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Abstract: An extensive study of the compact U(1) lattice gauge theory with a higher

derivative gauge-fixing term and a suitable counter-term has been undertaken to determine

the nature of the possible continuum limits for a wide range of the parameters, especially

at strong gauge couplings (g > 1), adding to our previous study at a single gauge coupling

g = 1.3 [1]. Our major conclusion is that a continuum limit of free massless photons (with

the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling,

not necessarily small, provided the coefficient κ̃ of the gauge-fixing term is sufficiently large.

In fact, the region of continuous phase transition leading to the above physics in the strong

gauge coupling region is found to be analytically connected to the point g = 0 and κ̃→∞
where the classical action has a global unique minimum, around which weak coupling

perturbation theory in bare parameters is defined, controlling the physics of the whole

region. A second major conclusion is that, local algorithms like Multihit Metropolis fail

to produce faithful field configurations with large values of the coefficient κ̃ of the higher

derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid

Monte Carlo, although at times slow to move out of metastabilities, generally is able to

produce faithful configurations and has been used extensively in the current study.
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1 Introduction

The Fadeev-Popov gauge-fixing scheme and the resulting Becchi-Rouet-Stora-Tyutin

(BRST) symmetry has been of great importance in perturbative definitions of gauge the-

ories. However, this scheme is not directly applicable to compact gauge fields used in eu-

clidean lattice regulators for non-perturbatively defined gauge theories. Expectation value

of a gauge-invariant operator in a BRST-invariant theory with compact gauge fields returns

an indeterminate 0/0 value [2, 3]; the real-valued ghost field determinant changes sign due

to presence of Gribov copies, and the BRST symmetry ensures an exact cancellation of

contributions with opposite signs. The proposal for a remedy evading the above no-go

situation, in case of non-abelian gauge theory, is the so-called equivariant BRST (eBRST)

scheme that gauge-fixes only the coset space, leaving a nontrivial Cartan subgroup invari-

ant [4, 5]. For the abelian case, a nonperturbative gauge-fixing scheme as proposed by [6, 7]

includes a specially engineered higher derivative (HD) gauge-fixing term in the lattice ac-

tion breaking BRST invariance. Recovery of gauge symmetry in the physical sector is to

be achieved by tuning appropriate counter-terms.

For Yang-Mills theories on a discrete space-time euclidean lattice, Wilson in his seminal

paper [8] introduced a manifestly gauge-invariant formalism, that works equally well for

abelian theories, in terms of a functional integral with a gauge-invariant Haar measure

using group-valued fields on the links of the lattice (so that the algebra-valued gauge

fields are compact). For vector-like theories like QCD and QED, where gauge-invariance

can be maintained on the regulator, Wilson’s gauge-invariant scheme is highly successful,

although gauge-fixing may be necessary for matching to a perturbative renormalisation

scheme like MS. However, given that fermions on the lattice needs to explicitly break
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chiral symmetry [9–12], for chiral gauge theories gauge-invariance is broken on the lattice

regulator.1 In a manifestly local formalism of lattice chiral gauge theories, the standard

Wilson method with a gauge-invariant measure leads to various problems [14, 15]. The

problems arise due to the undesired presence, in such theories, of the longitudinal gauge

degrees of freedom (lgdof ) which become manifest as physical degrees of freedom (as scalar

fields) in a gauge-noninvariant theory such as manifestly local proposals of lattice chiral

gauge theory [16–19]. The interactions of the lgdof with the physical sector can generally

be strong since any point on the gauge orbit is as likely as any other in a gauge-invariant

formalism. The usual method to tackle such situations is to give the lgdof a dynamics

through a particular gauge-fixing mechanism that is expected to control or tame the lgdof.

A general gauge-fixing scheme for compact gauge fields associated with the lattice link

fields, applicable at all strengths of the interaction including nonperturbative values, is

thus very welcome. In addition, a BRST-like general framework has long been considered

a satisfactory way to define a gauge theory.

In this paper, continuing our work from before [1, 20], we present results from our

numerical simulations of nonperturbative gauge-fixing for the abelian case as proposed

in [6, 7]. Our work on the non-abelian case involving eBRST formalism is in progress and

will be reported elsewhere.

The HD gauge-fixing proposal for the abelian gauge theory was studied extensively in

the weak gauge coupling region some time ago [21] with results as anticipated in the pro-

posal. For sufficiently large coefficient (denoted as κ̃ in this paper) of the HD gauge-fixing

term, there is a novel continuous phase transition (called the FM-FMD2 transition in the

literature, FMD being a spatially modulated ordered phase, a novel phase with broken

Euclidean symmetry). When this transition is approached from the FM-side (regular or-

dered phase that respects Euclidean symmetry), the spectrum contains only free massless

photons and the scalar fields (lgdof ) decouple. These results have been explicitly verified

in weak gauge coupling region using both perturbative analysis and through Monte Carlo

importance sampling by numerical simulation.

Strong coupling of the lgdof with chiral fermions is what led to the failure of a preva-

lent class of non-perturbative chiral gauge theory proposal [14, 15]. With the success of

the HD gauge-fixing model of the compact U(1) lattice gauge theory in decoupling the

lgdof, feasibility of manifestly local abelian chiral gauge theories on lattice was shown for

Wilson fermions [22, 23] and also for lattice domain wall fermions [24, 25]. It is worth

mentioning here that, in the standard Wilsonian definition of a lattice gauge theory (that

is, without gauge-fixing), the strong coupling of the unphysical lgdof with fermions (or

with any physical degrees of freedom) in a gauge-noninvariant theory like a lattice chiral

gauge theory, is irrespective of the strength of the usual gauge coupling. In fact, almost

1In a different approach to lattice chiral gauge theory that modifies chiral symmetry on lattice according

to the Ginsparg-Wilson relation [12], one arrives at a link field dependent fermion measure and an exact solu-

tion to the integrability condition on the space of the lattice link fields was obtained in the Abelian case [13].
2FM and FMD stand respectively for ferromagnetic and ferromagnetic directional phases. The nomen-

clature is derived from the phases of the theory in the so-called reduced limit, i.e., when the gauge coupling

tends to zero, leaving the theory to be entirely a HD scalar theory.
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all studies in this area have been done in the so-called reduced model (i.e., in the limit of

gauge coupling going to zero) and the basic problems are already present there.

