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1 Introduction

The open challenge of a quantum description of the gravitational interaction and the

corresponding notion of quantum spacetime is particularly demanding because of the

very limited experimental hints at our disposal. Indeed the quantum structure of space-

time, due to quantum gravity effects, is expected to become relevant at Planck scales

(lp =
√

G
~c3

∼ 10−33 cm). Since these energy regimes are not directly accessible we have to

study indirect signatures, for example related to cosmological data near inflationary epoch

(a few orders of magnitude away from regimes characterised by Planck scale energies) or

related to modified dispersion relations of light.

Indeed it is conceivable that light travelling in a quantum spacetime (a dynamical

spacetime that interacts with photons) has a velocity dependent on the photons energy.
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Even a tiny modification of the usual dispersion relations could then be detected due to

the cumulative effect of light travelling long distances. A natural setting for this study is

that of Gamma Ray Bursts (GRB) from distant galaxies [1]. Another possibility is that of

high precision (quantum) optics experiments based on interferometry techniques like the

Holometer one in Fermilab [2] or the table top experiment devised in [3].

These possibilities motivate the study of phenomenological models that lead to modi-

fied dispersion relations. Lorentz invariance violating (LIV) theories generically provide

modified dispersion relations, see for example [4]. A whole class where the Lorentz

group (or its realization) is modified, so that new relativistic symmetries replace the

classical one, goes under the name of Deformed (or Doubly) special relativity theories

(DSR theories) [5–8]. Many of these phenomenological models describe spacetime fea-

tures and wave equations that are typical of noncommutative spacetimes, the proto-

typical example being κ-Minkowski spacetime, where coordinates satisfy the relations

x0 ⋆ xj − xj ⋆ x0 = i
κ
xj , xi ⋆ xj − xj ⋆ xi = 0; here we consider 1

κ
of the order of the

Planck length. See [9] for an early relation between DSR and κ-deformed symmetries. The

relation between DSR theories and noncommutative spacetimes is very interesting because

noncommutative spacetimes, and their quantum symmetry groups, independently from

DSR studies, naturally arise as models of quantum spacetime where discretization and

indetermination relations are realized in spacetime itself rather than phase-space. This

is indeed expected by gedanken experiments probing spacetime structure at Planck scale;

furthermore noncommutative spacetimes features, like generalized uncertainty relations

(involving space and time coordinates) or minimal area and volume elements arise also in

String Theory and Loop Quantum Gravity, see e.g. [10].

In this paper we complement the phenomenological or bottom up approach of con-

structing (realizations of) spacetime symmetries, observables and field equations that model

expected and possibly detectable quantum gravity effects with a top-down approach where

we just assume a general noncommutative structure of spacetime and then use noncom-

mutative differential geometry to derive the physics of fields propagating in this noncom-

mutative spacetime.

We focus on spacetimes that are obtained via a Drinfeld twist procedure, these form

a very large class of noncommutative spacetimes (including the most studied Moyal-Weyl

one xi ⋆ xj − xj ⋆ xi = iθij [11, 12] and the κ-Minkowski one, x0 ⋆ xi − xi ⋆ x0 = i
κ
xi [13–

15]). We present a general method on how to study observables, wave equations and the

corresponding dispersion relations, thus providing a wide framework for physical models of

fields in noncommutative spaces. The construction is quite constrained by the mathemati-

cal consistency of the noncommutative differential geometry and the notion of infinitesimal

symmetry generators (e.g. translations-momenta). We thus contribute filling the gap be-

tween theory and phenomenology, providing sound and mathematically consistent tools for

phenomenological studies as well as a deeper physical understanding of the mathematical

structures associated with noncommutative spaces.

We then apply the theory thus developed to the κ-Minkowski spacetime and derive

the same equations of motion studied in the phenomenological (bottom up) approach con-

sidered in [7].

– 2 –
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We show that the usual Einstein-Planck relation E = ~ω is modified to ~ω/(1−ω/cκ)

leading to a maximum Planck energy or frequency per elementary particle. Similarly, the

de Broglie momentum-wavelength relation is modified. This implies that massless fields in

κ-Minkowski spacetime have no modified dispersion relations, in agreement with [7] and

disagreement with [16, 17].

As we show in the sequel to this paper [18] the methods here developed do in general

imply modified dispersion relations for massless fields once we leave flat noncommutative

spacetime by turning on a nontrivial metric background.

Our primary interest in the present paper is the equation of motion of massless fields in

flat spacetime. In the commutative case these propagate in Minkowski spacetime, and the

relevant symmetry group is the conformal group. Hence we consider the noncommutative

differential geometry on κ-Minkowski spacetime that is covariant under the action of a

quantum conformal group (in particular the Minkowski metric won’t be invariant but

covariant under quantum dilatations). For simplicity and brevity rather than deforming

the conformal group we focus on the most relevant part, the Poincaré-Weyl (also simply

called Weyl) group of Poincaré transformations and dilatations, the inclusion of the special

conformal transformations being straightforward. The choice to focus on Poincaré-Weyl

symmetry rather than Poincaré symmetry is motivated by the study of massless fields and

the interest in applying the general noncommutative differential geometry construction via

twist deformation that we develop in section 2 to the case of the well known κ-Minkowski

noncommutative spacetime.

We further observe that the only term breaking conformal symmetry in the standard

model action is the Higgs mass term and that there are interesting scenarios where there is

no such term in the classical action, so that the conformal group is a fundamental symmetry

of the tree level action. There, according to the seminal work [19], the standard model

masses are generated via radiative corrections that break the classical scale invariance of

the Higgs potential thus inducing the spontaneous symmetry breaking of the electroweak

interaction. These models, see e.g. [20–22], provide a solution to the hierarchy problem up

to Planck scale thanks to classical scale invariance. It is then intriguing to speculate that

due to quantum gravity effects the conformal symmetry at Planck scale is twist deformed to

the quantum conformal symmetry associated with the quantum Poincaré-Weyl Lie algebra

that we study in section 3.2. The deformation parameter 1
κ
is indeed dimensionful and

considered of the order of the Planck length.

A key point in order to have a physical interpretation of the wave equation (e.g. of

the corresponding dispersion relations) is that of identifying the physical generators of

Poincaré-Weyl transformations and in particular the four-momentum operators. In this

paper we first attack the problem mathematically and show that given a twist (hence a

given quantum group, deformation of a usual group) there is a unique notion of quantum

Lie algebra (with quantum Lie bracket and quantum Jacobi identity). Quantum Lie algebra

elements act on fields on noncommutative spacetime as quantum infinitesimal transforma-

tions because they satisfy a specific deformation of the Leibniz rule. They are obtained via

a quantization map D applied to classical Lie algebra elements. Then we confirm their in-

terpretation as generators of infinitesimal transformations by recalling their associated dif-

– 3 –
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ferential geometry; in particular on κ-Minkowski space the quantum Lie algebra of momen-

tum generators is shown to give the differential calculus. Because of these properties these

quantum Lie algebra generators are naturally identified with the physical observables. Of

course it would be interesting to confirm this identification with a Noether theorem analysis.

Noether theorem for theories on noncommutative spacetimes has to be further understood.

For preliminary work we refer for example to [23, 24]. The methods we advocate, possi-

bly combined with Drinfeld twist deformed Hamiltonian mechanics, see e.g. [25], should

provide powerful tools in the study of conserved charges in noncommutative spacetimes.

The same quantization map D used to single out the quantum Lie algebra of infinites-

imal generators from the undeformed Lie algebra is then used to obtain the quantum

Hodge star operator from the usual Hodge star operator. This procedure is very general

and does not need to rely on a flat metric. The associated Laplace-Beltrami operator and

the corresponding wave equation is then presented. In the case of κ-Minkowski space the

Laplace-Beltrami operator becomes the d’Alembert operator and we show that it equals

the quadratic Casimir of quantum translations. This implies covariance of the wave equa-

tion under the quantum Poincaré-Weyl group. Hence, in particular, besides the parameter

c (velocity of light) also the dimensionful deformation parameter 1
κ
(the Planck length)

is constant under quantum Poincaré-Weyl transformations. In other words, as usual in

noncommutative geometry, the quantum group generalization of the notion of symmetry

allows to extend the principle of relativity of frames to that of relativity of frames related

by quantum symmetry transformations,1 (cf. also [26, section 8]).

Finally, we compare our results with the pioneering approach in [7, 8]. We show that

the nonlinear realization of the Lorentz group considered in [7] is implemented by the

quantization map D that gives the Poincaré-Weyl quantum Lie algebra. Since the quanti-

zation map D does not depend on the representation considered, this allows to extend the

construction in [7], based on momentum space, to arbitrary representations; in particular

to position space. Furthermore, in our scheme the wave equation turns out to be the same

as that in [7], however the identification of the physical momenta differs from that in [7].

