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of the classical chaos, an expected exponential growth of the OTOC is not found. We also

discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a

box shows that the OTOC can deviate from its classical value at a time much earlier than
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to exhibit the exponential growth.
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1 Introduction and summary

The out-of-time-order correlator (OTOC) is typically defined by

CT (t) ≡ −〈[W (t), V (0)]2〉 , (1.1)

where 〈· · · 〉 represents the thermal average. W (t) and V (t) are operators at time t in

the Heisenberg representation. The OTOC, first introduced in a calculation of a vertex

correction of a current for a superconductor [1], was recently turned to be considered as a

measure of the magnitude of quantum chaos. A naive argument for the relation between

the OTOC and chaos is as follows [2]. Consider position and momentum operators, x(t)
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and p(t), in a quantum system. We can define an OTOC as CT = −〈[x(t), p(0)]2〉. Taking
a naive semiclassical limit, we would be able to replace the commutator [x(t), p(0)] by the

Poisson bracket i~{x(t), p(0)}PB = i~δx(t)/δx(0). For a classically chaotic system with

a Lyapunov exponent λ, we have δx(t)/δx(0) ∼ eλt because of the sensitivity to initial

conditions. Thus, the OTOC should grow as ∼ ~
2e2λt and we can read off the quantum

Lyapunov exponent λ from it. The quantization of a classically chaotic system may provide

a positive quantum Lyapunov exponent of the OTOC. Historically, the nearest neighbor

distribution (NND) for the energy level spectrum has been used to quantify quantum chaos

(See, for example, ref. [3]). For integrable and non-integrable systems, it is considered that

NNDs are given by Poisson and Wigner distributions. The OTOC is expected to be another

measure of quantum chaos. A possible distinction from the classical chaotic system is that

the OTOC does not grow eternally but saturates at the Ehrenfest time tE . The Ehrenfest

time is defined by the time scale beyond which the wave function spreads over the whole

system. It is roughly characterized as a boundary between a particle-like behavior and a

wave-like behavior of the wave function.

In recent years, the OTOC has been regarded as an important observable in the con-

text of AdS/CFT correspondence [4] or quantum gravity. A maximum bound of the quan-

tum Lyapunov exponent was proposed as λ ≤ 2πkBT/~ [2]. The bound was originally

suggested in the context of quantum information around black hole horizons [5, 6] (see

also refs. [7–11]). The Lyapunov bound is saturated by the Sachdev-Ye-Kitaev (SYK)

model [12, 13]: a quantum mechanics of Majorana fermions with infinitely long range dis-

order interactions. Saturation of the quantum Lyapunov bound indicates that the SYK

model describes a quantum black hole through the AdS/CFT correspondence.

In the definition of the OTOC, we consider the thermal average of −[W (t), V (0)]2. The

thermal average is especially important in the context of the AdS/CFT correspondence

since dual field theories for black holes are regarded as a thermal system with the Hawking

temperature. Hence, in this paper, we mainly focus on thermal expectation values. When

we take the thermal average, we need to consider the four point operator [W (t), V (0)]2

instead of the two point operator [W (t), V (0)]. The reason is as follows. Assuming that we

can replace the commutator by the Poisson bracket by a semiclassical limit, [W (t), V (0)]

would also show the exponential growth ∼ eλt. However, its coefficient can be both positive

and negative. By taking the thermal average, their contributions would be canceled. From

the quantum theory point of view, 〈[W (t), V (0)]〉 measures the correlation between W (t)

and V (0). Therefore, the two point function decays as t → ∞ and cannot show the chaotic

behavior.

Since the original calculation of the quantum Lyapunov exponent by Kitaev, there

appeared subsequent study for generalizing the SYK model [14–16].1 However, we are

still missing explicit examples of OTOCs. Do typical chaotic systems show exponential

growth in OTOCs? Can we find any qualitative difference between integrable and chaotic

systems through OTOCs? To answer these problems, we study the OTOC of single particle

1The various properties including the spectral properties, thermodynamical properties, or correlation

functions has also been examined in the SYK model and the tensor model [17–21].

– 2 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
8

1

2

5

10

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Particle in a box

0.1

1

10

100

0 0.5 1 1.5 2 2.5 3

1

10

0 0.05 0.1 0.15

(b) Stadium billiard

Figure 1. The OTOC CT (t) = −〈[x(t), p(0)]2〉 of a particle in a 1D box (a) and that of a billiard

(b). T represents the temperature of the systems. We find a clear distinction between the two: the

OTOC for the particle in a box periodically comes back to its initial value (= 1), while that for

stadium billiard saturates to a constant value. The asymptotic value grows with the temperature.

In the inset of the right panel, we show the early time evolution of the OTOC. We find no clear

exponential growth of the OTOC.

quantum mechanics. First we formulate how to calculate the OTOC for generic quantum

mechanics. In particular, by the reason described above, we choose W = x and V = p

to measure a possible indication of quantum chaos. Based on the formalism, we examine

OTOCs of some popular quantum systems: (i)a harmonic oscillator, (ii)a particle in a

one-dimensional box, (iii)a circle billiard (a particle in a circle-shaped infinite well), and

(iv)a stadium billiard. Former three are known as integrable systems.2 The stadium

billiard [23–27], on the other hand, is one of the most popular and well-studied Hamiltonian

chaotic systems.3

Among our main results, we show two numerical results in figure 1, which shows typical

behavior of the OTOCs. The left panel is a numerical evaluation of the OTOC for a particle

in a 1D box, and the right is that for a stadium billiard. In the figure, we took the unit of

~ = kB = 2m = 1 where m is the mass of the particle. We also set (Length of the box) = 1

or (Area of the billiard) = 1. Our main result in this paper is that

• OTOCs do not show apparent exponential growth even for the stadium billiards at

least for T . 400. This indicates that OTOCs cannot be good indicators for quantum

chaos in billiard systems when we use a numerical method for their estimation.4

Subsequently, we also found following results:

2For the integrable field theory cases, OTOCs have been calculated for the rational conformal field theory

and the Wess-Zumino-Witten model in ref. [22]. The authors found that OTOCs for those system do not

exhibit the chaotic behaviour.
3Our targets are time-independent Hamiltonian systems where energy is conserved. As an example of

time-dependent Hamiltonian systems, an OTOC for a kicked rotor system has been studied in ref. [41].
4If one can estimate the OTOC by an analytic way although it is very unlikely for ordinary chaotic

systems, its exponential growth might be observed in a short time scale.
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• The OTOC of a particle in a box is periodic in time because of its commensurable

energy spectrum, while that of the stadium billiards saturates to a constant value.

• The OTOCs grow with temperature except for the harmonic oscillator. The high

temperature limit does not reproduce the classical value in general. For high tem-

perature, asymptotic or maximum values of OTOCs grow linearly in temperature as

CT ∼ mT × (typical system size)2.

• An analysis of a time evolution of a wave packet in a 1D box shows that the OTOC

deviates from its classical value at the time scale parametrically earlier than the

Ehrenfest time tE.

Organization of this paper. We start in section 1 with an introduction and a summary

of our results obtained in this paper. We formulate how to calculate the OTOCs in a general

quantum mechanical system in section 2. Then in section 3 we evaluate the OTOCs for

integrable examples such as the harmonic oscillator, a particle in a 1D box, and a particle in

a circular billiard. In section 4, after reviewing the classical chaos of the stadium billiards,

we present our numerical results of the OTOCs for the quantum stadium billiards. In

section 5, we study time evolution of a wave packet in a 1D box, to find a deviation of the

OTOC from its classical value at rather early times. Section 6 is devoted for discussions,

with a relation to quantum fidelity and Loschmidt echo. Our appendices include description

on our numerical truncation errors and detailed formulas for the analytic calculation of the

OTOC for a wave packet.