All the success of the HD gauge-fixing approach for the abelian theory is, so far, mainly

in the reduced limit or in the weak gauge coupling region. The question naturally arises in

a general framework as to what happens when the bare gauge coupling is not necessarily

small. This question gains even more importance with the arrival of the eBRST gauge-

fixing proposal [6, 7] for the manifestly local non-abelian chiral gauge theory on the lattice,

since after partial gauge-fixing in the coset space à la eBRST, finally an abelian part will

remain unfixed. If this is left unfixed, the lgdof will again surface and the chiral theory

will be spoiled, as described above briefly. Hence the machinery of the HD gauge-fixing for

the remaining abelian part will again be necessary and, therefore, a comprehensive under-

standing of the HD gauge-fixing scheme at a broad range of the gauge coupling is desirable.

A first preliminary account in this direction was presented, some time ago, in [20].

The novel FM-FMD transition, that was responsible for the decoupling of the lgdof and

the emergence of the original gauge symmetry, was still found to be present at stronger

gauge couplings, with bare values larger than unity. With large gauge couplings, the FM-

FMD transition was first order for small values of κ̃ (coefficient of the HD gauge-fixing

term). Only at large κ̃, the transition was found to be continuous, with a tricritical point

separating it from the first order transition. However, the nature of the possible continuum

limit while approaching the continuous part of the transition from the FM-side was not

studied. As a result the emerging physics at this transition was not clear.

Only recently, as mentioned in [1], we have realised the limitations of the configuration-

generating algorithm, multihit Metropolis (MM), used in all earlier studies in the weak

gauge coupling region [21] and also in the earlier work at strong coupling [20]. As we shall

see in the next section, the HD gauge-fixing term involves the square of the gauge-covariant

lattice laplacian, and as a result the action density at a lattice site involves significantly

more lattice links than the usual Wilson plaquette. For a local updating algorithm like the

MM, the accept/reject step is incorporated after each local update of the field. As a result,

unless the coefficient κ̃ of the HD-term is sufficiently small, the algorithm would struggle

to generate legitimate field-configurations. With stronger gauge couplings, the physically

interesting continuous FM-FMD phase transition takes place only at larger values of κ̃, and

this leads to the failure of the MM algorithm. In this paper, we shall give a more detailed

account of why we needed to abandon MM, irrespective of the number of hits and present

a comparison with the Hybrid Monte Carlo (HMC), a global algorithm, generally adopted

for generation of field configurations in this paper.

In [1], results of the phase diagram and the emerging physics at the continuous part

of the FM-FMD transition obtained with the newly employed HMC algorithm for the HD

action were presented only at one value of the strong gauge coupling, viz., g = 1.3. The

current work aims at a consistent and comprehensive picture applicable in general for a

wide range of parameters to determine especially how the strong gauge coupling phase

diagram gradually emerges from that of the weak gauge coupling region and how the two

regions are related, if at all.
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The main result of this paper is that the Lorentz covariant physics emerging in the

strong gauge coupling region, by approaching the FM-FMD transition from the FM-side, is

actually governed by that at the phase transition at g = 0, κ̃→∞ and κ ∼ 0, κ being the

coefficient of a dimension-2 mass counter-term required to recover gauge symmetry (In the

weak gauge coupling limit g = 0, the action has a unique global minimum). The paper also

establishes the inadequacy of a local algorithm like MM for larger κ̃ and bigger volumes, by

comparing results with the HMC algorithm at different regions of the coupling parameter

space. As remarked above, a tricritical line emerges for g > 1 in the 3-dimensional phase

diagram separating the first order and the continuous FM-FMD transition surfaces. A

detailed investigation of the universality class of the tricritical line is outside the scope of

the current work.

The paper is organised as follows. The next section, i.e., section 2 presents a review

of the main ideas of the HD gauge fixing action for the compact U(1) lattice gauge theory

based on the theory at weak gauge coupling. After briefly describing, in section 3, the

implementation of the force terms during the molecular dynamics trajectory of the HMC

algorithm applied to the gauge-fixing theory with a HD action, and definitions of all quan-

tities measured, we present a comparison in section 4 of the MM and the HMC algorithms.

In section 5, we present results of the phase diagram at several values of the gauge coupling

g including at the end a schematic 3-dimensional phase diagram covering a wide range of

parameters from the weak gauge coupling to the strong gauge coupling regions. We collect

results of various two point functions, and also the average plaquette value in section 6

to understand the physics of the FM phase while approaching the FM-FMD transition at

strong gauge couplings. We present our main conclusions in section 7.

2 The Abelian gauge fixing theory on lattice

In this section, we briefly review the compact U(1) gauge theory with the HD gauge-fixing

term and mention its salient features validated mostly through analytic and numerical

investigations, done earlier, at weak gauge couplings. Detailed accounts are found

in [6, 21, 26].

The euclidean action on a 4-dimensional hypercubic lattice is given by:

S = SW + SGS + Sct. (2.1)

As we shall see in the following, the action S explicitly contains only physical fields

and no ghost fields.3 The gauge symmetry of the first term SW is explicitly broken by the

gauge-fixing second term SGS and also by the third term Sct in the above action.

The first term in (2.1), SW, is the gauge-invariant standard Wilson term containing a

summation over all gauge plaquettes UPµν(x),

SW =
1

g2

∑
x, µ<ν

(1− ReUPµν(x)) , (2.2)

3The compact lattice U(1) gauge fields are self-interacting and in principle the action could include ghost

fields which would then be expected to decouple only in the continuum limit in the standard scenario.
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the plaquette being the smallest Wilson loop around an elementary square at a lattice

point x on the (µ, ν) plane.

The second term in (2.1), SGS, is the Golterman-Shamir HD gauge-fixing term [6, 7]

and is given by

SGS = κ̃

(∑
xyz

�xy(U)�yz(U)−
∑
x

B2
x

)
, (2.3)

where the gauge-covariant Laplacian �xy(U) is given by,

�xy(U) =
∑
µ

(δy,x+µUxµ + δy,x−µU
†
x−µ,µ − 2δxy), (2.4)

and,

Bx =
∑
µ

(Ax−µ,µ +Axµ)2/4, with Axµ = ImUxµ. (2.5)

The third term in (2.1), Sct, generally represents a collection of all possible counter-

terms, needed to ensure recovery of gauge symmetry at a desirable continuous phase transi-

tion. The counter-terms are determined by usual power counting which is validated by the

choice of a gauge in SGS that is expected to be the renormalisable Lorentz covariant gauge

in the continuum. In principle, Sct contains a dimension-2 gauge field mass counter-term,

and five marginal counter-terms, allowed by the exact lattice symmetries [27]. Three of the

five marginal counter-terms are field renormalisation counter-terms for the gauge field, and

the other two counter-terms are to nullify quartic gauge field self-interaction. It has been ar-

gued in [21] that all the marginal counter-terms in this theory can be perturbatively treated.