2 Twist noncommutative geometry

The noncommutative deformations of spacetime we consider arise from the action of a

symmetry group (group of transformations) on spacetime, e.g. Poincaré, Poincaré-Weyl, or

conformal groups on Minkowski spacetime. Physical observables on these noncommutative

spacetimes are related to their symmetries. Like in the commutative case, where energy

and momentum are the generator of spacetime translation, in the noncommutative case we

identify energy and momentum as the generators of noncommutative spacetime transla-

tions. Since infinitesimal transformations are obtained as actions of the Lie algebra of the

symmetry group on the spacetime and on the matter fields, we first have to recall the notion

of quantum group and quantum Lie algebra of a quantum group. Then we consider their

1All frames related by quantum Poincaré-Weyl transformations detect the same values of c and 1
κ
. In

this paper for simplicity we do not consider finite transformations, we focus on quantum Lie algebras and

infinitesimal transformations, with c and 1
κ
that are constant under these transformations.
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symmetry transformations on the corresponding noncommutative spaces. The construction

of the differential geometry on these spaces, covariant under these symmetry transforma-

tions, leads to wave equations describing fields propagating in noncommutative spacetimes.

2.1 Quantum symmetries and quantum Lie algebras

Let G be a Lie group of transformations on a manifold M ; infinitesimal transformations are

governed by its Lie algebra g, or equivalently by the universal enveloping algebra Ug. We

recall that Ug is the sum of products of elements of g (modulo the Lie algebra relations)

and that it is a Hopf algebra with coproduct ∆ : Ug → Ug ⊗ Ug, counit ǫ : Ug → C and

antipode S given on the generators u ∈ g as: ∆(u) = u ⊗ 1 + 1⊗ u, ε(u) = 0, S(u) = −u

and extended to all Ug by requiring ∆ and ε to be linear and multiplicative while S is

linear and antimultiplicative. In the following we use Sweedler notation for the coproduct

∆(ξ) = ξ1 ⊗ ξ2 (2.1)

where ξ ∈ Ug, ξ1 ⊗ ξ2 ∈ Ug ⊗ Ug and a sum over ξ1 and ξ2 is understood (ξ1 ⊗ ξ2 =
∑

i ξ1i ⊗ ξ2i). There is a canonical action of Ug on itself obtained from the coproduct and

the antipode, it is given by the adjoint action, defined by, for all ζ, ξ ∈ Ug,

ζ(ξ) ≡ adζ(ξ) = ζ1ξS(ζ2) . (2.2)

When restricted to Lie algebra elements this becomes the Lie bracket, indeed we have, for

all u, u′ ∈ g,

[u, u′] = u1u
′S(u2) = uu′ − u′u (2.3)

where we used that ∆(u) = u⊗ 1+ 1⊗ u and that S(u) = −u. Notice that the Ug-adjoint

action restricts to and action on g, i.e., for all ξ ∈ Ug, v ∈ g, ζ(v) ∈ g. This is easily seen

by writing ζ as sums of products uu′ . . . u′′ of Lie algebra elements, and then by iteratively

using (2.3): (uu′ . . . u′′)(v) = [u[u′ . . . [u′′, v]]].

We deform spacetime by first deforming the Hopf algebra Ug and then functions and

matter fields on spacetime itself. Since we work in the deformation quantization context we

extend the notion of enveloping algebra to formal power series in λ and we correspondingly

consider the Hopf algebra Ug[[λ]] over the ring C[[λ]] of formal power series with complex

coefficients. In the following, for the sake of brevity we will often denote Ug[[λ]] by Ug.2

Following Drinfeld, a twist element F on the universal enveloping algebra Ug[[λ]] of

a Lie algebra g is an invertible element of Ug[[λ]] ⊗ Ug[[λ]] satisfying the cocycle and

2Physically we are interested in the lowest order corrections in λ to dispersion relations and related

expressions. In this case λ is linked to the Planck energy Ep and the expansion will be in ~ω/Ep with ω the

frequency of the wave. The lowest order corrections are then well defined also nonformally, i.e. with ~ω/Ep

a real number. Specific expression can be well defined nonformally also at all powers in ~ω/Ep, see e.g. the

Einstein-Planck relations (4.3). The treatment of λ as a formal parameter is a mathematical requirement for

the ⋆-product between arbitrary smooth functions to be well defined. However for the exponential (hence

analytic) functions we consider as solutions of the wave equation it is consistent to consider ~ω/Ep a real

number.

– 5 –
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normalisation conditions:

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id⊗∆)F , (2.4)

(id⊗ ǫ)F = (ǫ⊗ id)F = 1⊗ 1 . (2.5)

The first relation implies associativity of the ⋆-products induced by the twist; consistently

with the second relation we also require that F = 1⊗1+O(λ) so that for λ → 0 we recover

the classical (undeformed) products.

Given a twist F on the Hopf algebra Ug we have a new Hopf algebra structure UgF =
(

Ug,m,∆F , ǫ, SF
)

; UgF equals Ug as vector space and also as an algebra (the product m

is undeformed, and also the counit ε) the deformed coproduct and antipode are defined by,

for all ξ ∈ Ug,

∆F (ξ) = F∆(ξ)F−1 , SF (ξ) = χS(ξ)χ−1 (2.6)

where χ = fαS(fα) and we used the notation: F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α (sum over

α understood). We denote by adF : UgF ⊗ UgF → UgF the UgF -adjoint action, it is

given by, for all ξ, ζ ∈ UgF , adFξ (ζ) = ξ1F ζS
F (ξ2F ), where we used the Sweedler notation

∆F (ξ) = ξ1F ⊗ ξ2F .

We now study the quantum Lie algebra gF of the Hopf algebra UgF . To this aim let

us recall that there is a one-to-one correspondence between Lie algebras g and universal

enveloping algebras Ug: given g then Ug is canonically constructed, vice versa g ⊂ Ug is the

subspace of primitive elements of Ug, i.e., of those elements that satisfy ∆(u) = u⊗1+1⊗u.

From this expression it is not difficult to show that ε(u) = 0 and S(u) = −u so that as

in (2.3) the adjoint action of two primitive elements u and v equals their commutator:

[u, v] := adu(v) = uv−vu. Now it is easy to show that uv−vu is again a primitive element

thus proving that g with the bracket [ , ] is a Lie algebra: the Lie algebra of the universal

enveloping algebra Ug. Similarly, in the quantum case, following [27], we have a quantum

Lie algebra gF of a quantum universal enveloping algebra UgF when

i) gF generates UgF ,

ii) ∆F (gF ) ⊂ gF ⊗ 1 + UgF ⊗ gF

iii) [gF , gF ]F ⊂ gF

where the quantum Lie bracket [ , ]F is the restriction of the UgF -adjoint action to gF ,

i.e., for all uF , vF ∈ gF we have

[uF , vF ]F := uF1F vFSF (uF2F ) . (2.7)

Property iii) states that the restriction to gF of the UgF -adjoint action is well defined on

gF . Since from Property i) we have that gF generates UgF we conclude that gF ⊂ UgF is

invariant under the UgF -adjoint action, i.e. for all ξ ∈ UgF , vF ∈ gF , adFξ (v
F ) ∈ gF . For

example adF
uFu′F (v

F ) = adF
uF (ad

F

u′F (v)) = [uF , [u′F , v]F ]F ∈ gF .

Property ii) states that the elements in gF are quasi-primitive, i.e., we require a min-

imal deviation from the usual coproduct property ∆(u) = u⊗ 1 + 1⊗ u of elements u ∈ g.

– 6 –
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Combining ii) with iii) it can be shown [28] [29, section 2.3] that the bracket [ , ]F is a

deformed commutator which is quadratic in the generators of the Lie algebra gF .

In the twist deformation case we are considering there is a canonical construction in

order to obtain the quantum Lie algebra gF of the Hopf algebra UgF [30] [26, section 7.7].

