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1 Introduction

Apart from very special cases like the harmonic oscillator, it is often quite hard to solve a

generic Quantum Mechanical system (i.e. computing eigenvalues and eigenfunctions in the

appropriate Hilbert space), even if we just limit ourselves to consider systems with discrete
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spectrum: sometimes the solution can be found but cannot be expressed in a closed form,

while some other time we simply don’t know how to solve the problem with the standard

tools of Quantum Mechanics. It would therefore be very interesting to develop new, more

powerful tools to approach these problems.

In recent years it has been realized that supersymmetric gauge theories may be thought

of as a new framework to study (at least some class of) Quantum Mechanical problems [1].

The original proposal of [1] consists in considering four-dimensional gauge theories with

N = 2 supersymmetry living on R2
ε1×R2

ε2 , with ε1, ε2 Omega background parameters regu-

larizing the infinite volume of R4, in the so-called NS limit ε1 = i~, ε2 → 0: in this limit the

remaining parameter ~ ∈ R+ should be thought of as the Planck constant of some Quantum

Mechanical system, while gauge theory observables will admit an interpretation in terms

of various quantities of interest in the Quantum Mechanical problem such as eigenvalues

or quantization conditions. Different Quantum Mechanical systems will be associated to

different supersymmetric gauge theories, and this association can often be understood by

matching spectral curves with Seiberg-Witten curves. It is then clear what the advantage

of the gauge theory approach is: since we know how to compute gauge theory observables

via supersymmetric localization, we can provide an explicit solution to the Quantum Me-

chanical system (although often not in closed form) once the dictionary between Quantum

Mechanical quantities and gauge theories observables has been established.

Although it may be hard to prove it rigorously, the proposal by [1] can at least be

checked against analytical results in those cases for which the solution to the corresponding

Quantum Mechanical system is known, or against numerical results otherwise. A notable

example is the N -particle Toda chain, which is in correspondence with four-dimensional

N = 2 pure SU(N) Yang-Mills. This system has been solved via a technique known as

Separation of Variables in [2–7]; it was later shown in [8] that the Separation of Variables

solution coincides with the gauge theory one proposed by [1].

Ordinary Quantum Mechanical systems are often associated to differential operators:

in fact many of them can be obtained from a classical Hamiltonian H(x, p) with polyno-

mial dependence (usually quadratic) on the momentum p, therefore canonical quantiza-

tion p → −i~∂x promotes the Hamiltonian to a differential operator Ĥ(x,−i~∂x). There

may however be well-defined Quantum Mechanical systems, which we call “relativistic”,

arising from a classical Hamiltonian H(ex, ep) with exponential dependence on the mo-

mentum p (which therefore is a periodic variable); these lead to finite-difference operators

Ĥ(ex, e−i~∂x) after canonical quantization. An interesting example is the N -particle “rel-

ativistic” Toda chain, which simply is the finite-difference version of the Toda chain men-

tioned above. Relativistic Quantum Mechanical systems are typically harder to solve than

usual ones; in particular, differently from its “non-relativistic” (differential) counterpart,

the general solution to the relativistic Toda chain is not known.

Always according to the proposal by [1], relativistic Quantum Mechanical systems may

also be studied in the framework of supersymmetric gauge theory: the dictionary between

Quantum Mechanical quantities and gauge theories observables should remain the same,

and the only difference is that this time the gauge theory will have to be five-dimensional

N = 1 and living on R2
ε1 × R2

ε2 × S
1
R (always in the NS limit), where R is related to the
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periodicity of p in an appropriate normalization. Since relativistic Quantum Mechanical

systems are harder to solve than usual ones, one could hope to rely on the gauge theory

approach when dealing with relativistic problems.

Unfortunately, this turns out not to be the case. In fact, as first noticed in [9] the

proposal by [1] seems incorrect or at least incomplete since (among other problems) the

quantization conditions derived from gauge theory do not make sense (i.e. have poles) at

~/2π ∈ Q, and even if we consider ~/2π /∈ Q the gauge theory proposal gives an energy spec-

trum different from the one we can obtain by performing a numerical study of the relativistic

system of interest (as done in [10, 11] for the relativistic Toda chain). These problems are

due to the fact that the gauge theory approach seems to give the exact WKB answer, but

does not take into account possible non-perturbative corrections in ~, which turn out to be

present and very important for the cases at hand; one should therefore understand how to

refine the gauge theory proposal in such a way to include Quantum Mechanical instantons.

A more refined proposal, which seems to correctly include these non-perturbative cor-

rections since it eliminates the problem of poles at ~/2π ∈ Q and provides an energy spec-

trum matching with numerical results, was put forward in [10] for the 2-particle relativistic

Toda chain (as well as for other relativistic systems, see also subsequent works [12, 13] and

especially [14] for explicit checks on the 3-particle relativistic Toda chain), at least for what

quantization conditions and energy spectrum are concerned. Differently from the original

suggestion by [1], this refined proposal implies that we shouldn’t simply consider observ-

ables of five-dimensional gauge theories on flat space in the NS limit but we should work

with a full, non-perturbatively complete theory of topological strings; quite remarkably,

the prescription of [10] also seems to agree with results in resurgence theory [15].

Another proposal which seems to properly take into account these non-perturbative

corrections for the 2-particle case, again at the level of quantization conditions and energy

spectrum, was given in [16]. The basic idea of [16] is to add an appropriate term to

the “naive” quantization conditions one would get from [1] in such a way that the total,

exact quantization conditions will be invariant under the exchange ~↔ 4π2/~ (sometimes

referred to as “S-duality”); this symmetry is particularly nice since it naturally fits with the

modular duality property of relativistic systems. This second proposal was later extended

to the general N -particle relativistic Toda chain in [11], where it was also checked that it

gives an energy spectrum matching the numerical one (at least for the 3-particle case), and

to other cluster integrable systems in [17].

To be more precise, strictly speaking these two more refined proposals concern different

relativistic Quantum Mechanical problems. The second proposal by [11, 16, 17] really

deals with Quantum Integrable systems like the relativistic Toda chain, i.e. systems with

N − 1 commuting quantum Hamiltonians (and, as a consequence, with N − 1 quantized

eigenvalues). On the other hand, the first proposal by [10, 12–14] concerns instead the

study of the operators arising from appropriately quantizing the genus N − 1 mirror curve

associated to a local toric Calabi-Yau three-fold, which only have one quantized energy

eigenvalue. However, the two problems can be related if one thinks of the toric Calabi-Yau

mirror curve as the spectral curve for a Goncharov-Kenyon cluster integrable system [18], a

class of integrable systems that also includes the relativistic Toda chain; in this perspective
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it is possible to show (as done in [19, 20] for a large class of systems) that the situation

described by the second proposal, in which all energies are quantized, can be regarded as

a special case of the situation described by the first proposal.

Despite now having concrete and consistent proposals for determining exact quantiza-

tion conditions and energy spectrum of many relativistic Quantum Mechanical systems, and

in particular of the relativistic Toda chain, a complete solution would also require knowing

the eigenfunctions for the system. Not much is known about these eigenfunctions. For what

the relativistic Toda chain is concerned (intended as a Quantum Integrable system with

N − 1 commuting quantum Hamiltonians), the general analysis of [21] in the Separation

of Variables formalism reduces the problem of finding the relativistic Toda eigenfunctions

to the problem of finding an appropriate solution to the Baxter equation associated to the

system; however, it is not known how to find this solution to the Baxter equation.

In this work we will provide a gauge theory proposal for constructing such a solution to

the Baxter equation associated to the relativistic Toda chain, out of which the relativistic

Toda eigenfunctions can be obtained via Separation of Variables. The idea is to start from

the “naive” Baxter solution one would get from the proposal by [1] and modify it by an

appropriate term chosen is such a way that the final Baxter solution will be invariant under

“S-duality” (i.e. ~ ↔ 4π2/~), much like what done in [16] for the quantization conditions

and as natural from the modular duality property of the relativistic Toda chain. A similar

idea was considered in [22, 23], but the results there are incomplete; here instead we will

check our proposal against numerical results and find good agreement.

Our proposal, partially motivated by the work [24] and subsequent observations in [25],

can be thought of as a refinement of the original one by [1] in which, instead of considering

the NS limit of five-dimensional N = 1 gauge theories on the flat background R2
ε1×R

2
ε2×S

1
R,

we study the “NS limit” of the same theories but on the curved, squashed five-sphere

background S5
ω1,ω2,ω3

with ωi squashing parameters (or some other background with the

same “NS limit”). Exact quantization conditions and exact spectrum à la [11, 16], exact

eigenfunctions, “S-duality” symmetry, and the modular double structure of the relativistic

Toda chain seem to be naturally unified in this framework; however it is not clear to us

why this should be so, therefore at the moment considering gauge theories on S5
ω1,ω2,ω3

should mostly be regarded as a computational tool.

Recently, other works proposing a solution to the eigenfunction problem for quantum

relativistic systems appeared [26, 27]; while [27] focusses on the 2-particle relativistic Toda

chain (for ~ complex or ~ = 2π), the proposal by [26] is more general and can be used

to construct eigenfunctions of quantum mirror curves for all toric Calabi-Yau geometries

(including the ones associated to the relativistic Toda system spectral curve) in terms

of a non-perturbatively complete theory of open topological strings, much in the spirit

of [10, 12–14]. As we already mentioned while discussing exact quantization conditions, the

quantum mirror curve problem studied in [26] and the Quantum Integrable system analysed

in this paper are in principle two different relativistic Quantum Mechanical problems,

although they can be related; unfortunately, it is not clear to us how this relation manifests

itself at the level of eigenfunctions.
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This paper is organized as follows. Section 2 is dedicated to the (“non-relativistic”)

N -particle Toda chain, whose solution (eigenvalues and eigenfunctions) is known: after

reminding the definition of the system (section 2.1), we will review its solution both in the

Separation of Variables framework (section 2.2) and in the gauge theory framework of [1]

(section 2.3). Additional comments are collected in section 2.4. Although pretty much

everything is already known, the concepts and ideas reviewed in section 2 will be useful in

order to understand how to approach the relativistic case.

In section 3 instead we will analyse the relativistic N -particle Toda chain. We will

first recall its definition (section 3.1) and study its solution via numerical methods (sec-

tion 3.2). We will then move to discuss how an analytic solution for this system can be

constructed by considering gauge theories on S5
ω1,ω2,ω3

, especially for the 2-particle case:

after recovering the exact quantization conditions of [16] and energy spectrum in our frame-

work (section 3.3), we will state our proposal for the solution to the Baxter equation and

compare it against numerical results (section 3.4). A number of remarks are discussed in

section 3.5. We conclude section 3 with a discussion on the general N -particle case, where

we provide some additional explicit check against numerical results for N = 3 (section 3.6).

Section 4 contains our conclusions and a discussion on open problems; in appendices A

and B instead we collected the relevant formulae used to compute the gauge theory ob-

servables of interest.

Note added. Shortly after the submission of the first version of this paper to the arXiv

an interesting work [28] appeared, where explicit examples of eigenfunctions for quantum

mirror curves of genus 1 and 2 were studied. In that work it is also noticed that when the

curve has genus > 1, the associated eigenfunction shows an improved decaying behaviour

at infinity for the special case in which all the energies (or “true” moduli of the mirror

curve) are quantized as dictated by the underlying integrable system, rather than just one

of them; this is exactly the case we consider in this paper. Hopefully a better understanding

of this phenomenon will help us understand how the eigenfunctions proposed in this work

and the ones proposed in [26, 28] are related.

2 Toda integrable systems

In order to understand how quantum mechanical problems can be solved in terms of gauge

theory quantities, we briefly revisit in this section the case of the N -particle Toda chain.

This system has extensively been studied and the solution (eigenfunctions and spectrum)

is explicitly known in the integrable system literature as reviewed in section 2.2. The gauge

theory approach to solving the Toda chain has also been studied in detail and was found to

coincide with the integrable system community result; this will be reviewed in section 2.3.

The main purpose of this section is to introduce the relevant concepts and conventions that

will be used in the rest of the paper, as well as to provide a guideline for how to proceed

in finding the solution to the relativistic Toda chain that will be discussed in section 3; as

such there will be no new results here, apart possibly from a few comments in section 2.4.
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2.1 Quantum Toda chain (open and closed)

The quantum N -particle Toda chain is a quantum mechanical system describing N particles

on a line interacting via the Hamiltonian

Ĥ ′2 =
N∑

m<n

pmpn −
N∑
m=1

exm−xm+1 . (2.1)

Here xm, pm are position and momentum of the m-th particle,1 satisfying the commutation

relations

[pl, xm] = −i~δl,m, ~ ∈ R+, (2.2)

and we imposed the boundary condition

xN+1 = x1 − lnQ , Q ∈ R+. (2.3)

The value of the parameter Q allows us to distinguish between two very different cases:

• Q = 0: open Toda chain (non-confining potential, continuous spectrum);

• Q > 0: closed Toda chain (confining potential, discrete spectrum).