However, being perturbative, they cannot give rise to a new phase transition. We consider,

Sct = −κ
∑
xµ

(
Uxµ + U †xµ

)
, (2.6)

which is a dimension-2 mass counter-term, as apparent from expanding the lattice gauge

field Uxµ = exp(iagAµ(x)) for small lattice spacing a. As we shall witness later, the

dimension-2 mass counter-term is the one responsible for the FM-FMD phase transition

giving rise to a new universality class near that transition.

It can be explicitly shown [6] that the action (2.1) with the HD gauge-fixing term has

a unique absolute minimum at Uxµ = 1. In the naive continuum limit (i.e., lattice spacing

a↘ 0 in the action), the HD gauge-fixing term becomes the familiar covariant gauge fixing

term

κ̃g2
∫
d4x(∂µAµ)2 = (1/2ξ)

∫
d4x(∂µAµ)2, (2.7)

where ξ is defined as

ξ = 1/(2κ̃g2). (2.8)

The above considerations validate a weak coupling perturbation theory (WCPT) of the

gauge fixed theory with ξ ∼ 1 around g = 0 and large κ̃→∞.

From eq. (2.8), it is clear that, to keep κ̃g2 or ξ of O(1), we need to tune κ̃↗∞ as the

gauge coupling g ↘ 0. In practice, for a given gauge coupling g, it needs to be seen how
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large the coefficient κ̃ of the HD gauge-fixing term needs to be in order for the gauge-fixing

term to take discernible effect. It can be expected that for weak gauge couplings, there

would be no significant effect of gauge-fixing for very small values of κ̃, since the effective

coefficient of the gauge-fixing term given in eq. (2.7) is then really tiny. With increase

of the value of κ̃, but still with weak gauge couplings, gauge fixing can be expected to

take effect, as has been found in investigations. However, what happens at strong gauge

couplings cannot be guessed at all and is the theme of ref. [1] and the current investigation.

Numerical simulations can find out how large κ̃ needs to be for a given g.

The theory is defined by the following functional integral for the partition function,

Z =

∫
DU exp(−S[Uxµ]), (2.9)

with S[Uxµ] given by (2.1) and

DU =
∏
xµ

dUxµ, (2.10)

where dUxµ is the gauge invariant Haar measure.

Writing the gauge non-invariant part of the action (2.1) collectively as

SNI[Uxµ] = Sct[Uxµ] + SGS[Uxµ], (2.11)

let us consider a gauge transformation Uxµ → gxUxµg
†
x+µ (gx ∈ U(1)) in the partition

function (2.9) (remembering that DU and SW are gauge-invariant while SNI[Uxµ] is not),

Z =

∫
DU exp (−SW − SNI[Uxµ]) (2.12)

→
∫
DU exp

(
−SW − SNI[gxUxµg

†
x+µ]

)
(2.13)

=

∫
DgDU exp

(
−SW − SNI[gxUxµg

†
x+µ]

)
(2.14)

=

∫
DφDU exp

(
−SW − SNI[φ

†
xUxµφx+µ]

)
, (2.15)

where in the penultimate step, we multiply each side by
∫
Dg =

∏
x

∫
dgx = 1 (normalised

gauge volume at each site), and in the final step, φx ≡ g†x has been used.

As is apparent from the above steps, under a gauge transformation Uxµ → gxUxµg
†
x+µ,

the gauge non-invariant terms pick up the lgdof, and the theory becomes a scalar-gauge

system with SNI[φ
†
xUxµφx+µ].

The action obtained after the gauge transformation (the so-called Higgs picture)

involves both the gauge fields and the lgdof which are essentially radially frozen scalar

fields φx.

The mass counter-term (2.6) takes the following form in the Higgs picture:

Sφct = −κ
∑
xµ

(
φ†xUxµφx+µ + φ†x+µU

†
xµφx

)
∼ −κ

∑
φ†�(U)φ, (2.16)

which is the usual kinetic term for the scalar field.
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Similarly, the HD gauge-fixing term (2.3) becomes, in the Higgs picture,

SφGS = κ̃
(∑

φ†�2(U)φ−
∑
B2
)
, (2.17)

where,

Bx =
∑
µ

(Āx−µ,µ + Āxµ)2/4, with Āxµ = Im
(
φ†xUxµφx+µ

)
. (2.18)

The total action, in the Higgs picture, thus assumes the form:

Sφ = SW + SφGS + Sφct (2.19)

where the standard Wilson term SW is gauge invariant and hence does not pick up the

lgdof when the functional integral integrates along the gauge orbit.

The gauge invariance as found in the standard Wilson term SW alone is the target

symmetry under the gauge transformations:

Uxµ → gxUxµg
†
x+µ, gx ∈ U(1) (2.20)

However, the total action (2.19) in the Higgs picture has enlarged, unphysical symmetry

under the transformations

Uxµ → hxUxµh
†
x+µ, φx → hxφx, hx ∈ U(1). (2.21)

We would call the local symmetries given by (2.20) and (2.21) respectively as the g-

symmetry (target physical symmetry) and the h-symmetry.

Putting φx = 1 in the expression for the action Sφ in the Higgs picture (2.19) recovers

the action (2.1), called the action in the vector picture. Given the Haar measure (2.10) of

the functional integrals, theories given by the two actions (2.1) and (2.19) are completely

equivalent.

With vanishing κ̃, the theory approaches an abelian gauge-Higgs system.

With zero gauge coupling g = 0, we have Uxµ = 1 for all the links of the lattice. This

is known as the reduced limit. The reduced model is defined by the functional integral,

Zred =

∫
Dφ exp (−S[φ]), (2.22)

with,

S[φ] = −κ
∑
x

φ†x (�φ)x + κ̃
∑
x

{
φ†x
(
�2φ

)
x
− b2x

}
, (2.23)

where bx is the appropriate modification of Bx of eq. (2.18) with Uxµ = 1.

The reduced model action is invariant under the global transformations

φx → hφx, (2.24)

where h ∈ U(1)global is independent of the lattice site.