We simply have gF = D(g), i.e.,

gF := {uF ∈ UgF ; uF = D(u), with u ∈ g} (2.8)

where, for all ξ ∈ Ug,

D(ξ) = f̄α(ξ)f̄α = f̄α1 ξS(f̄
α
2 )f̄α , (2.9)

the action f̄α(ξ) being the adjoint action (2.2). Property i) follows form the twist property

F = 1⊗ 1 +O(λ) that implies D = id +O(λ).3 Property ii) holds because, cf. (3.12) and

(3.17) in [30], for all u ∈ g,

∆F (uF ) = uF ⊗ 1 + R̄α ⊗ (R̄α(u))
F (2.10)

where R = F21F−1 is the so-called universal R-matrix, and we used the notation R−1 =

R̄α ⊗ R̄α (the action R̄α(u) of R̄α on u ∈ g is the adjoint action (2.2), and R̄α(u) ∈ g, cf.

sentence after (2.3)). Property iii) holds because it is equivalent to equation (4.6) in [30]

(just apply D to (4.6)). Similarly to the undeformed case we then have that the adjoint

action (2.7) equals the braided commutator, for all uF , vF ∈ gF ,

[uF , vF ]F = uFvF − (R̄α(v))F (R̄α(u))
F . (2.11)

Furthermore the deformed Lie bracket satisfies the braided-antisymmetry property and the

braided-Jacobi identity

[uF , vF ]F = −[(R̄α(v))F , (R̄α(u))
F ]F (2.12)

[uF , [vF , zF ]F ]F = [[uF , vF ]F , z
F ]F + [(R̄α(v))F , [(R̄α(u))

F , zF ]F ]F . (2.13)

A proof of (2.11)–(2.13) follows immediately by applying D to eq. (3.7) (3.9), (3.10)

in [30]; indeed the quantum Lie algebras presented here and there are isomorphic via D−1

(cf. also [26, section 7 and section 8]).

3Proof. Since as vector spaces UgF = Ug[[λ]], any element ξ ∈ UgF = Ug[[λ]] is a sum

ξ =
∑

j≥0 λ
jξj with ξj ∈ Ug (and no λ dependence in ξj). Since g generates Ug we have ξj =

∑

m1...mn
cj,m1,...mn

um1

1 um2

2 . . . umn

n where u1, u2, . . . un are a basis of g. Then we have

ξ =
∑

j

λjξj =
∑

j,m1,...mn

λjcj,m1,...mn
um1

1 . . . umn

n =
∑

j,m1,...mn

λjcj,m1,...mn
D(u1)

m1 . . .D(un)
mn + λξ(1)

where ξ(1) ∈ Ug[[λ]]. We can therefore expand ξ(1) in the same way as done with ξ and obtain

λξ(1) =
∑

j,m1,...mn
λj+1c

(1)
j,m1,...mn

D(u1)
m1 . . .D(un)

mn +λ2ξ(2). Iterating this procedure we thus arrive at

the expression ξ =
∑

j,m1,...mn
(λjcj,m1,...mn

+ λj+1c
(1)
j,m1,...mn

+ . . . λj+kc
(k)
j,m1,...mn

)D(u1)
m1 . . .D(un)

mn +

λ(k+1)ξ(k+1) that shows that ξ is generated by the elements D(u1),D(u2), . . .D(un) because this is so up

to order λk with k an arbitrarily big integer �. An explicit proof for the algebra we will consider follows

immediately from (3.9) and (3.28).

– 7 –
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In the classical case the physical operators associated with a symmetry Hopf algebra

Ug are the elements of the Lie algebra g (e.g. momenta boosts and rotations in the universal

enveloping algebra of the Poincaré group). It is then natural that the physical operators

associated with a symmetry Hopf algebra UgF are the elements of the quantum Lie algebra

gF . To clarify this point we have to study representations of UgF .

2.2 Noncommutative algebras

Let G be a Lie group of transformations on a manifold M (e.g. the spacetime manifold)

and let A be the algebra of smooth functions on M (extended to formal power series in λ).

If the action of G on M is via diffeomorphisms, then the Lie algebra g acts on A via the

Lie derivative, which is extended as an action to all Ug, i.e., for all ξ, ζ ∈ Ug LξLζ = Lξζ .

The compatibility between the Ug action and the product of A is encoded in the property

that the Lie algebra elements u ∈ g act as derivations, i.e., for all u ∈ g and f, h,∈ A,

Lu(fh) = Lu(f)h + fLu(h), or simply u(fh) = u(f)h + fu(h). Since u(fh) = u(f)h +

fu(h) = u1(f)u2(h) and the u’s generate Ug this implies that for all ξ ∈ Ug, f, h ∈ A,

ξ(fh) = ξ1(f) ξ2(h) . (2.14)

We say that A is a Ug-module algebra because it carries a representation of Ug and the

Ug-action is compatible with the product of A as in (2.14).

Corresponding to the deformation Ug → UgF we have the algebra deformation A →
A⋆. As vector spaces A and A⋆ coincide. The action of UgF on AF is also the same as

that of Ug on A. The space A⋆ is therefore still the space of smooth functions on M ; it is

the product that is deformed in the ⋆-product,

f ⋆ h = µ{F−1(f ⊗ h)} = f̄α(f) f̄α(h) , (2.15)

for all functions f, h ∈ A⋆, where f̄α(f) = Lf̄α(f). Associativity of the product follows

from the twist cocycle property (2.4), moreover the product has been defined so that it is

compatible with the UgF action: for all ξ ∈ UgF , ξ(f ⋆ h) = ξ1F (f) ξ2F (h). This proves

that A⋆ is a UgF -module algebra. Equivalently we say that it is a UgF -module algebra

because the quantum Lie algebra elements D(u) ∈ gF act as twisted derivations, i.e., they

obey the deformed Leibniz rule (cf. (2.10)),

D(u)(f ⋆ h) = D(u)(f) ⋆ h+ R̄α(f) ⋆D(R̄α(u))(h) . (2.16)

A special case is when the manifold M is the group manifold G itself, then the Lie

algebra g is identified with that of left invariant vector fields onG. The differential geometry

on A (smooth functions on G) is described via these vector fields and the corresponding

left invariant one-forms. Similarly, the differential geometry on A⋆ (the quantum group) is

described in terms of the quantum Lie algebra gF : the quantum Lie algebra of left invariant

vector fields on A⋆ [27, 31].

We can now sharpen our claim: among the many generators of the universal enveloping

algebra UgF the physically relevant ones are the elements of the quantum Lie algebra gF

(and not for example of g). This is so because of their geometric properties: they generate

UgF , they are closed under the UgF -adjoint action and their action on representations is

via twisted derivations, so that they are quantum infinitesimal transformations.

– 8 –
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2.3 Differential calculus

Consider the algebra A of smooth functions on spacetime M and the action of the Lie

algebra g on A via the Lie derivative. The Lie derivative lifts to the algebra Ω• = A ⊕
Ω1⊕Ω2⊕ . . . of exterior forms on M . We then twist deform this algebra to the algebra Ω•

⋆,

which as a vector space is the same as Ω• (more precisely we should write Ω•[[λ]], i.e. power

series in the deformation parameter λ of classical exterior forms) but has the new product

ω ∧⋆ ω
′ = f̄α(ω) ∧ f̄α(ω

′) . (2.17)

In particular when ω is a zero form f , then the wedge product is usually omitted and

correspondingly the wedge ⋆-product reads f ⋆ ω′ = f̄α(f)f̄α(ω
′).

Since the action of the Lie algebra g on forms is via the Lie derivative and the Lie

derivative commutes with the exterior derivative the usual (undeformed) exterior derivative

satisfies the Leibniz rule d(f ⋆ g) = df ⋆ g + f ⋆ dg, and more in general, for forms of

homogeneous degree ω ∈ Ωr,

d(ω ∧⋆ ω
′) = dω ∧⋆ ω

′ + (−1)rω ∧⋆ ω
′ . (2.18)

We have constructed a differential calculus on the deformed algebra of exterior forms Ω•
⋆.

2.4 Hodge star operator

Another key ingredient in order to formulate field theories on a spacetime M is a metric.

It acts on exterior forms via the Hodge star operator. Let us first recall few facts related

with the Hodge star in the classical (undeformed) case. For an n−dimensional manifold M

with metric g the Hodge ∗-operation is a linear map ∗ : Ωr (M) → Ωn−r (M). In local coor-

dinates an r-form is given by ω = 1
r!ωµ1....µrdx

µ1 ∧ . . . dxµr and the Hodge ∗-operator reads

∗ ω =

√
g

r! (n− r)!
ωµ1....µrǫ

µ1....µr
νr+1......νn

dxνr+1 ∧ . . . dxνn (2.19)

where
√
g is the square root of the absolute value of the determinant of the metric, the

completely antisymmetric tensor ǫν1...νn is normalized to ǫ1...n = 1 and indices are lowered

and raised with the metric g and its inverse. There is a one to one correspondence between

metrics and Hodge star operators.