Units in this paper. Throughout this paper, we work with the unit of ~ = kB = 2m = 1,

where m is the mass of a particle. When we consider a particle in the 1D box and the

stadium billiard, we also set (length of the box) ≡ L = 1 and (area of the billiard) ≡ A =

1, respectively. For the billiard, one can easily restore dimensional parameters notifying

Time ∼ 2mA

~
, Energy ∼ ~

2

2mA
, Length ∼

√
A .

For the particle in the box, A is replaced by L2.

2 Out-of-time-order correlators in quantum mechanics

In this section, we propose a formalism to compute the OTOC for general quantum me-

chanics with time-independent Hamiltonian: H = H(x1, · · · , xn, p1, · · · , pn). We consider

the out-of-time-order correlator (OTOC) defined by

CT (t) = −〈[x(t), p(0)]2〉 , (2.1)

where 〈O〉 ≡ tr[e−βHO]/tre−βH . Here we define β = 1/T with the temperature of the

system T . We denoted x = x1 and p = p1 for notational simplicity. Hereafter, we will omit

the argument of Heisenberg operators for t = 0: O ≡ O(0). Taking energy eigenstates as

the basis of the Hilbert space, we can rewrite the OTOC as

CT (t) =
1

Z

∑

n

e−βEncn(t) , cn(t) ≡ −〈n|[x(t), p]2|n〉 , (2.2)
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where H|n〉 = En|n〉. We will refer the OTOC for a fixed energy eigenstate, cn(t), as a

microcanonical OTOC. On the other hand, we will refer CT (t) as a thermal OTOC. Once

we compute microcanonical OTOCs, we can obtain the thermal OTOC by taking their

thermal average.5 Let us rewrite the microcanonical OTOC using matrix elements of x

and p for numerical calculations. Using the completeness relation 1 =
∑

m |m〉〈m|, we
rewrite the microcanonical OTOC as

cn(t) =
∑

m

bnm(t)b∗nm(t) , bnm(t) ≡ −i〈n|[x(t), p]|m〉 . (2.3)

Note that bnm(t) is Hermitian: bnm(t) = b∗mn(t). Substituting x(t) = eiHtxe−iHt and

inserting the completeness relation again, we obtain

bnm(t) = −i
∑

k

(eiEnktxnkpkm − eiEkmtpnkxkm) , (2.4)

where Enm = En − Em, xnm ≡ 〈n|x|m〉 and pnm ≡ 〈n|p|m〉. In this expression, there

are matrix components of p. They are not desirable since numerical derivatives of wave

functions lose the numerical accuracy. For a natural Hamiltonian with the form,

H =
N
∑

i=1

p2i + U(x1, · · · , xN ) , (2.5)

we can express pnm using xnm. From eq. (2.5), we have [H,x] = −2ip. Applying 〈m| · · · |n〉
to the both sides of the equation, we obtain

pmn =
i

2
Emnxmn . (2.6)

Substituting this expression into eq. (2.4), we have

bnm(t) =
1

2

∑

k

xnkxkm(EkmeiEnkt − Enke
iEkmt) . (2.7)

Therefore, once we know the matrix elements of x and the energy spectrum En, we can

compute OTOCs through eqs. (2.7), (2.3) and (2.2).

For actual numerical calculations, we need truncation for the summations in

eqs. (2.7), (2.3) and (2.2). In appendix A, we check that our results do not depend on

the truncation when we take the truncation cut-off sufficiently large.

3 Integrable examples

3.1 Harmonic oscillator

For concreteness, we will show some explicit calculation for the OTOC in integrable sys-

tems. One of the simplest integrable examples is the 1D harmonic oscillator,

H = p2 +
ω2

4
x2 . (3.1)

5In the definition of the thermal OTOC in ref. [2], the fourth roots of the thermal density matrix,

y = (e−βH/Z)1/4, are inserted between the operators. In this paper, on the other hand, we just take an

ordinary thermal average as in eq. (2.2), which gives another natural definition of the thermal OTOC.
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Although OTOCs for the harmonic oscillator have been already studied in ref. [28], we

compute them again using the formalism in the previous section. The energy spectrum

and matrix elements of x is given by

En =

(

n+
1

2

)

ω , xnm =
1√
ω
(
√
mδn,m−1 +

√
m+ 1δn,m+1) , (3.2)

where n,m = 0, 1, 2, · · · . Substituting above expressions into eq. (2.7), we have

bnm(t) = δnm cosωt . (3.3)

Therefore, from eqs. (2.3) and (2.2), we obtain OTOCs as

cn(t) = cos2 ωt , CT (t) = cos2 ωt . (3.4)

They are periodic functions whose periodicity is ∆t = π/ω. They do not depend on energy

level n or temperature T . We will find that this is a special property only for the harmonic

oscillator amongst our examples.

As in ref. [28], one can also get the same result using the explicit expression of the

Heisenberg operators:

x(t) = x(0) cosωt+
2

ω
p(0) sinωt , p(t) = p(0) cosωt− ω

2
x(0) sinωt . (3.5)

From the explicit solution, we have [x(t), p(0)] = i cosωt and OTOCs are given as eq. (3.4).

This method is not useful for other cases since it is difficult (or impossible) to obtain explicit

expressions of Heisenberg operators for a general Hamiltonian.

3.2 Particle in a box

One of the other integrable examples is a particle in a 1D box. The Hamiltonian for the

one-dimensional case is

H = p2 + Vbox(x) , Vbox(x) =

{

0 0 < x < 1

∞ else
. (3.6)

Eigenfunctions and eigenvalues are given by

ψn =
√
2 sinπnx , En = π2n2 , (3.7)

where n = 1, 2, · · · . The matrix elements of x are written as

xnm =







1
2 (n = m)
1−(−1)n+m

π2

[

1
(n+m)2

− 1
(n−m)2

]

(n 6= m)
. (3.8)

Although we know exact expressions of x and energy eigenvalues, it would be impossible

to carry out the summation in eq. (2.7) analytically. So, we evaluate bnm(t) and cn(t)

numerically with truncation n,m ≤ Ntrunc = 100 and compute OTOCs. In figures 2

and 1(a), we show microcanonical and thermal OTOCs, respectively. Note that the energy

– 6 –
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Figure 2. Microcanonical out-of-time-order correlators for the particle in a 1D box (L = 1).

spectrum for the particle in a box is commensurable: En is proportional to the integer

n2. By using eq. (3.8), one can show that the all Ekl appearing in r.h.s. of eq. (2.7)

become π2× odd integer and thus, OTOCs have periodicity ∆t = 1/π. For large n,

microcanonical OTOCs become large and tend to oscillate since high frequency modes

become relevant in eq. (2.7). High frequency oscillations seem to be suppressed in the

thermal OTOC. The thermal OTOC also tends to be large at high temperature. We

have found that the maximum of the thermal OTOC increases linearly as a function of

T : maxCT ≃ 0.1672 × 2mTL2 (mTL2 ≫ 1) where the size of the box L and the mass of

the particle m are restored. We have also checked that the time average of the OTOC is

given by

C̄T ≃ 0.0836× 2mTL2 (mTL2 ≫ 1) , (3.9)

where C̄T = limτ→∞
∫ τ
0 dtCT (t)/τ .

For the particle in a 2D square box, V (x, y) = 0 (0 < x < 1, 0 < y < 1), ∞(else), we

can obtain the same result for the thermal OTOC. Eigenstates in the 2D box are completely

separable as |nx〉|ny〉, so the operator [x(t), p(0)]2 does not operate to |ny〉. Therefore, the
existence of the y-direction is completely irrelevant for calculating the thermal OTOC.