Independently on the value of Q, both open and closed Toda chains are actually integrable

models, and as such admit a total of N commuting Hamiltonians Ĥ ′m (m = 1, . . . , N)

including (2.1); schematically we have (in the notation of [5, 6])

Ĥ ′1 =

N∑
m=1

pm,

Ĥ ′2 =
N∑

m<n

pmpn −
N∑
m=1

exm−xm+1 ,

Ĥ ′3 =
N∑

m<n<r

pmpnpr + . . . ,

...

Ĥ ′N = . . . . (2.4)

Decoupling the center of mass of the system is equivalent to impose Ĥ ′1 = 0. It will

actually be more convenient to consider the more familiar operators Ĥm as commuting

1In this work we will only consider xm ∈ R since this choice leads to quantum mechanical operators with

discretized energy levels (at least for the closed Toda chain). Choosing xm imaginary leads to operators

with continuous spectrum and will not be discussed here.
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Hamiltonians [8], where

Ĥ1 =
N∑
m=1

pm,

Ĥ2 =
1

2

N∑
m=1

p2
m +

N∑
m=1

exm−xm+1 ,

...

ĤN =
1

N !

N∑
m=1

pNm + . . . . (2.5)

The second set (2.5) can be obtained by taking appropriate combinations of the elements

in (2.4), for example we have Ĥ2 = 1
2(Ĥ ′1)2− Ĥ ′2; for this reason (2.4), (2.5) share the same

eigenfunctions, while the eigenvalues will be different although related (for example E2 =
1
2(E′1)2−E′2). In the following we will mainly use this second set of Hamiltonians (2.5); the

spectral problem we want to solve consists therefore of finding the common eigenfunctions

Ψ ~E(~x, ~) of the Toda Hamiltonians Ĥm,

ĤmΨ ~E(x1, . . . , xN , ~) = EmΨ ~E(x1, . . . , xN , ~) , m = 1, . . . , N, (2.6)

with ~E = (E1, . . . , EN ) set of eigenvalues (continuous or discrete), satisfying the appropri-

ate boundary conditions (after decoupling the center of mass) imposed by the form of the

potential:

• for the open Toda chain, Ψ ~E(~x, ~) should vanish fast enough as xk − xk+1 →∞;

• for the closed Toda chain, normalizability requires Ψ ~E(~x, ~) ∈ L2(RN−1).

In a slightly more compact notation, by defining the generating function for the Toda

Hamiltonians

t̂(σ) =

N∑
m=0

(−1)mσN−mĤm, Ĥ0 = 1 (2.7)

which satisfies the commutation relation

[t̂(σ), t̂(σ′)] = 0, (2.8)

the spectral problem (2.6) is equivalent to requiring

t̂(σ)Ψ ~E(~x, ~) = t(σ, ~E)Ψ ~E(~x, ~) (2.9)

with the appropriate boundary conditions imposed, where

t(σ, ~E) =
N∑
m=0

(−1)mσN−mEm, E0 = 1 (2.10)

– 7 –
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is the generating function of the Toda eigenvalues. The polynomial t(σ, ~E) also enters in

the definition of the spectral curve of the classical Toda chain: this is a Riemann surface

embedded in (σ, y) ∈ C× C× given by

y +Qy−1 = t(σ, ~E), (2.11)

out of which one can compute the action-angle variables of the classical Toda system.

Canonical quantization of the (σ, y) variables turns equation (2.11) into a quantum operator

known as Baxter equation (after a small redefinition of parameters); as we will see, solutions

to the Baxter equation play a key role in constructing the eigenfunctions of the Toda chain.

Since it will turn out to be more natural from the point of view of gauge theory, let us

mention that one can also re-express the polynomial t(σ, ~E) in terms of an auxiliary set of

variables ~a = (a1, . . . , aN ) or ~τ = (τ1, . . . , τN ) for the open and closed case respectively as

t(σ, ~E) =


∏N
m=1(σ − am) =⇒ Em(~a) = em(~a) (open chain),∏N
m=1(σ − τm) =⇒ Em(~τ) = em(~τ) (closed chain),

(2.12)

where em(~x) are elementary symmetric polynomials in the variables ~x and a1 + . . .+ aN =

τ1 + . . . + τN . Since the τm variables should reduce to the am ones at Q = 0 we expect

that τm = am+o(Q); more in general we will often think of τm = τm(~a) as functions of the

am’s, so that also the closed Toda eigenvalues Em = em(~τ(~a)) will indirectly be functions

of the am’s.

2.2 Solution via Separation of Variables

Explicit solutions to both the open and closed Toda chain spectral problems (2.6) are well-

known in the integrable system literature. Historically the first step was done by Gutzwiller

in [2, 3], where he provided expressions for the N = 2, 3, 4-particles closed Toda chain eigen-

functions in terms of linear combinations of the open Toda chain ones and also obtained

quantization conditions and spectrum for these systems. His works already contained the

basic idea underlying what is today known as quantum Separation of Variables method,

later developed in more detail by Sklyanin [29], see also [4]. The Separation of Variables

method reduces the problem of finding eigenfunctions of the N -particle Toda chain to the

problem of finding solutions of a one-dimensional Baxter equation; Gutzwiller’s quanti-

zation conditions follow from certain analytic requirements on the solution to the Baxter

problem. Separation of Variables has later been used in [5, 6] to provide a solution to the

N -particles Toda problem (both open and closed) at any N ; in this framework the Toda

eigenfunctions admit an explicit expression in terms of multiple contour integrals. Finally,

additional technical problems were rigorously solved in [7]. In this section we will quickly

review the general N solution by [5, 6]; we will later see in section 2.3 how this solution

can be recovered in terms of gauge theory quantities.

For what the open Toda chain is concerned, it is shown in [5, 6] that, in terms of the

auxiliary variables ~a, the eigenfunction Ψ~a(~x, ~) for the N -particle open Toda chain with

– 8 –
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the appropriate boundary conditions can be expressed in a recursive way as

Ψa1,...,aN (x1, . . . , xN , ~) =

=

∫
C

N−1∏
j=1

dσj

µ(~σ, ~)Q(~σ,~a, ~)

×Ψσ1,...,σN−1(x1, . . . , xN−1, ~)e
i
~xN(

∑N
m=1 am−

∑N−1
j=1 σj) (open chain),

(2.13)

starting from the eigenfunction of the 1-particle problem Ψa1(x1) = eia1x1/~, for an appro-

priate contour of integration C; it is also possible to show that (2.13) is an entire functions

of the ~a parameters. Here µ(~σ, ~) is an integration measure,

µ(~σ, ~) =

N−1∏
j<k

(σj − σk)
~

sinh

(
π
σj − σk

~

)
, (2.14)

while

Q(~σ,~a, ~) =

N−1∏
j=1

q(σj ,~a, ~) =

N−1∏
j=1

N∏
m=1

~−i
σj−am

~ Γ

(
−iσj − am

~

)
(2.15)

is sometimes referred to as the Harish-Chandra function for the open Toda chain, or wave-

function in separated variables; the function q(σ,~a, ~), and consequentlyQ(~σ,~a, ~), formally

satisfies the one-dimensional finite-difference Baxter equation for the open Toda chain

(i)Nq(σ + i~,~a, ~) = t(σ, ~E(~a))q(σ,~a, ~), (2.16)

with t(σ, ~E(~a))) as in the first line of (2.12).

Moving to the N -particle closed Toda chain, its eigenfunctions Ψ~a(~x, ~, Q) can be

obtained from the eigenfunctions of the (N −1)-particle open Toda chain via an expression

similar to (2.13), the only difference being in the function Q(~σ,~a, ~, Q); more precisely we

have (modulo normalizations)2

Ψa1,...,aN (x1, . . . , xN , ~, Q) =

=

∫
C

N−1∏
j=1

dσj

µ(~σ, ~)Q(~σ, ~τ(~a), ~, Q)

×Ψσ1,...,σN−1(x1, . . . , xN−1, ~)e
i
~xN(

∑N
m=1 am−

∑N−1
j=1 σj) (closed chain),

(2.17)

where this time

Q(~σ, ~τ(~a), ~, Q) =
N−1∏
j=1

q(σj , ~τ(~a), ~, Q) (2.18)

and q(σ, ~τ , ~, Q) satisfies the one-dimensional finite-difference Baxter equation for the

closed Toda chain (suppressing the implicit ~a dependence)

(i)Nq(σ + i~, ~τ , ~, Q) +Q(i)−Nq(σ − i~, ~τ , ~, Q) = t(σ, ~E(~τ))q(σ, ~τ , ~, Q), (2.19)

2Here and in the following we will often distinguish Ψ~a(~x, ~, Q), Q(~σ,~a, ~, Q) associated to the closed

Toda chain from Ψ~a(~x, ~), Q(~σ,~a, ~) associated to the open Toda chain by explicitly indicating the Q-

dependence in the former case.
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with t(σ, ~E(~τ)) as in the second line of (2.12). It is important to remark that this equation

is nothing else than the quantization of the classical spectral curve (2.11) if we identify

y = (i)Ne−pσ = (i)Nei~∂σ .

To sum up, Separation of Variables reduces the problem of finding eigenfunctions

Ψ~a(~x, ~, Q) to the closed Toda chain (2.6) to the problem of finding solutions q(σ, ~τ , ~, Q)

to the Baxter equation (2.19); this is a great simplification since the Baxter equation

is a 1-dimensional problem. However, q(σ, ~τ , ~, Q) cannot just be any function formally

satisfying (2.19): in fact as discussed in [5, 6], our expression (2.17) is a solution to the

closed Toda spectral problem only if the solution q(σ, ~τ , ~, Q) to (2.19) is entire in σ and

goes to zero fast enough as |σ| → ∞; among other things, these additional conditions help us

fixing the quasi-constant ambiguity affecting q(σ, ~τ , ~, Q) (being a finite-difference equation,

any formal solution to (2.19) is only defined modulo i~-periodic functions). It turns out

that these conditions are only satisfied when the auxiliary parameters am (or equivalently

τm) have certain special values, from which quantization of the energies Em(~τ) follows.

More in detail, in Gutzwiller’s approach to the study of entire solutions to (2.19) one

first considers the half-infinite determinants K(∓)(σ, ~τ , ~, Q) given by

K(−)(σ, ~τ , ~, Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . .

. . . 1
1

t(σ − 3i~, ~E(~τ))
0

0
Q

t(σ − 2i~, ~E(~τ))
1

1

t(σ − 2i~, ~E(~τ))

. . . 0
Q

t(σ − i~, ~E(~τ))
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.20)

K(+)(σ, ~τ , ~, Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1

t(σ + i~, ~E(~τ))
0 . . .

Q

t(σ + 2i~, ~E(~τ))
1

1

t(σ + 2i~, ~E(~τ))
0

0
Q

t(σ + 3i~, ~E(~τ))
1 . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.21)

from which two linearly independent entire solutions q
(∓)
0 (σ, ~τ , ~, Q) can be constructed:

q
(−)
0 (σ, ~τ , ~, Q) =

e−
πNσ
~ K(−)(σ, ~τ , ~, Q)∏N

m=1 ~
iσ
~ Γ(1 + iσ−τm~ )

, (2.22)

q
(+)
0 (σ, ~τ , ~, Q) =

Q−
iσ
~ e−

πNσ
~ K(+)(σ, ~τ , ~, Q)∏N

m=1 ~
− iσ~ Γ(1− iσ−τm~ )

. (2.23)

Despite being entire, these solutions do not go to zero fast enough at both σ = ±∞. To

obtain the desired asymptotic behaviour, we use the fact that solutions to (2.19) are only

defined up to i~-periodic functions; we can then multiply q
(∓)
0 (σ, ~τ , ~, Q) by an i~-periodic

factor which modifies the asymptotics as needed. The simplest choice is to consider

q(∓)(σ, ~τ , ~, Q) =
q

(∓)
0 (σ, ~τ , ~, Q)∏N

m=1 e
−πσ~ sinh

(
π σ−am~

) , (2.24)
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where am are the zeroes of the (i~-periodic) Hill determinant

H(σ, ~τ , ~, Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . . . .

. . .
Q

t(σ − i~, ~E(~τ))
1

1

t(σ − i~, ~E(~τ))
0 . . .

. . . 0
Q

t(σ, ~E(~τ))
1

1

t(σ, ~E(~τ))
. . .

. . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.25)

which can also be written as

H(σ, ~τ , ~, Q) =
N∏
m=1

sinh
(
π σ−am~

)
sinh

(
π σ−τm~

) . (2.26)

By the analysis of [8], the zeroes of H(σ) coincide with the parameters am we introduced

earlier.3 However step (2.24) does not come without a price: although our new functions

q(∓)(σ) satisfy (2.19) and go to zero fast enough at both σ = ±∞, they are no longer

entire but meromorphic since they present poles at σ = am + i~nm, nm ∈ Z. To solve this

problem and construct a solution q(σ) which is both entire and with the desired asymptotic

behaviour, we may consider a linear combination

q(σ,~a, ~, Q) = q(+)(σ,~a, ~, Q)− ξq(−)(σ,~a, ~, Q) =

=
q

(+)
0 (σ,~a, ~, Q)− ξq(−)

0 (σ,~a, ~, Q)∏N
m=1 e

−πσ~ sinh
(
π σ−am~

) ,
(2.27)

with ξ some constant chosen in such a way to cancel the poles, that is

q
(+)
0 (am + i~nm,~a, ~, Q) = ξq

(−)
0 (am + i~nm,~a, ~, Q). (2.28)

A necessary condition for this to be valid is that the Wronskian

W (σ) = q
(+)
0 (σ)q

(−)
0 (σ + i~)− q(+)

0 (σ + i~)q
(−)
0 (σ) (2.29)

vanishes at σ = am + i~nm; this is however satisfied since computation of the Wronskian

shows that

W (σ) ∝ H(σ)
N∏
m=1

sinh

(
π
σ − τm

~

)
(2.30)

and σ = am+ i~nm are exactly the zeroes of the Hill determinant. To sum up, the solution

to the Baxter equation (2.19) of interest to us is the linear combination (2.27), which

is entire and with the appropriate asymptotic behaviour provided that the constant ξ is

chosen in such a way that

ξ =
q

(+)
0 (a1)

q
(−)
0 (a1)

= . . . =
q

(+)
0 (aN )

q
(−)
0 (aN )

. (2.31)

3The definition H(am) = 0, m = 1, . . . , N implicitly relates the am variables to the τm ones, taking

into account the constraint
∑N
m=1 am =

∑N
m=1 τm. Let us also remark that because of i~-periodicity,

H(am + i~nm) = 0 for any nm ∈ Z.
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It turns out that these conditions are only satisfied for particular values of ~a = (a1, . . . , aN );

as such, these are interpreted as quantization conditions for the spectrum of the closed Toda

chain and were first obtained in [2, 3].

Having solved the Baxter equation, from q(σ, ~τ(~a), ~, Q) we can construct

Q(~σ, ~τ(~a), ~, Q) according to (2.18), and with this we have all the ingredients entering

in the expression for the N -particle closed Toda chain eigenfunctions (2.17); the only prob-

lem left at this point consists in performing the integrations. This can be easily done by

evaluation of residues. To give an idea of the procedure, let us first consider integrating over

σ1; denoting Ψ′~σ(~x, ~) = Ψσ1,...,σN−1(x1, . . . , xN−1, ~)e
i
~xN(

∑N
m=1 am−

∑N−1
j=1 σj) for shortness,

we can split the integral as

Ψ~a(~x, ~, Q) =

=

∫ ∞
−∞

dσ1

N−1∏
j=2

dσj

 q
(+)
0 (σ1)− ξq(−)

0 (σ1)∏N
m=1 e

−πσ1~ sinh
(
π σ1−am~

)µ(~σ)Ψ′~σ(~x, ~)

N−1∏
j=2

q(σj) =

=

∫
C+
dσ1

N−1∏
j=2

dσj

 q
(+)
0 (σ1)∏N

m=1 e
−πσ1~ sinh

(
π σ1−am~

)µ(~σ)Ψ′~σ(~x, ~)

N−1∏
j=2

q(σj)

+ ξ

∫
C−
dσ1

N−1∏
j=2

dσj

 q
(−)
0 (σ1)∏N

m=1 e
−πσ1~ sinh

(
π σ1−am~

)µ(~σ)Ψ′~σ(~x, ~)
N−1∏
j=2

q(σj),

(2.32)

where the contour C+ contains the poles am + i~nm for nm > 0, m = 1, . . . , N while

C− contains the poles am + i~nm for nm < 0. The two integrals can be computed by

residues, and by using (2.28) the result can be expressed in terms of the function q
(+)
0 only.

Integration over other variables is performed along the same lines; the final result has the

form of an infinite linear combination of (N − 1)-particle open Toda chain eigenfunctions:

Ψ~a(~x,~,Q)∝
N∑
m=1

(−1)N−m
∑

~n(m)∈ZN−1

∆(~a(m)+i~~n(m))Ψ′
~a(m)+i~~n(m)(~x,~)

N−1∏
j=1

q
(+)
0 (~a(m)+i~~n(m)).

(2.33)

Here ∆(~σ) =
∏
j<k(σj − σk) is the usual Vandermonde determinant and we introduced

the vectors ~a(m) = (a1, . . . , am−1, am+1, . . . , aN ) and ~n(m) = (n1, . . . , nm−1, nm+1, . . . , nN ).

More precise formulae and additional technical details on the computation and properties

of the closed Toda chain eigenfunctions in the Separation of Variables formalism can be

found in [5, 6].

2.3 Solution via gauge theory

As mentioned in the Introduction, starting with the seminal work [1] it has been gradually

understood that supersymmetric four-dimensional N = 2 gauge theories in flat space in

the presence of non-trivial Omega background parameters ε1, ε2 can provide an alternative

framework for solving stationary quantum mechanical problems with discrete spectrum

such as Toda chains. More precisely, such quantum mechanical problems are related to

supersymmetric gauge theories when we consider the so-called NS limit ε1 = i~, ε2 = 0: in
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this limit the second Omega background parameter is sent to zero, while the first one plays

the role of the Planck constant (here and in the following we will be assuming ~ ∈ R+).

Different quantum mechanical systems are associated to different gauge theories: for

example, for N -particle Toda chains the relevant gauge theory is pure N = 2 SU(N)

Yang-Mills, where the instanton counting parameter Q4d = e−8π2/g24d is identified with the

parameter Q introduced in (2.3) (open Toda chains therefore appear when the Yang-Mills

coupling constant g4d is sent to zero). A partial solution (i.e. quantization conditions and

spectrum) to the Toda chain in terms of gauge theory quantities was provided in [1], while

eigenfunctions were later discussed in [8] where it was also shown that gauge theory results

coincide with the known solution we reviewed in section 2.2. Here we will recall the main

results of [1, 8] for the case of interest, slightly reinterpreting them in a way more suitable

for generalizations.

2.3.1 Quantization conditions and energy spectrum

Let us start by considering quantization conditions and spectrum. When applied to pure

N = 2 SU(N) Yang-Mills, the proposal of [1] provides new explicit expressions for quanti-

zation conditions and energy spectrum of the N -particle closed Toda chain; these may look

very different from the ones we already know from section 2.2, but it is actually possible

to show that they are in fact equivalent [8].

More in detail, for what quantization conditions are concerned the idea is to start by

considering the pure N = 2 SU(N) gauge theory partition function on R2
ε1 × R2

ε2 [30, 31]

Z4d(~a, ε1, ε2, Q4d) = Zpert
4d (~a, ε1, ε2, Q4d)Z inst

4d (~a, ε1, ε2, Q4d). (2.34)

Here we divided the partition function into its perturbative part (classical + 1-loop) and

instanton part, while ~a = (a1, . . . , aN ) are the vacuum expectation values of the adjoint

scalar field φ in the N = 2 vector multiplet; on the Toda system side, these will be

identified with the auxiliary parameters ~a we introduced in (2.12) (i.e. with the zeroes of

the Hill determinant (2.26)). The NS limit of (2.34) is divergent, but the effective twisted

superpotential W4d(~a, ε1, Q4d) defined as

1

ε1
W4d(~a, ε1, Q4d) = lim

ε2→0
[−ε2 logZ4d(~a, ε1, ε2, Q4d)] (2.35)

is instead finite; this can also be separated into its perturbative and instanton part as

W4d(~a, ε1, Q4d) =Wpert
4d (~a, ε1, Q4d) +W inst

4d (~a, ε1, Q4d). (2.36)

Replacing ε1 = i~, the proposal by [1] states that the quantization conditions for the Toda

chain are equivalent to the set of supersymmetric vacua equations

exp

(
− 1

i~
∂

∂am
W4d(~a, i~, Q4d)

)
= 1 , m = 1, . . . , N, (2.37)

or alternatively

∂

∂am
W4d(~a, i~, Q4d) = −2π~nm , nm ∈ Z, m = 1, . . . , N. (2.38)

– 13 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
6

The equivalence between gauge theory quantization conditions (2.38) and Gutzwiller’s

quantization conditions (2.31) was later shown to be true in [8].

Moving to the spectrum of the Toda system, [1] suggests that the energies Em should

correspond to the NS limit of the vacuum expectation value of gauge-invariant operators

built out of φ, that is

E(~n)
m =

1

m!
〈Trφm〉(~n)

NS , (2.39)

evaluated at those particular values of the am parameters which solve the quantization

conditions (2.38) for a given set of integers (~n). The energies E1, E2 of the first two Toda

Hamiltonians are particulary simple to evaluate; in fact E1 is just the total momentum

E1(~a) =
N∑
m=1

am (2.40)

(independent of Q4d) which is often set to zero, while E2 can be obtained from

W4d(~a, i~, Q4d) via the Matone relation [32]

E2(~a, ~, Q4d) = Q4d
d

dQ4d
W4d(~a, i~, Q4d). (2.41)

The proposal of [1] therefore provides a detailed prescription on how to compute the energy

spectrum of the closed Toda chain by means of gauge theory quantities; as discussed in [8],

this prescription is equivalent to Gutzwiller’s one. Conjecturally the gauge theory prescrip-

tion should also work for other quantum mechanical system, which will be associated to

different gauge theories.

2.3.2 Numerical study

The gauge theory solution proposed by [1] can also be explicitly tested against numerical re-

sults, as done for example in [11] for the 2-particle Toda chain. In order to give a better idea

on how the prescription of [1] works in practice, and also because we will need to do some-

thing similar later in section 3, let us quickly review the numerical tests performed by [11].

Let us consider the 2-particle closed Toda chain and decouple the center of mass for simplic-

ity; then E1 = 0, that is a1 = −a2 = a. We can use the Hamiltonian Ĥ2 of (2.5) to define

the quantum mechanical problem; when the center of mass is decoupled this reduces to

Ĥ2 = p2 + ex +Qe−x (2.42)

with [p, x] = −i~. This is a problem defined on x ∈ R, and given the form of the potential

we expect a discrete energy spectrum and L2(R)-normalizable eigenfunctions; we can then

try to diagonalize (2.42) in terms of an orthonormal basis on L2(R) such as the harmonic

oscillator one, given by

ψk(x) =
1√
2kk!

(mω
π~

) 1
4
e−

mωx2

2~ Hk

(√
mω

~
x

)
, k > 0 (2.43)

for a harmonic oscillator of mass m and frequency ω,4 where Hk(x) are Hermite polynomi-

als. Although for diagonalization we should in principle consider an ∞×∞ matrix, from a

4Here we are considering a harmonic oscillator with Hamiltonian Ĥ = p2

2m
+ 1

2
mω2x2.
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(a) Level n = 0, 1, 2 closed 2-particle Toda numerical eigenfunctions for Q = 1, ~ = 1.5.
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(b) Level n = 0, 1, 2 closed 2-particle Toda numerical eigenfunctions for Q = 1√
2
, ~ =

√
3.

Figure 1. 2-particle closed Toda numerical eigenfunctions.

practical point of view one computes the matrix elements 〈ψk1 |Ĥ2|ψk2〉 up to a certain order

and evaluates numerically the eigenvalues of this finite matrix; the parameters m, ω can be

fixed by expanding (2.42) at small x. The expectation is that the numerical eigenvalues thus

obtained should approach the exact ones by increasing the size of the matrix. In the same

way, one can construct numerical eigenfunctions (normalized in such a way to have norm

1) by considering eigenvectors of this finite matrix. Examples of numerical results for the

energy of the ground state and the first two excited states at various values of Q and ~ can

be found in table 1, while figure 1 shows the corresponding eigenfunctions (symmetric with

respect to x = logQ1/2); for numerical computations we considered 400 × 400 matrices.

Let us now try to reproduce the numerical results in table 1 from the proposal by [1].

