral superfields

D̄ψi = 0 , Dψ̄i = 0 (i = 1, 2, · · · , N) (5.27)

In terms of component fields, we have

ψi(σ, θ) ≡ χi(σ) + θbi(τ) (i = 1, 2, · · ·N) (5.28)

ψ̄i(σ̄, θ̄) ≡ χ̄i(σ̄) + θ̄b̄i(τ) (i = 1, 2, · · ·N) (5.29)

where χ, χ̄ are complex fermions while b, b̄ are complex bosons. They transforms in the

fundamental and anti-fundamental representation of U(N), respectively:

ψi(σ, θ) , ψ̄i(σ̄, θ̄) −→ U ijψ
j(σ, θ) , Ūi

j
ψ̄j(σ̄, θ̄) (5.30)

We define bi-local superfields and their conjugate:

Ψ(σ1, θ1; σ̄2, θ̄2) ≡ 1

N
ψi(σ1, θ1)ψ̄i(σ̄2, θ̄2)

Ψ̄(σ̄1, θ̄1;σ2, θ2) ≡ 1

N
ψ̄i(σ̄1, θ̄1)ψi(σ2, θ2) (5.31)

Note that Ψ and Ψ̄ are related by complex conjugation:[
Ψ(σ1, θ1; σ̄2, θ̄2)

]
= −Ψ̄(σ1, θ1; σ̄2, θ̄2) (5.32)

where this is not the complex conjugation of supermatrix but that of a superfield. As a

supermatrix, it can be written as

Ψ(σ1, θ1; σ̄2, θ̄2) =
1

N

(
bi(σ1, θ1)χ̄i(σ̄2, θ̄2) −bi(σ1, θ1)b̄i(σ̄2, θ̄2)

χi(σ1, θ1)χ̄i(σ̄2, θ̄2) −χi(σ1, θ1)b̄i(σ̄2, θ̄2)

)
(5.33)

The complex conjugate relation of the bi-local superfields in (5.31) can be translated into

the following relation in the supermatrix formulation.

JΨstJ = Ψ̄ (5.34)

Hence, Ψ and Ψ̄ are not independent degrees of freedom, like a hermitian matrix. For

the bi-local collective action, we need to evaluate a Jacobian coming from the non-trivial

transformation of path integral measure. As in section 2.3, we will use the following

identities for arbitrary functional F [Ψ] of Ψ.∫
DψDψ̄ δ

δψi(σ1, θ1)

[
ψi(σ2, θ2)F [Ψ]e−S

]
= 0 (5.35)∫

Dψ
∫
dσ̄3dθ̄3

δ

δΨ(σ1, θ1; σ̄3, θ̄3)

[
Ψ(σ2, θ2; σ̄3, θ̄3) J F [Ψ]e−S

]
= 0 (5.36)
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and, is similar for Ψ̄. In the same procedure as before, we can obtain functional differential

equations for the Jacobian:

N(θ1 − θ2)δ(σ1 − σ2) =

∫
Ψ(σ2, θ2; σ̄3, θ̄3)dσ̄3dθ̄3

δ log J

δΨ(σ1, θ1; σ̄3, θ̄3)
(5.37)

N(θ̄1 − θ̄2)δ(σ̄1 − σ̄2) =

∫
Ψ̄(σ̄2, θ̄2;σ3, θ3)dσ3dθ3

δ log J

δΨ̄(σ̄1, θ̄1;σ3, θ3)
(5.38)

As usual, this can be solved by

log J = −N
2

str log Ψ~̄Ψ̄ (5.39)

Note that the Jacobian J should be a function of Ψ~̄Ψ̄ or Ψ̄~Ψ because this is the only

allowed combination, and they are related to

log J = −N
2

str log Ψ~̄Ψ̄ = −N
2

str log(−Ψ̄~Ψ) (5.40)

Moreover, when analyzing the collective action later, one might be temped to treat Ψ and

Ψ̄ as if they are independent variables. This seems to give the correct result, with certain

prescriptions, as usual. However, rigorously speaking, they are not independent, and one

should take this into account. For example, a functional derivative with respect to Ψ will

act on Ψ̄ in the Jacobian. For this, it is helpful to use

J st(Ψst)stJ st = −JΨJ (5.41)

in addition to the fact that supertrace is invariant under the supertranspose. Also, we do

not have a shift in N because the bi-local collective superfield does not have symmetry

analogous to (2.25). This was already seen in higher dimensional U(N) vector models [63,

65, 74], and has been shown to be consistent for matching one-loop free energy of higher

spin AdS/U(N) vector model [74, 84–87].

Now, to express the kinetic term, we will find the supermatrix representation of the

superderivative.