At κ̃ = 0, the reduced model is just the radially frozen scalar field theory in 4 dimen-

sions with U(1) global symmetry. This is also known as the XY model, or as the non-linear
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sigma model with global U(1) symmetry, in 4 dimensions. The phase diagram of this theory

is well known. At large κ, the system is frozen, i.e., |〈φx〉| = 1 with perfect ferromagnetic

(FM) ordering. As κ is lowered, due to quantum fluctuations, there is a continuous phase

transition of the system at κ = κFM−PM = 0.15 (numerically determined) into a paramag-

netic (PM) phase where |〈φx〉| = 0. Because of the symmetry under κ→ −κ and φx → φstx
where φstx = (−1)

∑
µ xµφx, there is also a continuous transition from the PM phase to an

antiferromagnetic (AM) phase at κ = −κPM−AM = −0.15.

At non-zero κ̃, the reduced model is still symmetric under κ → −κ − 32κ̃, κ̃ → κ̃,

and φx → φstx . At small κ̃, it is reasonable to expect the phase structure to remain

similar to that at κ̃ = 0 with continuous FM-PM and PM-AM phase transitions, except

that κFM−PM and κPM−AM would now depend on the value of κ̃. Analytic and numerical

methods [26] yield results that are consistent with this expectation. As one approaches

the FM-PM transition from the FM-side, the dimensionless vacuum expectation value

|〈φx〉| = a|〈Φx〉| = v decreases (where a and Φ are respectively lattice spacing and scalar

field, both in physical units), and as a result, a radial mode (dimensionful) is developed

dynamically and the unphysical lgdof are manifestly present in the continuum limit as usual

scalar fields. In the reduced limit of lattice chiral gauge theories with fermions that break

chiral symmetry explicitly on the lattice (e.g., Wilson fermions), the scalars couple to the

fermions at such a phase transition through an effective Yukawa coupling and essentially

spoil the chiral nature of the theory. The above is an undesirable outcome, and essentially

leads to the failure of a large class of lattice chiral gauge theory proposals [14, 15]. If a

lattice chiral gauge theory fails to produce chiral spectrum in the reduced limit, there is

no hope in the full theory (g 6= 0 ) with the physical gauge fields back in the action.

The key idea of the non-perturbative gauge fixing proposal for the abelian case is to

give rise to a new universality class where the unphysical degrees of freedom (lgdof ) would

decouple from the physical degrees of freedom in the continuum limit. From the develop-

ment so far, it appears that the large κ̃-region is the place to look for such a possibility.

For the lgdof to decouple from the physical sector, the desired new universality class in the

large κ̃ region is to be identified with restoration of the original (target) g-symmetry (2.20).

As has been found by WCPT around g = 0 and large κ̃, and by doing numerical simulations

at weak gauge couplings [21], this happens at the FM-FMD transition and the spectrum of

the continuum theory, achieved by approaching the FM-FMD transition from the FM-side,

contains only free massless photons.

Following [6], we can gain useful insight into the phase diagram in the region of small

g and large κ̃ by doing a simple-minded calculation. We start from the action (2.1) in the

so-called vector picture, and use the property that the action has an absolute minimum at

Uxµ = exp (iagAµ(x) = 1. Near this point, the action can be expanded in powers g in the

constant field approximation, i.e., by neglecting derivatives of the gauge field. This leads

to an expression for a classical potential density in powers of the gauge coupling g:

Vcl(Aµ) = κ

(
g2
∑
µ

A2
µ + . . .

)
+
g6

2
κ̃

{(∑
µ

A2
µ

)(∑
µ

A4
µ

)
+ . . .

}
, (2.25)

where terms with higher powers of g2 are indicated by the ellipses. The classical potential
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density is expected to be a reasonable approximation at small g. However, as it turns out

from numerical simulations, the classical potential density (2.25) produces a good qualita-

tive picture of the new universality class in regions of the parameter space where the gauge

coupling g is not very small and κ̃ is only sufficiently large, depending on the value of g.

Inspection of the expression for Vcl (2.25) immediately leads to a critical surface defined

by

κ ≡ κFM−FMD(g, κ̃) = 0, (2.26)

where the gauge boson (photon) is rendered massless.

Minimisation of Vcl (2.25) with respect to gAµ shows that the classical potential density

has two different minima at gAµ = 0 for κ ≥ κFM−FMD, and at gAµ = ±
(
|κ−κFM−FMD|

6κ̃

)1/4
for κ < κFM−FMD. Hence, in the quantum theory at small g and large κ̃, it is expected that

tuning κ to κFM−FMD(g, κ̃) signals a new continuous phase transition, within the broken

phase, with a vector condensate as an order parameter:

〈gAµ〉 = ±
(
|κ− κFM−FMD|

6κ̃

)1/4

, ∀µ for κ < κFM−FMD (2.27)

〈gAµ〉 = 0, ∀µ for κ ≥ κFM−FMD (2.28)

The phase with the vector condensate is the novel phase and is called Ferromagnetic Direc-

tional (FMD) phase across all versions of the theory, including the theory in the reduced

limit. Obviously the FMD phase breaks the rotational symmetry, and no Lorentz covariant

continuum limit is obtainable from within the FMD phase. Hence, continuum limit is to be

taken by approaching the continuous FM-FMD transition from the so-called Ferromagnetic

(FM) phase.

Earlier investigations done in [21, 26] at weak gauge couplings are consistent with the

above picture.

It is worth mentioning here that the unfixed compact U(1) lattice gauge theory, given

by only the Wilson plaquette term (2.2), is known to produce a phase transition at gauge

coupling g ∼ 1 between a so-called Coulomb phase containing massless free photons and

a phase with non-trivial properties like having confined gauge-balls in the spectrum. The

phase transition, upon precision numerical studies, was revealed as a weak first order [28–

30], and hence a quantum continuum limit does not strictly exist only with Wilson plaquette

action. As we shall find out in section 5, in the gauge-fixed theory under investigation with

an expanded parameter space, while increasing the gauge coupling from g < 1 to g > 1,

there is an emergence of a tricritical line at g ∼ 1 separating a surface of continuous FM-

FMD transition from a first order FM-FMD transition. The continuum limit obtained in

the FM phase while approaching the continuous part of the FM-FMD transition even in

the large gauge coupling (g > 1) region would be found to consist of free massless photons

only (with the lgdof decoupled).