In order to do this we first need the twisted effective superpotential (2.36). This can be

easily computed from the formulas collected in appendix A.1; we find that the instanton

part is given by a series expansion in Q4d starting as

W inst
4d (a, i~, Q4d) = Q4d

2

4a2 + ~2
+Q2

4d

20a2 − 7~2

4 (4a2 + ~2) 3 (a2 + ~2)
+ o(Q3

4d), (2.44)

while the a-derivative of the perturbative part reads

∂

∂a
Wpert

4d (a, i~, Q4d) = 4a log

(
Q

1/4
4d

~

)2

+ 2i~ log
Γ(1 + 2ia

~ )

Γ(1− 2ia
~ )

+ 2π~. (2.45)

We can then look for solutions to the quantization condition (2.38), that is

∂

∂a

[
Wpert

4d (a, i~, Q4d) +W inst
4d (a, i~, Q4d)

]
= −2π~n, n ∈ N. (2.46)

At fixed Q4d, ~ and energy level n > 0 this equation will be solved for a particular positive

real value of a which we call a(n); for the examples considered in table 1, a 12-instanton
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E
(0)
2 E

(1)
2 E

(2)
2

Q = 1, ~ = 1.5 3.63012093325678. . . 7.11913797277331. . . 11.03476737232167. . .

Q = 1√
2
, ~ =

√
3 3.44076329369006. . . 7.25213834512333 . . . 11.60628188091683 . . .

Table 1. Numerical eigenvalues E
(n)
2 of Ĥ2 at level n = 0, 1, 2 for different Q, ~.

a(0) a(1) a(2)

Q4d = 1, ~ = 1.5 1.87246705538171 . . . 2.65579461654756 . . . 3.31533009851180 . . .

Q4d = 1√
2
, ~ =

√
3 1.83145069816166 . . . 2.68470017820023 . . . 3.40258311045043 . . .

Table 2. Quantized values of a(n) at level n = 0, 1, 2 for different Q4d, ~.

computation produces the values listed in table 2. Having determined the a(n), all we have

to do is to substitute them into the expression for the energy (2.41); this will again be a

series in Q4d starting as5

E2(a, ~, Q4d) = a2 +Q4d
2

4a2 + ~2
+Q2

4d

20a2 − 7~2

2 (4a2 + ~2) 3 (a2 + ~2)
+ o(Q3

4d). (2.47)

Adding more instanton corrections to (2.47) the gauge theory results approach the numeri-

cal ones better and better, and already a 12-instanton computation reproduces the numer-

ical results of table 1, thus providing some evidence for the validity of the proposal by [1].

2.3.3 Eigenfunctions

Having discussed quantization conditions and energy spectrum, it now remains to under-

stand how eigenfunctions of the Toda chain can be realized in gauge theory. Although

this point was not discussed in [1], subsequent works [33–35] and [8] showed that these

eigenfunctions should correspond to the partition function of four-dimensional pure N = 2

SU(N) Yang-Mills in the presence of particular codimension two defects, again in the NS

limit ε2 → 0, ε1 → i~ (from this point of view, local operators (2.39) associated to the

eigenvalues can be thought as codimension four defects). It turns out that there are many

different codimension two defects one can consider, and most of them can be realized in dif-

ferent ways; here we will only discuss defects which admit a realization as two-dimensional

N = (2, 2) theories coupled to our four-dimensional N = 2 SU(N) Yang-Mills theory.

Three two-dimensional N = (2, 2) theories are of particular interest to us:

I) The quiver theory of figure 2a, associated to the common eigenfunctions Ψ~a(~x, ~, Q)

of the Toda chain spectral problem (2.6)

ĤmΨ~a(~x, ~, Q) = Em(~a, ~, Q)Ψ~a(~x, ~, Q), m = 1, . . . , N, (2.48)

which can equivalently be formulated in terms of the Hamiltonians Ĥ ′m in (2.5);

5The parameters τ1, τ2 entering in (2.12) in this case are τ1 = −τ2 =
√
E2.
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U(1)U(N) U(N − 1) . . . U(2)

(a)

U(N)

(b)

U(1)U(N)

(c)

Figure 2. Two-dimensional N = (2, 2) defects of type I (a), II (b) and III (c).

II) The theory of N free chiral (or antichiral) multiplets of figure 2b, associated to the

eigenfunction q(σ) of the Baxter equation (2.19)

(i)Nq(σ + i~) +Q(i)−Nq(σ − i~) = t(σ)q(σ), (2.49)

which as we already mentioned can be thought of as a quantized version of the classical

spectral curve (2.11) if σ is chosen as coordinate and y = (i)Ne−pσ as conjugate

momentum, that is

(i)Ne−pσ +Q(i)−Nepσ = t(σ); (2.50)

III) The theory of N chiral (or antichiral) multiplets coupled to a U(1) gauge multiplet

of figure 2c, associated to the function qFT(σ) which can be roughly though of as a

“Fourier-transformed” version of q(σ); that is, qFT(σ) will be an eigenfunction of the

quantized version of the curve

(i)Neσ +Q(i)−Ne−σ = t(pσ), (2.51)

which is obtained from the spectral curve (2.50) via a canonical change of variables

σ → pσ, pσ → −σ. For the special case N = 2, this coincides with the type I defect.

In our following discussion we will mostly focus on defects of type I and II living on a disc

Dε1 of radius ~−1 = iε−1
1 coupled to our four-dimensional theory on Dε1 ×R2

ε2 , and review

how the NS limit of the partition function in the presence of these defects provide expres-

sions for the Baxter and Toda eigenfunctions equivalent to the ones discussed in section 2.2.6

Open Toda chains. Let us proceed step by step and start by discussing the eigen-

functions for the open Toda chain and its Baxter equation. Since this case corresponds

to Q = Q4d = 0, on the gauge theory side it means that we are decoupling the four-

dimensional gauge interaction, so that we only remain with the two-dimensional theory

6Considering all possible vacua in R2
ε1×R2

ε2 is equivalent to considering Dε1×R2
ε2 , while a single vacuum

in R2
ε1 × R2

ε2 is only a formal eigenfunction since it does not satisfy the correct asymptotic behaviour (see

comments near (2.62)).

– 17 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
6

on the defect. The partition function on the disc for type II defects, that is N free chi-

ral/antichiral multiplets, is simply [36–38]

q(c)(σ,~a, ~) =

N∏
m=1

~−i
σ−am

~ Γ

(
−iσ − am

~

)
(chiral), (2.52a)

q(ac)(σ,~a, ~) =

N∏
m=1

~i
σ−am

~ Γ

(
i
σ − am

~

)
(antichiral), (2.52b)

where ~ is interpreted as the inverse radius of the disc while σ and am are twisted masses as-

sociated to the Cartan of the flavour symmetry U(1)×U(N); going to SU(N) by decoupling

an overall U(1) factor sets the constraint
∑N

m=1 am = 0 and corresponds to decoupling the

center of mass from the point of view of the open Toda chain. As we can notice, (2.52a) is

nothing else than the separated variables wavefunction q(σ,~a, ~) which appeared in (2.15)

and therefore formally satisfies the open Toda Baxter equation

(i)Nq(c)(σ + i~,~a, ~) = t(σ, ~E(~a)) q(c)(σ,~a, ~); (2.53)

similarly, (2.52b) formally satisfies

(i)−Nq(ac)(σ − i~,~a, ~) = t(σ, ~E(~a)) q(ac)(σ,~a, ~). (2.54)

As a comment let us remark that, as in section 2.2, these are just formal solutions since

they have poles; proper solutions q
(c)
0 (σ,~a, ~), q

(ac)
0 (σ,~a, ~) can be obtained by removing an

appropriate i~-periodic factor according to (decoupling the center of mass)

q(c)(σ,~a, ~) =
q

(c)
0 (σ,~a, ~)∏N

m=1 e
−πσ~ sinh

(
π σ−am~

) ,
q(ac)(σ,~a, ~) =

q
(ac)
0 (σ,~a, ~)∏N

m=1 e
−πσ~ sinh

(
π σ−am~

) . (2.55)

For example, using the properties of the Gamma function we obtain

q
(c)
0 (σ,~a, ~) ∝

N∏
m=1

e−
πσ
~

~
iσ
~ Γ
(
1 + iσ−am~

) , (2.56)

which is free of poles being an entire function.

Moving to type I defects, their disc partition function can also be evaluated explicitly

and for the quiver theory of figure 2a consisting of chiral multiplets it is given by [36–38]

Ψ(c)
a1,...,aN

(x1, . . . , xN , ~) =

= ei
xN
~
∑N
m=1 am

∫
C

N−1∏
s=1

s∏
j=1

dσ
(s)
j

N−1∏
s=1

s∏
j<k

(σ
(s)
j − σ

(s)
k ) sinh

[
π
σ

(s)
j − σ

(s)
k

~

]

×
N−1∏
s=1

s∏
j=1

s+1∏
k=1

~−i
σ
(s)
j
−σ(s+1)

k
~ Γ

(
−i
σ

(s)
j − σ

(s+1)
k

~

)
N−1∏
s=1

ei
xs−xs+1

~
∑s
j=1 σ

(s)
j .

(2.57)
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A similar expression can be obtained considering antichiral multiplets instead of chiral ones.

Here σ
(s)
j are vevs of vectormultiplet scalars of the U(s) gauge group (s = 1, . . . , N − 1),

while σ
(N)
m = am are the twisted masses of the U(N) flavour group and xs − xs+1 is the

Fayet-Iliopoulos parameter for the s-th gauge group. The integration contour C goes along

the lines Im σ
(s)
j > maxk{Imσ

(s+1)
k }. It is easy to see that (2.57) can be re-expressed in a

recursive form equivalent to (2.13); recursion in gauge theory language simply means that

the length N quiver theory can be obtained from the length N − 1 one by gauging the

U(N − 1) flavour symmetry and coupling it to a set of N chiral multiplets.

We therefore conclude that, at least as far as open Toda chain are concerned, gauge

theory and Separation of Variables give the same result; then by [5, 6] we know that (2.57)

is the correct eigenfunction of the open Toda chain with the proper asymptotic behaviour.

To consider an example, the eigenfunction of the 2-particle open Toda system (with center

of mass decoupled)

Ψ(c)
a (x, ~) =

∫ ∞
−∞

~−
2iσ
~ Γ

(
−iσ − a

~

)
Γ

(
−iσ + a

~

)
e
iσx
~ dσ = 4π~K 2ia

~

(
2

~
e
x
2

)
(2.58)

satisfying (
−~2∂2

x + ex
)

Ψ(c)
a (x, ~) = EΨ(c)

a (x, ~) = a2Ψ(c)
a (x, ~) (2.59)

decreases very fast at x → ∞ while it oscillates at x < 0 as we can see from figure 3.

Considering antichiral multiplets instead of chiral, we would have obtained

Ψ(ac)
a (x, ~) =

∫ ∞
−∞

~
2iσ
~ Γ

(
i
σ − a
~

)
Γ

(
i
σ + a

~

)
e
iσx
~ dσ = 4π~K 2ia

~

(
2

~
e−

x
2

)
, (2.60)

which is an eigenfunction of(
−~2∂2

x + e−x
)

Ψ(ac)
a (x, ~) = EΨ(ac)

a (x, ~) = a2Ψ(ac)
a (x, ~) (2.61)

with behaviour at x = ±∞ opposite to the one of (2.58). Let us remark that Ψ
(c)
~a (~x, ~)

(respectively Ψ
(ac)
~a (~x, ~)) are related to q(c)(σ,~a, ~) (or q(ac)(σ,~a, ~)) in (2.52) by Separation

of Variables as discussed in section 2.2. Notice also that (2.58) (and similarly its antichiral

analogue), when interpreted as a partition function on the disc Dε1 , is equivalent to the

sum over all vacua of the vortex partition function (i.e. partition function on R2
ε1) of the

two-dimensional theory as

Ψ(c)
a (x, ~) = 2π~

(
ex/2

~

) 2ia
~

Γ

(
−2ia

~

)∑
n>0

1

n!(1 + 2ia
~ )n

(
ex

~2

)n

+ 2π~

(
ex/2

~

)− 2ia
~

Γ

(
2ia

~

)∑
n>0

1

n!(1− 2ia
~ )n

(
ex

~2

)n
,

(2.62)

as can be seen by performing the integration; both terms in this sum formally satisfy (2.59),

but separately they do not have the correct asymptotic behaviour and only their combina-

tion is a proper eigenfunction (see also footnote 6).
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Figure 3. 2-particle open Toda eigenfunction Ψ
(c)
a (x, ~) at ~ = 1 (left), ~ =

√
1.5 (right) and fixed

a = 1.4,
√

2.5, 1.702 (blue, orange, green); the potential ex is in red.

Closed Toda chains. We can now proceed to discuss the eigenfunctions for the closed

Toda chain. In this case Q = Q4d > 0; our two-dimensional theories are then coupled

to the four-dimensional one and we therefore expect instanton corrections to the previous

expressions given by series in powers of Q4d.