D1A(σ1, θ1, σ̄2, θ̄2) =

(
2∂τ1A0(τ1; σ̄2) 2∂τ1A2(τ1, τ2)

A1(σ̄1; σ̄2) A3(σ̄1; τ2)

)
≡ D~A (5.42)

Note the chiral superderivative is (Grassmannian odd) anti-chiral/chiral supermatrix:

D(σ̄1, θ̄1;σ2, θ2) ≡

(
0 2∂τ1δ(σ̄1 − σ2)

δ(σ̄1 − σ2) 0

)
(5.43)

Hence, the chiral superderivative can be multiplied to Ψ̄ from the left by star product ~.

In the same way, one can also define the anti-chiral superderivative as follows.

D̄(σ1, θ1; σ̄2, θ̄2) ≡

(
0 2∂τ1δ(σ1 − σ̄2)

δ(σ1 − σ̄2) 0

)
(5.44)
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which satisfy

(D̄~̄D)(σ1, θ1;σ2, θ2) = 2∂τ1

(
δ(σ1 − σ2) 0

0 δ(σ1 − σ2)

)
= 2∂τ1I(σ1, θ1;σ2, θ2) (5.45)

(D~D̄)(σ̄1, θ̄1; σ̄2, θ̄2) = 2∂τ1

(
δ(σ̄1 − σ̄2) 0

0 δ(σ̄1 − σ̄2)

)
= 2∂τ1 Ī(σ̄1, θ̄1; σ̄2, θ̄2) (5.46)

Then, in the supermatrix notation, the kinetic term can easily be written with the su-

perderivative matrix as follows.

str (D~Ψ) = str (D̄~̄Ψ̄) =

∫
dτ1

[
2∂τ1ψ

i(τ1)ψ̄i(τ2)
∣∣
τ2→τ1 + bi(τ1)b̄i(τ1)

]
(5.47)

Therefore, like N = 1 case, the bi-local collective action for N = 2 SYK model is given by

Scol =−Nstr (D~Ψ) +
N

2
str log(Ψ~̄Ψ̄)− JN

3

∫
dτ1dθ1dτ2dθ̄2[Ψ(σ1, θ1; σ̄2, θ̄2)]3 (5.48)

=Nstr

[
−D~Ψ +

1

2
log(Ψ~̄Ψ̄)− J

3
Ψ̄~[Ψ]2

]
(5.49)

The rest of calculation is parallel to N = 1 case except that the large N classical solution

need not to be anti-symmetric, which admits a one-parameter family of solutions depending

on “spectral asymmetry” E [5, 88]. Also, since the collective action as a supermatrix

in (5.49) contains both Ψ and Ψ̄ which are not independent, one need additional care.

Practically, it is useful to go back and forth between the supermatrix notation (5.49) and

the superfield notation (5.48). For example, the superfield notation is useful in varying the

interaction term because one can easily change Ψ into Ψ̄. i.e.,∫
dτ1dθ1dτ2dθ̄2[Ψ(σ1, θ1; σ̄2, θ̄2)]3 =

∫
dτ1dθ̄1dτ2dθ2[Ψ̄(σ̄1, θ̄1;σ2, θ2)]3 (5.50)

This is a trivial identity from the point of view of the superfield notation, which leads to

an identity that can also be proven in the supermatrix notation:

str
[
Ψ̄~[Ψ]2

]
= str

[
Ψ~[Ψ̄]2

]
(5.51)

Varying the collective action with respect to Ψ and multiplying Ψ from the right, one can

obtain the Schwinger-Dyson equation for the N = 2 SYK model [50]:

−D~Ψ + I− [Ψ]2~Ψ = 0 (5.52)

One can also study N = 2 bi-local superconformal generators and its representation for

the supermatrix formulation. Moreover, after finding the eigenfunctions for the Casimir

operators, one can diagonalize the quadratic action to find all spectrum as in N = 1 SUSY

SYK model. We leave them to future work.
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6 Conclusion

In this work, we formulated the bi-local collective superfield theory for one-dimensional

N = 1, 2 SUSY vector models. We showed that this bi-local collective theory can be re-

formulated as supermatrix theory in the bi-local superspace. This drastically simplify the

analysis of the N = 1 SUSY SYK model. We also studied the bi-local superconformal

generators and its representation in the supermatrix formulation. Using them, we diag-

onalize the quadratic action of the N = 1 SUSY SYK model. We also developed the

bi-local collective superfield theory for N = 2 SYK model, and also connected it to su-

permatrix formulation. The rich structures of the supermatrix formulation could provide

deeper understanding on the SUSY SYK models.