3.3 Circle billiard

As a non-trivial 2D example, we consider a circle billiard:

H = p21 + p22 + Vcirc(x, y) , Vcirc(x, y) =

{

0 x2 + y2 < R2

∞ else
. (3.10)

In this case, the x- and y-directions are not separable unlike the 2D square box. It is

known that classical dynamics of a particle in the circle billiard is integrable. (We will see

that in section 4.1.) We fix the radius of the circle as R = 1/
√
π so that the area of the

billiard becomes unity. Taking polar coordinates x = r cos θ and y = r sin θ, we obtain

exact expressions for eigenvalues and eigenfunctions as

Ekl = πρ2kl , ψkl = NJk(
√
πρklr)e

ikθ , (3.11)

– 7 –
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Figure 3. Out-of-time-order correlators for the circle billiard.

where k ∈ Z and l ∈ {1, 2, · · · }. Jk is the Bessel function of the first kind and ρkl represents

its l-th root, i.e. Jk(ρkl) = 0. The normalization factor is given by N−1 = πJk+1(ρkl).

The energy spectrum for the circle billiard is not commensurable. It is only asymp-

totically commensurable: it tends to be commensurable for high energy because of

ρkl ≃ (k/2 + l)π for l ≫ 1. Although eigenvalues and functions are labeled by two in-

tegers k and l, we relabel them by a single integer n in ascending order of Ekl and denote

them as (En, ψn). The matrix elements of x can be obtained from

xnm =

∫ 1/
√
π

0
rdr

∫ 2π

0
dθ ψ∗

n r cos θ ψm . (3.12)

We can carry out the integration of θ analytically. We perform the numerical integration

along r-direction and obtain the matrix elements. Substituting the matrix elements and

energy eigenvalues into eq. (2.7) and using eq. (2.3), we obtain OTOCs.

Figure 3 shows the microcanonical and thermal OTOCs for the circle billiard. The

microcanonical OTOCs seem to be non-periodic and tend to be larger for a larger energy

level n. We can also find “dips” in the microcanonical OTOCs: for example, for n = 40

and 100, they become small (cn ∼ O(1)) around at t ≃ 0.8 and t ≃ 1.4, respectively. In the

thermal OTOCs, we can also find similar dips around at t ≃ 0.8. We will see that, for the

stadium billiard, the dip does not appear in OTOCs. The dips in OTOCs would originate

from the asymptotically commensurable property of the spectrum and be reflecting the

integrability of the systems.

4 Non-integrable example: stadium billiards

4.1 Classical mechanics of stadium billiards

As a typical example of the non-integrable (chaotic) system, we consider a stadium bil-

liard [23–27]:

H = p21 + p22 + Vstad(x, y), Vstad(x, y) =

{

0 (x, y) ∈ Ω

∞ else
. (4.1)

– 8 –
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Figure 4. A typical trajectory of a classical particle in the stadium billiard with a/R = 1. The

maximum Lyapunov exponent vs deformation parameter a/R for fixed area of the stadium and

velocity of the particle, A = v = 1.

The domain Ω is shown in figure 4(a). We denote radii of semicircles as R and the length

of straight lines as 2a. Let us revisit the classical dynamics of the particle in the billiard.

Inside the stadium, the particle moves freely with a constant velocity. At the boundary of

the stadium, the particle is reflected elastically. Figure 4(a) also shows a typical trajectory

of the particle in the stadium. We can find the chaotic behavior.

One of the most characteristic behavior in chaotic systems is the sensitivity to initial

conditions: a tiny deviation of the initial condition causes a significant difference in the

future. The Lyapunov exponent is a useful quantity to measure the strength of the sen-

sitivity to initial conditions. Denoting the phase space variable as X(t), we consider its

linear perturbation: X(t) → X(t) + δ(t). If X(t) is a chaotic solution, because of the

sensitivity to initial conditions, the perturbation expands exponentially as δ(t) ∼ eλt. The

growing rate λ is called Lyapunov exponent. A positive Lyapunov exponent is the signal

of chaos.

In figure 4(b), we show the Lyapunov exponent as a function of the deformation pa-

rameter a/R.6 Here, we took the unit of v = A = 1, where v is the velocity of the particle

and A = πR2 + 4aR is the area of the stadium. From the dimensional analysis, we can

easily restore v and A by replacing λ →
√
Aλ/v. The Lyapunov exponent is zero at the

circle limit a/R = 0. Hence, the classical circle billiard is integrable. For positive a/R, λ

increases quickly and reaches maximum value around at a/R ∼ 1.3. The rough estimation

of the Lyapunov exponent is

λ ∼ v√
A

, (a/R ∼ 1) , (4.2)

where v and A are restored. In case of the dynamical billiard, the Lyapunov exponent is

proportional to the velocity v, apparently. (The frequency of collisions is proportional to

the velocity.) In the squeezed limit a/R → ∞, the particle does not have any chance to

6The boundary condition for the perturbation δ(t) at elastic hard collisions has been studied in ref. [29].

We computed the time evolution of δ(t) using the boundary condition.
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Figure 5. Eigenvalues of the quantum stadium billiard with a/R = 1.

hit the semicircles of the stadium. Thus, λ also approaches zero in this limit. This result

is consistent with earlier calculations of Lyapunov exponents in refs. [27, 29, 30].

4.2 Quantum mechanics of stadium billiards

As the quantum version of the dynamical billiard, we consider the time-independent

Schrödinger equation [−∆ + Vstad(x, y)]ψn = Enψn [31]. To determine the eigenvalues

and eigenfunctions, we used the Mathematica standard package, NDEigensystem, which

solves eigenvalue problems of linear differential operators using the finite element method.

From the Weyl’s law [32], the “smooth” part of the energy eigenvalue is written as

En
smooth =

4π

A
n+

(4π)1/2∂A

A3/2

√
n , (4.3)

where ∂A is the length of the boundary of the stadium. In figure 5, we plot the fluctuating

part of eigenvalues, En−En
smooth, for the quantum stadium billiard with a/R = 1. Eq. (4.3)

is useful for rough estimation of the energy spectrum. In figure 6, we show eigenfunctions

of the quantum billiard with a/R = 1. In our numerical calculations for OTOCs, we use

eigenstates with n ≤ 400. In appendix A, we checked that this truncation is sufficiently

large to see OTOCs for T . 400.

It is known that the Eherenfest time, at which the wave function spreads over the whole

system, becomes quite small for the chaotic system [36–39]. To illustrate it, we consider

the macroscopic billiard: m = 1 kg, A = 1 m2 and v = 1 m/s. For these parameters, from

eq. (4.2), the Lyapunov exponent is estimated as λ ∼ 1 Hz. Such billiard seems sufficiently

classical, but actually, there is tiny uncertainty in its position and momentum. Let us take

the uncertainty as ∆x ∼ 10−17 m and ∆p ∼ 10−17 kg m/s so that the uncertainty principle

is saturated: ∆x∆p ∼ ~. In the chaotic system, the wave packet of the particle would

exponentially spread as ℓ(t) ∼ ∆xeλt. When the size of the wave packet becomes the same

order as the system size, L ∼ 1 m, a quantum interference effect becomes significant. The

Eherenfest time is estimated as tE ∼ λ−1 ln(L/∆x) ∼ 40 s. So even if we start from the

extremely localized wave packet, just after one minute, the system becomes completely

quantum. This behavior is different from what we find in nature. The problem was that
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(a) n = 1: E = 2.27× 101 (b) n = 2: E = 3.80× 101 (c) n = 7: E = 1.24× 102

(d) n = 50: E = 7.28× 102 (e) n = 200: E = 2.72× 103 (f) n = 400: E = 5.29× 103

Figure 6. Eigenfunctions of the quantum billiard with a/R = 1 for n = 1, 2, 7, 50, 200, 400.

