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1 Introduction

Renormalization group (RG) fixed points in Poincaré invariant quantum field theory are

invariant under scale (dilatation) transformations xµ 7→ λxµ by definition, but it is generally

found that the spacetime symmetry is enhanced to conformal symmetry, and even further

to Weyl invariance when the theory is coupled to a general background metric gµν . This

enhancement has long been understood for theories derived from a scale-invariant classical

action [1–4], but such theories are generally scale invariant at the quantum level only

for free field theories or special theories (such as N = 4 super Yang-Mills theory) with

exactly marginal interactions. We will be interested in general IR fixed points where scale

invariance may be an accidental symmetry, and the fixed point is not necessarily described

by a local scale invariant Lagrangian. For example, the critical point of the 3D Ising model

can be described by the Landau-Ginzburg scalar field theory with tuned φ2 and φ4 terms

in the Lagrangian. This provides a UV Lagrangian description of the theory, but this

Lagrangian breaks scale invariance explicitly. The IR fixed point is strongly coupled in

terms of the scalar field, and there is no known useful Lagrangian description of the fixed

point. Numerical studies of this theory indicate that it is conformally invariant [5, 6]; our

results show that any such theory is also Weyl invariant.

Conformal and Weyl invariance are closely related, and in fact are not always clearly

distinguished in the literature. The response to an infinitesimal Weyl transformation

δgµν = 2σgµν is proportional to the trace of the energy-momentum tensor T = Tµ
µ, so
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the vanishing of T as an operator statement in a general background metric implies Weyl

invariance. On the other hand, conformal invariance is the subgroup of Weyl transforma-

tions that leaves the metric invariant up to a diffeomorphism. The general enhancement of

scale invariance in flat spacetime to conformal invariance in flat spacetime, and in turn to

Weyl invariance in curved spacetime has long been understood in d = 2 [7]. In d = 4 there

is a non-perturbative argument [8–10] that scale invariance implies conformal invariance

in flat spacetime, although it has loopholes that in our view have not been satisfactorily

closed [11]. There is a much better understanding for d = 4 theories that can be viewed

as perturbations of a Weyl invariant fixed point, for example a free field theory. For such

fixed points, Weyl invariance is the only possible IR asymptotics of the RG flow [8, 12–15].1

The perturbative arguments have been successfully extended to d = 6 [16], but attempts to

generalize the non-perturbative arguments have not been successful [17]. There is a much

better understanding for d = 6 theories with supersymmetry [18]. For a comprehensive

review of the subject of scale versus conformal symmetry, see ref. [19].

In this paper, we focus on the relation between conformal and Weyl invariance in an

arbitrary number of dimensions. This question is interesting because Weyl transforma-

tions that are not conformal are commonly used in the literature, for example the Weyl

transformation from flat spacetime to the cylinder in d > 2 dimensions. In this paper we

will give a general non-perturbative argument that unitary conformally invariant quantum

field theories are also Weyl invariant. Our argument holds for theories where the conformal

generators are integrals of local currents and for spacetime dimensions d ≤ 10. Our argu-

ment starts with the fact that conformal invariance in flat spacetime implies the vanishing

of the trace of the energy-momentum operator T in flat spacetime, with the contact terms

between T and other operators generating conformal transformations. We then show that

this implies that T ≡ 0 in curved space by systematically classifying the possible correc-

tions and imposing various algebraic consistency conditions similar to the Wess-Zumino

consistency conditions for Weyl anomalies. The contact terms give the Weyl transforma-

tion of operators, and we show that operators can be ‘covariantized’ to have standard

Weyl transformations, at least for operators of sufficiently low dimension and spin. It is

straightforward to systematically extend the arguments in this paper to higher spacetime

dimensions and more general operators at the price of additional algebraic complexity, but

we do not attempt it here.

We identify possible consistent ‘anomalous’ terms in the Weyl transformation of oper-

ators, for example

δσO = −∆OσO+ σWµνρσWµνρσA, (1.1)

where O is a primary scalar operator with dimension ∆O, A is a primary scalar operator

(not the identity) with dimension ∆O−4, and Wµνρσ is the Weyl tensor. This is consistent

because WµνρσWµνρσ transforms as a primary operator with dimension 4. The existence

of an operator A with the required scaling dimension is non-generic, and is allowed by

1If the IR fixed point contains an operator of dimension exactly equal to 2, an improvement of the

energy-momentum tensor is generally required to obtain T ≡ 0.
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unitarity constraints only for ∆O ≥ (d + 6)/2. There are obvious generalizations of this

to tensor operators made using the Weyl tensor. We note that these anomalous terms

vanish for conformally flat metrics, the case that is most commonly studied. It is an open

question whether there are any consistent anomalous terms in the Weyl transformation for

conformally flat metrics.

The existing literature on the question considered here is not extensive. As already

mentioned, the question of whether conformal invariance implies Weyl invariance was set-

tled for d = 2 in ref. [7]. Examples of non-unitary free field theories that are conformally

invariant but not Weyl invariant were discovered by mathematicians [20–22] and have been

recently discussed in the physics literature [23, 24]. This work was largely inspired by

ref. [23], which we found especially clear. Other work on aspects of the relation between

Weyl and conformal invariance includes refs. [4, 25–27].

This paper is organized as follows. In section 2 we state the problem precisely in

terms of Ward identities for conformal and Weyl invariance, and give a more detailed

outline of the argument. In section 3, we review some aspects of conformal invariance in

flat spacetime that we need for our argument. In section 4 we give the main argument,

showing that T ≡ 0 in a general curved spacetime, and hence the theory is Weyl invariant.

The details for 6 < d ≤ 10 are given in an appendix. We also constrain the possible

Weyl transformations of operators in this section. In section 5 we discuss the non-unitary

free field theories that are conformally invariant but not Weyl invariant, and use them to

illustrate some of the steps of the general argument. Our conclusions are given in section 6.

2 Conformal and Weyl Ward identities

Weyl invariance is defined for quantum field theories that can be coupled to a background

metric gµν in a diffeomorphism invariant way.2 For such theories, Weyl transformations

are a local rescaling of the metric combined with a transformation of the local operators.

For primary scalar operators O, the transformation is

Weyl: gµν(x) 7→ Ω2(x)gµν(x), (2.1)

O(x) 7→ Ω−∆O(x)O(x), (2.2)

where Ω(x) is an arbitrary non-vanishing function of spacetime, and ∆O is the dimension the

operator O. Throughout this paper we focus on correlation functions of O for simplicity.

Conformal transformations are special Weyl transformations such that the transformed

metric is diffeomorphic to the original metric:

Conformal: gµν(x) 7→ Ω̂2(x)gµν(x) = g′µν(x) (2.3)

O(x) 7→ Ω̂−∆O(x)O(x), (2.4)

where g′µν is diffeomorphic to gµν :

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (2.5)

2We expect that this holds in any theory that is sufficiently local in the UV. It is known to fail in lattice

models with sufficiently non-local interactions, such as the long-range Ising model [28].