In section 2.3, we easily obtain the shift in large N by −1 which would be advantage

of supersymmetry. Otherwise, one needs careful analysis of the differential equation for

Jacobian. We showed that this shift in N is not only important in matching free energy

in the higher spin AdS/CFT but also in getting correct result in large N expansion (See

appendix A). Though we did not evaluate various observables by utilizing supersymmetry

in this work, the simplicity of supermatrix formulation and the supersymmetry will enable

us to calculate various observables exactly. We leave that to future work.

As mentioned in the introduction, this bi-local construction is not restricted to space-

time or superspace. The bi-local collective (super)field theory would shed light on the

generalization of the SYK models like higher dimensional generalization by lattice. It is

highly interesting to construct N = 4 bi-local superspace and its supermatrix formulation.

Also, one might be able to generalize the bi-local superspace into higher-dimensional vector

models in the context of higher spin AdS/CFT.

Acknowledgments

I thank Kimyeong Lee, Spenta Wadia, Antal Jevicki, R. Loganayagam, Prithvi Narayan,

Victor Ivan Giraldo Rivera, and especially Robert de Mello Koch for extensive discus-

sions. I would like to thank the Chennai Mathematical Institute for the hospitality and

partial support during the early stages of the preparation of this work, within the program

“Student Talks on Trending Topics in Theory 2017”. I gratefully acknowledge support

from International Centre for Theoretical Sciences (ICTS), Tata institute of fundamental

research, Bengaluru. I would also like to acknowledge our debt to the people of India for

their steady and generous support to research in the basic sciences.

A 1
N

corrections in one-dimensional free SUSY vector model

In this appendix, we show that the shift of N by −1 indeed gives the correct one-point func-

tion of the bi-local collective superfield (or, invariant two-point function of the fundamental

superfield) for a free theory. Consider a one-dimensional free vector model:

Sfree =

∫
dτ

[
1

2
χi∂χi − 1

2
bibi
]

(A.1)
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Because it is a free theory, we expect the exact one-point function of the bi-local field

will be

〈Ψ(τ1, θ1; τ2, θ2)〉 =

〈
1

N
ψi(τ1, θ1)ψi(τ2, θ2)

〉
=

1

2
(sgn (τ12)− θ12δ(τ12)θ2) (A.2)

The corresponding bi-local collective action for the free theory is given by

Scol = str

[
−N

2
D~Ψ +

N − 1

2
log Ψ

]
(A.3)

One can easily check that the large N classical solution is the same as exact answer.

Ψcl(τ1, θ1; τ2, θ2) =
1

2
(sgn (τ12)− θ12δ(τ12)θ2) =

(
0 δ(τ12)

1
2sgn (τ12) 0

)
(A.4)

However, when we expand the bi-local superfield around the classical solution in large N

Ψ = Ψcl +
1√
N

Φ (A.5)

the collective action (A.3) generates vertices which comes from

N − 1

2
str log Ψ (A.6)

and, there should be no 1
N correction to (A.4) from those vertices. At large N , the collective

action can be expanded as

Scol =−
√
N

2
str (D~Φ) +

N − 1

2

∞∑
m=1

(−1)m+1

mN
m
2

str
[
(Ψcl~Φ)~m

]
=

√
N

2
str
[
Ψ−1

cl ~Φ−D~Φ
]
− 1

4
str (Ψ−1

cl ~Φ~Ψ−1
cl ~Φ)

+
1

2
√
N

str

[
−Ψ−1

cl ~Φ +
1

3

(
Ψ−1

cl ~Φ
)~3
]

+O(N−1) (A.7)

First, one can easily calculate the inverse of the classical solution from (A.4), and it turns

out to be equal to the matrix superderivative in (2.41).

Ψ−1
cl = D (A.8)

In fact, this is the large N Schwinger-Dyson equation for the free collective superfield

theory. Then, from the quadratic action of order O(N0), one can read off the two-point

function of the bi-local fluctuation. Furthermore, one can easily show that

〈(Ψ−1
cl ~Φ~Ψ−1

cl ~Φ)(τ1, τ2)〉 =

(
δ(τ12) 0

0 δ(τ12)

)
(A.9)

Now, the leading correction to the one-point function of the bi-local collective superfield is

given by
1

2N

〈
Φ(τ1, θ1; τ2, θ2)str

[
−Ψ−1

cl ~Φ +
1

3

(
Ψ−1

cl ~Φ
)~3
]〉

(A.10)
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Using a property of the supertrace and (A.9), one can easily see that this correction van-

ishes. If it were not for the shift in N by (−1), this correction would not vanish, and

therefore would not give the exact one-point function which one can expect in free theory.

Though this shift does not have any influence in the main text of this paper, it would be

important in evaluating 1
N corrections to correlation functions or the free energy.

B Casimir eigenfunctions

In this appendix, we present the (bosonic and fermionic) eigenfunctions of the supercon-

formal Casimir operators discussed in section 3.2.