3 Implementation of the HMC algorithm

As indicated in the Introduction, we have written codes and tried both the MM and the

HMC algorithms for generating the gauge field configurations. The MM was usually tried

with 4 hits; however, various other values of hits were also tried, with very similar outcome.
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In the following, we discuss implementation of the HMC algorithm. We skip any

discussion on the Wilson plaquette term of the action, because that part is standard.

Writing the gauge link as Uxµ = exp(iθxµ), where 0 < θxµ ≤ 2π is an angle (dimen-

sionless), the HD gauge-fixing term (2.3) in the action (2.1) is expressed as follows

SGS =
∑
xµν

(
cos(θxµ − θxν) + cos(θx−µ,µ − θx−ν,ν) + 2 cos(θxµ + θx−ν,ν)

)

−
∑
xµ

32 cos θxµ −
1

16

∑
x

(∑
µ

(sin θxµ + sin θx−µ,µ)2

)2

+ constant terms (3.1)

The HMC algorithm, as is well known, employs a molecular dynamics trajectory,

followed by a Metropolis accept/reject step that makes the algorithm exact. The molecular

dynamics trajectory is an evolution in a fictitious time (computer time) of the system

through a Hamiltonian that treats the fields of the action as generalised co-ordinates and

includes quadratic terms for the conjugate momenta corresponding to the fields. The

Hamilton’s equations of motion are discretised and the equations for momenta update

involves the force terms which are the derivatives of the action with respect to the

corresponding field variable.

Contribution to the HMC force by the HD gauge-fixing term, calculated from (3.1) for

the field Ux0ρ, the link field directed from the site x0 towards the neighbouring site x0 + ρ

along the direction ρ, is given as

−FGS
x0ρ =

∂SGS
∂θx0ρ

(3.2)

= 2κ̃
∑
ν

(
sin(θx0ν − θx0ρ) + sin(θx0+ρ−ν,ν − θx0ρ)

− sin(θx0ρ + θx0−ν,ν)− sin(θx0ρ + θx0+ρ,µ)
)

+ 32κ̃ sin θx0ρ

− κ̃

4
cos θx0ρ

∑
ν

(
(sin θx0ρ + sin θx0+ρ,ρ)(sin θx0+ρ−ν,ν + sin θx0+ρ,ν)2

+ (sin θx0−ρ,ρ + sin θx0,ρ)(sin θx0−ν,ν + sin θx0ν)2
)

A similar contribution to the force from the dimension-2 mass counter-term is easily

found to be

− F ct
x0ρ = 2κ sin θxµ. (3.3)

3.1 Some details of our numerical simulations

Numerical simulations were carried out to generate statistically independent gauge field

configurations at gauge couplings g = 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 1.8, at

different lattice volumes such as 84, 104, 124, 164, 204, 244, 8324 and 10324. In this

paper, we present results at gauge coupling g = 1.0, 1.1, 1.2, 1.3 and 1.5 and at lattice
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volumes 84, 104, 124, 164 and 8324, because these had the most statistics and the set was

deemed enough to establish our conclusions. However, data at all other gauge couplings and

volumes, especially bigger volumes, while not having the same refinement level as the ones

presented in this paper because of lower statistics, help in some way for double-checking

the conclusions made in this paper. At every gauge coupling and lattice volume, the (κ̃, κ)

parameter space was scanned by independent Monte Carlo runs in both directions. To

locate phase transitions precisely, these runs around the phase transitions were performed

in fine steps of ∆κ = 0.001 and ∆κ̃ = 0.005. Typically each run for the data presented here

at a given g, κ̃, κ had at least 20,000 equilibrated trajectories/sweeps at each lattice volume.

Integrated autocorrelation times were calculated for each measured quantity by the well-

known window method. Error bars have been calculated taking the autocorrelations into

account. Error bars have been omitted wherever they are smaller than the symbols used.

Vacuum expectation values of quantities that were measured on equilibrated gauge field

configurations on L4 (or L3T , L 6= T for propagators) lattices, are the average plaquette

EP =
1

6L4

〈 ∑
x,µ<ν

ReUPµν(x)

〉
, (3.4)

the gauge field mass term

Eκ =
1

4L4

〈∑
x,µ

ReUxµ

〉
, (3.5)

and the lattice version of the vector condensate 〈Aµ〉

V =

〈√√√√1

4

∑
µ

(
1

L4

∑
x

ImUxµ

)2〉
. (3.6)

The vector condensate V is the order parameter for the FM-FMD transition. It is zero

for all other phases except FMD. For first order FM-FMD transition, the quantity Eκ
goes through a finite jump when plotted against κ. However, for continuous FM-FMD

transition, the finite jump vanishes and Eκ is continuous across the transition.

To locate and determine the order of the phase transitions involving FMD, e.g., FM-

FMD, AM-FMD and PM-FMD, the observables V and Eκ are very useful. To determine

the location on a finite lattice, a suitable criterion has to be set. For all continuous phase

transitions in our investigation, the location with the highest fluctuations in the data is

taken as the approximate position of the phase transition. For all first order transitions,

the standard histogram method, as used by us previously (e.g., look at figure 3 in [1]),

was employed. The location of the FM-PM and PM-AM phases are harder to determine,

staying within the observables of the theory in the vector picture. However, we find that

given the definition of V strictly as a positive quantity as in (3.6), the increased fluctuations

of the fields around these continuous transitions are captured quite precisely around the

phase transitions by the quantity V even though neither of these phases FM, PM and AM

have a vector condensate. Out of all the phase transitions to be presented later in this

– 11 –



J
H
E
P
1
0
(
2
0
1
7
)
1
2
5

paper, the one of prime importance to us is the FM-FMD, and the location and nature of

this transition including the tricritical points naturally attracted most of our attention.

In addition, vector propagators

Gµν(p) =
1

g2L3T

〈∑
x, y

ImUxµ ImUyν exp[ip(x− y)]

〉
(3.7)

and effective scalar propagators

Hµν(p) =
1

L3T

〈∑
x, y

ReUxµ ReUyν exp[ip(x− y)]

〉
(3.8)

were computed in momentum space as functions of the allowed momenta p on periodic

lattices of volume L3T with L and T respectively as spatial and temporal extensions. The

operator ReUxµ carries quantum numbers of a scalar field and the expression given in

eq. (3.8) was used in the past in gauge-Higgs systems to compute Higgs mass [31].