Let us focus here on defects of type II, i.e. N free chiral/antichiral multiplets; the

partition function of this 2d-4d coupled system will be

q(c)(σ,~a, ~, Q4d) = q(c)(σ,~a, ~)q
(c),NS
inst (σ,~a, ~, Q4d),

q(ac)(σ,~a, ~, Q4d) = Q
− iσ~
4d q(ac)(σ,~a, ~)q

(ac),NS
inst (σ,~a, ~, Q4d),

(2.63)

where q(c)(σ,~a, ~) and q(ac)(σ,~a, ~) are the ones in (2.52), the factor Q
− iσ~
4d is introduced for

later convenience, are q
(c),NS
inst (σ,~a, ~, Q4d) and q

(ac),NS
inst (σ,~a, ~, Q4d) are the NS limit of the

instanton corrections coming from coupling to the four-dimensional gauge theory. These

corrections can be computed by using the contour integral formulae (A.7), (A.8) in ap-

pendix A.1 according to

q
(c),NS
inst (σ,~a, ~, Q4d) = lim

ε2→0

Z
(c),inst
2d/4d (σ,~a, ε1, ε2, Q4d)

Z inst
4d (~a, ε1, ε2, Q4d)

∣∣∣∣∣
ε1=i~

,

q
(ac),NS
inst (σ,~a, ~, Q4d) = lim

ε2→0

Z
(ac),inst
2d/4d (σ,~a, ε1, ε2, Q4d)

Z inst
4d (~a, ε1, ε2, Q4d)

∣∣∣∣∣
ε1=i~

= q
(c),NS
inst (σ,~a,−~, Q4d).

(2.64)

Alternatively, they can be computed via the TBA formulae (A.20) in appendix A.1. The

functions (2.63) with the instanton corrections (2.64) were used in [8] to construct two

linearly independent meromorphic solutions to the Baxter equation (2.19) with the correct

asymptotic behaviour at σ → ±∞, and were also shown to be equivalent to (2.24) obtained

in the context of Separation of Variables. The i~-periodic factor added by hand at the

denominator of (2.24), source of meromorphicity for the function, appears instead naturally

from the gauge theory expression (2.63) if we use the properties of the Gamma functions

appearing in (2.52) as done in (2.55), (2.56); it is then very natural from the gauge theory
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point of view to have poles at σ = am + i~nm. From the short review of section 2.2 we

already know that L2(R) entire eigenfunctions q(σ,~a, ~, Q4d) of the Baxter equation

(i)Nq(σ+i~,~a, ~, Q4d)+Q4d(i)−Nq(σ−i~,~a, ~, Q4d) = t(σ, ~E(~a,Q4d))q(σ,~a, ~, Q4d) (2.65)

will be given by linear combinations

q(σ,~a, ~, Q4d) = q(ac)(σ,~a, ~, Q4d)− ξq(c)(σ,~a, ~, Q4d) (2.66)

only for particular values of the am parameters determined by (2.31), or equivalently

by (2.38) in gauge theory language [8]. We have therefore recovered the known solution of

the Baxter equation for the closed Toda chain in terms of gauge theory quantities.7

Let us study in detail an example and consider the 2-particle closed Toda chain with

center of mass decoupled (i.e. a1 = −a2 = a). In this case the Baxter equation reads

− q(σ+ i~, a, ~, Q4d)−Q4dq(σ− i~,~a, ~, Q4d) = (σ2−E2(a, ~, Q4d))q(σ, a, ~, Q4d), (2.67)

with E2(a, ~, Q4d) as computed in (2.47). This Baxter equation can also be written as(
ei~∂σ +Q4de

−i~∂σ + σ2
)
q(σ, a, ~, Q4d) = E2(a, ~, Q4d)q(σ, a, ~, Q4d) (2.68)

and can be thought as the quantized version of the classical Hamiltonian

e−p +Q4de
p + σ2 = E2, (2.69)

which is the Fourier-transform of the 2-particle Toda Hamiltonian Ĥ ′2

p2 + eσ +Q4de
−σ = E2. (2.70)

This is only true for the 2-particle Toda chain, since as we mentioned earlier in this case

type III defects coincide with type I ones. The (not normalized) solution to the Baxter

equation (2.68) will be a linear combination

q(σ, a, ~, Q4d) = q(ac)(σ, a, ~, Q4d)− ξq(c)(σ, a, ~, Q4d) (2.71)

where, from the formulae in appendix A.1,

q(c)(σ, a, ~, Q4d) = ~−
2iσ
~ Γ

(
−iσ − a

~

)
Γ

(
−iσ + a

~

)
×
(

1 +Q4d
2σ − 3i~

i~(4a2 + ~2)(σ − a− i~)(σ + a− i~)
+ o(Q2

4d)

)
,

q(ac)(σ, a, ~, Q4d) = Q
− iσ~
4d ~

2iσ
~ Γ

(
i
σ − a
~

)
Γ

(
i
σ + a

~

)
×
(

1−Q4d
2σ + 3i~

i~(4a2 + ~2)(σ − a+ i~)(σ + a+ i~)
+ o(Q2

4d)

)
.

(2.72)

This linear combination will be an entire function of σ only for a satisfying the quantization

condition (2.46) and ξ determined by (2.31); for the values of a(n) in table 2 we find
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Figure 4. Gauge theory Baxter solution q(σ) for Q = 1, ~ = 1.5 at a not satisfying quantization

conditions. Left: a = 1.87; center: a = 2.655; right: a = 3.315.
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(a) Numerical results.
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(b) Gauge theory results.

-10 -5 5 10

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

-10 -5 5 10

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

-10 -5 5 10

-1.×10-10

-5.×10-11

5.×10-11

1.×10-10

(c) Difference.

Figure 5. Level n = 0, 1, 2 Baxter solution q(σ) for Q = 1, ~ = 1.5.

ξ = −(−1)n. On the other hand, singularities do not disappear when a 6= a(n), as shown

for example in figure 4.

In order to check these claims (which were however proven in [8]), we can compare the

gauge theory solution with numerical results; to do this it is actually more convenient to

7Our gauge theory solution will in general not be normalized to 1 since we were not able to find the

correct normalization factor from gauge theory arguments.
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consider the rescaled function

q(σ, a, ~, Q4d) = (Q4d)
iσ
2~ q(σ, a, ~, Q4d), (2.73)

which satisfies the more symmetric problem(
Q

1/2
4d e

i~∂σ +Q
1/2
4d e

−i~∂σ + σ2
)
q(σ, a, ~, Q4d) = E2(a, ~, Q4d)q(σ, a, ~, Q4d). (2.74)

Numerical eigenvalues and eigenfunctions for the quantum problem (2.74) can be deter-

mined with the procedure described in section 2.3.2. Numerical eigenvalues are the same

as the Ĥ ′2 ones (table 1), as expected since the two problems are related by a Fourier

transformation; numerical eigenfunctions (normalized to 1) are however different and are

shown in figure 5a and 6a (blue). The gauge theory solution (2.73) to the Baxter equation,

computed up to 6-instantons and evaluated at the values of a(n) in table 2, is instead shown

in figure 5b and 6b (orange) where we plotted Re[q̃(σ)], Im[q̃(σ)], Re[q̃(σ)] for n = 0, 1, 2

respectively, the other imaginary/real/imaginary component being identically zero.8 As we

can see, numerical and gauge theory results seem to agree well and are hard to distinguish

by the naked eye; moreover, the singularities at σ = ±a(n) of the gauge theory results seem

to disappear already at 6-instantons. This is however an artifact, since singularities are

only expected to disappear when considering all instanton contributions: in fact some of

them are visible in figure 5c and 6c (red) which show the difference between numerical and

gauge theory results, while when they are not visible we just need to “zoom” more near the

singular point. What really happens is that divergences tend to close when we add more

and more instanton corrections: an example of this behaviour for the level n = 1 solution

at Q = 1√
2
, ~ =

√
3 is shown in figure 7, where we can see how the singularity becomes less

pronounced when moving from 4-instanton formulae (left) to 6-instanton formulae (right).

Having determined the solution to the N -particle Baxter equation, we can now compute

the (not normalized) common eigenfunctions Ψ~a(~x, ~, Q4d) of the N -particle closed Toda

Hamiltonians in terms of the eigenfunctions of the (N − 1)-particle open Toda chain by

using formula (2.17) obtained from Separation of Variables, as reviewed in section 2.2. For

the 2-particle case (2.17) reduces to

Ψa(x, ~, Q4d) =

∫
R
dσ q(σ, a, ~, Q4d)e

ixσ
~ , (2.75)

where e
ixσ
~ is the 1-particle open Toda eigenfunction and q(σ, a, ~, Q4d) is as given in (2.71);

when a = a(n) satisfies the quantization conditions (2.38) (and therefore q(σ, a, ~, Q4d) is

entire) this satisfies(
−~2∂2

x + ex +Q4de
−x)Ψa(x, ~, Q4d) = E2(a, ~, Q4d)Ψa(x, ~, Q4d), (2.76)

always with E2(a, ~, Q4d) as in (2.47). The integral can be explicitly evaluated as explained

in section 2.2. As shown in figure 8, at generic a 6= a(n) this expression does not correspond

8Remember that the gauge theory expression for (2.73) is not normalized to 1; what we show in figure 5b

and 6b is the gauge theory result divided by its norm.
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(a) Numerical results.
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(b) Gauge theory results.
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Figure 6. Level n = 0, 1, 2 Baxter solution q(σ) for Q = 1√
2
, ~ =

√
3.
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Figure 7. Level n = 1 numerical (blue dots) and gauge theory (orange dots) Baxter solution q(σ)

for Q = 1√
2
, ~ =

√
3 near σ = a(1). Left: 4-instanton results; right: 6-instanton results.
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Figure 8. Gauge theory 2-particle Toda solution Ψa(x) for Q = 1, ~ = 1.5 at a not solving the

quantization conditions. Left: a = 1.85; center: a = 2.60; right: a = 3.28.
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(b) Gauge theory results.
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Figure 9. Level n = 0, 1, 2 2-particle Toda eigenfunction Ψa(x) for Q = 1, ~ = 1.5.

to a true eigenfunction since it does not go to zero at both x → ±∞ but oscillates in

one direction. On the other hand, for the values of a = a(n) in table 2 we obtain the

eigenfunctions shown in figure 9b and 10b, where again we divided gauge theory results by

their norms in order to perform comparison. The difference between numerical and gauge

theory results is shown in figure 9c and 10c; as we can see the difference is very small

already for gauge theory expressions evaluated up to 6-instantons.
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(a) Numerical results.
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-4 -2 2 4

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

-4 -2 2 4

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

-4 -2 2 4

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

(c) Difference.

Figure 10. Level n = 0, 1, 2 2-particle Toda eigenfunction Ψa(x) at Q = 1√
2
, ~ =

√
3.

2.4 Comments

In section 2.3 we reviewed how the NS limit of various quantities one can compute in the

four-dimensional pure N = 2 SU(N) gauge theory admit an interpretation in terms of the

N -particle quantum Toda chain, and we performed some check against numerical results

for the N = 2 case. In particular we discussed how the disc partition function of the two-

dimensional N = (2, 2) theories corresponding to defects of type II and I precisely coincide

with the eigenfunctions of the open Toda chain Baxter equation or with the eigenfunctions

of the open Toda chain Hamiltonians as computed in [5, 6] via Separation of Variables.

Similarly, the partition function of the two-dimensional type II theory coupled to the four-

dimensional SU(N) gauge theory provides a solution to the closed Toda chain Baxter

equation (that is, the operator arising from quantizing the spectral/Seiberg-Witten curve)

which is the same as the one found in [2, 3, 5, 6] as already discussed in [8]; from this

solution to the Baxter equation we can then construct eigenfunctions for the closed Toda

chain Hamiltonians via Separation of Variables.

There are a few comments we would like to make before closing this section.

• The first comment regards the eigenfunction Ψ~a(~x, ~, Q4d) of the closed Toda chain

Hamiltonians Ĥm. In section 2.2 and 2.3 we computed this eigenfunction via Sep-
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aration of Variables, but this is actually not the most natural way to proceed in

gauge theory: the gauge theory prescription would rather involve the computation

of the NS limit Z
(I),NS
2d/4d (~x,~a, ~, Q4d) of the partition function of the two-dimensional

type I theory coupled to the four-dimensional SU(N) gauge theory. Contour integral

formulae for the instanton corrections to the partition function of this 2d-4d coupled

system are given by (A.14), (A.15) in appendix A.1; the perturbative part is instead

given by (2.58). In the 2-particle Toda case, this would lead to

Ψa(x, ~, Q4d) ∝

(
ex/2

~

) 2ia
~

Γ

(
−2ia

~

)
Z

(I),NS
2d/4d (x, a, ~, Q4d)

+

(
ex/2

~

)− 2ia
~

Γ

(
2ia

~

)
Z

(I),NS
2d/4d (x,−a, ~, Q4d).