B.1 Bosonic eigenfunctions

• Eigenvalue of Casimir: ν
(
ν − 1

2

)
Γ1
νw = e−iwtz

1
6Jν(wz)

(
0 −ν− 1

6
2z

1 0

)
(B.1)

Γ2
νw = e−iwtz

1
6J−ν(wz)

(
0 −ν− 1

6
2z

1 0

)
or Γ2

νw = e−iwtz
1
6Yν(wz)

(
0 −ν− 1

6
2z

1 0

)
(B.2)

Γ3
νw =

i

2
we−iwtz

1
6 [Jν(wz)1 + iJν−1(wz)σ3] (B.3)

Γ4
νw =

i

2
we−iwtz

1
6 [Yν(wz)1 + iYν−1(wz)σ3]

or Γ4
νw =

i

2
we−iwtz

1
6 [J−ν(wz)1− iJ−ν+1(wz)σ3] (B.4)

• Eigenvalue of Casimir: ν
(
ν + 1

2

)
Γ5
νw = e−iwtz

1
6Jν(wz)

(
0
ν+ 1

6
2z

1 0

)
(B.5)

Γ6
νw = e−iwtz

1
6J−ν(wz)

(
0
ν+ 1

6
2z

1 0

)
or Γ6

νw = e−iwtz
1
6Yν(wz)

(
0
ν+ 1

6
2z

1 0

)
(B.6)

Γ7
νw =

i

2
we−iwtz

1
6 [Jν(wz)1− iJν+1(wz)σ3] (B.7)

Γ8
νw =

i

2
we−iwtz

1
6 [Yν(wz)1− iYν+1(wz)σ3]

or Γ8
νw =

i

2
we−iwtz

1
6 [J−ν(wz)1 + iJ−ν−1(wz)σ3] (B.8)

• Action of supercharge:

QΓ1
νw = (iw)

i

2
e−iwtz

1
6 [Jν−1(wz)1− iJν(wz)σ3] (B.9)

QΓ3
νw = (iw)

i

2
e−iwtz

1
6Jν+1(wz)

(
0
ν− 1

6
2z

1 0

)
(B.10)
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QΓ5
νw = (iw)

i

2
e−iwtz

1
6 [−Jν+1(wz)1− iJν(wz)σ3] (B.11)

QΓ7
νw = (iw)

i

2
e−iwtz

1
6Jν(wz)

(
0 −ν+ 1

6
2z

1 0

)
(B.12)

B.2 Fermionic eigenfunctions

• Eigenvalue of Casimir: ν
(
ν − 1

2

)
Ω1
νw = e−iwtz

1
6Jν(wz)

(
0
ν− 1

6
2z

1 0

)
(B.13)

Ω2
νw = e−iwtz

1
6J−ν(wz)

(
0
ν− 1

6
2z

1 0

)
or Ω2

νw = e−iwtz
1
6Yν(wz)

(
0
ν− 1

6
2z

1 0

)
(B.14)

Ω3
νw =

i

2
we−iwtz

1
6 [Jν(wz)1 + iJν−1(wz)σ3] (B.15)

Ω4
νw =

i

2
we−iwtz

1
6 [Yν(wz)1 + iYν−1(wz)σ3]

or Ω4
νw =

i

2
we−iwtz

1
6 [J−ν(wz)1− iJ−ν+1(wz)σ3] (B.16)

• Eigenvalue of Casimir: ν
(
ν + 1

2

)
Ω5
νw = e−iwtz

1
6Jν(wz)

(
0 −ν+ 1

6
2z

1 0

)
(B.17)

Ω6
νw = e−iwtz

1
6J−ν(wz)

(
0 −ν+ 1

6
2z

1 0

)
or Γ6

νw = e−iwtz
1
6Yν(wz)

(
0 −ν+ 1

6
2z

1 0

)
(B.18)

Ω7
νw =

i

2
we−iwtz

1
6 [Jν(wz)1− iJν+1(wz)σ3] (B.19)

Ω8
νw =

i

2
we−iwtz

1
6 [Yν(wz)1− iYν+1(wz)σ3]

or Ω8
νw =

i

2
we−iwtz

1
6 [J−ν(wz)1 + iJ−ν−1(wz)σ3] (B.20)

• Action of supercharge:

QΩ1
νw = (iw)

i

2
e−iwtz

1
6 [−iJν(wz)1 + Jν−1(wz)σ3] (B.21)

QΩ3
νw = (iw)

i

2
e−iwtz

1
6Jν(wz)

(
0
ν− 1

6
2z

1 0

)
(B.22)

QΩ5
νw = (iw)

i

2
e−iwtz

1
6 [−iJν(wz)1− Jν+1(wz)σ3] (B.23)

QΩ7
νw = (iw)

i

2
e−iwtz

1
6Jν(wz)

(
0 −ν+ 1

6
2z

1 0

)
(B.24)
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C Direct diagonalization

In this appendix, we will diagonalize the quadratic action following [9, 10]. In 4.1, we

already showed that the second term in the quadratic action (2.83) corresponds to the

inner product of two eigenfunctions. Hence, we will focus on the first term of the quadratic

action. For each uaνw (a = 1, 2), we will find ũaνw such that

Ψcl~ũνw~Ψcl~ = g(ν)uνw (C.1)

where we will use the known functions g(ν)’s in [50]. (See (4.40) and (4.41).) Because of

the symmetry of ũνw in (4.42), we have the following ansatz.