– 3 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
0

The condition that conformal transformations are equivalent to diffeomorphisms places

restrictions on the rescaling function Ω̂(x), and a general metric will have no conformal

symmetries. We will consider conformally invariant theories in flat spacetime, and we

denote the flat spacetime metric by ĝµν .

It is clear from these definitions that Weyl invariance in a general background metric

implies conformal invariance in flat spacetime, but it is not at all obvious that the converse

holds. For d > 2 dimensions, the Euclidean conformal group is SO(d + 1, 1), while the

group of Weyl transformations is infinite-dimensional. For d = 2 the conformal group

is the infinite-dimensional Virasoro group, but the group of Weyl transformations is still

larger.3

Weyl transformations relate correlation functions in different background metrics:

Weyl: 〈O(x1) · · ·O(xn)〉Ω2gµν = Ω−∆O(x1) · · ·Ω−∆O(xn)〈O(x1) · · ·O(xn)〉gµν . (2.6)

On the other hand, conformal invariance in flat spacetime relates correlation functions in

the same metric:

Conformal: 〈O′(x1) · · ·O′(xn)〉ĝµν = Ω̂−∆O(x1) · · · Ω̂−∆O(xn)〈O(x1) · · ·On(xn)〉ĝµν ,
(2.7)

where O
′ is the image of O under a diffeomorphism:

O
′(x′) = O(x). (2.8)

(Here we are neglecting possible conformal anomalies. These will be included in the main

argument below.)

We want to argue that eq. (2.7) implies eq. (2.6) for unitary quantum field theories.

It is useful to work with the infinitesimal form of the Ward identities, which for the Weyl

Ward identity is

σ(x)〈T (x)O(x1) · · ·O(xn)〉gµν =
n
∑

i=1

δd(x− xi)〈O(x1) · · · δσO(xi) · · ·O(xn)〉gµν , (2.9)

where

δσO = −∆OσO (2.10)

is the infinitesimal operator transformation and σ(x) = lnΩ(x). Here T is the trace

of the energy-momentum tensor, defined in the standard way by differentiation of the

quantum effective action (generator of connected correlation functions) with respect to the

background metric:

δ

δgµν(x)

δ

δρ(x1)
· · · δ

δρ(xn)
Weff[gµν , ρ]

∣

∣

∣

∣

ρ=0

=

(

−
√

g(x)

2

)

(

−
√

g(x1)
)

· · ·
(

−
√

g(xn)
)

〈Tµν(x)O(x1) · · ·O(xn)〉gµν .
(2.11)

3The Weyl factor in a d = 2 conformal theory is a holomorphic function, which implies that it satisfies

the diffeomorphism invariant constraint �Ω = 0.
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We will assume that the quantum effective action Weff[gµν , ρ] is defined by a path integral

e−Weff[gµν ,ρ] =

∫

d[Φ]e−(S[Φ,gµν ]+
∫
ρO). (2.12)

We do not assume that conformal symmetry is manifest at the level of the path integral

action S, so our arguments apply to nontrivial conformal fixed points defined by a UV

action that is not conformally invariant, such as the critical point of the 3D Ising model or

the conformal window of QCD. Our use of the path integral is limited to defining operators

in terms of sources, and operator redefinitions and contact terms that are most conveniently

expressed in terms of a path integral action. These manipulations can be re-expressed in

operator language independently of the path integral, but we will not make this explicit.

To prove Weyl invariance, we must therefore prove two statements: first, that T ≡ 0

up to contact terms, and second, that the contact terms are given by eq. (2.10).4

We can now give a more detailed outline of our argument. We first show that conformal

invariance in flat spacetime implies T ≡ 0 in flat spacetime, possibly after improvement.

This is a standard result that is reviewed in the following section. In curved spacetime

there may be additional contributions to T that depend on the spacetime curvature. In

section 4 we analyze these contributions, and show that they are associated with a sym-

metry of the effective action Weff that acts only on the sources that are used to define

operators. Algebraic closure of this symmetry and the unitarity inequalities on operator

dimensions imply that T ≡ 0 in a general metric for dimensions d ≤ 10. The arguments

can be straightforwardly extended to higher dimensions at the price of additional algebraic

complexity.

Once we know that T ≡ 0 up to contact terms in a general metric, we can interpret

the contact terms in correlation functions of the form 〈TO · · ·O〉 as infinitesimal Weyl

transformations of the correlation function 〈O · · ·O〉. These in turn are constrained by

the fact that Weyl transformations commute. Using this, we rule out additional terms in

the Weyl transformation law for operators of low dimension and spin, but find consistent

anomalous Weyl transformations in special cases, see eq. (1.1).

3 Conformal invariance in flat space

In this section we review the standard result that in any conformally invariant theory we

can define the energy-momentum tensor so that T ≡ 0 in flat spacetime. We assume that

in flat spacetime the conformal generators Pµ, Mµν , D, and Kµ are Hermitian operators

acting on the Hilbert space of the theory, and that these operators are given by integrals

of local currents:5

Q =

∫

dd−1xJ0(x). (3.1)

4We assume that the points xi are separated, so we do not have to consider contact terms between the

insertions of O.
5Free p-form gauge theories with d 6= 2(p+1) are examples of scale invariant local quantum field theories

where the dilatation generator is not the integral of a local current [9, 29]. These theories are not conformally

invariant. We are not aware of any conformally invariant local quantum field theory in which the conformal

generators are not the integrals of currents.
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Here the integral is over the surface x0 = τ , and we are using Cartesian coordinates for

flat space.6 The conservation condition ∂µJ
µ = 0 ensures that the integral is independent

of τ . Assuming that the translation generators are given by

Pµ =

∫

dd−1xTµ0 (3.2)

and using the Euclidean Heisenberg equations of motion for the generators

dQ

dτ
= [P 0, Q] +

∂Q

∂τ
, (3.3)

Wess [30] showed that the current that gives the conformal generators has the form

Jµ = ξνTµ
ν + (∂ · ξ)Kµ + ∂ν(∂ · ξ)Lµν . (3.4)

Here ξµ is the infinitesimal spacetime conformal transformation parameter, given by

ξµ = aµ + ωµ
νx

ν + λxµ + 2(b · x)xµ − x2bµ. (3.5)

The local operators Kµ and Lµν have dimension d−1 and d−2 respectively. Note that the

antisymmetric part of Lµν does not contribute to T , so we assume that Lµν is symmetric

without loss of generality. Conservation of the current eq. (3.4) then implies

T = −∂µK
µ, (3.6)

Kµ = −∂νL
νµ. (3.7)

In d = 2, the infinite-dimensional Virasoro symmetry additionally requires that Lµν be

pure trace

Lµν =
1

2
Lδµν (d = 2). (3.8)

The existence of the operator Lµν (or L in d = 2) implies that we can redefine the energy-

momentum tensor by adding the following ‘improvement’ terms to the action in the path

integral in curved spacetime:

∆S =

∫

ddx
√
g
[

ξRL+ ξ′RµνL
µν
]

, (3.9)

where L = Lµ
µ. In flat spacetime these terms do not affect the dynamics of the theory, but

they change the definition of the energy-momentum tensor defined by functional differen-

tiation with respect to the metric. For d = 2, the second term is redundant, and we set

ξ′ = 0. The corrections to the energy-momentum tensor in flat spacetime can be obtained

from eq. (3.9) by expanding it to first order in metric perturbations about flat spacetime,

so the metric dependence of Lµν does not affect the correction to the energy-momentum

tensor. We obtain

∆Tµν = −
[

2(d− 1)ξ + ξ′
]

∂µ∂νL− 1

2
(d− 2)ξ′ (∂ρ∂

µLνρ + ∂ν∂ρL
µρ) +O(R). (3.10)

6The arguments in this section can be straightforwardly extended to general “time” surfaces in arbitrary

coordinate systems.
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By choosing

ξ =
−1

2(d− 1)(d− 2)
, ξ′ =

1

(d− 2)
, (d ≥ 3) (3.11)

or

ξ =
1

2(d− 1)
(d = 2), (3.12)

we obtain T ≡ 0 in flat spacetime. In this way the vanishing of the trace of the (improved)

energy-momentum tensor in flat spacetime follows from conformal invariance.

The above argument cannot be straightforwardly generalized to show that T ≡ 0 in a

general background metric because such a metric generally has no conformal symmetries,

and these are a crucial ingredient in the argument. Note also that the argument above does

not assume unitarity of the conformal field theory. Unitarity will however be an essential

ingredient in our subsequent argument.

The operator relation T ≡ 0 is understood to hold up to contact terms, and as discussed

above, these contact terms give the transformation of operators under Weyl and conformal

transformations. In the present case, once we know that T ≡ 0 up to contact terms, we can

write the conformal generators as integrals of moments of the energy-momentum tensor,

for example

Kµ =

∫

dd−1x
(

δµνx
2 − 2xµxν

)

T 0ν . (3.13)

These obey the conformal algebra as a consequence of the tracelessness condition T ≡
0. Using the conformal algebra and the assumption that Pµ acts by translation on the

fields, one can then derive the standard transformation properties of local operators under

conformal transformations [31]. The conformal transformations of operators will be an

important input to the rest of our argument.

4 Weyl invariance in curved space

We now consider the theory in a general curved background metric gµν and discuss whether

a quantum field theory that is conformally invariant in flat spacetime can be shown to be

Weyl invariant.

4.1 T ≡ 0 up to contact terms

As discussed in section 2, the first step in proving the Weyl Ward identity eq. (2.6) is

to show that T ≡ 0 in curved spacetime, up to contact terms. Because T (x) is a local

operator that vanishes in flat spacetime, general covariance and locality require that it is

proportional to at least one power of the Riemann curvature tensor at x. One possibility

is that T is proportional to powers of curvature tensors times the identity operator, for

example T ∝ cR1 in d = 2. This represents anomalous breaking of Weyl invariance, which

will be discussed in the following subsection. For now we will focus on possible contributions

to T that are proportional to nontrivial local operators, for example T = RX, where R is

– 7 –
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the Ricci scalar, and X is a scalar operator. If such terms are present, then under a Weyl

transformation the variation of the effective action δWeff is non-local, and there is no sense

in which Weyl invariance is an approximate symmetry of the theory. Note that in order

to have T = RX, the operator X must have scaling dimension d − 2. Scalar operators

with such special scaling dimensions are not generic in interacting conformal field theories.

Indeed, we will see that at every stage in our argument, the obstruction to Weyl invariance

involves the existence of operators with special scaling dimensions. In a generic interacting

theory, we do not expect to have operators with these special dimensions. However, our

goal is to rule out these obstructions and obtain a completely general result.

Let us consider the most general form for the operator correction to T . The possible

terms are limited by the unitarity constraints on the dimensions of operators. We first check

that operator corrections to T cannot involve non-scalar primary operators, or their deriva-

tives (descendant operators). The reason is that any operator appearing in a curvature

correction must have dimension at most d − 2. The unitarity constraints [32, 33] exclude

almost all higher spin primary operators with dimension ≤ d− 2. The only exception is an

antisymmetric 2-index tensor allowed for d ≥ 4, which saturates the unitarity bound for

∆ = d−2, but Lorentz invariance forbids any correction to T in terms of such an operator.

Of course, descendants of higher-spin primary operators have even larger dimension, and

are therefore also excluded. We conclude that in unitary theories the corrections to T

are proportional to scalar primary operators or their descendants. We can organize the

possible terms in an expansion in powers of covariant derivatives, where Rµνρσ = O(∇2):

T = RX +R�Y1 +Rµν∇µ∇νY2 +∇µR∇µY3 +�RY4

+R2Y5 +RµνRµνY6 +RµνρσRµνρσY7 +O(∇6).
(4.1)

Here we used ∇µRµν = 1
2∇νR to simplify the O(∇4) terms. The operators X and Yi in

eq. (4.1) are defined to be primary. The operators Yi need not all be independent; linear

relations among them do not affect the argument below. The unitarity bound on primary

scalar operators is (d− 2)/2, so the operator X is allowed by unitarity for d ≥ 2, and the

operators Yi are allowed for d ≥ 6. In general, we see that additional operators and higher

powers of derivatives are allowed for larger values of d.

Let us consider the case d < 6, in which case unitarity only allows T = RX. For d = 2,

this possibility can be excluded using the conservation of the energy-momentum tensor [7].

We give a general argument that does not depend on the special properties of d = 2. The

idea is that the operator relation T = RX reflects the existence of a nontrivial symmetry

of the effective action Weff. The operators T and X are both defined by differentiation

with respect to sources, and the fact that this relation holds as an operator statement tells

us that these sources are not independent. In other words, there is a redundancy in how

the effective action Weff depends on these sources, which means that there is a symmetry

that acts only on the sources. We call this symmetry ‘Weyl redundancy’. Symmetry

transformations of this kind may be unfamiliar, so we illustrate them in various free field

examples in section 5 below.

– 8 –
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To define the operator X, we add a source term to the action

∆S =

∫

ddx
√
gρXX. (4.2)

Then eq. (4.1) implies that the quantum effective action Weff is invariant under

δσgµν = 2σgµν , δσρX = σR, (4.3)

where σ is a general function of x. Invariance under this transformation is what is required

to reproduce T = RX, even though the source term eq. (4.2) by itself is not invariant.