We define metrics on noncommutative spaces by defining the corresponding Hodge

star operators on the ⋆-algebra of exterior forms Ω•
⋆. We first observe that the undeformed

Hodge ∗-operator is A-linear: ∗(ωf) = ∗(ω)f , for any form ω and function f (of course,

since A is commutative we equivalently have ∗(fω) = f(∗ω)). We then require the Hodge

∗-operator ∗F on Ω•
⋆ to map r-forms into n− r-forms, and to be right A⋆-linear

∗F (ω ⋆ f) = ∗F (ω) ⋆ f (2.20)

for any form ω and function f . There is a canonical way to deform A-linear maps to right

A⋆-linear maps, this is given by the “quantization map” D studied in [32–34]. Let V be a

right A-module (i.e., for all v ∈ V , f, h ∈ A we have vf ∈ V and (vf)h = v(fh)), then V
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is a right A⋆-module by defining v ⋆ f = f̄α(v)f̄α(f) (the property (v ⋆ f) ⋆ h = v ⋆ (f ⋆ h)

follows from the cocycle condition (2.4) for the twist). Now let V,W be right A-modules

and P : V → W be a right A-linear map, i.e., P (vf) = P (v)f , for all v ∈ V , f ∈ A.

Then, similarly to the way we obtained the quantum Lie algebra generators we have the

quantization PF = D(P ) of the right A-linear map P ,

PF = D (P ) := Lf̄α1
◦ P ◦ LS(f̄α2 )f̄α

(2.21)

that is a right A⋆-linear map: PF (v ⋆ f) = PF (v) ⋆ f . In particular the deformed or

quantum Hodge ∗-operator explicitly reads

∗F = D(∗) : Ω•
⋆ −→ Ω•

⋆

ω 7−→ ∗F (ω) = f̄α1

(

∗
(

S(f̄α2 )f̄α(ω)
)

)

(2.22)

where f̄α1

(

∗
(

S(f̄α2 )f̄α(ω)
)

)

is a shorthand notation for Lf̄α1

(

∗
(

LS(̄fα2 )̄fα(ω)
)

)

. For any exterior

form ω and function f we have the right A⋆-linearity property ∗F (ω ⋆ f) = ∗F (ω) ⋆ f .
Finally we notice that the metric structure we have introduced via the Hodge star

operator is a priori independent from the twist F determining the noncommutativity of

spacetime.

2.5 Wave equations

The wave equation in (curved) spacetime is governed by the Laplace-Beltrami operator � =

δd + dδ. In the case of even dimensional Lorenzian manifolds (like Minkowski spacetime)

the adjoint of the exterior derivative is defined by δ = ∗d∗. For a scalar field (i.e., a function

or 0-form) we have

�ϕ = ∗d ∗ dϕ =
1√
g
∂ν [

√
ggνµ∂µϕ] (2.23)

(cf. e.g. [35] for a proof). We can now immediately consider wave equations in noncom-

mutative spacetime. We just define the Laplace-Beltrami operator by replacing the Hodge

∗-operator with the ∗F -operator, for even dimensional noncommutative spaces with Loren-

zian metric: �F = ∗Fd ∗F d + d ∗F d∗F . In particular on a scalar field we have

�
Fϕ = ∗Fd ∗F dϕ = 0 , (2.24)

and more in general for a massive scalar field (�F +m2)ϕ = 0.

We can similarly consider Maxwell equations on noncommutative spacetime (without

sources)

dF = 0 (2.25)

d ∗F F = 0

The first equation implies (locally) the existence of a gauge potential 1-form A such that

F = dA, the second one then becomes the noncommutative Maxwell equation for the gauge

potential A. These Maxwell equations differ from the usual equations for a U(1)-gauge field
in noncommutative space, where F = dA+A ∧⋆ A.
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3 Differential geometry on κ-Minkowski spacetime

The Weyl algebra or Poincaré-Weyl algebra pw = span{Mµν , Pµ,D} is the extension of the

Poincaré algebra with the dilatation generator D. It is described by the following set of

commutators and structure constants:

[Mµν ,Mρλ] = i(ηµλMνρ − ηνλMµρ + ηνρMµλ − ηµρMνλ), (3.1)

[Mµν , Pρ] = i(ηνρPµ − ηµρPν) , [Pµ, Pλ] = 0, (3.2)

[D,Pµ] = iPµ , [D,Mµν ] = 0 , (3.3)

where ηµν is the flat Minkowski space metric. The representation of the Poincaré-Weyl gen-

erators as infinitesimal transformations on Minkowski spacetime is given by the differential

operators

Mµν = i (xµ∂ν − xν∂µ) ; Pµ = −i∂µ ; D = −ixµ∂µ . (3.4)

The universal enveloping algebra of the Poincaré-Weyl algebra is Upw. This is a Hopf

algebra with coproduct counit and antipode as recalled at the beginning of section 2.1 (in

particular ∆(u) = u⊗ 1 + 1⊗ u, ε(u) = 0, S(u) = −u for all u ∈ pw).
We study a twist deformation of the Poincaré-Weyl algebra that leads to the noncom-

mutative algebra of κ-Minkowski spacetime. We recall that the coordinates of κ-Minkowski

spacetime satisfy the commutation relations

x0 ⋆ xj − xj ⋆ x0 =
i

κ
xj , xi ⋆ xj − xj ⋆ xi = 0 (3.5)

where i and j run over the space indices 1, . . . n − 1. For this twist deformation we list

the corresponding quantum Lie algebra pwF , the quadratic Casimir operator ηµνPF
µ PF

ν of

the Poincaré subalgebra, the commutation relations of the algebra of exterior forms, the

differential calculus and the (massless) fields wave equations, including the Dirac equation.

We show that the d’Alembert opertor obtained from the quadratic Casimir coincides with

the Laplace-Beltrami operator obtained from the differential and the Hodge ∗F -operators.

3.1 The Jordanian twist

The Jordanian twist of the Poincaré-Weyl algebra is defined by [15]:

F = exp (−iD ⊗ σ) ; σ = ln

(

1 +
1

κ
P0

)

. (3.6)

Its inverse is F−1 = exp (iD ⊗ σ). Equivalent expressions are

F−1 =
∞
∑

n=0

1

n!
(iD)n ⊗ σn and F−1 =

∞
∑

n=0

(iD)n

n!
⊗
(

1

κ
P0

)n

(3.7)

where Xn = X(X − 1)(X − 2) . . . (X − (n − 1)) is the so-called lower factorial. The last

expression is the power series expansion in 1
κ
of F−1 and follows observing that F−1 is
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analytic in D and P0 and that D ⊗ 1 commutes with 1⊗ P0:

F−1 = e(iD⊗1)(1⊗σ) = (e1⊗σ)iD⊗1 = (e1⊗ln(1+ 1
κ
P0))iD⊗1 =

(

1⊗
(

1 +
1

κ
P0

))iD⊗1

(3.8)

=
∞
∑

n=0

(

iD⊗1
n

)

(

1⊗ 1

κ
P0

)n

=
∞
∑

n=0

(

iD

n

)

⊗
(

1

κ
P0

)n

=
∞
∑

n=0

(iD)n

n!
⊗
(

1

κ
P0

)n

,

where
(

X

n

)

= Xn

n! denotes the generalized binomial coefficient.

3.2 Quantum Poincaré-Weyl Lie algebra

The quantum Lie algebra pwF has twisted generators (cf. (2.8), (2.9)):

PF
µ = Pµ

1

1 + 1
κ
P0

= Pµe
−σ , MF

µν = Mµν , DF = D . (3.9)

In order to obtain the first expression use that F−1 = exp(−iD ⊗ −σ) and that −iD

on momenta acts as the identity operator: −iD(Pµ) = [−iD, Pµ] = Pµ, hence F−1 =

exp(−iD ⊗−σ) = exp(1⊗−σ) when we consider the adjoint action of its first leg on Pµ.

Similarly, MF
µν = Mµν and DF = D, because D acts trivially on Mµν and D. The inverse

of the universal R-matrix is

R−1 = FF−1
21 = e−iD⊗σeσ⊗iD . (3.10)

In order to calculate the twisted commutators we first compute

R−1(Pρ ⊗Mµν) = Pρ ⊗ eσ(Mµν) = Pρ ⊗Mµν + Pρ ⊗
1

κ
[P0,Mµν ]

R−1(Pµ ⊗D) = Pµ ⊗ eσ(D) = Pµ ⊗D − Pµ ⊗ i

κ
P0 (3.11)

and R−1(Mρσ⊗Mµν) = Mρσ⊗Mµν , R−1(Pν ⊗Pµ) = Pν ⊗Pµ, R−1(Mµν ⊗D) = Mµν ⊗D.