ũνw(τ1, τ2) ∼

 0 µfa7
6

(τ12)

f s1
6

(τ12) 0

 (C.2)

One component of the l.h.s. in (C.1) is∫
dτ3dτ4

|12(τ3 − τ4)|
7
6

sgn (τ13)sgn (τ42)Zν(
∣∣w

2 (τ3 − τ4)
∣∣)sgn (τ3 − τ4)

|τ1 − τ3|
1
3 |τ4 − τ2|

1
3

= −2e−iwt0
∫
dtdz

|z − z0|
1
3Zν(|wz|)sgn (z)

|z|
7
6

e−iw|z−z0|tsgn (t+ 1)sgn (t− 1)

|t2 − 1|
1
3

= −4e−iwt0
∫
dz
|z − z0|

1
3Zν(|wz|)sgn (z)

|z|
7
6

×

[∫ ∞
1

dt
cosw|z − z0|t
|t2 − 1|

1
3

−
∫ 1

0
dt

cosw|z − z0|t
|1− t2|

1
3

]

= 2
√
π

(
2

w

) 1
6

Γ

(
2

3

)
e−iwt0

∫
dz
|z − z0|

1
6Zν(|wz|)sgn (z)

|z|
7
6

×
[
J 1

6
(|w(z − z0)|) + Y− 1

6
(|w(z − z0)|)

]
(C.3)

up to a trivial factor. Here, we defined

t ≡ 1

2
(τ3 + τ4), z ≡ 1

2
(τ3 − τ4) (C.4)

t0 ≡
1

2
(τ1 + τ2), z0 ≡

1

2
(τ1 − τ2) (C.5)

In the last line, we used eq. (3.771) in [89]:∫ 1

0
dx

cos ax

(x2 − 1)b
=

√
π

2

(a
2

)b− 1
2

Γ(1− b)J 1
2
−b(a) (a > 0, <b < 1) (C.6)∫ ∞

1
dx

cos ax

(1− x2)b
=−

√
π

2

(a
2

)b− 1
2

Γ(1− b)Yb− 1
2
(a) (a > 0, <b > 0) (C.7)
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In the same way, we found that the other component becomes

∫
dτ3dτ4

|12(τ3 − τ4)|
1
6

Zν(
∣∣w

2 (τ3 − τ4)
∣∣)

|τ1 − τ3|
4
3 |τ4 − τ2|

4
3

= 2e−iwt0
∫
dtdz

|z|
1
6

e−iwtZν(|wz|)
|t2 − (z − z0)2|

4
3

=
2

9
AJ

5
6 c2e−iwt0

∫
dtdz

Zν(|wz|)
|z|

1
6 |z − z0|

5
3

e−iw|z−z0|t

|t2 − 1|
4
3

= 4e−iwt0
∫
dz

Zν(|wz|)
|z|

1
6 |z − z0|

5
3

×

[∫ ∞
1

dt
cosw|z − z0|t
|t2 − 1|

4
3

+

∫ 1

0
dt

cosw|z − z0|t
|1− t2|

4
3

]

= 2
√
π
(w

2

) 5
6

Γ

(
− 1

3

)
e−iwt0

∫
dz

Zν(|wz|)
|z|

1
6 |z − z0|

5
6

×
[
J− 5

6
(|w(z − z0)|)− Y 5

6
(|w(z − z0)|)

]
(C.8)

up to trivial factors.

Now, we will use Fourier transformation of each Bessel function with appropriate

factors. That is, in the l.h.s. of (C.1), we will consider the Fourier transformations of the

following six functions.

|z − z0|
1
6J 1

6
(|w(z − z0)|) , |z − z0|

1
6Y− 1

6
(|w(z − z0)|) , |z|−

7
6Zν(|wz|) (C.9)

|z − z0|−
5
6J− 5

6
(|w(z − z0)|) , |z − z0|−

5
6Y 5

6
(|w(z − z0)|) , |z|−

1
6Zν(|wz|) (C.10)

while on the r.h.s. we need the Fourier transformation of the following function.

|z0|
1
6Zν(|wz0|) (C.11)

The Fourier transformation of these functions can be performed by using the following

integrals (e.g., see eq. (6.699) in [89]).