Invariance of the effective action under eq. (4.3) is therefore a very strong condition, and

in fact can be easily ruled out. The idea is that if eq. (4.3) is a symmetry of the effective

action, then the commutator of two such transformations is also a symmetry. Computing

the commutators gives

[δσ1
, δσ2

]gµν = 0, [δσ1
, δσ2

]ρX = 2(d− 1)(σ1�σ2 − σ2�σ1). (4.4)

For general σ1 and σ2 the function σ1�σ2 − σ2�σ1 is an arbitrary function of x. Eq. (4.4)

therefore implies that Weff is invariant under ρX → ρX + δρX for an arbitrary function

δρX , with all other sources held fixed. This in turn means that Weff is independent of ρX ,

i.e. the operator X is trivial, proving that T ≡ 0 after all.

Note that the existence of the operator X with dimension d− 2 also allows us to add

an ‘improvement’ term to the action

∆S =

∫

ddx
√
g ξRX. (4.5)

However, this modifies T in flat spacetime as well as curved spacetime

∆T = ξ [−2(d− 1)�X + (d− 2)RX] , (4.6)

and therefore plays no role in our argument. A famous example of a conformal field theory

with a primary operator X with dimension d− 2 is free scalar field theory with X = 1
2φ

2.

An improvement term of the form eq. (4.5) is required to make T ≡ 0 in flat spacetime,

and then one finds that T ≡ 0 in an arbitrary curved background. In section 5 below this

standard result is rederived using the language of Weyl redundancy.

Let us now extend this argument to d ≥ 6. The case d = 6 is special because the

operators Yi in eq. (4.1) saturate the unitarity bound for scalar operators, and are therefore

free scalar fields. This means that each such operator generates a decoupled free scalar

subsector of the conformal field theory. Each decoupled subsector has a separate conserved

energy-momentum tensor, and for each one we can use the arguments above. The free

fields Yi cannot appear in the energy-momentum tensor for the interacting subsectors of

the theory, so we conclude that T ≡ 0 for interacting conformal field theories in d = 6.

Of course the free scalar subsectors are Weyl invariant with suitable improvement of the

energy-momentum tensor.

For d > 6 the argument becomes more complex. There are more operators to consider

(see eq. (4.1)), some of which can be improved away. The generalization of the symmetry

– 9 –
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eq. (4.3) involves more operators and sources, and the condition that [δσ1
, δσ2

] is a symmetry

is not immediately sufficient to eliminate all possible corrections to T . Nonetheless, we can

use the fact that the metric can be chosen arbitrarily to argue that all the corrections to

T vanish, at least for d ≤ 10. The details of this argument are given in the appendix. We

will not attempt to extend this argument to higher values of d. This is purely a matter

of algebra, and is of limited interest since we do not expect to have interacting conformal

field theories for such high dimensions in any case.

4.2 Weyl anomalies

For even d, we can also have curvature-dependent contributions to T that are proportional

to the identity operator 1. For example, in d = 4 the most general form allowed by scale

invariance and diffeomorphism invariance is

T =
(

c1R
2 + c2R

µνRµν + c3R
µνρσRµνρσ + c4�R

)

1. (4.7)

Because T is the response of the theory to a Weyl transformation δgµν = 2σgµν , eq. (4.7)

is equivalent to a local change in the effective action:

δWeff = −
∫

d4x
√
gσ

(

c1R
2 + c2R

µνRµν + c3R
µνρσRµνρσ + c4�R

)

. (4.8)

If Weyl invariance is broken only by a local δWeff, we say that the symmetry has a Weyl

anomaly [34–36]. Despite the anomaly, the Weyl Ward identities still hold in a modified

form, and Weyl invariance can in many ways still be regarded as a good symmetry. Weyl

anomalies are necessarily present in even dimensions, for example they are nonzero even

in free field theories.

The correction to T above can be further constrained by imposing the Wess-Zumino

consistency conditions [37–39]. We review it below to highlight the similarities with the

arguments above. The first step is to note that we can cancel the term proportional to �R

by adding a local ‘improvement’ term to the effective action

∆Weff = − c4
12

∫

d4x
√
gR2. (4.9)

The �R term in eq. (4.8) can therefore be improved away, and does not represent a genuine

anomaly. The next step is to impose the constraint that Weyl transformations commute,

and therefore this must be reflected in δWeff. To state the result, we change the basis of

allowed curvature invariants in eq. (4.8) to

δWeff = −
∫

d4x
√
gσ

(

aE4 + bR2 + cWµνρσWµνρσ

)

, (4.10)

where E4 is the 4-dimensional Euler density. One then finds

[δσ1
, δσ2

]Weff = −24b

∫

d4x
√
g (σ1�σ2 − σ2�σ1)R, (4.11)

so we must have b = 0, while the terms proportional to c and a in eq. (4.10) are allowed.

We see that the arguments of the previous subsection are closely related to those used to

determine the most general form of the Weyl anomaly.
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4.3 Contact terms and Weyl transformations of operators

The arguments up to now show that (at least for d ≤ 10) T ≡ 0 in an arbitrary curved back-

ground metric, but only up to contact terms. As explained in the introduction, the contact

terms in the Weyl Ward identity eq. (2.6) define the transformation of local operators un-

der Weyl transformations. In this sense, we have already established Weyl invariance of

the theory, but we have not shown that operators transform in the canonical way. In this

section we analyze the structure of the contact terms, and show that the possible Weyl

transformations are highly constrained. We are able to show that they have the canonical

form except for a few ‘anomalous’ transformation laws that we are not able to exclude.

The main constraint comes from the fact that primary operators transform canonically

under conformal transformations in flat space. These transformations can be viewed as a

special class of Weyl transformations. Further algebraic consistency constraints come from

the fact that Weyl transformations commute.

We now give some more detail about the connection between contact terms and Weyl

transformation of operators. The most general contact terms in correlation functions with

a single insertion of T have the form

σ(x)〈T (x)O(y1) · · ·O(yn)〉gµν =
n
∑

i=1

δd(x− yi)〈O(y1) · · · δσO(yi) · · ·O(yn)〉gµν . (4.12)

This equation defines the local operator δσO, which depends linearly on σ. We consider the

case where the yi in eq. (4.12) are separated points, so there are no contact terms between

the O’s. Because inserting T is the response to a Weyl transformation, this equation shows

that the theory is Weyl invariant, with O transforming under a Weyl transformations as

O 7→ O + δσO.
7 This is the sense in which we have already proven Weyl invariance, but

note that we have not proven that the Weyl transformation of O is given by the standard

formula δσO = −∆OσO.