The FM-FMD transition was also probed with vectorially coupled quenched Kogut-

Susskind fermions having U(1) charge, by measuring the chiral condensate

〈χχ〉m0 =
1

L4

∑
x

〈
M−1xx

〉
(3.9)

as a function of a vanishing bare fermion mass m0. The fermion matrix M is given by,

Mxy =
1

2

4∑
µ=1

ηµ(x)
(
δy,x+µUxµ − δy,x−µU †x−µ,µ

)
+m0 δx,y, (3.10)

with ηµ(x) ≡ (−1)x1+...+xµ−1 and η1(x) ≡ 1. Noisy estimator method [32] with four noise

vectors was used to compute the chiral condensate. Anti-periodic boundary conditions were

used for the quenched fermions and the fermion matrix M was iteratively inverted using

the standard Conjugate Gradient (CG) inverter. A more modern inverter, viz., BiCGStab

was also tried, with no gains for the number of iterations needed for convergence; however,

it had substantial computational overhead compared to CG and hence not used.

4 Local versus global algorithm

In this section, we present results that show that a local algorithm like MM appears to be

unreliable when the coefficient of the HD gauge-fixing term κ̃ is relatively large. Since the

continuous part of the phase transition of interest (FM-FMD) takes place at a larger value

of κ̃ when the gauge coupling is stronger, the problem is more apparent in the current work

since it primarily deals with the fate of the theory at strong gauge couplings. We also show

that the results are unstable as the volume increases.

In contrast, the HMC algorithm, a so-called global algorithm, generally appears to be

more reliable and consistent, and undoubtedly a better algorithm for this theory with a

HD term. First, it generally agrees with results in [21] obtained in the weak gauge coupling
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Figure 1. Comparison of average plaquette value Ep at g = 1.3 on 164 lattice at two values of κ̃ (=

0.1 and 0.3) in the two figures for a variety of values of κ around the FM-PM transition, obtained

with MM and HMC algorithms.
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Figure 2. Comparison of the vector condensate V at g = 0.6 on 104 lattice at two values of κ̃ (=

0.2 and 0.3) in the two figures for a variety of values of κ around the FMD-FM transition, obtained

with MM and HMC algorithms. The right figure also has values with MM algorithm on 84 lattices.

region for rather small volumes, mostly 44 and 64 and some data for 84. At larger κ̃, both

for weak and strong gauge couplings, and for larger volumes, 104 and above, HMC gives

stable results, as will be illustrated in the following.

In figure 1, we have compared average plaquette value Ep at a strong gauge coupling

g = 1.3 on 164 lattice at two values of κ̃ (= 0.1 on the left and 0.3 on the right) for a variety

of values of κ around the FM-PM transition, obtained with MM and HMC algorithms. The

observable Ep does not show any noticeable signal for the transition. However, for κ̃ = 0.1,

the two algorithms produce nearly identical results for all values of κ presented, while for

the larger κ̃ = 0.3, results given by the two algorithms have no agreement anywhere.

Figure 2 shows comparison of the observable V , an estimate of the vector condensate

〈Aµ(x)〉 on the lattice, obtained with MM and HMC algorithms, at a weak gauge coupling

g = 0.6 and two values of the coefficient κ̃ of the HD gauge-fixing term. On 104 lattices, we

see general agreement of the two algorithms at smaller κ̃ in the left figure. However, for the
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Figure 3. Average action density versus number of sweeps/trajectories just inside the FMD phase

at a weak gauge coupling g = 0.6 with MM and HMC algorithms.

same 104 lattices, the algorithms clearly give different results (indicating also a dependence

on the initial configuration for the MM) at a slightly larger value of κ̃ = 0.3 (in the right

figure), suggesting a first-order-like discrete jump in the quantity V at a shifted location

of the parameter κ, while the MM data on 84 lattices generally agree with the 104 HMC

data signalling a smooth transition.

Average action density (value of action divided by volume) achieved after apparent

equilibration is plotted in figure 3 against number of sweeps/trajectories at a weak gauge

coupling g = 0.6 with both MM and HMC algorithms at a point in the coupling parameter

space just inside the FMD phase. While the system settles at the lowest average action

density with the HMC algorithm, the MM algorithm clearly produces unreliable results

with the average action density above that obtained with HMC and showing instability

with change of volume.

In fine, our findings are that, the MM algorithm struggles to generate reliable gauge

field configurations with the HD action. It produces correct results only for sufficiently

small coefficient κ̃ of the HD gauge-fixing term and on small lattices. The situation gets

particularly worse on larger lattices, and at strong gauge couplings where one needs a large

κ̃ for a continuous transition.

In contrast, the HMC algorithm agrees with the MM results at small values of κ̃ and

small lattice volumes. In addition, the results with the HMC appear more consistent and

stable with change of lattice volume and parameters of the algorithm. However, at times

even the HMC can struggle with this HD action to move out of a local metastability because

the changes of the fields and the momenta along a molecular dynamics trajectory are tiny

with every differential ‘time’-step. We have found it beneficial to use initially the MM

algorithm for any configuration-generating run at a given point in the parameter space,

and then feed the final configuration of the MM-run as the initial configuration of the
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Figure 4. Phase diagram in the (κ̃, κ) plane at gauge coupling g = 1.0 on 164 lattice.

HMC run, to make use of the best of both algorithms. This is because, even though the

MM algorithm is a local algorithm, meaning the Metropolis accept/reject step is performed

after each change of the gauge field at a given link, the changes of the values of the gauge

fields are finite, unlike the differential changes during a trajectory of the HMC algorithm.

5 Study of the phase diagram at strong gauge couplings

The unfixed compact U(1) lattice gauge theory (κ̃ = 0, κ = 0), as formulated by the

plaquette action of Wilson and given in (2.2), has been studied extensively in the past. At

g ∼ 1, the theory shows a phase transition from a so-called Coulomb phase (at weak gauge

couplings, g < 1) having massless free photons, to a phase having non-trivial properties like

confinement and existence of gauge-balls etc. at strong gauge couplings (g > 1). Through

careful Monte Carlo simulations, the order of the transition was determined to be weakly

first order. Hence a quantum continuum limit was not possible at this phase transition.