(2.77)

This expression is nothing else but the 2-particle open Toda chain eigenfunc-

tion (2.62) in which we replaced the vortex partition function by the NS limit of

the instanton-vortex partition function of the 2d type I theory coupled to the 4d

theory (A.14). Both the first and second line of (2.77) independently satisfy (2.76)

formally for any a, in constrast to the expression (2.75) arising from Separation of

Variables which is a solution only for a = a(n). Nevertheless it is expected that

only when we consider first and second line together, and only when evaluated at

the values of a = a(n) satisfying the quantization condition (2.46), they provide a

proper eigenfunction of the Toda Hamiltonian with the correct L2(R) asymptotic

behaviour. Therefore we expect that the two expressions (2.75) and (2.77), although

different for generic values of a, will coincide for a = a(n) satisfying the quantization

condition (mainly due to (2.28)). Unfortunately we were not able to show this

equality even at the numerical level, mainly because of the difficulty in calculating

a sufficiently large number of terms for the series Z
(I),NS
2d/4d (~x,~a, ~, Q4d); however it

should be possible to prove it analytically by using the results of [39].

• The second comment concerns the quantization condition (2.38), and in particular

the one for the SU(2) theory (2.46). Instead of the NS limit, let us now consider the

unrefined limit ε1 = −ε2 = i~ of the pure N = 2 SU(2) partition function:

Z4d(a, ε1, ε2, Q4d) =⇒ Zunref
4d (a, ~, Q4d) = Z4d(a, i~,−i~, Q4d). (2.78)

In this limit the perturbative part reduces to a product of exponential terms and

Barnes G-functions, so we can rewrite Zunref
4d (a, ~, Q4d) as

Zunref
4d (a, ~, Q4d) =

(
~−4Q4d

)−a2~2
G(1 + 2ia

~ )G(1− 2ia
~ )

Z inst
4d (a, i~,−i~, Q4d). (2.79)

We can now consider the Zak transformof Zunref
4d (a, ~, Q4d), also known as dual

partition function [31]:

τ(a, ~, Q4d, η) =
∑
n∈Z

e
iη
~ Zunref

4d (a+ in~, ~, Q4d). (2.80)
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This object has received much attention recently due to its relation to the theory

of Painlevé equations: in fact it has been shown in [40–43] that τ(a, ~, Q4d, η) is

the short-distance (i.e. small Q4d) expansion of the τ -function associated to the

Painlevé III3 equation. This means that (2.80) is a solution to a non-linear ordinary

differential equation in Q4d, the τ -PIII3 equation; the parameters a and η are two

integration constants/initial values for this equation, while ~ can be considered as an

overall scale which can be reabsorbed in the definition of the other parameters. From

the point of view of gauge theory the interpretation of η is not completely clear;

however based on [31] and on the analysis of the similar PVI case (associated to four-

dimensional N = 2 SU(2) NF = 4 super-QCD) performed in [44–46] we expect η to

coincide with the a-derivative of the twisted effective superpotential W4d(a, i~, Q4d),

which is a quantity computed in the NS limit instead of the unrefined one:9

η =
∂

∂a
W4d(a, i~, Q4d). (2.81)

If this is the case then η = 2π~n when the quantization condition (2.46) is satisfied;

due to periodicity, this is equivalent to setting η = 0. What is relevant to the present

discussion is that (2.80) admits another interpretation when η = 0 (mod 2π~): as

shown in [50] based on [51], τ(a, ~, Q4d, 0) coincides with the spectral/Fredholm deter-

minant of an ideal Fermi gas whose partition function is given by an O(2) (or polymer)

matrix model; this spectral determinant can also be obtained by taking a particular

4d limit of the spectral determinant associated to the local F0 toric Calabi-Yau geom-

etry which was introduced and analyzed in [10]. As such, the zeroes of τ(a, ~, Q4d, 0)

should contain information about the spectrum of the Fermi gas. The procedure to de-

termine this spectrum was fully explained in [50]: by defining a = ã+i~2 , the equation

τ

(
ã+ i

~
2
, ~, Q4d, 0

)
= 0 (2.82)

admits solutions for real ã(n) at fixed value of ~, Q4d, where n labels the n-th zero;

the energy of the n-th energy level of the Fermi gas is then given by

eEgas(ã,~) =
1

4π

(
e

2πã
~ + e−

2πã
~

)
(2.83)

evaluated at ã(n). What does this have to do with the Toda system? Equation (2.82)

defines quantization conditions for ã; it turns out that the values ã(n) thus determined

coincide with the ones for a(n) listed in table 2 obtained from (2.46) at same fixed

~, Q4d. There exist therefore two different ways to express the same quantization

conditions for the closed Toda chain from gauge theory:

A) the first one is given in terms of W4d(a, i~, Q4d), computed in the NS limit ;

B) the second one is given in terms of τ(a, ~, Q4d, 0) computed in the unrefined limit.

9In [47] Painlevé τ -functions were proposed to be related to the oper limit à la [48] of a Hitchin flat

connection. Based on the work [49], it is expected that the oper Lagrangian submanifold in the space of

Darboux coordinates (a, aD) would be given by aD = ∂aW4d; this may provide an explanation for the

identification (2.81) for η ∝ aD.
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This is reminescent of a similar situation occurring in five dimensions: the condition

of vanishing of the spectral determinant associated to the local F0 geometry (i.e.

pure N = 1 SU(2) Yang-Mills) studied in [10], which involves the unrefined limit

of the 5d partition function (+ non-perturbative corrections in gs ∼ ~−1), seems to

be equivalent to extremizing the twisted effective superpotential which is obtained

from the NS limit of the 5d N = 1 SU(2) partition function (+ non-perturbative

corrections in ~) [16]. This equivalence in five dimensions has been proven in [20] by

making use of the 5d blow-up equations of [52, 53]; it is then natural to expect that

by considering an appropriate 4d limit of [20], or by using the 4d blow-up equations

of [54, 55], the equivalence between four-dimensional NS and unrefined quantization

conditions should follow.

Regardless of how we express them, these quantization conditions determine the

discrete energy levels of two different quantum systems:

– the 2-particle closed Toda chain via (2.47);

– a Fermi gas associated to the O(2) matrix model via (2.83).

Some relation between the “off-shell” closed Toda chain energy (2.47) and the

“off-shell” Fermi gas energy (2.83) already appeared in the mathematical literature

in the context of wild nonabelian Hodge correspondence and integrable systems

associated to Hitchin moduli spaces in different complex structures (I and J

respectively), see [56, 57] and references therein. In that context however (2.83)

is more naturally interpreted not as the “off-shell” energy of a Fermi gas, but as

the energy of the relativistic open Toda chain (the energies being identical modulo

overall factors), a quantum mechanical system with continuous spectrum which will

be discussed in section 3; consequently ~ = R−1 is not thought of as the Planck

constant but as the “speed of light” of the relativistic system. Moreover, from the

point of view of N = 2 gauge theories in four dimension, (2.83) is interpreted as a

Wilson loop wrapping S1
R for a 4d gauge theory placed on R3×S1

R (the most natural

setting for studying Hitchin systems from a gauge theory point of view [58]). At

the moment it is not clear to us, and may be worth investigating, if the alternative

interpretation of (2.83) as the energy of a Fermi gas with discrete spectrum à la [50]

has some meaning in the context of wild nonabelian Hodge correspondence.

As a final comment, let us mention that the relation between (2.47) and (2.83)

might be clearer if we start from considering the relativistic closed Toda chain (or

five-dimensional gauge theories) and take an appropriate limit, as already suggested

in [57]; we will come back to this point in section 3.5 after having studied in some

detail this relativistic system.

3 Relativistic Toda integrable systems

In section 2 we reviewed in some detail how the N -particle closed Toda chain can be solved,

both via the Separation of Variables technique and via gauge theory, and we provided some
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numerical check of the solution. In this section instead we will study the solution of the

“relativistic” generalization of the Toda system: that is, we will consider a version of the

Toda chain in which the differential operators appearing in the (“non-relativistic”) Toda

Hamiltonians Ĥm (2.4) (arising from quantizing polynomials in the momenta) get replaced

by appropriate finite-difference operators, which arise from quantizing exponentials of the

momenta. While exact quantization conditions and spectrum for this “relativistic” system

have been discussed in detail in [10, 11, 16], it is not yet clear how to construct proper

eigenfunctions for the relativistic closed Toda chain or its Baxter equation in full generality,

although various particular cases were considered in [26, 27] (eigenfunctions for the rela-

tivistic open Toda chain have instead been constructed in [21]). Here we propose a solution

to this problem via gauge theoretical arguments similar to the ones used in section 2.3,

appropriately modified to take into account the novel features appearing in the problem

at hand; we will mainly focus on constructing solutions to the relativistic Toda Baxter

equation based on analogy with the non-relativistic case, and we will check our proposed

solution against numerical results.

3.1 Quantum relativistic Toda chain (open and closed)

The “relativistic” generalization of the quantum N -particle Toda chain is a quantum me-

chanical system of N particles on a line interacting via the Hamiltonian (in conventions

similar to [21])10

Ĥ1 =
N∑
m=1

[
1 + q−1/2e

2π
ω2

(xm−xm+1)
]
eω1pm . (3.1)

Here xm, pm are position and momentum of the m-th particle (rescaled with respect to the

ones we used in section 2.1) and satisfy the commutation relations

[pl, xm] = −iδl,m. (3.2)

This Hamiltonian is self-adjoint on L2(RN−1) when the parameters ω1, ω2 ∈ R+;11 these

are related to the Planck constant and an additional parameter that can naively be thought

as the “speed of light” of the relativistic system, and we defined

q = e2πiω1/ω2 , |q| = 1. (3.3)

The “non-relativistic” Toda Hamiltonians Ĥm (2.4) are recovered from (3.1) by taking an

appropriate ω1 → 0 limit. As for the Toda chain, we impose the boundary condition

xN+1 = x1 +m0 = x1 −
ω2

2π
lnQrel , Qrel = e

− 2πm0
ω2 ∈ R+ (3.4)

to better distinguish between the open and closed chain:

10We will use Ĥm and Em to denote Hamiltonians and energies of the relativistic Toda system in order

to distinguish them from the ones of the Toda chain.
11It is possible to define a good quantum mechanical problem also for ω1, ω2 ∈ C, ω1 = ω2 as considered

for example in [27]; in this case it is often chosen for definiteness Im(ω1/ω2) > 0, i.e. |q| < 1. Taking the

limit Im(ω1/ω2)→ 0 from this regime leads us to the relativistic Toda chain under consideration.
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• Qrel = 0: open relativistic Toda chain;

• Qrel > 0: closed relativistic Toda chain.

Similarly to the Toda case, relativistic open chains have a continuous spectrum while

relativistic closed chains admit a discrete spectrum. Relativistic Toda chains are also

integrable systems, their N commuting Hamiltonians being

Ĥ1 =

N∑
m=1

[
1 + q−1/2e

2π
ω2

(xm−xm+1)
]
eω1pm ,

...