From (3.11) it immediately follows the nontriviality of the twisted commutators (cf. (2.11))

[MF
µν , P

F
ρ ]F = MF

µνP
F − PF

ρ MF
µν − PF

ρ

1

κ
([P0,Mµν ])

F ,

[DF , PF
µ ]F = DFPF

µ − PF
µ DF + PF i

κ
P0 , (3.12)

while the remaining twisted commutators are usual commutators. Use of (3.9), of the

identities [Mµν , e
−σ] = −e−2σ[Mµν , e

σ] = −e−2σ[Mµν ,
1
κ
P0], [D, e−σ] = −e−2σ[D, eσ] =

−e−2σ i
κ
P0 and of the undeformed Poincaré-Weyl Lie algebra relations then leads to the

pw
F quantum Lie algebra

[

MF
µν ,M

F
ρλ

]

F
= i(ηµλM

F
νρ − ηνλM

F
µρ + ηνρM

F
µλ − ηµρM

F
νλ), (3.13)

[

MF
µν , P

F
ρ

]

F
= i(ηνρP

F
µ − ηµρP

F
ν ) , [PF

µ , PF
λ ]

F
= 0 (3.14)

[

DF , PF
λ

]

F
= iPF

λ ,
[

DF ,MF
µν

]

F
= 0 . (3.15)
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Notice that the structure constants are undeformed; this is also the case for the Moyal-Weyl

noncommutative Minkowski space [26, section 7.7], in general however this does not hold,

as the example of the twisted quantum Lorentz Lie algebra in [36, eq. (6.65)] shows.

We complete the description of the quantum Lie algebra pwF by listing the twisted

coproduct and the antipode on the generators4

∆F
(

MF
µν

)

= MF
µν ⊗ 1 + 1⊗MF

µν +
1

κ
DF ⊗

(

τµP
F
ν − τνP

F
µ

)

(3.22)

∆F
(

PF
µ

)

= PF
µ ⊗ 1 + e−σ ⊗ PF

µ (3.23)

∆F
(

DF
)

= 1⊗DF +DF ⊗ e−σ (3.24)

SF
(

MF
µν

)

= −MF
µν +

1

κ
DF

(

τµP
F
ν − τνP

F
µ

)

eσ (3.25)

SF
(

PF
µ

)

= −PF
µ eσ (3.26)

SF
(

DF
)

= −DFeσ (3.27)

Where we have set τµ = (1, 0, . . . 0), τµ = ηµντ
ν , and eσ is here seen as dependent on PF

0 via

eσ = 1 +
1

κ
P0 =

1

1− 1
κ
PF
0

. (3.28)

An easy way to proceed in order to prove the twisted coproduct expressions (3.22)–(3.24)

is to recall the general one (2.10) and use the properties

R̄α ⊗ R̄α(Mµν) = fα ⊗ fα(Mµν) = 1⊗Mµν − iD ⊗ 1

κ
[P0,Mµν ]

R̄α ⊗ R̄α(Pµ) = f̄α ⊗ f̄α(Pµ) = e−σ ⊗ Pµ

R̄α ⊗ R̄α(D) = fα ⊗ fα(D) = 1⊗D −D ⊗ 1

κ
P0 . (3.29)

The twisted antipode on the generators can then be easily obtained by applying SF ⊗ id

to (3.24), (3.22) and id ⊗ SF to (3.23) and then recalling the Hopf algebra properties

SF (ξ1F )ξ2F = ε(ξ) and ξ1FS
F (ξ2F ) = ε(ξ).

If we focus only on the algebra part of the quantum Lie algebra pwF we notice that

the bracket [ , ]F closes on the twisted Poincaré generators. However, from the coproduct

4For sake of comparison we list also the twisted coproduct and antipode on the untwisted genera-

tors (3.1)–(3.3) because this is the usual set of generators considered for the Hopf algebra UpwF , even

though they do not span a quantum Lie algebra as defined in i), ii), iii) before equation (2.7).

∆F (Pµ) = Pµ ⊗ eσ + 1⊗ Pµ, (3.16)

∆F (Mµν) = Mµν ⊗ 1 + 1⊗Mµν +
1

κ
D ⊗ (τµPν − τνPµ) e

−σ, (3.17)

∆F (D) = D ⊗ 1 + 1⊗D −
1

κ
D ⊗ Pτe

−σ = 1⊗D +D ⊗ e−σ, (3.18)

SF (Pµ) = −Pµe
−σ, (3.19)

SF (Mµν) = −Mµν +
1

κ
D (τµPν − τνPµ) , (3.20)

SF (D) = −D

(

1 +
1

κ
Pτ

)

= −Deσ . (3.21)
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and the antipode, because of the appearance of the dilatation generator, we see that the

Poincaré generators do not form a quantum Lie subalgebra of pwF . Notice however that

the Lie algebra so(3) of spatial rotations is an undeformed Lie subalgebra of the quantum

Lie algebra pwF (indeed MF
ij = Mij ,∆

F (MF
ij ) = ∆(Mij), S

F (MF
ij ) = S(Mij)). Moreover

the twisted translations PF span a quantum Lie algebra that is a quantum Lie subalgebra

of pwF because the twisted bracket [ , ]
F
, the deformed coproduct ∆F and antipode SF

on translations are just expressed in terms of translations. Explicitly, from (3.14), (3.23)

and (3.26), the quantum Lie algebra of translations reads

[PF
µ , PF

λ ]
F
= 0 , ∆F

(

PF
µ

)

= PF
µ ⊗ 1 + e−σ ⊗ PF

µ , SF
(

PF
µ

)

= −PF
µ eσ (3.30)

with PF
µ =

Pµ

1+ 1
κ
P0

and eσ = 1+ 1
κ
P0 =

1
1− 1

κ
PF
0

. Thus the twisted momenta {PF
µ } generate a

Hopf algebra: the quantum universal enveloping algebra of momenta. All relevant formulae

that in the following we derive for the differential geometry on κ-Minkowski spacetime

and the dispersion relations depend only the quantum Lie algebra of translations PF
µ

summarized in (3.30).

3.2.1 Addition of momenta

From the quantum Lie algebra of momenta we can immediately extract the addition law of

energy and momentum for multiparticle states. It is dictated by the coproduct (3.24) on

the quantum enveloping algebra. In particular the total energy-momentum pFµ
tot

of two

free particles respectively of momenta pFµ and p′Fµ , eigenvalues of the energy-momentum

operators PF
µ , is derived from (3.23) to be

pFµ
tot

= pFµ + p′Fµ − 1

κ
pF0 p

′F
µ . (3.31)

We read from this expression a typical feature of addition of momenta derived from quan-

tum groups, cf. [37], the total momentum is not invariant under the exchange of the two

particles. This however does not mean that there is no symmetry between the states s

and s′ of the unprimed and primed particle (momentum eigenstates with eigenvalues pF

and p′F ). The two particle states is the tensor product s ⊗ s′. Instead of realizing the

permutation as s⊗ s′ → s′ ⊗ s, it is realized via the appropriate action of the R-matrix as

s ⊗ s′ → R̄α(s′) ⊗ R̄α(s); hence the exchange of the two particles is implemented via the

R-matrix. We remark that the present R-matrix R = F21F−1 is obtained from a twist 2-

cocycle F and hence it is triangular and provides a representation of the permutation group.

More importantly we notice that the deviation in (3.31) from the usual addition law is

quadratic in the momenta (at all orders in 1
κ
), and not exponential like in κ-Poincaré in the

standard basis [38] of generators as well as in the bicrossproduct basis [39]. Furthermore the

total energy is invariant under the usual permutation of the two particles. These character-

istics should impose less stringent constraints on multiparticle applications of the model.
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3.2.2 Quadratic Casimir operator

Associated with the quantum Lie algebra of momenta {PF
µ } we have the quadratic Casimir

operator

�
F = PF

µ PµF = PµP
µ 1
(

1 + 1
κ
P0

)2 = �e−2σ . (3.32)

The adjoint action of the twisted Poincaré generators on the quadratic Casimir vanishes,

and that of the dilatation generator is as in the classical case:

[

PF
µ ,�F

]

F
= 0 (3.33)

[

MF
µν ,�

F ,
]

F
= 0 (3.34)

[

DF ,�F
]

F
= −2i�F (3.35)

where we have defined [uF , ξF ]F := adF
uF (ξF ) = uF

1F
ξFSF (uF

2F
) for all u ∈ g and ξ ∈ Ug.