In eq. (4.12), we allow δσO to depend on derivatives of σ. That is, we allow terms

such as δσO = �σB + · · · , and we cannot cancel the σ dependence on both sides of

eq. (4.12). The reason we must allow such terms because operators such as O and T are

really distributions, and only smeared operators such as

T [σ] =

∫

ddx
√

g(x)σ(x)T (x) (4.13)

are well-defined. Specifically, a Weyl transformation is given by

δσ〈O(y1) · · ·O(yn)〉gµν = 〈T [σ]O(y1) · · ·O(yn)〉gµν
= 〈O(y1) · · · δσO(yi) · · ·O(yn)〉gµν . (4.14)

We will need to extend the connection between insertions of T and the response to

Weyl transformations beyond the linear order in σ. It is then convenient to redefine T to

7The connection between insertions of T and Weyl transformations is slightly more subtle at higher

orders in σ, and will be discussed below.
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be the response to a Weyl transformation. That is, we define

δ

δσ(x1)
· · · δ

δσ(xm)

δ

δρ(y1)
· · · δ

δρ(yn)
Weff[e

2σgµν , ρ]
∣

∣

∣
σ=0
ρ=0

=
(

−
√

g(x1)
)

· · ·
(

−
√

g(xm)
)(

−
√

g(y1)
)

· · ·
(

−
√

g(yn)
)

× 〈T (x1) · · ·T (xm)O(y1) · · ·O(yn)〉.

(4.15)

This agrees with the previous definition eq. (2.11) for correlation functions where all the

points xi and yi are separated. That is, it differs from the previous definition only by

contact terms, so it does not affect the previous discussion. For example, at quadratic

order in σ we now have

〈O(y1) · · ·O(yn)〉e2σgµν = 〈O(y1) · · ·O(yn)〉gµν +
n
∑

i=1

〈O(y1) · · · δσO(yi) · · ·O(yn)〉gµν

+
∑

i<j

〈O(y1) · · · δσO(yi) · · · δσO(yj) · · ·O(yn)〉gµν

+
n
∑

i=1

〈O(y1) · · · δσδσO(yi) · · ·O(yn)〉gµν +O(σ3),

(4.16)

where δσδσO is the contact term between T and δσO. This tells us that δσO fixes the Weyl

variation of the operator O to all orders in σ.

To proceed further, we use the conformal Ward identity eq. (2.7) in flat spacetime.

Because a conformal transformation is the combination of a Weyl transformation and

diffeomorphism, subtracting the diffeomorphism contribution from the infinitesimal form

of the Ward identity gives an equation that is very similar to eq. (4.12):

σ̂(x)〈T (x)O(x1) · · ·O(xn)〉ĝµν
=

∑

i

δd(x− xi)〈O(x1) · · · [−∆Oσ̂(xi)O(xi)] · · ·O(xn)〉ĝµν + · · · . (4.17)

The difference between this and the Weyl Ward identity is that this equation holds only

for a flat background metric ĝµν and for a restricted class of Weyl parameters

σ̂(x) = λ+ b · x, (4.18)

where λ is the parameter for dilatations, bµ is the parameter for special conformal trans-

formations, and xµ are the standard Cartesian coordinates for flat Euclidean space. We

see that we must have δσO → −∆Oσ̂O in the limit of flat spacetime and σ → σ̂. We can

then expand δσO in a complete set of local operator expressions linear in σ that satisfy this

condition.

To illustrate this, we consider the case where O is a relevant operator in d ≤ 6, in other

words ∆O < d ≤ 6. In that case, the most general non-anomalous variation we can have is

δσO = −∆OσO+ σRA+�σB. (4.19)
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For example, a term of the form ∇µσV
µ violates unitarity for a primary vector operator

V µ, while a term of the form ∇µσ∇µC does not have the correct conformal transformation

in the flat space limit. If we were to allow operators O with large scaling dimension, there

would in general be many additional terms in eq. (4.19). Again, we note the appearance

of operators with special dimensions, in this case ∆A,∆B = ∆O − 2. These operators are

allowed by unitarity bounds for ∆O ≥ (d+ 2)/2. We have neglected terms proportional to

the identity operator, which occur only for special values of ∆O. These are anomaly terms,

and will be discussed below.

The unitarity bounds imply that A and B in eq. (4.19) are conformal primary op-

erators (rather than descendants), and for d ≤ 6 do not allow any corrections to their

transformation law analogous to eq. (4.19), so we have

δσA = −(∆O − 2)σA, δσB = −(∆O − 2)σB. (4.20)

We can make a redefinition of the operator O by

O
′ = O+

1

2(d− 1)
RB. (4.21)

The new operator transforms as

δσO
′ = −∆OσO

′ + σRA, (4.22)

so we do not have to consider the �σ term in eq. (4.19).

Now the idea is that Weyl transformations commute, and so we must have

[δσ1
, δσ2

]O′ = 0. (4.23)

Working out the commutator gives

[δσ1
, δσ2

]O′ = −2(d− 1)(σ2�σ1 − σ1�σ2)A. (4.24)

Now σ2�σ1−σ1�σ2 is an arbitrary function, so the operator A must be trivial. In this way,

we have established that the operator O′ has a standard transformation under infinitesimal

Weyl transformations. We can regard the redefinition eq. (4.21) as a ‘covariantization’ of

the operator O for Weyl transformations.

For larger values of ∆O there are consistent generalizations of the canonical transfor-

mation law, for example

δσO = −∆OσO+ σWµνρσWµνρσA, (4.25)

where A is a primary scalar operator with ∆A = ∆O − 4. This is allowed by unitarity

for ∆O ≥ (d + 6)/2. This is consistent because WµνρσWµνρσ has Weyl weight 4, and it

cannot be eliminated by redefining O. This may therefore be viewed as an anomalous Weyl

transformation for the operator O. For d = 3, the Weyl tensor vanishes identically, but the

Cotton tensor

Cµνρ = ∇ρ

(

Rµν −
1

4
gµνR

)

− (ν ↔ ρ) (4.26)
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is Weyl invariant. We can therefore have anomalous operator transformations of the form

δσO = −∆OσO+ σCµνρCµνρA, (4.27)

where ∆A = ∆O − 6. Conformally flat metrics are characterized by the vanishing of the

Weyl tensor in d > 3, and the vanishing of the Cotton tensor in d = 3, so these anomalies

are absent in the conformally flat case.8 (In d = 2, all metrics are locally conformally flat.)

If ∆O = 2, 4, 6, . . . we can have additional contributions to the transformation law

proportional to the identity operator. For example, for an operator of dimension 2 we

must consider

δσO2 = −2σO2 + (c1σR+ c2�σ)1. (4.28)

We can redefine the operator

O
′

2 = O2 +
1

2(d− 1)
c2R1 (4.29)

so that

δσO
′

2 = −2σO′

2 + c1σR1. (4.30)

This gives

[δσ1
, δσ2

]O′

2 ∝ c1 (σ1�σ2 − σ2�σ1)1, (4.31)

and therefore does not satisfy Weyl commutativity unless c1 = 0.