Corresponding eigenvalues are shown below each figures.

we assumed that the system is isolated from the environment. Once we take into account

the weak interaction between the system and environment, decoherence is caused and “the

decoherence suppresses the quantum suppression of the chaos” [36]. For instance, the

emergence of the classical chaos due to the decoherence is discussed by considering the

continuous quantum measurement [40].

In this paper, we consider the isolated quantum billiard. Even for high temperature or

high energy, after the Eherenfest time, the quantum effects will be important and classical

approximation will breakdown. We will revisit this point in section 6.

4.3 Out-of-time-order correlators

From the eigenfunctions, we obtain matrix elements of x as xnm =
∫

Ω dxdy ψnxψm. Sub-

stituting xnm and En into eq. (2.7) and using eq. (2.3), we compute the microcanonical

OTOCs as functions of t for each energy level n. In figure 7, we show the microcanonical

OTOCs for the stadium billiard with a/R = 1. For n = 1, 2, OTOCs look similar to those

for the particle in a box. (See figure 2.) This is because typical scales of the wave functions

for small n are of the same size as that of the system. So, wave functions do not “feel”

the curvature of semicircles of the stadium. For higher n, however, OTOCs become less

recursive than that for the circle billiard and oscillate around constant values at late time.

Taking the thermal average of the microcanonical OTOCs, we compute the thermal OTOC.

In figure 1(b), we show the thermal OTOC for the stadium billiard. For low temperatures,

the lower n mode dominates the thermal OTOC and it looks similar to the microcanonical

OTOC for n = 1. For high temperature, the thermal OTOC increases quickly as a function

of t and approaches a constant value at late time. The magnitude of the oscillation around

the constant value is small compared to the OTOC of the circle billiard. In particular,

we do not observe dips found in the circle billiard. We have done same calculations for

a/R = 0.2i (i = 1, 2, · · · , 10) and found qualitatively similar behavior.

– 11 –
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Figure 7. Microcanonical OTOC for the stadium billiard with a/R = 1.

1
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(a) Stadium billiard (a/R = 1)

1
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0 0.05 0.1 0.15 0.2 0.25 0.3

(b) Circle billiard (a/R = 0)

Figure 8. Early time evolution of thermal OTOCs for the stadium (a/R = 1) and circle (a/R = 0)

billiard.

Can we find an exponential growth in the OTOCs? Figure 8 shows an early time

evolution of thermal OTOCs for stadium and circle billiards. The OTOC for the stadium

billiard does not show a clear exponential growth. At a very early time t . 0.01, one may

be able to argue that there is an exponential region. However, to find the exponential

growth eλt, we need much longer time than 1/λ. (Otherwise, we cannot distinguish the

exponential and linear functions.) Moreover, a similarly-looking behavior can be found

even for the circle billiard. There is no qualitative difference in early time OTOCs between

the stadium and the circle billiards. Our results indicate that, at least for T . 400, we

cannot distinguish integrable and chaotic systems from the early time evolution of the

thermal OTOCs. In ref. [2], it was proposed that the Lyapunov exponent λ defined by

CT (t) ∼ e2λt satisfies a bound λ ≤ 2πT . The thermal OTOC of the stadium billiard does

not show the exponential growth and, in that sense, it trivially satisfies the bound.

We can observe that thermal OTOCs approach constant values at late times. What

determines the asymptotic value? A naive expectation is that the OTOC saturates when

it becomes the “system size”. Since the OTOC has the dimension of ~2, the asymptotic

– 12 –
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Figure 9. (Left) Asymptotic values of thermal OTOC as functions of T for several a/R. (Right)

Plot of their slopes as function of a/R.

value of the OTOC would be given by CT ∼ P 2
sysL

2
sys where Psys and Lsys are the typical

momentum and size of the system. For a thermal system with the temperature T , the

typical momentum would be Psys ∼
√
mT where m is the mass of the particle. Therefore,

our expectation is

CT (t = ∞) ∼ mTL2
sys . (4.4)

We can numerically confirm this relation for the stadium billiard as follows. We evaluate

the asymptotic values of thermal OTOCs from CT (t = ∞) ≃
∫ t2
t2

dtCT (t)/(t2−t1). We took

t1 = 5 and t2 = 10 in actual calculations. Figure 9(a) shows CT (t = ∞) as functions of T

for several choices of the deformation parameter a/R of the stadium shape. Our numerical

results clearly show that CT (t = ∞) linearly depends on T and its slope depends on a/R.

In figure 9(b), we plot the slope CT (t = ∞)/T as function of a/R. It is also given by a

linear function of a/R. Fitting the plot, we obtain

CT (t = ∞) ≃
(

0.0858
a

R
+ 0.0805

)

× 2mTA , (4.5)

where the area of the billiard A is restored. Substituting A = πR2 + 4aR, we can rewrite

above expression as CT (∞) ≃ 0.68(a+0.94R)(a+0.79R)mT . Since the system size of the

stadium is given by Lsys ∼ 2(a+ R), this is consistent with the naive prediction from the

dimensional analysis (4.4). In the limit of R → 0, the system reduces to the particle in a

1D box with L = 2a. For R → 0, we obtain CT (t = ∞) ≃ 0.0858× 2m(2a)2T . This is also

consistent with the time average of the OTOC for the particle in the box (3.9).

5 On the classical limit of the out-of-time-order correlator

5.1 Classical statistics

First we discuss that the classical statistics does not reproduce the high temperature limit

of the OTOCs in general. Using the example of the particle in the 1D box, we can easily

show that classical statistics is not so useful for estimation of the OTOC. In the high
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temperature limit, a naive expectation is that the the thermal average in the OTOC can

be replaced by the integral in the 2D phase space as

Ccl(t) =
1

Zcl

∫

dxdp

2π
e−βH{x(t), p(0)}2PB , (5.1)

where Zcl =
∫

dxdp/(2π) e−βH and { , }PB is the Poisson bracket. For the particle in the

box, the classical solution is explicitly written as

x(t) = x(0) + 2p(0)t , p(t) = p(0) , (5.2)

before the bounce at a boundary. After the bounce, the momentum is reflected as p(t) →
−p(t). We consider the infinitesimal deviation of the initial position fixing the momentum

as (x(0), p(0)) → (x(0) + δx(0), p(0)). By the time evolution, the particle will bounce at

boundaries. Then, the deviation of the position change its signature but the absolute value

is constant: δx(t) = (−1)nδx(0) after n-th bounce. Therefore, we have

{x(t), p(0)}PB =
δx(t)

δx(0)
= (−1)n . (5.3)

Substituting this into eq. (5.1), we obtain

C
(box)
cl (t) =

1

Zcl

∫

dxdp

2π
e−βH{(−1)n}2 = 1 . (5.4)

This classical value is apparently different from the quantum result of the OTOC at a high

temperature shown in figure 1(a).

We can also estimate the classical OTOC for the stadium billiard. From the sensitivity

to initial conditions, we have {x(t), p(0)}PB ∼ eλt. From eq. (4.2), the Lyapunov exponent

is λ ∼ v ∼ p(0) for A = 1.

C
(stad)
cl (t) =

1

Zcl

∫

d2xd2p

(2π)2
e−βp2+|p|t =

1

Zcl

∫ ∞

0

dp

2π
p e

−β
(

p− t
2β

)2
+ t2

4β . (5.5)

Although, for fine-tuned initial conditions, the particle motion can integrable, their measure

would be zero. For t ≫ β, we can replace
∫∞
0 dp by

∫∞
−∞ dp and we have

C
(stad)
cl ∼ teTt2 . (5.6)

This has unusual dependence in t and is again apparently different from the quantum

calculations in figure 1(b).

In the case of the harmonic oscillator, on the other hand, the classical solutions, x(t)

and p(t), are completely identical to eq. (3.5). Therefore, classical statistics gives the same

result as the quantum calculation: C
(harmonic)
cl (t) = cos2 ωt.