It is easy to prove the first relation:
[

PF
µ ,�F

]

F
= PF

µ �
F + e−σ

�
FSF (PF

µ ) = PF
µ �

F −
e−σ

�
FPF

µ eσ = 0. The other relations can be similarly proven, although the required

algebra is longer. A quicker way is to use that the quantization map D intertwines the

Upw and the UpwF adjoint actions, see [33, Theorem 3.10] (with A = Upw), so that

D([MF
µν ,�]) = [MF

µν ,D(�)]F and D([DF
µν ,�]) = [DF

µν ,D(�)]F = −2i�F . Then from

[MF
µν ,�] = [Mµν ,�] = 0 and [DF

µν ,�] = [Dµν ,�] = −2i� we immediately obtain (3.34)

and (3.35).

Instead of defining the quadratic Casimir �F = PF
µ PµF as the square (with the usual

flat Minkowski metric) of the twisted momenta, one could deform the usual Casimir op-

erator using the quantization map (2.9). This deformation procedure leads to the same

quadratic Casimir �F ,

D(�) := f̄α(�) f̄α = �e−2σ = �
F (3.36)

indeed −iD(Pµ) = Pµ implies −iD(�) = 2� so that F−1 = exp (−iD ⊗−σ) =

exp (2⊗−σ) when we consider the adjoint action of its first leg on �. In section 3.5

we further show that �
F = ∗Fd ∗F d when the quadratic Casimir is represented as a

differential operator on functions.

Finally we observe that the quadratic Casimir �F coincides with the quadratic invari-

ant considered by Magueijo and Smolin in [7]. However the viewpoint on this invariant is

different: there momenta are undeformed while boosts are deformed (and act nonlinearly

in momentum space), here all Poincaré-Weyl generators are twist-deformed: momenta turn

out to be nontrivially deformed PF
µ 6= Pµ while boosts are trivially deformed MF

0j = M0j .

These twisted momenta (rather than the undeformed ones) are given physical relevance

because they close a quantum Lie algebra: that of translations in κ-Minkowski noncommu-

tative space. As we discuss in section 4.3 the physics of the dispersion relations associated

with the Casimir operator �F will then turn out to be different from that considered in [7].

3.3 κ-Minkowski spacetime and differential calculus

Using the representation (3.4) of the Poincaré-Weyl generators as differential operators,

the ⋆-product of two coordinate functions is easily seen to be xµ ⋆xν = µ{F−1(xµ⊗xν)} =
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xµxν− i
κ
xµ∂0x

ν , henceforth the ⋆-commutator of the coordinates satisfies the κ-Minkowski

relations (3.5).

The differential calculus on κ-Minkowski spacetime induced by the Jordanian twist

F is easily described using the basis of 1-forms dxµ. The action of the dilatation and

translation generators is given by the Lie derivative and on these forms it explicitly reads

D(dxµ) = L−ixµ∂µ(dx
µ) = −idxµ , Pµ(dx

µ) = L−i∂µ(dx
ν) = 0 . (3.37)

Since in the Jordanian twist each term f̄α in the second leg of the tensor product F−1 =

f̄α ⊗ f̄α is a power of translation operators it is immediate to see that

f ⋆ dxµ = fdxµ , f ⋆ dxµ ∧⋆ dx
ν = (f ⋆ dxµ) ∧ dxν = fdxµ ∧ dxν

and iterating

f ⋆ dxµ1 ∧⋆ dx
µ2 ∧⋆ . . . dx

µr = fdxµ1 ∧ dxµ2 ∧ . . . dxµr . (3.38)

The star product with functions on the right is however nontrivial

dxµ ⋆ f = dxµf − i

κ
dxµ∂0f = dxµ

(

1− i

κ
∂0

)

f (3.39)

so that

f ⋆ dxµ − dxµ ⋆ f =
i

κ
∂0fdx

µ =
i

κ
∂0f ⋆ dxµ . (3.40)

One can prove the first relation using the form of the twist (3.6) written as a sum (recall

that the twist acts via the Lie derivative on forms):

dxµ ⋆ f =
∑

n

1

n!

(

Lxρ∂ρ

)n
(dxµ)

(

− i

κ
∂0

)n

(f)

= dxµf − i

κ
Lxρ∂ρ (dx

µ) ∂0f +
1

2!

(

i

κ

)2
(

Lxρ∂ρ

)2
(dxµ) ∂2

0f + . . .

= dxµf − i

κ
dxµ∂0f (3.41)

where we used the definition of the lower factorial, i.e. Xn = X(X − 1) . . . (X − n + 1),

and the fact that
(

Lxρ∂ρ

)2
(dxµ) = (Lxσ∂σ − 1)Lxρ∂ρ (dx

µ) = (Lxσ∂σ − 1) d
(

Lxρ∂ρx
µ
)

=

(Lxσ∂σ − 1) dxµ = 0, so that also all the higher order terms vanish. Expression (3.40) for

f = xν has been considered also in [40] (as special case S1 in their equation (18)).

From (3.40) it follows that

f ⋆ dxµ = dxµ ⋆
1

(1− i
κ
∂0)

f = dxµ ⋆ e−σ(f) . (3.42)

Iterating this expression and using associativity of the ∧⋆-product we immediately obtain:

f ⋆ dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µr = dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µr ⋆
1

(

1− i
κ
∂0
)r f . (3.43)
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We now express the exterior derivative on κ-Minkowski spacetime in terms of the

twisted momenta PF
µ , thus confirming that they have the interpretation of quantum in-

finitesimal transformations. Corresponding to the representation Pµ = −i∂µ and the rela-

tion PF
µ = Pµ

1
1+ 1

κ
P0

we have the representation PF
µ = −i∂F

µ , where

∂F
µ :=

1

1− i
κ
∂0

∂µ . (3.44)

The twisted momenta act as quantum infinitesimal translations because for any function

f on κ-Minkowski spacetime we have

df = dxµ ⋆ iPF
µ (f) , (3.45)

i.e., df = dxµ ⋆ ∂F
µ f . Indeed, dxµ ⋆ ∂F

µ f = dxµ ⋆ 1
1− i

κ
∂0
∂µf = dxµ ∂µf = df , where we

used (3.39) and that the exterior derivative is the usual undeformed one (cf. section 2.3).

It is also instructive to see that the deformed Leibniz rule (2.16), that in the present

representation reads, cf. (3.23),

∂F
µ (f ⋆ h) = ∂F

µ (f) ⋆ h+ e−σ(f) ⋆ ∂F
µ (h) , (3.46)

combines with the commutation property (3.42) to give the undeformed Leibniz rule for

the exterior derivative d(f ⋆ h) = df ⋆ h+ f ⋆ dh.

3.4 Hodge star operator

The Hodge ∗F -operator is defined in (2.22) as the quantization ∗F = D(∗) of the Hodge

∗-operator. On an s-form dxµ1∧⋆ dx
µ2 . . .∧⋆ dx

µs = dxµ1∧ dxµ2 . . .∧ dxµs , it reads (in the

last line recall that each term f̄α in the second leg of the tensor product F−1 = f̄α ⊗ f̄α is

a power of translation operators, so that it acts trivially on dxµ1∧⋆ dx
µ2 . . . ∧⋆ dx

µs)

∗F (dxµ1∧⋆ dx
µ2 . . . ∧⋆ dx

µs) = f̄α1

(

∗
(

S
(

f̄α2
)

f̄α (dx
µ1∧⋆ dx

µ2 . . . ∧⋆ dx
µs)

)

)

= ∗ (dxµ1∧⋆ dx
µ2 . . . ∧⋆ dx

µs) . (3.47)

Hence the Hodge ∗F -operator equals the commutative Hodge ∗-operator on the exterior

forms dxµ1 ∧⋆ dxµ2 . . . ∧⋆ dxµs . Furthermore, recalling that the Hodge star ⋆F is right

A⋆-linear we have the general expression:

∗F (dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µs ⋆ f) = ∗ (dxµ1 ∧⋆ dx
µ2 . . . . ∧⋆ dx

µs) ⋆ f ; (3.48)

explicitly, ∗F (dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µs ⋆ f) = 1
(n−s)!ε

µ1µ2...µs
νs+1νs+2...νndx

νs+1 ∧⋆

dxνs+2 . . . ∧⋆ dx
νn ⋆ f . In particular we see that ∗F squares to ± the identity.