ĤN−1 = ĤN
N∑
m=1

[
1 + q−1/2e

2π
ω2

(xm−xm+1)
]
e−ω1pm+1

ĤN =
N∏
m=1

eω1pm , (3.5)

with pN+1 = p1. Decoupling the center of mass in this case is equivalent to impose

ĤN = 1. Despite the many similarities with the non-relativistic Toda chain, a peculiar and

very important property of the relativistic Toda chain is the existence of its modular dual

version (see [21], based on [59, 60]); this is defined by the set of N commuting Hamiltonians

̂̃H1 =

N∑
m=1

[
1 + q̃−1/2ω2

2e
2π
ω1

(xm−xm+1)
]
eω2pm ,

...̂̃HN−1 =
̂̃HN N∑

m=1

[
1 + q̃−1/2e

2π
ω1

(xm−xm+1)
]
e−ω2pm+1

̂̃HN =
N∏
m=1

eω2pm , (3.6)

with boundary condition

xN+1 = x1 −
ω1

2π
ln Q̃rel , Q̃rel = e

− 2πm0
ω1 ∈ R+, (3.7)

and where we introduced12

q̃ = e2πiω2/ω1 , |q̃| = 1. (3.8)

The dual Hamiltonians
̂̃Hm are not really independent from the original ones since the two

sets are related by the exchange ω1 ↔ ω2; however because of this relation the original and

dual set of Hamiltonians commute with each other by construction:

[Ĥm,
̂̃Hn] = 0. (3.9)

12More in general, tilded variables will always denote quantities in the modular dual system; these are

related to the analogous quantities in the original model by the exchange ω1 ↔ ω2. When considering ω1,

ω2 ∈ C, ω1 = ω2 the canonical choice Im(ω1/ω2) > 0 implies |q̃−1| < 1.
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This means that the eigenfunctions of the relativistic Toda chain will also be eigenfunctions

of the dual system; we therefore expect them to be symmetric under ω1 ↔ ω2. Among

other things, the existence of the modular dual system plays a key role in eliminating some

of the ambiguities of the relativistic Toda chain solution: in fact differently from ordinary

quantum mechanics in which eigenfunctions are solutions to a differential equation and as

such are only defined modulo an overall constant, eigenfunctions of finite-difference oper-

ators like the relativistic Toda one (3.5) are only defined modulo an iω1-periodic function

(much like the solution to the non-relativistic Toda chain Baxter equation (2.19)); this

ambiguity can however be reduced to the usual overall constant normalization by requiring

them to be eigenfunctions of the dual relativistic Toda operators (3.6) as well.13

To sum up, our spectral problem in this case consists of constructing common eigen-

functions Ψrel
~E,~̃E

(~x, ω1, ω2) of the relativistic Toda Hamiltonians Ĥm and dual Hamiltonianŝ̃Hm, that is

ĤmΨrel
~E,~̃E

(x1, . . . , xN , ω1, ω2) = EmΨrel
~E,~̃E

(x1, . . . , xN , ω1, ω2) , m = 1, . . . , N,

̂̃HmΨrel
~E,~̃E

(x1, . . . , xN , ω1, ω2) = ẼmΨrel
~E,~̃E

(x1, . . . , xN , ω1, ω2) , m = 1, . . . , N,
(3.10)

where ~E = (E1, . . . , EN ),
~̃E = (Ẽ1, . . . , ẼN ) are the corresponding eigenvalues (with

EN = ẼN = 1 after decoupling the center of mass), satisfying the appropriate boundary

conditions:

• for the relativistic open Toda chain, Ψrel
~E,~̃E

(~x, ω1, ω2) should vanish fast enough as

xk − xk+1 →∞;

• for the relativistic closed Toda chain, normalizability requires Ψrel
~E,~̃E

(~x, ω1, ω2) ∈

L2(RN−1).

More precise statements about the relativistic Toda spectral problem can be found in [21].

Similarly to what we did in section 2.1, we can rewrite this spectral problem in a more

compact notation: if we define

w = e
− 2πσ
ω2 , w̃ = e

− 2πσ
ω1 (3.11)

and introduce the generating functions of the relativistic Hamiltonians

t̂rel(σ) =
N∑
m=0

(−1)mwm−
N
2 Ĥm, Ĥ0 = 1,

̂̃trel(σ) =
N∑
m=0

(−1)mw̃m−
N
2
̂̃Hm, ̂̃H0 = 1,

(3.12)

13Of course there may still be ambiguities given by doubly-periodic functions in iω1, iω2.
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satisfying

[t̂rel(σ), t̂rel(σ
′)] = 0,

[̂t̃rel(σ),̂̃trel(σ
′)] = 0,

[t̂rel(σ),̂̃trel(σ
′)] = 0,

(3.13)

the spectral problem (3.10) becomes

t̂rel(σ)Ψrel
~E,~̃E

(~x, ω1, ω2) = trel(σ, ~E)Ψrel
~E,~̃E

(~x, ω1, ω2),

̂̃trel(σ)Ψrel
~E,~̃E

(~x, ω1, ω2) = t̃rel(σ,
~̃E)Ψrel

~E,~̃E
(~x, ω1, ω2),

(3.14)

where

trel(σ, ~E) =

N∑
m=0

(−1)mwm−
N
2 Em, E0 = 1,

t̃rel(σ,
~̃E) =

N∑
m=0

(−1)mw̃m−
N
2 Ẽm, Ẽ0 = 1

(3.15)

are the generating functions of the relativistic Toda and dual Toda eigenvalues. These

generating functions also enter in the definition of the spectral curves of the classical

relativistic Toda chain and its dual: these are Riemann surfaces embedded in (w, y) or

(w̃, ỹ) ∈ C× × C× defined by the equations

y +Qrel y
−1 = E−

1
2

N trel(σ, ~E),

ỹ + Q̃rel ỹ
−1 = Ẽ−

1
2

N t̃rel(σ,
~̃E).

(3.16)

Similarly to what we saw in section 2, quantization of the spectral curves (3.16) will provide

the Baxter equations associated to the relativistic Toda chain and its modular dual, whose

solution will be necessary in order to construct the relativistic Toda eigenfunctions in the

context of Separation of Variables. We may also re-express trel(σ, ~E), t̃rel(σ,
~̃E), which are

polynomials in w, w̃, in terms of auxiliary sets of variables (a1, . . . , aN ) or (τ1, . . . , τN ) for

the open and closed case respectively as

E−
1
2

N trel(σ, ~E) =


∏N
m=12sinh

[
π

ω2
(σ−am)

]
=⇒ Em=Em(~a) (open chain),∏N

m=12sinh

[
π

ω2
(σ−τm)

]
=⇒ Em=Em(~τ) (closed chain),

(3.17)

Ẽ−
1
2

N t̃rel(σ,
~̃E) =


∏N
m=12sinh

[
π

ω1
(σ−am)

]
=⇒ Ẽm= Ẽm(~a) (dual open chain),∏N

m=12sinh

[
π

ω1
(σ−τm)

]
=⇒ Ẽm= Ẽm(~τ) (dual closed chain).

(3.18)

The auxiliary variables am, τm are the same ones we used in the four-dimensional case (2.12)

and are such that a1 + . . .+ aN = τ1 + . . .+ τN ; sometimes it will be useful to write them

via the combinations

µm = e
2πam
ω2 , µ̃m = e

2πam
ω1 , δm = e

2πτm
ω2 , δ̃m = e

2πτm
ω1 . (3.19)
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As in the four-dimensional case, the τm = τm(~a) variables can be thought as functions of

the am ones and reduce to these when Qrel, Q̃rel are set to zero (i.e. m0 →∞); therefore also

the relativistic closed Toda and dual Toda eigenvalues Em = Em(~τ(~a)) and Ẽm = Ẽm(~̃τ(~̃a))

can be thought as functions of the am’s, and in fact this is the most natural parametrization

of the spectrum if we look for a solution constructed via gauge theory.

3.2 Numerical study of spectrum and eigenfunctions

Before moving to discuss how the relativistic Toda chain can be solved in the framework

of gauge theory, let us pause a moment to perform a numerical study of this system;

numerical eigenvalues and eigenfunctions computed in this section will be later used to

provide some check of the validity of our proposed gauge theory solution. Similarly to

what explained in section 2.3.2, numerical analysis is performed by diagonalizing the

Quantum Mechanical operator Ô of interest in terms of some orthonormal basis in the

appropriate Hilbert space; when the Hilbert space is L2(R) we can choose the basis

given by the eigenfunctions ψk(x) of a harmonic oscillator of mass m, frequency ω and

Hamiltonian Ĥ = p2

2m + 1
2mω

2x2 (with [p, x] = −i~):

ψk(x) =
1√
2kk!

(mω
π~

) 1
4
e−

mωx2

2~ Hk

(√
mω

~
x

)
, k > 0. (3.20)

We then compute the matrix elements 〈ψk1 |Ô|ψk2〉 up to a certain k1, k2 and evaluate

numerically the eigenvalues of this finite-dimensional matrix; these eigenvalues should

approach the ones of our Hamiltonian Ô defined on L2(R) when increasing the size of

the matrix. Numerical (normalized) eigenfunctions are then obtained by looking at the

eigenvectors of this matrix. In actual computations we usually consider 300×300 matrices

and fix m and ω by expanding Ô in small p and x.

Let us show how this works in the case of a relativistic 2-particle Toda chain with center

of mass decoupled (that is a1 = −a2 = a
2 or µ1 = µ−1

2 = µ1/2); as for the non-relativistic

case, we will be interested in two different operators:

• The first one is the operator associated to the Baxter equation for the system and

its dual version (see (3.80) in section 3.4), which can be obtained by quantizing the

spectral curves (3.16); after a slight redefinition of variables these reduce to[
eiω1∂σ +Qrele

−iω1∂σ + e
2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(σ, a, ω1, ω2,m0) = 0, (3.21a)[

eiω2∂σ + Q̃rele
−iω2∂σ + e

2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(σ, a, ω1, ω2,m0) = 0, (3.21b)

where the energies E1, Ẽ1 depend on ω1, ω2, m0 and a (a will be discretized because of

the quantization conditions). The two Baxter operators are related by the exchange

ω1 ↔ ω2 and commute with each other; the solution q(σ) ∈ L2(R) should then be their

simultaneous eigenfunction and as such should be symmetric under ω1 ↔ ω2, and is

also expected to be an entire function based on the analogy with the non-relativistic

chain. For numerical computations it is actually more convenient to consider the

function

q(σ, a, ω1, ω2,m0) = e
− iπm0σ

ω1ω2 q(σ, a, ω1, ω2,m0), (3.22)
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Figure 11. Numerical Baxter solution q(σ) at ω1 = 2−1/4, ω2 = 21/4, m0 = 0.

which is a simultaneous eigenfunction of the more symmetric equations[
Q

1
2
rel

(
eiω1∂σ + e−iω1∂σ

)
+ e

2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(σ, a, ω1, ω2,m0) = 0, (3.23a)[

Q̃
1
2
rel

(
eiω2∂σ + e−iω2∂σ

)
+ e

2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(σ, a, ω1, ω2,m0) = 0. (3.23b)

Expanding (3.23) and comparing with the harmonic oscillator Hamiltonian we can

fix the values of m, ω, ~ to be used in numerical computations:

− ω2
1Q

1
2
rel∂

2
σ +

4π2

ω2
2

σ2 = E1 =⇒ m =
1

2
Q
− 1

2
rel , ω =

4π

ω2
Q

1
4
rel, ~ = ω1,

− ω2
2Q̃

1
2
rel∂

2
σ +

4π2

ω2
1

σ2 = Ẽ1 =⇒ m =
1

2
Q̃
− 1

2
rel , ω =

4π

ω1
Q̃

1
4
rel, ~ = ω2.

(3.24)

Examples of numerical results for the energy and dual energy of the ground state and

the first two excited states of equations (3.23) at various values of ω1, ω2, m0 can be

found in table 3, while figure 11, 12 show the corresponding eigenfunctions. As we

can see from the plots, already by considering 300×300 matrices there is a very small

difference between the numerical eigenfunction obtained from diagonalizing (3.23a)
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Figure 12. Numerical Baxter solution q(σ) at ω1 = 1√
2
, ω2 = 1, m0 = − ln 3

2π .

and the one obtained by diagonalizing (3.23b), supporting the expectation that there

should be only one common eigenfunction q(σ) symmetric under the exchange ω1 ↔
ω2.14

• The second one is the operator corresponding to the relativistic 2-particle Hamilto-

nian Ĥ1 itself (3.5), together with its dual
̂̃H1 (3.6); after a redefinition of variables

the spectral problem (3.10) reads[
eiω1∂x + e−iω1∂x + e

2πx
ω2 +Qrele

− 2πx
ω2 − E1

]
Ψrel
a (x, ω1, ω2,m0) = 0, (3.25a)[

eiω2∂x + e−iω2∂x + e
2πx
ω1 + Q̃rele

− 2πx
ω1 − Ẽ1

]
Ψrel
a (x, ω1, ω2,m0) = 0. (3.25b)

Clearly, problems (3.21) and (3.25) coincide when m0 = 0; moreover, since in the

special N = 2 case (3.25) is simply the Fourier-transformed version of (3.21), the

energies E1, Ẽ1 are the same as for the Baxter problem even for m0 6= 0. Our

Ψrel
a (x, ω1, ω2,m0) ∈ L2(R) should be a simultaneous eigenfunction of (3.25a), (3.25b)

since these operators commute, and as such is expected to be symmetric under ω1 ↔
14The self-dual point ω1 = ω2 = 1, m0 = 0 is somewhat special since in this case the Baxter equation

and its dual coincide.
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ω1 = 2−1/4, ω2 = 21/4

m0 = 0

ω1 = 1√
2
, ω2 = 1

m0 = − ln 3
2π

ln E(0)
1 2.4605242719. . . 2.7528481019. . .

ln Ẽ(0)
1 3.4605592909. . . 3.8720036669. . .

ln E(1)
1 3.5984708772. . . 3.8838346782. . .

ln Ẽ(1)
1 5.0869593531. . . 5.4902688202. . .

ln E(2)
1 4.4628893132. . . 4.7460288538. . .

ln Ẽ(2)
1 6.3111090796. . . 6.7114798487. . .

Table 3. Numerical eigenvalues E(n)1 , Ẽ(n)1 of (3.23) at level n = 0, 1, 2.