5.2 Out-of-time-order correlator for a wavepacket

Why does quantum statistics not approach classical statistics? To answer the question, we

consider a simpler setup: OTOC for a wavepacket in a 1D box. We will show that the

OTOC deviates from its classical value at a time much earlier than the Ehrenfest time.
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The wavefunction of the wavepacket is given by

φ(x) =
1

(2πσ2)1/4
exp

[

− (x− x0)
2

4σ2
+ ik0(x− x0)

]

. (5.7)

We consider the well localized wavepacket in real and momentum spaces:

σ ≪ 1 , k0 ≫
1

σ
. (5.8)

Expanding this wavepacket by the energy eigenstates (3.7), we obtain

|φ〉 =
∑

n

αn|n〉 , αn ≃ i(2πσ2)1/4 e−(k0−πn)2σ2+i(k0−πn)x0 . (5.9)

Using the wavepacket, we consider expectation values of commutator [x(t), p(0)] and its

square as

bφ ≡ −i〈φ| [x(t), p(0)] |φ〉 =
∑

n,m

α∗
n bnm(t)αm , (5.10)

cφ ≡ −〈φ| [x(t), p(0)]2 |φ〉 =
∑

n,m,k

α∗
n bnk(t)bkm(t)αm . (5.11)

Here, bnm(t) has been defined in eqs. (2.4) and (2.7). We know the analytic expression for

the matrix element of x (3.8) and the energy spectrum (3.7) for the particle in a box. We

perform the summation numerically.

We set parameters in the wavepacket as k0 = 3000π, σ = 1/(30π) and x0 = 1/2. For

|n− 3000| ≤ 120, we use the expression in eq. (5.9) as αn. For |n− 3000| > 120, we simply

set αn = 0. Figure 10 shows the time evolution of the wavepacket |φ(t, x)|2. At the early

time, the wavepacket is well localized in the real space and shifts with a constant velocity

v = k0/m = 2k0. The wavepacket is getting spread as time increases. The width of the

wavepacket σt spreads as

σ2
t = σ2 +

t2

σ2
. (5.12)

(See eq. (B.2) in the appendix.) When the width of the wavepacket is the same order

as the system size, a quantum interference effect becomes important. Hence the classical

(particle) interpretation is no longer valid. This time scale is called Ehrenfest time. For

the particle in a box, the Ehrenfest time tE is estimated from σt|t=tE ∼ (system size) ∼ 1

and we have

tE ∼ σ . (5.13)

We evaluate 2- and 4-point OTOCs, bφ and cφ, using the wavepacket. In eqs. (2.7)

and (5.11), as the domain of summation of k, we took |k − 3000| ≤ 1000. In figure 11, we

show the time dependence of bφ and cφ. In the figure, classical predictions for bφ and cφ
are shown by green lines: bclassicalφ = (−1)n and cclassicalφ = 1. For the 2-point OTOC bφ,

the quantum computation from eq. (5.10) nicely coincides with the classical prediction. In

fact, by an analytic calculation in appendix B, we obtain

bφ = erf

[

ℓ(t)√
2σt

]

, (5.14)
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Figure 10. Time evolution of a wave packet in a box ( k0 = 3000π and σ = 1/(30π)).

around at the (2N + 1)-th bounce. Here, ℓ(t) = 2k0t + x0 − (2N + 1) is the difference

between the center of the wavepacket and the right boundary x = 1. Before the Ehrenfest

time σt ≪ 1, the 2-point OTOC is approximated by a step function. Therefore, for a well

localized wavepacket in a box, we have a quantum-classical correspondence:

[x(t), p(0)] ∼ i{x(t), p(0)}PB , (t ≪ tE) . (5.15)

On the other hand, for the 4-point OTOC cφ, we can observe the spiky profile at the

time of the bounce: k0t = 0.25 + 0.5n (n = 1, 2, 3, · · · ). Except for the spiky points, it is

well approximated by the classical prediction. By an analytic calculation in appendix B,

for x0 = 1.2, we obtain

cφ ≃ 1 +

(

42.0σk20 +
6.38

σ3

)

t2 exp

[

−ℓ(t)2

2σ2
t

]

. (5.16)

around at the bounce at the boundary. Spikes in right panel of figure 11 are gaussians

whose widths are given by σt. We focus on the time just on the bounce: ℓ(t) = 0. Then,

from the inequality of arithmetic and geometric means, the spike term in above equation

becomes
(

42.0σk20 +
6.38

σ3

)

t2 ≥ 32.7
k0
σ
t2 (5.17)

The spike term grows to be the same order as the classical value cclassicalφ = 1 by

ts ∼ 0.175

√

σ

k0
. (5.18)

This is sufficiently earlier than the Eherenfest time because of ts/tE ∼ 1/
√
k0σ ≪ 1.

Therefore, for the wavepacket in the box, we would be able to say

[x(t), p(0)]2 ≁ −{x(t), p(0)}2PB , (ts . t ≪ tE) . (5.19)

We need a shorter time scale t ≪ ts to see the quantum-classical correspondence in the

4-point OTOC.
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Figure 11. Time dependence of bφ and cφ. Classical predictions for bφ and cφ are shown by green

lines.

6 Discussion

The OTOC of the stadium billiard does not show the exponential growth. We also found

that classical statistics for the OTOC does not coincide with the quantum calculation even

for the particle in a 1D box.

For the discussion on the disagreement, we have to be careful about the classical limit

of OTOCs because it is expected that the classical behavior shows up only at times earlier

than the Ehrenfest time tE . Let us estimate the Ehrenfest time tE for the thermal system

of the particle in a box. At a temperature T , the typical energy of the particle should be

E ∼ T . So, the typical momentum of the particle is estimated as k0 ∼
√
2mE ∼

√
T .

Although there is no a priori choice for the typical size of a particle σ, it should satisfy

T−1/2 ≪ σ ≪ 1 from the well-localized-condition (5.8). We take the thermal de Broglie

length as the typical size of the particle σ ∼ T−1/2 since this gives the smallest Ehrenfest

time. Then, from eq. (5.13), the Ehrenfest time is estimated as tE ∼ T−1/2. For T ∼ 100,

we have tE ≃ 0.1. In figure 1(a), even if we focus on the time scale of t ≪ tE , the OTOC

disagrees with the classical value Ccl(t) = 1.

We can argue the stadium billiard in a similar manner. For the chaotic system with a

Lyapunov exponent λ, the width of a wavepacket would spread exponentially as σt ∼ σeλt.

The Ehrenfest time, which is estimated from σt|t=tE ∼ 1, is given by tE ∼ λ−1 ln(σ−1). For

a thermal system, the typical velocity is given by v = k0/m ∼
√
T . Then, from eq. (4.2),

the Lyapunov exponent is λ ∼
√
T . Choosing the typical size of the particle as σ ∼ T−1/2

again, we can estimate the Ehrenfest time as tE ∼ T−1/2 lnT . For T = 400, we have

tE ∼ 0.3. In our numerical result of the OTOC given in figure 8(a), we cannot find an

exponential growth for the time region t ≪ tE .

Why do the OTOCs deviate from their classical value at a high temperature and

t ≪ tE? In section 5.2, we found the other time scale ts, at which the quantum-classical

correspondence of the 4-point OTOC is violated, for a wavepacket in a box. We showed

that ts is sufficiently smaller than the Ehrenfest time tE . Although we do not have any

physical interpretation of ts at the moment, the existence of the time scale ts would be an

origin of the distinction between quantum and classical mechanics as for the OTOCs. The
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Figure 12. (a) Loschmidt echo. The dashed line is a time evolution to time t by the Hamiltonian

H ′, while the solid line is that by the Hamiltonian H. (b) Loschmidt echo, to the second order in

perturbation of H ′ −H. The dots represent the perturbation, which could take place anywhere on

the dashed line in (a). We depict the case when the perturbations are at both ends, t = 0 and t. (c) A

time-order correlator, 〈ψ|V̂ Ŵ (t)|ψ〉 = 〈ψ|V̂ eiHtŴe−iHt|ψ〉. (d) An OTOC, 〈ψ|V̂ Ŵ (t)V̂ Ŵ (t)|ψ〉 =
〈ψ|V̂ eiHtŴe−iHtV̂ eiHtŴe−iHt|ψ〉.

time scale ts might stem from the interference effect at the bounce (figure 11). In fact, such

a small time scale does not show up in ref. [41], in which the system without the boundary

was considered.