I :

∫
dx xνeipxJν(|x|) = 2

∫
dx xν cos pxJν(x)

=
21+νΓ(1

2 + ν)
√
π|p2 − 1|ν+ 1

2

[θ(1− |p|)− sinπνθ(|p| − 1)] (C.12)

II :

∫
dx xνeipxJ−ν(|x|) = 2

∫
dx xν cos pxJ−ν(x)

=
21+ν√π
Γ(1

2 − ν)
2F1

(
1

2
,
1

2
+ ν,

1

2
; p2

)
θ(1− |p|) (C.13)
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III :

∫
dx xνeipxYν(|x|) = 2

∫
dx xν cos px

cosπνJν(x)− J−ν(x)

sinπν

=
2νΓ(1

2 + ν)
√
π|p2 − 1|ν+ 1

2

[θ(1− |p|)− sinπνθ(|p| − 1)]

− 21−ν√π|p|2ν+1

sinπνΓ(1
2 + ν)|p2 − 1|ν+ 1

2

θ(|p| − 1) (C.14)

IV :

∫
dx |x|µeipxJν(|x|) = 2

∫ ∞
0

dx xµ cos pxJν(x)

=
21−νΓ (1 + µ+ ν) cos

[
π
2 (1 + µ+ ν)

]
Γ (ν + 1) |p|1+µ+ν

×

× F
(

1 + µ+ ν

2
,

2 + µ+ ν

2
, ν + 1;

1

p2

)
θ(|p| − 1) (C.15)

+
21+µΓ

(
1+µ+ν

2

)
Γ
(
ν−µ+1

2

) F

(
1 + µ+ ν

2
,
1 + µ− ν

2
,

1

2
; p2

)
θ(1− |p|)

V :

∫
dx |x|µeipxJ−ν(|x|) = 2

∫ ∞
0

dx xµ cos pxJ−ν(x)

=
21+νΓ (1 + µ− ν) cos

[
π
2 (1 + µ− ν)

]
Γ (−ν + 1) |p|1+µ−ν ×

× F
(

1 + µ− ν
2

,
2 + µ− ν

2
,−ν + 1;

1

p2

)
θ(|p| − 1)

+
21+µΓ

(
1+µ−ν

2

)
Γ
(
−ν−µ+1

2

) F

(
1 + µ− ν

2
,
1 + µ+ ν

2
,

1

2
; p2

)
θ(1− |p|) (C.16)

V I :

∫
dx |x|µsgn (z)eipxJν(|x|) = 2i

∫ ∞
0

dx xµ sin pxJν(x)

= i21−ν Γ(ν + µ+ 1) sin
[
π
2 (1 + µ+ ν)

]
Γ(ν + 1)|p|ν+µ+1

×

× F
(

2 + µ+ ν

2
,

1 + µ+ ν

2
, ν + 1;

1

p2

)
θ(|p| − 1)

+ i22+µsgn (p)|p|
Γ
(

2+µ+ν
2

)
Γ
(ν−µ

2

) ×
× F

(
2 + µ+ ν

2
,

2 + µ− ν
2

,
3

2
; p2

)
θ(1− |p|) (C.17)

Substituting these Fourier modes into (C.3) and (C.8), one can perform the integration

with respect to z. The e−iwt0 factor can be easily obtained. By comparing the rest of the

components on the both sides of (C.1), we found that

µ = −1

2

(
ν +

1

6

)
for u1

νw (C.18)

µ =
1

2

(
ν − 1

6

)
for u2

νw (C.19)
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and, thus we also confirmed our claim in (4.37). Using there uνw’s, we obtain the eigenvalues

of the kernel by evaluating the inner product. We find that

− Jν

2
2
3 3

1
6π

1
3

Ñ−ν

(
1

g1(ν)
− 1

)
for u1

νw (C.20)

Jν

2
2
3 3

1
6π

1
3

Ñ+
ν

(
1

g2(ν)
− 1

)
for u2

νw (C.21)

Now, we will confirm a part of diagonalization of the quadratic action (i.e., the second

term in (2.83)) by QB~uaνw (a = 3, 4). Explicitly, we obtain

QB~u3
νw =

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
Z+
ν−1(|wz|)sgn (z)σ3 − iZ−ν (|wz|)B~

]
(w > 0)

ei|w|t
[
Z+
ν−1(|wz|)sgn (z)B~σ3 + iZ−ν (|wz|)B~

]
(w < 0)

(C.22)

where σ3 is a Pauli-like supermatrix (i.e., σ3 =
( 1 0

0 −1

)
) and

ν =
3

2
+ 2n (n = 0, 1, 2, · · · ) (C.23)