It is mentioned in section 1 and 2 that the phase diagram of the theory (2.1) under

investigation was studied for weak gauge couplings reasonably extensively in the past. From

the point of view of quantum field theory, there are two continuous transitions of interest

- the FM-PM transition and the FM-FMD transition. These transitions are illustrated

in the phase diagram presented in figure 4 obtained in our numerical simulation at gauge

coupling g = 1, approximately the largest gauge coupling exhibiting all the features of the

phase diagram at weak gauge couplings (g < 1). As discussed in section 2, a gauge-scalar

(popularly known as gauge-Higgs) theory is expected to emerge in the continuum limit

near the FM-PM transition at small values of κ̃. However, at larger values of κ̃, we find

that, approaching the FM-FMD transition from the FM side makes the scalar fields (lgdof )

decouple as gauge symmetry is recovered at that transition with emergence of massless free

photons. The FMD phase is marked by a vector condensate, and hence approaching the

FM-FMD transition from the FMD side cannot produce a Lorentz covariant theory.
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Figure 5. Phase diagram in the (κ̃, κ) plane at gauge coupling g = 1.1, 1.2, 1.3 and 1.5 on 164

lattices. The dotted line shows the FM-FMD continuous transition calculated from WCPT around

g = 0.

In figure 4 and all phase diagrams to follow, all data points represented by solid (filled)

symbols signify a continuous phase transition, while all data points represented by empty

(unfilled) symbols signify a first order transition. Accordingly, one would find that FM-PM

and PM-AM phase transitions are continuous and PM-FMD phase transition is first order,

for all gauge couplings investigated in this paper.

However, for g = 1.1 and greater values of the gauge coupling g, the FM-FMD phase

transition develops a first order part for smaller values of κ̃, as seen in figures 5(a), (b),

(c) and (d). At g = 1.1 (figure 5(a)), in our simulations on 164 lattice, the FM-FMD

phase transition first shows a little glimpse of its first order part for small values of κ̃

and then quickly turns itself into a continuous transition at a tricritical point at (κ̃, κ) ∼
(0.14,−0.33) and remains continuous for larger values of κ̃. As the gauge coupling g is

increased to g = 1.2 (figure 5(b)), g = 1.3 (figure 5(c)) and g = 1.5 (figure 5(d)), the

location of the triciritical point in the (κ̃, κ)-plane shifts to larger κ̃ and more negative

κ. In other words, the first order part of the FM-FMD phase transition extends quite

rapidly with increase of the gauge coupling. However, it appears from our numerical

simulations (which includes gauge couplings g > 1.5, corresponding data not shown here)

that, given a large gauge coupling there is always a sufficiently large κ̃ beyond which the

FM-FMD transition is continuous. In addition, the FM-FMD transition overall shifts to

larger negative κ values at stronger gauge couplings.
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Figure 6. Schematic phase diagram in the 3-dimensional (g, κ̃, κ) parameter space at gauge cou-

pling based on available data on 164 lattice. Surfaces of different phase transitions are labelled by:

I: FM-FMD (continuous), II: FM-FMD (first order), III: FM-PM (continuous), IV: PM-AM (con-

tinuous), V: PM-FMD (first order). A tricritical line separating the first order and the continuous

FM-FMD transitions emerges at g > 1 and continues to move towards larger κ̃ at stronger gauge

coupling g. The arrow at the top right points to the WCPT corner (g = 0, κ̃→∞).

The line joining the discrete data points at the phase transitions in the four plots

of figure 5 are simple-minded interpolations with a purpose to guide the eye. The exact

location of the meeting point of the three phases FM, FMD and PM are only roughly

determined for a couple of the plots. However, such points where the continuous FM-PM

transition ends at the joining of two (PM-FMD and FM-FMD) first order lines (for g > 1)

have been described as critical end points in [33].

At weak gauge couplings studied for example in [21], the order of the continuous FM-

FMD transition was expected to be second order from analytic considerations. In our case

at strong gauge couplings, we conclude from numerical evidence of susceptibility peaks

of the vector condensate at different volumes that the continuous part of the FM-FMD

transition is also second order.

At g = 1.1, where in our numerical simulations on 164 lattices, the first order part of

the FM-FMD transition makes an appearance for the first time, the discrete jump in the

quantity Eκ across the transition is small, accordingly we conclude that the order of the

transition is a weak first order. However, as the gauge coupling increases, the discrete jump

in Eκ becomes quite pronounced, making the initial part (for smaller κ̃) of the FM-FMD

transition strongly first order, which then becomes progressively weaker with increase of

κ̃, until the transition line reaches the tricritical point, beyond which the transition is of

course continuous.

The dotted straight line in each of the figures of figure 5 is obtained in bare WCPT near

g = 0 by demanding recovery of gauge symmetry and is representative of the FM-FMD

transition in (κ̃, κ)-plane for a given gauge coupling g [21]. The dotted lines are always

nearly parallel to the continuous parts of the FM-FMD transition for all gauge couplings
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Figure 7. The inverse of the gauge field propagator versus p̂2 at g = 1.5 near the continuous

FM-FMD transition on 8324 lattices indicating emergence of free massless photons.

in figure 5. However, the actual transitions run always lower in the (κ̃, κ)-plane, and their

distance from the WCPT lines increase with increasing gauge coupling.

In the next section, at strong bare gauge couplings, we shall explore the physics,

achievable by approaching the continuous part of the FM-FMD phase transition from the

FM phase, by computing the gauge field propagator, an effective scalar field propagator

and chiral condensates. However, while the bare WCPT done around the point g = 0 and

κ̃ = ∞ has limited range of applicability, there exists no phase transitions between the

WCPT corner of the 3-dimensional coupling parameter space (viz., g = 0 and κ̃ =∞) and

any point on the continuous part of the FM-FMD transition at a strong gauge coupling

and a large enough κ̃. The schematic phase diagram in the 3-dimensional parameter space

(g, κ̃, κ) is displayed in figure 6. Kindly note that κ = 0 surface is located slightly below

the top surface of the 3-dimensional box presented in the figure. The diagram is drawn

based on available data on phase transitions and interpolations and extrapolations. The

continuity of the entire FM-FMD transition surface (bounded by the tricritical line starting

at g = 1.1) up to the WCPT corner is clearly evident when we look at the 3-dimensional

phase diagram. Hence it is natural to expect that this whole region falls under the same

universality class and the continuum physics obtainable should be no different from that

near the weak gauge coupling region.
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6 Vector and scalar propagators, chiral condensates and the plaquette

The inverse of the gauge field propagator, as given by eq. (3.7), for µ = ν, is plotted in

figure 7 against the lattice momentum p̂2 = 2
∑

µ sin2 pµ/2 at g = 1.5 and κ̃ = 1.3, 1.4, 1.5

on 8324 lattices. The κ values are chosen to stay very close to the FM-FMD transition

(continuous for the above κ̃ values). The linear behaviour of the fits passing nearly through

the origin clearly indicates a vanishing photon mass at the transition. At each κ̃ value,

although not shown in the plot, the photon mass scales with decreasing κ approaching the

transition from the FM side. As κ̃ increases from 1.3 to 1.5, there is a small but monotonic

increase of the slope of the fit. The corresponding figure at g = 1.3 in [1] also has the same

trend with increasing κ̃. Consistency of this trend in these two figures and in data at other

gauge couplings (not shown here) suggests that at larger κ̃ the slope is likely to approach

unity, in tune with theoretical expectations, rendering the photons perfectly free.