It has been also known for quantum fidelity or Loschmidt echo (see [42] for a review)

that generally the time region for reproducing the classical Lyapunov behavior is quite

limited. The Loschmidt echo measures how identical the state is to the state once time-

evolved by a Hamiltonian H ′ and then time-evolved backward in time by a slightly different

Hamiltonian H. As shown in figure 12, generic OTOCs are interpreted as a generalization

of the Loschmidt echo.7 Therefore, it is natural that the semiclassical limit of the OTOC

of the billiard does not reproduce the classical Lyapunov behavior, as in the case of the

fidelity.

From asymptotic values of OTOCs for the stadium billiards, we found the empirical

relation for the typical magnitude of the thermal OTOC: CT ∼ mT × (system size)2. This

result indicates that the magnitude of the OTOC does not relate to the magnitude of chaos.

In fact, while the classical Lyapunov exponent has a maximum value around at a/R = 1.3

as in figure 4(b), the magnitude of the OTOC is just given by a linear function in a/R for

fixed A as in eq. (4.5).

By a naive argument in section 1, the OTOC can be related to the classical Lyapunov

exponent via the replacement of the commutator by a Poisson bracket. However, in our

analyses of the quantum stadium billiards, we do not find the exponential growth of the

OTOC. Is there single particle quantum mechanics which shows clear exponential growth in

7This similarity was discussed and further generalized in [43–49], for example to a generalized fluctuation-

dissipation theorem [48].
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the thermal OTOC? Can the quantum Lyapunov exponent saturate the bound provided in

ref. [2]? To answer these questions, we need further study of OTOCs of classically chaotic

systems.

The OTOC for the Sachdev-Ye-Kitaev (SYK) model grows exponentially [12, 13].

What was essential for the exponential growth?8 There are two significant difference be-

tween the SYK and our examples. (1)The OTOC in the SYK model has been calculated

in a large N limit while our examples concern single particle quantum mechanics. (For

O(N) nonlinear sigma model, the Lyapunov exponent is shown to be proportional to 1/N

in ref. [33].) For the large N SYK, we obtain OTOC ∼ 1−cN−2e2πTt+ · · · [8, 34, 35] where
c is a numerical factor. From this result, it is clear that large N is important to see suffi-

ciently long exponential behavior. Why is the large N limit important? In the followings,

we try to give its physical interpretation. For the large N theory, we can divide the system

into two parts, A and B. The part B can be regarded as the “environment” by integrating

out the degree of freedom in B. The interaction between the environment and part A would

cause the decoherence [36–39]. It follows that the system would be classical-like and show

the exponential growth in the OTOC. Indeed, the emergence of the decoherence by taking

the partial trace for the environment have been shown [50, 51]. The coupled systems, each

of them classically shows the chaotic behavior, has also been investigated and shown to

have decoherence effect [52]. (2)The SYK model has the random coupling. The random

coupling is known to enhances the decoherence [53]. Adding to that, it is known that

the wave function is localized in space when the system has random potential (Anderson

localization). The localization of the wave function would be regarded as emergence of

particle nature and thus the exponential growth of the OTOC might be expected since the

presence of the wave nature in our model prevents us to observe the exponential growth.

However, the localization is also known to have negative effect for classicalization since

the diffusion is suppressed due to the localization in the momentum space [54]. (As an

example, the ballistic growth of the chaos in the weakly interacting system with disorder

in refs. [55, 56].) Thus the effect of the randomness on OTOC is still unclear.
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Figure 13. The microcanonical OTOC of the stadium billiard for n = 100. The truncation is

varied as Ntrunc = 125, 150, 200, 400.

A Truncation error

In the several places for evaluation of OTOCs (2.7), (2.3) and (2.2), we need the summation

of infinite terms. In the actual numerical calculations, we have truncated the summation

at n = Ntrunc. In this section, we study the Ntrunc-dependence of OTOCs. Here, we

focus on the stadium billiard with a/R = 1. We consider the microcanonical OTOC with

n = 100. Figure 13 shows the microcanonical OTOC for Ntrunc = 125, 150, 200, 400. The

OTOC nicely converges as Ntrunc increases. For n < 100, we found better convergence

than n = 100. For n > 100, microcanonical OTOCs does not contribute to the thermal

OTOC so much because of the suppression factor exp(−En/T ). (In this paper, we consider

T ≤ 400 for the stadium billiard. For n = 100, the energy eigenvalue is E100 ≃ 1300 and its

contribution is suppressed by exp(−En/T ) ≃ 0.04.) Based on the analysis in this section,

we chose Ntrunc = 400 for most of calculations of stadium billiards.

B Analytic calculation of the OTOC for a wavepacket in a box

B.1 Propagation of a wavepacket in a box

We consider dynamics of a wavepacket in a 1D box: V (x) = 0 (0 < x < 1), ∞ (else).

The initial gaussian wave function is given by eq. (5.7). We consider the well localized

wavepacket satisfying eq. (5.8). We also assume that the center of the wavepacket is

separated from boundaries:

x0 ≫ σ , 1− x0 ≫ σ . (B.1)

Then, we do not have to mind tiny non-zero values of the wave function at boundaries.

For the free particle V (x) = 0, time evolution of the wavepacket is given by

φfree(t, x) = Ufree(t)φ(x)

=
1

(2πσ2)1/4α(t)1/2
exp

[

1

α(t)

{

−(x− x0)
2

4σ2
+ i[k0(x− x0)− k20]

}]

(B.2)
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where α(t) = 1 + it/σ2 and Ufree(t) is the time evolution operator of the free particle:

Ufree(t) = e−ip2t. The absolute square of the wavepacket is given by a gaussian:

|φfree(t, x)|2 =
1

(2πσ2
t )

1/2
exp

[

−{x− (x0 + 2k0t)}2
2σ2

t

]

. (B.3)

where σt is defined in eq. (5.12). The width of the wavepacket spreads as a function of t.

The center of the wavepacket is moving with a constant velocity v = 2k0.

In case of the particle in a box, the dynamics of the wavepacket is given by the “folding

operation” of the free wavepacket as

φ(t, x) = U(t)φ(x) =
∞
∑

m=−∞
[φfree(t, x+ 2m)− φfree(t, 2m− x)]h(x) . (B.4)

where U(t) = exp[−i(p2+V (x))t] and h(x) = θ(x)θ(1−x). One can check that this satisfies

Schrödinger equation i∂tφ = −∂2
xφ and boundary conditions φ(t, x = 0, 1) = 0. Hereafter,

we only consider much earlier time than the Ehrenfest time,

t ≪ tE ∼ σ . (B.5)

For following calculations, it is convenient to introduce the “folding operator” F by

Fχ(x) =
∞
∑

m=−∞
[χ(x+ 2m)− χ(2m− x)]h(x) . (B.6)

Using the folding operator, the time evolution operator for the particle in a box is written as

U(t) = FUfree(t) . (B.7)

Also the Hermite conjugate of the time evolution operator is written as U †(t) = U(−t) =

FUfree(−t) = FU †
free(t). One can easily check following formulae of the folding operator:

Fχ(x+ 2n) = Fχ(x) , (B.8)

Fχ(−x) = −Fχ(x) , (B.9)

where n ∈ Z.