For an operator of dimension 4, we can have the terms

δσO4 = −4σO4 + σ
(

c1R
2 + c2R

µνRµν + c3W
µνρσWµνρσ + c4�R

)

1

+
(

c5∇µσ∇µR+ c6�σR+ c7∇µ∇νσR
µν + c8�

2σ
)

1.
(4.32)

We again can make a redefinition of the operator

O
′

4 = O4 +
(

a1R
2 + a2R

µνRµν + a3W
µνρσWµνρσ + a4�R

)

1 (4.33)

to eliminate the c6, c7, c8 terms in eq. (4.32):

δσO
′

4 = −4σO′

4 + σ
(

c1R
2 + c2R

µνRµν + c3W
µνρσWµνρσ + c4�R

)

1+ c′5∇µσ∇µR1,

(4.34)

where

c′5 = c5 +
d− 6

2(d− 1)
c8. (4.35)

8A possible way to exclude eqs. (4.25) and (4.27) is to use special metrics that are not conformally flat,

but have nontrivial conformal isometries. That is, the conformal Killing equation ∇µξν + ∇νξµ = 2σgµν
has solutions with σ 6= 0. For each conformal Killing vector, we can define conformal generators acting on

fields using Tµν , as in flat spacetime. If we can argue that these conformal transformations act on fields in

the standard way, we can exclude eqs. (4.25) and (4.27). We believe this may be a promising direction to

explore.
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Commutativity of Weyl transformations then gives

0 = [δσ1
, δσ2

]O′

4

=
[

2(d− 1)c4σ1�
2σ2 − 2(d− 1)c′5∇µ�σ1∇µσ2 − (1 ↔ 2)

]

1+O(R). (4.36)

Requiring Weyl commutativity in flat spacetime therefore implies that c4, c
′

5 = 0. The

curvature corrections then imply

0 = [4(d− 1)c1 + 2c2]Rσ1�σ2 + 2(d− 2)c2R
µνσ1∇µ∇νσ2 − (1 ↔ 2). (4.37)

This must vanish for any σ1, σ2 in an arbitrary spacetime, which gives c1, c2 = 0. We find

that the only possible anomaly has the form

δσO4 = −4σO4 + c3σW
2
µνρσ1. (4.38)

Such terms can be eliminated by the following argument. The operator O4 can have a non-

vanishing 1-point function, which by locality and general covariance must take the form

〈O4(x)〉gµν = αR2(x) + βR2
µν(x) + γW 2

µνρσ(x), (4.39)

for some coefficients α, β, γ. The infinitesimal form of the Weyl Ward identity eq. (4.14)

then tells us that

〈O4〉Ω2gµν − 〈O4〉gµν = 〈δσO4〉gµν (4.40)

or

δσ
[

αR2 + βR2
µν + γW 2

µνρσ

]

= −4σ
[

αR2 + βR2
µν + γW 2

µνρσ

]

+ c3σW
2
µνρσ. (4.41)

It is easily checked that this has no solution for a general metric unless c3 = 0. Note

that this argument uses the fact that the identity operator necessarily has a non-vanishing

1-point function, and cannot be used to rule out the anomalous transformations eqs. (4.25)

and (4.27) for A 6= 1.

These arguments can be extended to higher dimension operators, operators with spin,

and higher spacetime dimensions, but it gets rapidly tedious. To obtain a complete proof,

one would try to proceed by induction starting with the lowest dimensions and spins.

We will not attempt this here. We have at least explicitly established that the Weyl

transformation of relevant scalar operators for d ≤ 6 is the standard one.

5 Examples

In this section we consider the free field theories of refs. [21, 23], which can be used to

illustrate various aspects of the general arguments above. These theories are defined by

the action

S = (−1)k+1

∫

ddx
√
g
1

2
φ�kφ (5.1)

– 15 –



J
H
E
P
1
0
(
2
0
1
7
)
1
7
0

for k = 1, 2, . . . . The scalar field φ has dimension

∆φ =
d− 2k

2
, (5.2)

so these theories are non-unitary for k > 1. Ref. [23] showed that this theory is conformally

invariant for all k and d in the sense that T = ∂µ∂νL
µν in flat spacetime. However, for

special values of d and k the theory cannot be improved to be Weyl invariant in curved

spacetime:

k = 2 : d = 2,

k = 3 : d = 2, 4,

k = 4 : d = 2, 4, 6.

...

(5.3)

In general, the theory cannot be coupled to gravity in a Weyl invariant way for all values

of k subject to the condition that d is even and d < 2k. For these special theories the

improvement terms required to obtain T ≡ 0 in curved spacetime are divergent, so it is

impossible to make the theory Weyl invariant with a finite energy-momentum tensor.

All the special theories that are not Weyl invariant have ∆φ < 0, so these theories

violate the unitarity bounds very badly. For example, 2-point functions of φ grow with the

separation. We do not expect such theories to be relevant for physical statistical mechanics

systems. In fact, as pointed out in ref. [24], the correlation functions of the theories with

k > 1 are not even scale invariant. For example, the 2-point function satisfies

�
k〈φ(x)φ(0)〉 = δd(x), (5.4)

which implies

�
k−1〈φ(x)φ(0)〉 ∝ 1

x2
,

�
k−2〈φ(x)φ(0)〉 ∝ lnx2,

�
k−3〈φ(x)φ(0)〉 ∝ x2 lnx2 − 3x2,

(5.5)

etc. These logarithms represent genuine non-local breaking of scale invariance. For exam-

ple, for k = 2 we have 〈φ(x)φ(0)〉 ∝ lnx2 and the effective action contains terms

Weff ∼
∫

ddxddyρφ(x)ρφ(y) ln[(x− y)2] + · · · , (5.6)

where ρφ is the source for φ. Under a scale transformation, we get non-local terms

δWeff ∼
∫

ddxddyρφ(x)ρφ(y) + · · · . (5.7)

The correlation functions of this theory are clearly not scale invariant in any meaningful

sense.9

9Ref. [24] defines a conformal theory algebraically using 〈φ(x)φ(0)〉 ≡ (x2)k−d/2 and defining correlation

functions by Wick contraction. We cannot take this approach for our purposes, because this theory has no

local definition, and therefore cannot be coupled to a metric.
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Although the k > 1 theories defined by eq. (5.1) are not scale invariant as quantum

theories, the action is conformally invariant. We can then ask whether the action can also

be made Weyl invariant by adding improvement terms. Under a Weyl transformation, we

transform both the metric and the fields φ, and the condition for Weyl invariance is

0 =
δS

δσ(x)
= −T (x) + ∆φφ(x)E(x), (5.8)

where E = δS/δφ is the equation of motion operator and ∆φ is the Weyl weight of φ. On

solutions to the classical equations of motion, the condition of Weyl invariance is therefore

equivalent to T ≡ 0, just as for quantum theories. We can therefore use the theories defined

by eq. (5.1) as examples of conformal invariance without Weyl invariance in the classical

limit, and use them to illustrate some aspects of our general argument.

5.1 Weyl redundancy

In section 4 we argue that operator corrections to T reflect the existence of a symmetry

that acts only on sources, which we call Weyl redundancy. Such a symmetry was ruled

out for unitary theories. We now show that this symmetry does exist in the non-unitary

theories defined by eq. (5.1), explaining how they evade our argument.