The scalar propagator was not investigated in [1]. With the expression given in

eq. (3.8), in figure 8, we plot its inverse with µ = ν against p̂2 at g = 1.3 in the FM

phase very close to the continuous part of the FM-FMD transition. The scalar propagator

is noisy, consistent with observations made in [21], despite having about 50000 equilibrated

field configurations, far more than our usual number. However, the non-linearity of the

inverse propagator at small momenta suggests absence of a pole. The non-linearity in the

inverse propagator at small momenta was also observed at weak coupling studies in [21],

both through WCPT and numerical studies and was accepted as an indication of the decou-

pling of the lgdof. The smooth curve in figure 8 is essentially to guide the eye, and not a fit.

However, we have observed that our inverse propagator data for small lattice momentum p̂2

are consistent with a non-linear behaviour like (log p̂2)−1, as found perturbatively in [21].

In [1] at g = 1.3, a chiral transition, when probed with quenched Kogut-Susskind

fermions, was observed roughly around the tricritical point. While the tricritical point
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was found to be around κ̃ = 0.45 and κ = −1.000, the chiral transition around the same

values of κ near the FM-FMD transition was determined to be between κ̃ = 0.40 and 0.50.

In this paper, we have probed the chiral transition with more precision, and our results

are summarised in the four plots of figure 9. While we observe that the chiral condensate

gradually dips towards zero as κ̃ increases, the volume dependence of the plots, especially

at lower fermion masses, are very different for the lower two κ̃ values as opposed to the

higher κ̃ values. In figure 9, for κ̃ ≤ 0.44, the 164 data and their chiral extrapolation

always lie above that of the 124 lattice, while the trend appears to be opposite for data at

κ̃ ≥ 0.47. The opposite trend of volume dependence in the chiral limit is, however, very

clearly seen in the corresponding plots in [1] at κ̃ = 0.40 and 0.50. From the numerical

evidence, it appears that the chiral transition takes place very near, if not coincident with,

the tricritical point where the order of the FM-FMD transition changes from first order

to continuous (second order). The vanishing chiral condensate at the continuous part of

the FM-FMD transition is taken as an evidence of absence of non-trivial physics from this

transition, although the chiral condensates do not exactly vanish on our finite lattices.

All our numerical investigations at strong gauge couplings indicate that, given any bare

gauge coupling, there always exists a continuous FM-FMD transition for a sufficiently large

κ̃ and the emerging physics while approaching the transition from the FM-side is governed

by the WCPT point at g = 0 and κ̃ → ∞. Figure 10 shows the average plaquette in the

FM phase near the continuous FM-FMD transition increasing with increasing κ̃ for gauge

couplings g = 1.1, 1.2 and 1.3. It is reasonable to expect that as κ̃ is increased, the average

plaquette eventually would approach unity, the value of the plaquette at the perturbative

point, in a behaviour similar to that of the slope of the gauge field propagator.

7 Conclusion

A non-perturbatively gauge-fixed compact U(1) lattice gauge theory is an alternate formu-

lation of the pure U(1) gauge theory on lattice. It is not only important because it provides

a continuum limit (unlike the standard Wilson formulation) and a possible probe at short

distance behaviour of a perturbatively non-asymptotically free theory (for example, by ex-

amining the universality class of the tricritical line obtained by us), but particularly for

a manifestly local lattice formulation of abelian chiral gauge theory with lattice fermions

which explicitly break chiral symmetry. It obviously is very important to know the phase

diagram of the theory for wide range of all its parameters so that all possible continuum

limits and the universality classes can be traced.

We have carried out an extensive numerical investigation of the theory, especially at

strong gauge couplings (g > 1). In a previous study [1], results were presented for a

single gauge coupling g = 1.3. The approach in this paper is to scan a wide range of

the 3-dimensional parameter space, generating gauge field configurations for a very large

number of points in that parameter space to locate and determine the nature of the phase

transitions and come up with an overall picture.

We find that there is no lack of continuity between the FM-FMD phase transition

near the perturbative point at g = 0 and κ̃ → ∞ and the FM-FMD transition at strong
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Figure 9. Quenched chiral condensates versus bare fermion mass at four values of κ̃ around the

tricritical point at g = 1.3 on two lattice volumes 124 and 164.

gauge couplings up to the edge of the tricritical line. The continuous part of the FM-

FMD transition surface (blue surface, marked I in figure 5) is one continuous surface,

and the results of all our measurements help build the emergence of a single universality

class, obtained by approaching the transition near g = 0, κ̃→∞ from the FM side. Hence

irrespective of the bare gauge coupling being weak or strong, at a strong enough coefficient κ̃

of the HD gauge-fixing term, the physics obtained by approaching the continuous FM-FMD

transition from the FM side is governed by the perturbative point and is a Lorentz covariant

theory of free massless photons, with the redundant lgdof decoupling at that transition.

The tricritical line at strong gauge couplings is potentially the only place where a

different universality class with non-trivial physics may appear. However, a detailed inves-

tigation in that direction deserves a dedicated study and is outside the scope of the current

work, given its vast and extensive nature.

The action with the HD gauge-fixing term poses its own problems in the Monte Carlo

importance sampling. We found that a local algorithm like MM is poor in generating gauge

field configurations (corresponding to quantum fluctuations around the global minimum of

the classical action), especially at large values of the coefficient κ̃ of the HD term and at

relatively larger lattices. A global algorithm like HMC was generally found to produce

faithful field configurations and was used to generate the ensembles at the vast number of

points in the 3-dimensional parameter space.
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