It is now easy to show that for an arbitrary form ω ∈ Ωs
⋆ of homogeneous degree s

in n-dimensional κ-Minkowski space we have ∗F (ω) = (1 − i
κ
∂0)

n−2s ∗ (ω). Indeed, use
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of (3.43) and (3.48) gives

∗F (f ⋆ dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µs) = ∗
(

dxµ1 ∧⋆ dx
µ2 . . . ∧⋆ dx

µs
)

⋆

(

1− i

κ
∂0

)−s

f (3.49)

=

(

1− i

κ
∂0

)n−2s

f ⋆
(

∗
(

dxµ1 ∧⋆ dx
µ2 ... ∧⋆ dx

µs
))

=

(

1− i

κ
∂0

)n−2s

∗
(

f ⋆ dxµ1 ∧⋆ dx
µ2 ... ∧⋆ dx

µs
)

.

3.5 Field equations

Scalar fields. The d’Alembert operator �F on κ-Minkowski spacetime can be defined:

(1) as the quadratic Casimir PF
µ PµF (once the generators of translations are represented

as differential operators);

(2) as the quantization of the d’Alembert operator on commutative Minkowski spacetime

D(�) := f̄α(�)f̄α, cf. equation (3.36);

(3) via the Hodge ∗F -operator, as the Laplace-Beltrami operator ∗Fd ∗F d .

These definitions coincide: we already saw in (3.36) the equivalence of the first two defi-

nitions, for the third definition, use of (3.49) gives ∗Fd ∗F dϕ = 1
(1− i

κ
∂0)2

�ϕ showing the

equality with the other two. In conclusion for a (massless) scalar field ϕ we have the wave

equation

�
Fϕ = ∗Fd ∗F dϕ =

1

(1− i
κ
∂0)2

�ϕ = 0 , (3.50)

where � = ∂µ∂
µ.

Notice that this wave equation is equivalent to the undeformed one �ϕ = 0, in-

deed the differential operator 1
(1− i

κ
∂0)2

is invertible. This result agrees with the well

known one for free fields in noncommutative Moyal-Weyl space. There the result is triv-

ial because the ⋆-product is simpler and translation invariant (so that Pµ
FMW = Pµ

where FMW = e−iθµν∂µ⊗∂ν ). The Moyal-Weyl ⋆-product is also compatible with the

usual integral on commutative Minkowski space, thus already the free field actions co-

incide
∫

∂µϕ ⋆ ∂µϕ dnx =
∫

∂µϕ∂
µϕ dnx. Notice however that while in Minkowski space-

time with Moyal-Weyl noncommutativity the equations of motion and the action remain

undeformed also when considering massive scalar fields,
∫

∂µϕ ⋆ ∂µϕ − m2ϕ ⋆ ϕ dnx =
∫

∂µϕ∂
µϕ−m2ϕ2 dnx, this is no more the case in k-Minkowski spacetime, indeed

(�F +m2)ϕ = 0 (3.51)

is not equivalent to (� + m2)ϕ = 0. It is easy to check covariance of (3.51) under the

quantum Lie algebra of momenta PF
µ , indeed

PF
µ

(

(�F +m2)ϕ
)

= (�F +m2)PF
µ ϕ (3.52)

as follows from considering the coproduct (3.23) and recalling the triviality of the quantum

adjoint action of PF
µ on �

F , cf. equation (3.33).
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Among the three considered formulations of the operator �
F , the advantage of the

Laplace-Beltrami operator formulation is that it immediately applies to the case of curved

and noncommutative spacetime. As shown in [18], when a gravitational background is

turned on then the wave equation in noncommutative spacetime in general differs from

that in commutative spacetime.

Spin 1 fields and twisted Maxwell equations. Maxwell equations in κ-Minkowski

spacetime read dF = 0, d ∗FF = 0. The first equation is undeformed because the exterior

derivative is undeformed. Also the second equation is equivalent to the undeformed one

d ∗F = 0, indeed d ∗FF = d(1− i
κ
∂0)

n−4 ∗F = (1− i
κ
∂0)

n−4d ∗F , and since (1− i
κ
∂0)

n−4

is invertible d ∗FF = 0 is equivalent to d ∗ F = 0. This is no more the case if sources are

present or if we are in curved noncommutative spacetime.

Spin 1/2 fields and twisted Dirac equation. The classical Dirac operator in

Minkowski spacetime, /∂, can be written as −γµPµ and is twisted according to the quanti-

zation map D by considering the twisted momenta D(Pµ) = PF
µ , so that we have −γµPF

µ ,

i.e.,

/∂
F
= iγµ∂F

µ = iγµ
1

1− i
κ
∂0

∂µ =
1

1− i
κ
∂0

/∂ . (3.53)

It is immediate to check that the twisted Dirac operator squares to the twisted d’Alembert

opertor (/∂
F
)
2
= �

F . The Dirac equation for a massless spinor field ψ reads

/∂
F
ψ = 0; (3.54)

it is equivalent to the undeformed one because 1
1− i

κ
∂0

is invertible. As in the case of

scalar fields, the massive Dirac field equation on κ-Minkowski however differs from the

undeformed one.

4 Dispersion relations in κ-Minowski spacetime

Given the Jordanian twist F in (3.6), we derived the wave operator �
F for scalar fields

in flat noncommutative spacetime using three different techniques that lead to the same

result: �F as the quadratic Casimir PF
µ PµF , as the deformation D(�) of the commutative

wave operator �, and as the Laplace-Beltrami operator �F = ∗Fd ∗F d.

We are now in a position to study the relation between energy, momentum, frequency

and wave vector and the corresponding dispersion relations. We first study the massless

case considering both the momentum space and the position space perspectives. We sim-

ilarly study the massive case. There, as discussed in the introduction, we can consider

masses as emerging from a conformal anomaly and the κ-Poincaré-Weyl symmetry as a

broken symmetry.

4.1 Massless fields: undeformed dispersion relations and modified Einstein-

Planck relations

The massless wave equation is undeformed, indeed �
Fϕ = 0 is equivalent to �ϕ = 0. The

energy - momentum dispersion relations are PF
µ PµF = 0, and are undeformed as well. We
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immediately have (inserting c and setting PF 2
= PF

i P iF ) dEF

dPF = c. More elegantly, let

ϕ(x, t) be an eigenvector of the energy - momentum operators (cf. (3.4) and (3.9))

PF
µ =

Pµ

1 + 1
κ
P0

=
−i∂µ

1− i
κ
∂0

(4.1)

with eigenvalues pFµ = (−EF ,pF ), i.e., pµF = (EF ,pF ), then ϕ(x, t) is a solution of the

wave equation �
Fϕ = 0 if pFµ p

µF = 0, hence dEF

dpF
= c (with pF the modulus of pF ).

The same result follows if we consider the frequency-wave vector dispersion relations.

To this aim we observe that the wave functions ϕ(x, t) of definite momentum are pro-

portional to ei(kx−ωt), and that they are a solution of the wave equation �
Fϕ = 0 if the

usual undeformed dispersion relation holds, ω2 = c2k2. The group velocity is therefore

undeformed as well, vg = dω
dk = c, and vg = dEF

dpF
.

Finally, evaluation of the energy momentum operator (4.1) on the monochromatic wave

ei(kx−ωt) leads to the modified Einstein-Planck relations

EF =
~ω

1− ω
cκ

, pF =
~k

1− ω
cκ

. (4.2)

If we assume a negative value for the deformation parameter κ then we can define Ep =

−c~κ that we identify with Planck energy. In this case we have

EF =
~ω

1 + ~ω
Ep

, pF =
~k

1 + ~ω
Ep

; (4.3)

these deformed Einstein-Planck relations imply a maximum energy reachable by an ele-

mentary particle: Planck energy. The other choice Ep = c~κ, corresponding to a positive

value of the deformation parameter κ is also possible, in this case we have a maximum

frequency cκ that is associated with infinite energy.

In conclusion, for massless elementary particles we have the usual dispersion relations,

however the Einstein-Planck relations are deformed so that there is a maximum energy

reachable by an elementary particle: Planck energy, or, depending on the sign of the

deformation parameter, a maximum frequency.

4.2 Massive fields

We proceed similarly with the equation for massive fields. An eigenvector ϕ(x, t) of the

energy-momentum operators PF
µ with eigenvalues pFµ = (−EF ,pF ) solves the wave equa-

tion (�F+m2)ϕ = 0 if the usual energy-momentum dispersion relations (EF )2 = (pF )2+m2

hold. Hence, inserting c, dEF

dpF
= c2 pF

EF . The Einstein-Planck and de Broglie relations are as

in (4.2). Therefore for negative deformation parameter we can set Ep = −c~κ and we see

that also massive elementary particles have Planck energy as maximum energy, and corre-

spondingly a maximum momentum. On the other hand, for positive valued deformation

parameter we can set Ep = c~κ and we have the maximum frequency cκ.