We start with the case k = 1, the usual free scalar. We write the action for this

theory as

S =

∫

ddx
√
g

[

1

2
Zgµν∂µφ∂νφ+

1

2
m2φ2 +

1

2
ξRφ2

]

, (5.9)

where we have included an arbitrary improvement term as well as a mass term. We consider

gµν , Z, m2, and ξ as spacetime dependent background sources, although we are interested

in the theory with Z = 1, m2 = 0. With these source terms, the action is invariant under

the symmetry transformation

δgµν = 2σgµν ,

δZ = −(d− 2)σZ,

δm2 = −dσm2 + 2(d− 1)ξ�σ,

δξ = −(d− 2)σξ,

δφ = 0.

(5.10)

Note that the fields do not transform in eq. (5.10), so this is a redundancy among the

sources. The second term in the transformation of m2 comes from the fact that δR ⊃
−2(d− 1)�σ. This symmetry implies the operator relation

0 =
δS

δσ Z=1
m2=0

= −T − d− 2

2
(∂φ)2 + (d− 1)ξ�φ2 − d− 2

2
ξRφ2. (5.11)

Using the equation of motion �φ = ξRφ gives (∂φ)2 = 1
2�φ2 − ξRφ2, which implies

T =

[

−d− 2

4
+ (d− 1)ξ

]

�φ2. (5.12)
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This vanishes with the choice ξ = (d−2)
4(d−1) . Note that the terms involving R have canceled,

reflecting the fact that the same improvement can make T ≡ 0 both in flat and curved

spacetime. This illustrates Weyl redundancy, and shows how it can be used to compute T .

A less trivial example is the k = 2 theory. The presence of higher derivatives in the

action means that the action depends on the gravitational connection, and we do not obtain

a simple scaling symmetry of the form eq. (5.10). We can however make such a symmetry

again manifest by rewriting the action in terms of an auxiliary field F so that it contains

only first derivatives of fields:

S =

∫

ddx
√
g

[

1

2
F 2 − F�φ

]

. (5.13)

The equation of motion for F is F = �φ, and substituting this back into the action gives

the original action eq. (5.1). We can now integrate by parts in eq. (5.13) to write

S =

∫

ddx
√
g

[

1

2
ZF 2 + Z ′gµν∂µF∂νφ

]

. (5.14)

This action is invariant under

δgµν = 2σgµν ,

δZ = −dσZ,

δZ ′ = −(d− 2)σZ ′

(5.15)

with δφ, δF = 0. This symmetry implies the operator relation

0 =
δS

δσ
= −T − d

2
(�φ)2 − (d− 2)∂φ∂(�φ). (5.16)

Using the equation of motion �
2φ = 0, we have

�(φ�φ) = (�φ)2 + 2∂φ∂(�φ), (5.17)

�
2(φ2) = 2(�φ)2 + 8∂φ∂(�φ) + 4(∂µ∂νφ)

2, (5.18)

∂µ∂ν(φ∂µ∂νφ) = 2∂φ∂(�φ) + (∂µ∂νφ)
2, (5.19)

which we can use to write eq. (5.16) as

T = ∂µ∂ν

(

2φ∂µ∂νφ− ηµν(∂φ)2 − d

2
ηµνφ�φ

)

(5.20)

in agreement with eq. (3.6). Already we can see that this theory cannot be improved to

be invariant under the full Virasoro algebra in d = 2. Note also that in both of these

examples, the symmetry is Abelian ([δσ1
, δσ2

] = 0), so the existence of the symmetry in

these cases does not contradict the argument above.

We can extend these results to include improvement terms to our action as well as

additional source terms:

S =

∫

ddx
√
g

[

1

2
ZF 2 + Z ′gµν∇µF∇νφ+

1

2
m2φ2 +

1

2
κµν∇µφ∇νφ

+ c1R∇µφ∇µφ+ c2�Rφ2 + c3R
µν∇µφ∇νφ (5.21)

+ c4R
2φ2 + c5R

2
µνφ

2 + c6W
2
µνρσφ

2

]

.
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This action is invariant under the more complicated transformation

δgµν = 2σgµν ,

δZ = −dσZ,

δZ ′ = −(d− 2)σZ ′,

δm2 = −dσm2 + 4(d− 1)c2∇4σ − 2(d− 4)c2σ�R− 2(d− 6)c2∇µσ∇µR

+ 4(d− 2)c5R
µν∇µ∇νσ + 4 [c2 + 2(d− 1)c4 + c5]R�σ

− 2(d− 4)σc4R
2 − 2(d− 4)σc5R

2
µν − 2(d− 4)σc6W

2
µνρσ,

δκµν = −(d− 4)σκµν + 2(d− 2)c3∇µ∇νσ + 2 [2(d− 1)c1 + c3] gµν�σ

− 2(d− 4)c3σRµν − 2(d− 4)c1σgµνR.

(5.22)

The choice

c1 =
−2d− (d− 4)(d− 2)

4(d− 1)(d− 2)

c2 =
(d− 4)

8(d− 1)

c3 =
2

(d− 2)

(5.23)

guarantees that T ≡ 0 in flat space, and gives

T =

[

−(d− 4)

(d− 2)
+ 2(d− 2)c5

]

∇µ∇ν(G
µνφ2)

+

[

(d− 4)2

8(d− 1)
+ 4(d− 1)c4 + dc5

]

∇2(Rφ2)

(5.24)

in curved space once we use the improved equations of motion. We see that in this example

we can choose c4 and c5 so that T ≡ 0 in curved space as long as d 6= 2. This confirms the

results of refs. [21, 23] for the k = 2 theories, which are Weyl invariant unless d = 2. It

also illustrates the utility of Weyl redundancy in calculations.

6 Conclusions

We have given a general argument that conformal invariance in flat spacetime implies

Weyl invariance in curved spacetime in local unitary quantum field theories. Conformal

transformations are the subgroup of Weyl transformations that leave the metric invariant

(up to a diffeomorphism), so a failure of Weyl invariance arises from corrections that are

non-vanishing for curved backgrounds and/or general scale factors. Such corrections are

constrained by algebraic consistency conditions similar to the Wess-Zumino consistency

conditions for anomalies. We have a complete argument for Weyl invariance up to space-

time dimension d ≤ 10, and an argument for the standard Weyl transformation of local

operators only for operators of low dimension and spin. There are possible ‘anomalous’

Weyl transformations that cannot be ruled out by algebraic consistency relations, with
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additional terms proportional to powers of the Weyl tensor (for d ≥ 4) (see eq. (1.1)) or

the Cotton tensor (d = 3).

It is only a matter of algebra to extend these arguments to higher spacetime dimen-

sions, and to operators with larger dimension and spin. Extending to d > 10 is not of great

interest, since we do not expect to find any interacting fixed points in such high dimensions.