B.2 Operation of x(t) and p(0) to the wavepacket

We consider around (2N + 1)-th bounce of the wavepacket at boundaries: the center of

the free wavepacket xcenter = 2k0t + x0 is in 2N < xcenter < 2N + 2. We also assume

that the wavepacket does not overlap with the left boundary: xcenter − 2N ≫ σ and

2N + 2− xcenter ≫ σ. Then, dynamical solution can be approximated by

φ(t, x) ≃ [φfree(t, x+)− φfree(t, x−)]h(x) , (B.10)

where we define

x+ = x+ 2N , x− = 2N + 2− x . (B.11)
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For the computation of the OTOC, we consider the operation of x(t) and p(0) to

the wavepacket. For the initial gaussian wavepacket, we can rewrite the operation of the

momentum operator as

p φ(x) = −i∂xφ(x) = Aφ(x) , A ≡ 1

2σ2
∂k0 + k0 . (B.12)

The operator A commutes with x and p since it does not contain x and ∂x.

We consider the operation of the Heisenberg position operator x(t) − 1 to the

wavepacket (We consider x(t)− 1 instead of x(t) for the simplicity of the following calcu-

lations.):

[x(t)− 1]φ(x) = U †(t) (x− 1)U(t)φ(x)

≃ U †(t) (x− 1) [φfree(t, x+)− φfree(t, x−)]h(x) .
(B.13)

At the last equality, we used eq. (B.10). By the similar way as the momentum operator,

the operation of (x− 1) to free wavepacket can be written by using k0-derivative as

(x− 1)φfree(t, x±) = ±Bφfree(t, x±) , (B.14)

where

B ≡ −iα(t)∂k0 + ℓ(t) , ℓ(t) ≡ 2k0t+ x0 − 2N − 1 . (B.15)

The operator B commutes with x and p. The introduced variable ℓ(t) represents the

coordinate difference between the center of the free wavepacket x = xcenter and the position

of (2N + 1)-th bounce x = 2N + 1. One can check that the introduced operators A and B
satisfy the “canonical commutation relation”:

[A,B] = i . (B.16)

Using the operator B, we obtain

[x(t)− 1]φ(x) = BU †(t) [φfree(t, x+) + φfree(t, x−)]h(x) . (B.17)

We need to calculate the inverse time evolution of φfree(t, x±)h(x). The strategy is same

as the previous subsection: we consider the inverse time evolution by the free Hamiltonian

U †
free and apply the folding operator F . The propagator of the free particle is given by

K(x, t;x′, t0) =
1

√

4πi(t− t0)
exp

[

i(x− x′)2

4(t− t0)

]

. (B.18)

Using the propagator, we have

U †
free(t)φfree(t, x±)h(x) =

∫ 1

0
K(x, 0;x′, t)φfree(t, x

′
±)

≃
∫ 1

−∞
K(x, 0;x′, t)φfree(t, x

′
±) ,

(B.19)

where x′+ = x′ + 2N and x′− = 2N + 2 − x′. At the last equality, we extended the lower

bound of the integration to −∞ because we assumed that the wavepacket is not around
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the left boundary. Completing the square in the exponent of the integrand, we can rewrite

above expression as

1

(2πσ2)1/4

√

a

π

∫ 1

−∞
exp

[

−a{x′ − 1∓ ξ(x±)}2 + b(x±)
]

, (B.20)

where

a = − 1

4itα(t)
, b(x) = −x− x0

4σ2
+ ik0x ,

ξ(x) = α(t)(x− x0) + ℓ(t) .

(B.21)

Note that we can rewrite (2πσ2)−1/4eb(x±) = φ(x±) in eq. (B.20). Using the error function,9

we have

U †
free(t)φfree(t, x±)h(x) =

1

2
φ(x±)erfc[±

√
aξ(x±)] . (B.23)

Taking the folding operation, we obtain inverse time evolution of the wave function in a

box as

U †(t)φfree(t, x±)h(x) =
1

2
F
{

φ(x±)erfc[±
√
aξ(x±)]

}

=
1

2
F
{

φ(±x)erfc[±√
aξ(±x)]

}

= ±1

2
F
{

φ(x)erfc[±√
aξ(x)]

}

(B.24)

At the second equality, we used the definition of x± (B.11) and the formula of folding

operator (B.8). At the last equality, we used the other formula (B.9). So, we obtain

U †(t)[φfree(t, x+) + φfree(t, x−)]h(x) = F{Φ(x)} (B.25)

where we used erf(−z) = −erf(z) and defined

Φ(x) ≡ −φ(x)erf[
√
aξ(x)] . (B.26)

From eq. (B.17), the operation of x(t)− 1 to the gaussian wavepacket is given by

[x(t)− 1]φ(x) = BF{Φ(x)} . (B.27)

B.3 2-point out-of-time-order correlator

We can easily obtain analytic expression for the 2-point OTOC. The 2-point OTOC is

given by

bφ = −i〈φ|[x(t), p]|φ〉 = −2 Im 〈φ| [x(t)− 1] p |φ〉
= −2 Im 〈φ|U †(t) (x− 1)U(t)A|φ〉 = −2 Im 〈φ(t)| (x− 1)A |φ(t)〉 .

(B.28)

9We define the error functions for z ∈ C as

erf(z) =
2√
π

∫ z

0

dze−z2 , erfc(z) = 1− erf(z) . (B.22)
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At the third equality, we replaced momentum operator by A. We already know the wave

function |φ(t)〉 as in eq. (B.10). Therefore, the 2-point OTOC is written as

bφ ≃ −2Im

∫ 1

−∞
dx (x− 1)[φ∗

free(t, x+)Aφfree(t, x+) + φ∗
free(t, x−)Aφfree(t, x−)] . (B.29)

We neglected the cross terms such as φ∗(t, x+)φ(t, x−) since they oscillate very quickly

as ∼ e±2ik0x and canceled out by the integration. Substituting the explicit expression of

φfee(t, x) (B.2) and introducing x′ = x− 1, we obtain the 2-point OTOC as

bφ = − 1

(2π)1/2σ3
t

∫ 0

−∞
dx′x′

[

(x′ − ℓ)e
− (x′−ℓ)2

2σ2
t − (x′ + ℓ)e

− (x′+ℓ)2

2σ2
t

]

= erf

[

ℓ(t)√
2σt

]

.

(B.30)

At the bounce, the 2-point OTOC changes the signature. Its time scale is given by ∆t ∼
σt/k0. This is consistent with the numerical calculation in figure 11(a).

B.4 Operation of [x(t), p(0)] to the wavepacket

For the analytic calculation of 4-point OTOC, we consider the operation of [x(t), p(0)] to

the wavepacket. From eqs. (B.12) and (B.27), we obtain

[x(t)− 1] p φ(x) = AB F{Φ(x)} ,
p [x(t)− 1]φ(x) = B pF{Φ(x)} .

(B.31)

Note that, in the second line, we cannot replace the momentum operator p by A since it

is not applied to the initial gaussian wavepacket. Thus, the operation of [x(t), p(0)] to the

gaussian wavepacket is given by

Ψ(x) ≡ −i[x(t), p(0)]φ(x)

= −i{[A,B] + B(A− p)}F{Φ(x)}
= [1− iB(A− p)]F{Φ(x)} .

(B.32)

At the last equality, we used eq. (B.16). Now, we consider −iB(A − p)F{Φ(x)}. Here,

F{Φ(x)} is composed of right moving part Φ(x+2m) and left moving part Φ(2m−x). By

a explicit calculation, we can check that the right moving contribution is zero:

B(A− p)Φ(x+ 2m) = 0 . (B.33)

The left moving contribution is given by

−1

2
B(A− p)Φ(2m− x) =

{(

k0 + i
y − x0
2σ2

)

ξ(y)− iα(t)

}

Φ(y)

+
1

πa

(

k0 + i
y − x0
2σ2

)

e−aξ(y)2φ(y) .