The frequency-wave vector dispersion relations are modified to

ω2 − c2k2 =
m2c4

~2

(

1− ω

cκ

)2
; (4.4)
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and therefore they differ from the energy-momentum dispersion relations. In particular

the group velocity at first order in O
(

1
κ2

)

reads

vg =
dω

dk
= c2

k

ω

(

1 +
m2c3

~2ωκ

)

+O
(

1

κ2

)

and differs from dEF

dpF
= c2 pF

EF = c2 k
ω
(cf. (4.2)). It is easy to see from (EF )2 = (pF )2+m2c4

and (4.2) that at first order in the deformation this difference is limited by the ratiomc2/Ep.

The discrepancy between vg and
dEF

dpF
is thus proportional to the particle mass and inversely

proportional to Ep or κ. These are indeed the two scales arising in the breaking of conformal

symmetry scenario discussed in the introduction.

4.3 Relation to Deformed Special Relativity (DSR) theories

It is very interesting to compare the energy-momentum undeformed dispersion relations

result, that we have derived from a general noncommutative differential geometry con-

struction, with previous results in the literature, in particular with the Deformed Special

Relativity (DSR) proposed in [7, 8], also known as DSR2. There, Magueijo and Smolin

consider a nonlinear modification of the action of the Lorentz generators on momentum

space. It is induced by the differential operator U = e
λp0pµ

∂
∂pµ on momentum space itself.

Since it is the exponential of a vector field it is an element, say ϕU, of the group of dif-

feomorphism on momentum space. For f, h functions on momentum space we then have

U(f)(p) = f(ϕU(p)), U(h)(p) = h(ϕU(p)), and from (fh)(ϕU(p)) = f(ϕU(p))h(ϕU(p)) we

immediately obtain U(fh) = U(f)U(h). Hence the action of U is determined by that on

the coordinate functions, that explicitly reads

pµ → U(pµ) =
pµ

1− λp0
. (4.5)

The Lorentz generators M ν
µ = pµ

∂
∂pν

− pν
∂

∂pµ
are correspondingly transformed to

M ν
µ → UM ν

µ U−1 (cf. the adjoint action adU (M
ν

µ ) in (2.2)), explicitly M j
i → M j

i and

M i
0 → M i

0 + λpipµ
∂

∂pµ
[hint: use U ∂

∂pµ
U−1 = (1 − λp0)(

∂
∂pµ

− δµ0λpν
∂

∂pν
)]. Under the

modified action of the Lorentz generators the usual quadratic expression ηµνpµpν is no

more invariant, the new invariant is

U(ηµνpµpν) =
ηµνpµpν
(1− λp0)2

. (4.6)

Upon the identification 1
κ

= −λ, and observing that the translation generators Pµ act

in momentum space via multiplication by pµ, we see from equation (3.9) that the twist

quantization map on momenta

Pµ → PF
µ = D(Pµ) =

Pµ

1 + 1
κ
P0

(4.7)

equals the U transformation map. This holds more in general for functions of momenta,

indeed (Pµ1Pµ2 . . . Pµn)
F := D(Pµ1Pµ2 . . . Pµn) = PF

µ1
PF
µ2

. . . PF
µn

(for a proof just recall the
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derivation of (3.36)), so that (fh)F = fFhF for f and h functions of Pµ, i.e. we recover

the algebra property of U : U(fh) = U(f)U(h).

We have shown that the quantization map F = D corresponding to the Jordanian

twist (3.6) equals, on momentum space, the U transformation introduced in [7]. However

the action of D is independent from the representation used (D acts on the Poincaré-Weyl

generators irrespectively of their representation in momentum or position space), therefore

the present result allows to extend the construction in DSR2 from operators in momentum

space to operators in position space.

In DSR2 the change to the new invariant ηµνpµpν → ηµνpµpν
(1−λp0)2

is interpreted as giving

rise to modified dispersion relations because the physical momenta are considered to be

the usual undeformed ones, see also [37, 41]. Otherwise stated, the transformation Q →
UQU−1 applies only to the Lorentz generators, it does not apply to the whole Poincaré

generators.5 In the present paper we similarly consider the change to the new invariant

ηµνpµpν → ηµνpµpν
(1−λp0)2

, it is written as � → �
F in (3.32), (3.36); and �

F is proven to be

an invariant under quantum Poincaré transformations in (3.33), (3.34). However we follow

a different route from that of DSR theories. We have first singled out the quantum Lie

algebra (3.13)–(3.27) of the quantum group of Poincaré-Weyl (i.e., of the twist deformed

universal enveloping algebra of Poincaré-Weyl). This is generated by PF ,MF
µν , D

F . Then

we have shown in (3.45) that the differential calculus on κ-Minkowski space is defined

in terms of the generators PF , that hence have not only the Lie-algebraic but also the

differential geometry meaning of generators of translations. We therefore conclude that

these are the generators of the Poincaré-Weyl group that encode the physics of energy and

momentum. As shown at the beginning of this section, in terms of these momenta the

dispersion relations for massless and massive particles are undeformed. We hence arrive at

different conclusions with respect to [7], where energy-momentum dispersion relations for

massless particles are undeformed, but for massive particles are deformed.

5 Conclusions

Deformed Special Relativity theories have been considered as phenomenological models

providing an effective description of quantum spacetime. The associated wave equations

can be obtained as wave equations arising in κ-Minkowski spacetime. The relation between

noncommutative spacetimes, dispersion relations and DSR theories depends however on the

different choices and realization of the algebra of momenta and coordinates in noncommu-

tative space. This issue has emerged in particular considering κ-Minkowski as homogeneous

space under the κ-Poincaré quantum symmetry group. There different nonlinearly related

sets of generators of the κ-Poincaré algebra lead to different dispersion relations [42] as well

as different realizations of the κ-Minkowski coordinates [17], see also [43, 44] and [40]. We

resolved the ambiguities associated with the choice of the basis of momenta and coordinates

5Since Pµ on momentum space acts simply as multiplication by pµ, the transformation Q → UQU−1

on momenta reads Pµ → UPµU
−1 =

Pµ

1−λP0
, indeed UPµU

−1(f) = U(pµU
−1(f)) = U(pµ)f =

pµ
1−λp0

f =
Pµ

1−λP0
(f).
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and their realization by singling out the quantum Lie algebra, eq. (2.8), of the given quan-

tum universal enveloping algebra (quantum symmetry group), and by constructing a coor-

dinate independent noncommutative differential geometry (build on the exterior derivative,

the ∗F Hodge star operator, the twisted d’Alembertian �
F = ∗Fd ∗F d). We exemplified

the construction in the case of the Jordanian twist deformed Poincaré-Weyl group with κ-

Minkowski spacetime as its homogeneous space. While the twist depends on the dilatation

generator, all relevant formulae for the differential geometry on κ-Minkowski spacetime and

the dispersion relations depend only the quantum Lie algebra of translations PF
µ , summa-

rized in (3.30). The quantum Lie algebra construction can in principle be carried out also

for the κ-Poincaré group, however it is not canonically determined as in the case of quantum

groups obtained via twists. Strikingly, the example considered leads to the wave equation

studied in DSR2, hence extending it from momentum space to position space. It would be

interesting to further investigate DSR theories and the associated relative locality princi-

ple [45], including the corresponding interpretation of the dispersion relations (see [16] for

a critical discussion), with the perspectives and techniques provided in this paper.
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[30] P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity,

Class. Quant. Grav. 23 (2006) 1883 [hep-th/0510059] [INSPIRE].

[31] P. Aschieri and L. Castellani, An introduction to noncommutative differential geometry on

quantum groups, Int. J. Mod. Phys. A 8 (1993) 1667 [hep-th/9207084] [INSPIRE].

[32] P. Kulish and A. Mudrov, Twisting adjoint module algebras, Lett. Math. Phys. 95 (2011) 233

[arXiv:1011.4758] [INSPIRE].

[33] P. Aschieri and A. Schenkel, Noncommutative connections on bimodules and Drinfeld twist

deformation, Adv. Theor. Math. Phys. 18 (2014) 513 [arXiv:1210.0241] [INSPIRE].

[34] P. Aschieri, Twisting all the way: from algebras to morphisms and connections,

Int. J. Mod. Phys. Conf. Ser. 13 (2012) 1 [arXiv:1210.1143] [INSPIRE].

[35] M. Nakahara, Geometry, topology and physics, second edition, Graduate Student Series in

Physics, Taylor & Francis, (2003) [ISBN-13:978-0750306065].

[36] P. Aschieri and L. Castellani, Bicovariant calculus on twisted ISO(N), quantum Poincaré
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