ν = ir (r ∈ R) (C.24)

In component, we have

v11
νw =B

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
Z+
ν−1(|wz|)sgn (z)− iZ−ν (|wz|)

]
(w > 0)

ei|w|t
[
Z+
ν−1(|wz|)sgn (z) + iZ−ν (|wz|)

]
(w < 0)

(C.25)

v12
νw =B

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
−Z+

ν−1(|wz|)sgn (z)− iZ−ν (|wz|)
]

(w > 0)

ei|w|t
[
−Z+

ν−1(|wz|)sgn (z) + iZ−ν (|wz|)
]

(w < 0)
(C.26)

We will evaluate

2J
4
3 c

∫
dτ1dτ2 f

a
1/3η1(τ1, τ2)η2(τ1, τ2) (C.27)

where we expand the η’s in terms of v11 and v12. i.e.,

η1 =
∑
w=0

∑
ν=ir
r=0

B1
νwv

11
νw +

∑
w=0

∑
ν=2n+ 3

2
n=0,1,···

B1
νwv

11
νw + c.c. (C.28)

η2 =
∑
w=0

∑
ν=ir
r=0

B1
νwv

12
νw +

∑
w=0

∑
ν=2n+ 3

2
n=0,1,···

B1
νwv

12
νw + c.c. (C.29)

In order to evaluate these integrals, we need an identity

Z+
ν−1 = Jν−1 + ξ−ν+1J−ν+1 = ∂zZ

−
ν +

ν

z
Z−ν (C.30)

where we used

ξ−ν+1 = −ξν . (C.31)

– 39 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
2

The identity (C.30) enables us to evaluate the following integral.∫ ∞
0

dz (Z+
ν−1(z)Z−µ (z) + Z−ν (z)Z+

µ−1(z)) = Z−ν Z
−
µ

∣∣∞
0

+ (ν + µ)

∫ ∞
0

dz

z
Z−ν (z)Z−µ (z)

= 2νÑ−ν δ(ν − µ)

(C.32)

Then, we find that (C.27) is

2J
4
3 c

∫
dτ1dτ2 f

a
1/3η1(τ1, τ2)η2(τ1, τ2)

=
2J

2
2
3 3

1
6π

1
6

∑
ν=ir
r=0

+
∑

ν=2n+ 3
2

n=0,1,···

∑
w=0

B1
νwB

1
ν,−w(−iw)νÑ−ν (C.33)

For the other modes, one can repeat the same evaluation. Qu4
νw is given by

Qu4
νw =

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
Z−ν+1(|wz|)sgn (z)σ3 + iZ+

ν (|wz|)1
]

(w > 0)

ei|w|t
[
Z−ν+1(|wz|)sgn (z)σ3 − iZ+

ν (|wz|)1
]

(w < 0)
(C.34)

where

ν =
1

2
+ 2n (n = 0, 1, 2, · · · ) (C.35)

ν =ir (r ∈ R) (C.36)

In components, we have

v21
νw =

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
Z+
ν+1(|wz|)sgn (z) + iZ−ν (|wz|)

]
(w > 0)

ei|w|t
[
Z+
ν+1(|wz|)sgn (z)− iZ−ν (|wz|)

]
(w < 0)

(C.37)

v22
νw =

|w|
2

1√
8π
|Jz|

1
6

 e−i|w|t
[
−Z+

ν+1(|wz|)sgn (z) + iZ−ν (|wz|)
]

(w > 0)

ei|w|t
[
−Z+

ν+1(|wz|)sgn (z)− iZ−ν (|wz|)
]

(w < 0)
(C.38)

D N = 1 SUSY SYK model: general q

In this appendix, we discuss the eigenvectors of the N = 1 SUSY SYK model for the

general q case. Since the idea is the same as the q = 3 case, we present only important

results. For the general q case, since the fundamental superfield has dimension 1
2q , the

appropriate N = 1 superconformal generators are given by

Pa = ∂τa (D.1)

Ka = τ2
a∂τa + 2∆aτa + τaθa∂θa (D.2)

Da = τa∂τa +
1

2
θa∂θa + ∆a (D.3)
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Qa = ∂θa − θa∂τa (D.4)

Sa = τa∂θa − τaθa∂τa − 2∆aθa (D.5)

where a = 1, 2 and ∆a ≡ 1
2q (a = 1, 2). The bi-local superconformal generators are

defined by

L = L1 + L2 ( L ∈ {P,K,D,Q, S} ) (D.6)

and the associated Casimir is

C =D2 − 1

2
(PK +KP) +

1

4
(SQ−QS) = D2 − 1

2
D −KP +

1

2
SQ (D.7)

Via the bi-local map in (3.25) and (3.26), the superconformal generators are represented as