(B.34)

where y = 2m − x represents the coordinate before the folding operation. Then, Ψ(x) is

written as

Ψ(x) = ΨR(x) + ΨL(x) , (B.35)
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where ΨR and ΨL represent right and left moving contributions:

ΨR(x) =
∑

m

Φ(y)
∣

∣

y=x+2m
, (B.36)

and

ΨL(x) = −2i
∑

m

[{(

k0 + i
y − x0
2σ2

)

ξ(y)− iα(t)− i

2

}

Φ(y)

+
1√
πa

(

k0 + i
y − x0
2σ2

)

e−aξ(y)2φ(y)

]

y=2m−x

. (B.37)

In the curly bracket of ΨL, −iα(t) − i/2 is negligible. We can see that as follows. In the

expression of k0ξ(y), there is a term of k0α(t)(y − x0). Here, y = 2m − x is outside the

region of the box: y < 0 or y > 1. Thus, from eq. (B.1), we have

|y − x0| ≫ σ . (B.38)

It follows k0|y−x0| ≫ 1 from well localized condition (5.8). Therefore, we obtain a relation:

|k0α(t)(y − x0)| ≫ |iα(t)| > |i/2|. As the result, we can rewrite ΨL as

ΨL(x) ≃ − 2i√
a

∑

m

(

k0 + i
y − x0
2σ2

)

Ierf[
√
aξ(y)]φ(y)

∣

∣

∣

∣

y=2m−x

, (B.39)

where

Ierf(z) ≡ zerf(z) +
1√
π
e−z2 , (B.40)

is the primitive integral of erf(z): dIerf(z)/dz = erf(z).

The expression of ΨL is still complicated. To obtain a simpler expression, we take the

relatively-late-time-approximation:

σ2 ≪ t ≪ σ . (B.41)

The upper inequality is from eq. (B.5). The lower inequality implies that the width of the

wavepacket is much wider than the initial width (σt ≫ σ). Expanding
√
aξ(y) in terms of

σ2/t, we have

√
aξ(y) ≃ iq +

1

2

(

q +
ℓ

σ

)

σ2

t
+

i

8

(

q +
2ℓ

σ

)(

σ2

t

)2

+ · · · . (B.42)

where

q ≡ y − x0
2σ

. (B.43)

From eq. (B.38), we obtain |q| ≫ 1. So, we only need the asymptotic form of the

Ierf[
√
aξ(y)]. For large |z|, the asymptotic expression of the error function is

erfc(z) ∼ e−z2

√
πz

(

1− 1

2z2
+ · · ·

)

. (B.44)
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Using this expansion, we have

Ierf[
√
aξ(y)] ≃ − 1

2
√
πq2

exp

[

q2 − iq

(

q +
ℓ

σ

)

σ2

t
− ℓ2

4σ2

(

σ2

t

)2
]

, (B.45)

where we considered up to second order of σ2/t in the exponent. On the other hand, we

only took into account the leading term outside the exponential. Using above expression,

we can rewrite the left moving contribution as

ΨL(x) ≃ 2
√
2it

(2πσ2)3/4
exp

(

−σ2ℓ2

4t2

)

∑

m

(

k0 + i
q

σ

)

× 1

q2
exp

[

iqσ

{

2k0 −
(

q +
ℓ

σ

)

σ

t

}] ∣

∣

∣

∣

q=(2m−x−x0)/(2σ)

, (B.46)

Similarly, in the expression of ΨR (B.36), for m 6= 0,we can replace erf[
√
aξ(y)] by the

asymptotic expression as

erf[
√
aξ(y)] ≃ i√

πq
exp

[

q2 − iq

(

q +
ℓ

σ

)

σ2

t
− (

σℓ

2t
)2
] ∣

∣

∣

∣

q=(x−2m−x0)/(2σ)

. (B.47)

Note that, for m = 0, q = (x − x0)/(2σ) can be small. So, above expression is not

available. We can see that contributions from m 6= 0 are suppressed by 1/q compared to

m = 0. Therefore, the main contribution for ΨR is m = 0:

ΨR(x) ≃ Φ(x) . (B.48)

B.5 4-point out-of-time-order correlator

The 4-point OTOC is given by

cφ = −
∫ 1

0
dxφ∗(x)[x(t), p(0)]2φ(x) =

∫ 1

0
dxΨ∗(x)Ψ(x)

≃
∫ 1

0
dx[Ψ∗

R(x)ΨR(x) + Ψ∗
L(x)ΨL(x)] .

(B.49)

The cross terms of right and left movers are negligible in the integration. Recall that

ΨR(x) ≃ Φ(x) ≃ F{Φ(x)} = U †(t) [φfree(t, x+) + φfree(t, x−)]h(x) . (B.50)

At the second equality, we used the fact that Φ(y) is suppressed by 1/q = 2σ/(y−x0) ≪ 1

outside the domain of the box. At the third equality, we used eq. (B.25). The right moving

contribution to cφ is given by

∫ 1

0
dxΨ∗

R(x)ΨR(x) =

∫ 1

0
dx{|φ(x+)|2 + |φ(x−)|2} = 1 . (B.51)

Let us consider the left moving contribution Ψ∗
LΨL. As in eq. (B.46), ΨL is written in the

form of
∑

m(· · · ). So, Ψ∗
LΨL is written as

∑

m,n(· · · ). We focus on its cross term of n and
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m. Its exponent is given by

[

iqσ

{

2k0 −
(

q +
ℓ

σ

)

σ

t

}]

q=
2m−x−x0

2σ

−
[

iqσ

{

2k0 −
(

q +
ℓ

σ

)

σ

t

}]

q=
2n−x−x0

2σ

=
i

t
(m− n)(x+ x0 + n−m− 1) (B.52)

From eqs. (5.8) and (B.5), we have 1/t = (1/σ)(σ/t) ≫ 1. So, the exponent is quickly

rotating for m 6= n and the cross terms are negligible in the integral. Therefore, left

moving contribution to cφ is simply given by

∫ 1

0
dxΨ∗

L(x)ΨL(x) ≃
8t2

(2πσ2)3/2
e−

σ2ℓ2

2t2
∑

m

∫ 1

0
dx

(

k20 +
q2

σ2

)

1

q4

∣

∣

∣

∣

q=
2m−x−x0

2σ

(B.53)

We can perform the integral and the summation over m as

∞
∑

m=−∞

∫ 1

0
dx

1

q4

∣

∣

∣

∣

q=
2m−x−x0

2σ

=
16σ4

3

∞
∑

m=−∞

3(2m− x0)
2 − 3(2m− x0) + 1

(2m− x0)3(2m− x0 − 1)3

=
8π3σ4

3

1 + cos2 πx0

sin3 πx0
.

(B.54)

and

∞
∑

m=−∞

∫ 1

0
dx

1

q2

∣

∣

∣

∣

q=
2m−x−x0

2σ

=
∞
∑

m=−∞

4σ2

(2m− x0)(2m− x0 − 1)
=

4πσ2

sinπx0
. (B.55)

Therefore, we obtain

cφ = 1 +

(

128

π

)1/2{2π3σk20(1 + cos2 πx0)

3 sin3 πx0
+

1

σ3 sinπx0

}

t2e−
σ2ℓ2

2t2

≃ 1 +

{

42.0σk20(1 + cos2 πx0)

sin3 πx0
+

6.38

σ3 sinπx0

}

t2e−
σ2ℓ2

2t2 .

(B.56)

In addition to the classical prediction of the 4-point OTOC, cclassicalφ = 1, we find the

gaussian spike at the bounce.
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