The most important question left open by this work is to understand the Weyl transfor-

mations of operators with higher dimension and spin. We have found some anomalous

transformations that vanish in the conformally flat case (see eqs. (4.25) and (4.27)). One

interesting open question would be to show that there are no consistent operator trans-

formation anomalies in the conformally flat case. It would also be very interesting if one

could rule out the anomalous transformations in the non-conformally flat case. We leave

these questions for future work.
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A T ≡ 0 in curved spacetime for 6 < d ≤ 10

In this appendix, we extend the argument in section 4.1 to 6 < d ≤ 10. In this case, there

are no ∇6 terms in eq. (4.1) because they are forbidden by unitarity (for d < 10) or are

decoupled free fields (for d = 10). The existence of the operators X and Yi then allows the

improvement terms

∆S =

∫

ddx
√
g
[

ξRX + ξ1R�Ỹ1 + ξ5R
2Ỹ5 + ξ6R

µνRµν Ỹ6 + ξ7R
µνρσRµνρσỸ7

]

, (A.1)

where Ỹi are linear combinations of the Yi. Other terms involving covariant derivatives

can be eliminated by integration by parts and the identity ∇µR
µν = 1

2∇νR. When we

compute the contribution to the energy-momentum tensor from eq. (4.4), we need to know

the metric dependence of the operators X and Yi. In fact, because we are only interested

in the trace T , it is sufficient to know the transformation of X and Y under a Weyl

transformation. This question is discussed in detail in section 4.3, so we only quote the

results here. Unitarity bounds and the limit of conformal transformations in flat spacetime

imply that under an infinitesimal Weyl transformation δgµν = 2σgµν , the most general

form for the transformation of X is

δσX = −(d− 2)σX + σRY ′ +�σY ′′, (A.2)
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where Y ′, Y ′′ are primary operators of dimension d− 4. Imposing commutativity of Weyl

transformations, and making operator redefinitions, one obtains the standard transforma-

tion law δσX = −(d−2)σX (see the discussion below eq. (4.19)). Similar arguments hold for

the operators Yi, and we conclude that we can compute the trace of the energy-momentum

tensor from eq. (A.1) assuming that the operators do not depend on the metric.

The terms in eq. (A.1) that are linear in the curvature will give a correction to T in

flat spacetime:

∆T = −2(d− 1)(ξ�X + ξ1�
2Ỹ1) +O(R). (A.3)

The condition that T ≡ 0 in flat spacetime therefore requires ξ, ξ1 = 0. The remaining

terms in eq. (A.1) can be used to eliminate the terms in T that are quadratic in curvature,

and we can simplify T to

T = RX +R�Y1 +Rµν∇µ∇νY2 +∇µR∇µY3 +�RY4. (A.4)

This operator relation implies the following Weyl redundancy symmetry for the sources for

X and Yi:

δgµν = 2σgµν ,

δρX = σR,

δρY1
= σ�R+ 2∇µσ∇µR+R�σ,

δρY2
=

1

2
σ�R+∇µσ∇µR+Rµν∇µ∇νσ,

δρY3
= −σ�R−∇µσ∇µR,

δρY4
= σ�R.

(A.5)

The commutator of two such symmetries must be a symmetry, which implies that the

effective action must be invariant under the transformation

[δσ1
, δσ2

]gµν = 0,

[δσ1
, δσ2

]ρX = 2(d− 1)∇µfµ,

[δσ1
, δσ2

]ρY1
= 2(d− 1)�∇µfµ − 2R∇µfµ − (d+ 2)∇µRfµ,

[δσ1
, δσ2

]ρY2
= (d− 1)�∇µfµ +R∇µfµ − 4Rµν∇µfν −

1

2
(d+ 2)∇µRfµ,

[δσ1
, δσ2

]ρY3
= −(d− 1)�∇µfµ − (d− 1)h− 2R∇µfµ + (d− 2)∇µRfµ,

[δσ1
, δσ2

]ρY4
= 2(d− 1)h+ 2R∇µfµ − (d− 6)∇µRfµ,

(A.6)

where we define the functions

fµ = σ1∇µσ2 − σ2∇µσ1, h = σ1�
2σ2 − σ2�

2σ1. (A.7)

We again have a symmetry that acts only on the sources ρX and ρYi , but there is not

sufficient freedom in choosing σ1 and σ2 to make [δσ1
, δσ2

]ρi independent and arbitrary

functions, for a fixed metric gµν .
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One possible approach is to consider higher commutators of the symmetry, which gives

additional symmetry transformations depending on more parameters. We will instead give

an argument that is based on the fact that eq. (A.6) holds for arbitrary background metrics.

First let us consider the transformations eq. (A.6) in flat spacetime. In that case, the action

in the path integral transforms as

[δσ1
, δσ2

]S = (d− 1)

∫

ddx [2∂µfµ(X +�Y ) + h(2Y4 − Y3)] , (A.8)

where we have integrated by parts and defined

Y = Y1 +
1

2
Y2 −

1

2
Y3. (A.9)

The functions ∂µfµ and h can be chosen independently, which implies the operator relations

X +�Y ≡ 0, 2Y4 − Y3 ≡ 0. (A.10)

Generically, this implies that we can eliminate X and Y4, so that we have Y1, Y2, Y3 as

independent operators. If X ≡ 0, the relation �Y ≡ 0 implies Y ≡ 0 and we can take

Y1, Y2 as independent. We will consider the generic case where Y1, Y2, Y3 are all present. In

that case, the path integral action is invariant in flat spacetime, but in curved spacetime

has variation

[δσ1
, δσ2

]S =

∫

ddx
√
g

{

R∇µfµ [−2Y1 + Y2 − Y3]− 4Rµν∇µfν Y2

+
1

2
(d+ 2)fµ∇µR [−2Y1 − Y2 + Y3]

}

. (A.11)

The action is now invariant in flat spacetime, but is not invariant in a general spacetime.

For example, we can consider the case of a maximally symmetric spacetime, i.e. Euclidean

de Sitter or anti-de Sitter. In this case, we have R = constant and Rµν = 1
d
gµνR, so

we have

[δσ1
, δσ2

]S = −1

d

∫

ddx
√
gR∇µfµ [2dY1 − (d− 4)Y2 + dY3] . (A.12)

At least in a maximally symmetric space, we therefore have the operator identity

Y ′ ≡ 0, Y ′ = 2dY1 − (d− 4)Y2 + dY3. (A.13)

But now we can take the flat limit. All of the correlation functions of Y ′ vanish identically

for all nonzero values of the curvature, so they must also vanish in flat spacetime. We

conclude that Y ′ ≡ 0 in flat spacetime. But unitarity bounds (for d < 10) or decoupling

(for d = 10) do not allow Y ′ to be proportional to curvature terms, so Y ′ ≡ 0 in a general

background metric. We now have two independent operators, Y1 and Y2 say, with

[δσ1
, δσ2

]S =
1

d

∫

ddx
√
g {4∇µfν (g

µνR− dRµν)Y2 − 2(d+ 2)fµ∇µR (dY1 + Y2)} . (A.14)

It is clear that we can repeat the above argument by considering less symmetric metrics,

and conclude that Y1, Y2 ≡ 0 for all d ≤ 10.
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