P = ∂t (D.8)

K = (t2 + z2)∂t + 2tz∂z + t(ζ0∂ζ0 + ζ1∂ζ1) + z(ζ0∂ζ0 − ζ1∂ζ1) +
2

q
t

= (−t2 + z2)∂t + 2tD + z(ζ0∂ζ0 − ζ1∂ζ1) (D.9)

D = t∂t + z∂z +
1

2
ζ0∂ζ0 +

1

2
ζ1∂ζ1 +

1

q
(D.10)

Q = − 1

2
ζ0(∂t + ∂z) +

1

2
ζ1(−∂t + ∂z) + ∂ζ0 + ∂ζ1 (D.11)

S = (t+ z)∂ζ0 − (−t+ z)∂ζ1 −
1

2
ζ0(t+ z)(∂t + ∂z)−

1

2
ζ1(−t+ z)(−∂t + ∂z)

− 1

q
(ζ0 + ζ1) (D.12)

and, the Casimir can be written as

C =
1

q2
− 1

2q
+

2

q
z∂z + z2(−∂2

t + ∂2
z )− z∂t(ζ0∂ζ0 − ζ1∂ζ1) +

(
z∂z +

1

2q

)
(ζ0∂ζ0 + ζ1∂ζ1)

+
1

2
ζ0ζ1∂ζ1∂ζ0 − z∂ζ1∂ζ0 −

1

2q
∂zζ0ζ1 −

1

4z
(−z2∂2

t + z2∂2
z )ζ0ζ1

−
(

1

2
z∂z +

1

2q

)
(ζ0∂ζ1 + ζ1∂ζ0)− 1

2
z∂t(ζ0∂ζ1 − ζ1∂ζ0) (D.13)

In the same way as in section 3.2, we obtain the following eigenfunctions of the Casimir:

• Eigenvalue of Casimir: ν
(
ν − 1

2

)
Υ1
νw = e−iwtz

1
2
− 1

q Jν(wz)

0 −
ν−

(
1
2
− 1

q

)
2z

1 0

 (D.14)

Υ2
νw = e−iwtz

1
2
− 1

q J−ν(wz)

0 −
ν−

(
1
2
− 1

q

)
2z

1 0


or Υ2

νw = e−iwtz
1
2
− 1

q Yν(wz)

0 −
ν−

(
1
2
− 1

q

)
2z

1 0

 (D.15)
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• Eigenvalue of Casimir: ν
(
ν + 1

2

)
Υ3
νw = e−iwtz

1
2
− 1

q Jν(wz)

0
ν+

(
1
2
− 1

q

)
2z

1 0

 (D.16)

Υ4
νw = e−iwtz

1
2
− 1

q J−ν(wz)

0
ν+

(
1
2
− 1

q

)
2z

1 0


or Γ2

νw = e−iwtz
1
2
− 1

q Yν(wz)

0
ν+

(
1
2
− 1

q

)
2z

1 0

 (D.17)

The other eigenfunctions are also similar to those in appendix B.

For general q case, one can the collective action for the N = 1 SUSY SYK model is

given by

Scol =
N

2
str

[
−D~Ψ + log Ψ− J

q
Ψ~[Ψ]q−1

]
(D.18)

Note that the additional factor comes from the i’s in the action with disorder interaction

which makes the Largrangian real. The large N saddle point equation is given by

I− J [Ψ]q−1~Ψ = 0 (D.19)

where we take the strong coupling limit. Using (2.56) and 2.56, one can easily evaluate the

classical solution [50]

Ψcl = c

 0 −1
qf

s
1/q+1(τ12)

fa1/q(τ12) 0

 c =

[
tan π

2q

2πJ

] 1
q

(D.20)

and the eigenfunction of the quadratic action are found to be

u1
νw(t, z) =

1√
8π
e−iwt|Jz|

1
2
− 1

qZ−ν (|wz|)

 0 −
ν−

(
1
2
− 1

q

)
2|z|

sgn (z) 0

 (D.21)

u2
νw(t, z) =

1√
8π
e−iwt|Jz|

1
2
− 1

qZ−ν (|wz|)

 0
ν+

(
1
2
− 1

q

)
2|z|

sgn (z) 0

 (D.22)

We also confirm that

ũ1
νw(τ1, τ2) =− Aq√

8π
J

e−
iw
2

(τ1+τ2)∣∣J
2 (τ1 − τ2)

∣∣ 1
2
− 1

q

Z−ν

(∣∣∣∣w2 (τ1 − τ2)

∣∣∣∣)
0 −

ν+
(

1
2
− 1

q

)
2| 12 (τ1−τ2)|sgn (τ1 − τ2)

1 0


∼
[
(Ψcl)

q−2uνw
]

(D.23)

for some constant Aq.
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