ω2. For numerical computations it may be more convenient to work in terms of

the variable x = x + m0
2 which makes the problem more symmetric. The numerical

spectrum obtained by diagonalizing (3.25a), (3.25b) in the harmonic oscillator basis

coincides with the one in table 3 as expected; numerical eigenfunctions (symmetric

with respect to x) for the ground state and the first two excited states are as in

figure 11 in the example where m0 = 0, while in the example with m0 = − ln 3
2π they

are plotted in figure 13.

The Baxter equation for the N -particle problem, which gives a Quantum Mechanical op-

erator on R, can be approached numerically in a similar way (see [11] for the N = 3 case

and [17] for a related computation concerning other finite-difference systems).

3.3 Solution via gauge theory: quantization conditions and energy spectrum

As quickly reviewed in section 2.3, the N -particle (non-relativistic) closed Toda chain can

be completely solved in terms of various observables of the four-dimensional N = 2 SU(N)

Yang-Mills theory on R4
ε1,ε2 (or Dε1 × R2

ε2) in the NS limit ε1 = i~, ε2 = 0 (with ~ ∈ R+).

Schematically, the dictionary between Toda chain quantities and four-dimensional gauge

theory observables is as follows:

Quantization conditions ⇐⇒ Extremization of W4d(~a, i~, Q4d) (NS limit)

Energy spectrum Em ⇐⇒ Codimension 4 defects 〈Trφm〉NS (NS limit)

Baxter eigenfunction q(σ) ⇐⇒ Codimension 2 defects (type II, NS limit)

Toda eigenfunction Ψ~a(~x) ⇐⇒ Codimension 2 defects (type I, NS limit)

It is then a natural question to ask if it is possible to find a solution for the N -particle

relativistic closed Toda chain via similar gauge theory arguments. In this section we will

discuss what gauge theory can say about quantization conditions and energy spectrum,

while leaving the study of the eigenfunctions to section 3.4.
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(a) Original Toda operator.
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(b) Dual Toda operator.
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Figure 13. Numerical Toda solution Ψa(x) at ω1 = 1√
2
, ω2 = 1, m0 = − ln 3

2π .

3.3.1 The naive proposal: five-dimensional gauge theory on flat space

A first attempt to answer this question was done in [1], where it was suggested (based

on previous observations [61]) that the relativistic version of the Toda chain may have

something to do with the five-dimensional uplift of the pure SU(N) theory: more precisely,

it was proposed to consider the five-dimensional N = 1 SU(N) Yang-Mills theory on flat

space R4
ε1,ε2×S

1
R in the NS limit ε1 = iω1, ε2 = 0 with ω1 ∈ R+. The radius R = ω−1

2 ∈ R+

of the extra circle will play the role of the (inverse) speed of light, so that when R→ 0 we

recover the Toda chain discussed in section 2. The details of the proposal are the same as in

the four-dimensional case. Let us start by fixing notations: in the following we will denote

q1 = e2πRε1 , q2 = e2πRε2 , Q5d = e−2πRm0 , µm = e2πRam (m = 1, . . . , N), (3.26)

where am are the vacuum expectation values of (the Cartan part of) the adjoint scalar

field in the N = 1 vector multiplet and m0 = 4π2/g2
5d is related to the five-dimensional

Yang-Mills coupling constant. We can now consider the partition function on R4
ε1,ε2 × S

1
R:

Z5d(~µ, q1, q2, Q5d) = Zpert
5d (~µ, q1, q2, Q5d)Z inst

5d (~µ, q1, q2, Q5d). (3.27)

Sometimes it will also be useful to rewrite this partition function as

Z5d(~µ, q1, q2, Q5d) = exp
(
− F5d(~µ, q1, q2, Q5d)

)
, (3.28)
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where the prepotential

F5d(~µ, q1, q2, Q5d) = F 0
5d(~a, ε1, ε2, R,m0) + FBPS

5d (~µ, q1, q2, Q5d) (3.29)

coincides with the refined closed topological string prepotential resummed à la Gopakumar-

Vafa once expanded around large Kahler parameters tm, m = 1, . . . , N given by

ti = ai − ai+1 (i = 1, . . . , N − 1) and tN = m0 +
N−1∑
i=1

ti ; (3.30)

the F 0
5d term is a cubic polynomial in ~a, m0, while the FBPS

5d term only depends on the

number of BPS states Nd
jL,jR

of given left, right spins jL, jR of our theory and can be

expressed as

FBPS
5d =

∑
n>1

∑
d>0

∑
jL,jR

jL∑
sL=−jL

jR∑
sR=−jR

Nd
jL,jR

n

q
n(sR+sL+1/2)
1 q

n(sR−sL+1/2)
2

(1− qn1 ) (1− qn2 )
Qnd, (3.31)

where we used the notation d = (d1, . . . , dN ) and Q = (Q1, . . . , QN ) with Qi = e−2πRti .

The NS limit of the partition function can be used to define the five-dimensional version

of the twisted effective superpotential W5d(~µ, q1, Q5d) as

W5d(~µ, q1, Q5d) = lim
ε2→0

[−ε2 logZ5d(~µ, q1, q2, Q5d)] , (3.32)

which is also equal to the NS limit of the refined closed topological string prepotential:

W5d(~µ, q1, Q5d) = FNS
5d (~µ, q1, Q5d) = lim

ε2→0
[ε2F5d(~µ, q1, q2, Q5d)] . (3.33)

The twisted effective superpotential can be separated into its perturbative (classical +

1-loop) and instanton part

W5d(~µ, q1, Q5d) =Wpert
5d (~µ, q1, Q5d) +W inst

5d (~µ, q1, Q5d), (3.34)

or can also be divided as

W5d(~µ, q1, Q5d) =W0
5d(~a, ε1, R,m0) +WBPS

5d (~µ, q1, Q5d)

= FNS,0
5d (~a, ε1, R,m0) + FNS,BPS

5d (~µ, q1, Q5d),
(3.35)

where (from (3.31))

WBPS
5d (~µ, q1, Q5d) = FNS,BPS

5d (~µ, q1, Q5d) =

=
1

4πR

∑
n>1

∑
d>0

∑
jL,jR

Nd
jL,jR

n2

sinh [(2jL + 1)πnRε1] sinh [(2jR + 1)πnRε1]

sinh3 [πnRε1]
Qnd.

(3.36)

At this point if we identify

ε1 = iω1, R = ω−1
2 , q1 = q,

4π2

g2
5d

= m0, Q5d = Qrel, (3.37)
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and ~µ with the parameters appearing in (3.19), the quantization conditions for the

relativistic Toda chain proposed by [1] would be equivalent to the set of supersymmetric

vacua equations

exp

(
− ∂

∂am
W5d(~µ, q,Qrel)

)
= 1 , m = 1, . . . , N, (3.38)

or alternatively

∂

∂am
W5d(~µ, q,Qrel) = 2πinm , nm ∈ Z, m = 1, . . . , N. (3.39)

Moreover, always according to [1] the energy spectrum Em of the m-th Hamiltonian Ĥm
at level (~n) = (n1, . . . , nN ) should correspond to the NS limit of the vacuum expectation

value of a Wilson loop W
SU(N)
Λm in the m-th antisymmetric representation Λm wrapping S1

R:

E(~n)
m = W

SU(N),(~n)
Λm,NS . (3.40)

Finally, although not discussed in [1] we could expect from what happens in the

four-dimensional case that eigenfunctions of the relativistic Toda Hamiltonians or of the

associated Baxter equation should be given by the NS limit of the five-dimensional partition

function in the presence of codimension two defects of type I (figure 2a) or II (figure 2b)

living on Dε1 × S1
R (or R2

ε1 × S
1
R if we sum over all vacua). For example, if we define

w = e−2πRσ, (3.41)

we may expect the type II defect partition function with chiral multiplets

Z
(c)
3d/5d(w, ~µ, q1, q2, Q5d) = Z

(c),pert
3d/5d (w, ~µ, q1, q2, Q5d)Z

(c),inst
3d/5d (w, ~µ, q1, q2, Q5d) (3.42)

to satisfy the relativistic closed Toda chain Baxter equation (see (3.80) in section 3.4). It

is sometimes useful to rewrite the type II defect partition function as

Z
(c)
3d/5d(w, ~µ, q1, q2, Q5d) = exp

(
− F (c)

3d/5d(w, ~µ, q1, q2, Q5d)
)
, (3.43)

where the prepotential

F
(c)
3d/5d(w, ~µ, q1, q2, Q5d) = F

(c),0
3d/5d(σ,~a, ε1, ε2, R,m0) + F

(c),BPS
3d/5d (w, ~µ, q1, q2, Q5d) (3.44)

corresponds to the refined open topological string prepotential resummed à la Gopakumar-

Vafa once expanded in the appropriate closed (ti) and open (σ) Kahler moduli; the F
(c),0
3d/5d

term is a quadratic polynomial in ~a, m0, σ while F
(c),BPS
3d/5d only depends on the number of

open BPS states Ds1,s2
m,d and reads [22, 62]15

F
(c),BPS
3d/5d =

∞∑
n=1

∑
d

∑
m∈Z

∑
s1,s2

Ds1,s2
m,d

qns11 qns22

n(1− qn1 )
Qndwmn, (3.45)

15The standard definition of the open topological string partition function does not contain the term

m = 0 in the sum, which is a constant in σ (or w); we will however include this constant term since it

naturally appears from gauge theory formulae.
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which in the NS limit ε2 → 0 reduces to

F
(c),BPS
3d/5d,NS =

∞∑
n=1

∑
d

∑
m∈Z

∑
s1

Ds1
m,d

qns11

n(1− qn1 )
Qndwmn, (3.46)

where Ds1
m,d =

∑
s2
Ds1,s2
m,d .

As we can see, the proposal by [1] is nothing else than the naive five-dimensional uplift

of the four-dimensional gauge theory solution of the (non-relativistic) Toda chain which we

reviewed in section 2.3, and reduces to it in the limit R→ 0.16 However, as we mentioned

in the introduction it turns out that this naive proposal is incorrect, or at least incomplete.

For example, as shown in [10] the “naive” quantization conditions (3.39) cannot be the

correct ones: in fact it is easy to see from (3.36) that these are divergent when ω1, ω2 ∈ R+

with ω1/ω2 ∈ Q+, and even if we use these quantization conditions for ω1/ω2 irrational

the energy spectrum we obtain from (3.40) does not match with numerical computation of

the eigenvalues [10]. Similarly the “naive” Baxter eigenfunction (3.42), although formally

satisfying the Baxter equation [35, 63], cannot be the correct one since it diverges at

ω1/ω2 ∈ Q+; finally, the proposal by [1] only focusses on the relativistic Toda operators

Ĥm without taking into account the existence of the modular dual operators
̂̃Hm [22, 23].

All these problems imply that if we want to solve the relativistic closed Toda system by

means of gauge theory, we should consider something more elaborated than N = 1 SU(N)

theories on R4
ε1,ε2 × S

1
R in the NS limit.

3.3.2 Exact quantization conditions and spectrum

Exact quantization conditions for the 2-particle relativistic closed Toda chain have been

proposed in [10]; these conditions arise from requiring a certain spectral determinant to

vanish, and share some similarity with (2.82) (in fact they reduce to (2.82) in an appro-

priate four-dimensional limit [50]). This spectral determinant can be written in terms of

a particular combination of both the unrefined (ε1 = −ε2 = i~) and the NS limits of the

five-dimensional partition function (3.27); the key property of this combination is that it

involves non-perturbative (in ~) contributions, i.e. terms of the form e1/~, chosen in such a

way that the resulting quantization conditions are free from divergences at ω1/ω2 ∈ Q+.

When substituted in (3.40) (modulo subtleties which will be discussed later), the values of

am solving these exact quantization conditions provide an energy spectrum that matches

with the numerical one.

It has later been realized in [16] (and proven in [20]) that the exact quantization

conditions for the 2-particle relativistic Toda chain proposed by [10] can be equivalently

expressed in a different way which only involves the NS limit of the partition function (3.27);

this different expression can be written as

∂

∂am

[
W0(~a,m0, ω1, ω2) +WBPS(~µ, q,Qrel) +WBPS(~̃µ, q̃, Q̃rel)

]
= 2πinm. (3.47)

For what the general N -particle relativistic Toda chain is concerned, exact quantization

conditions in the form (3.47) and its spectrum were studied in [11] and were checked to

16This limit involves some scaling for Q5d.
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match with numerical results for N = 3. Here the function W0 is a cubic polynomial in

~a, m0 which contains W0
5d in (3.35) as well as some additional piece, while the function

WBPS basically coincides with WBPS
5d in (3.35) modulo a correction due to the B-field, i.e.

a vector B such that

(−1)B·d = (−1)2jL+2jR+1 (3.48)

for all those d, jL, jR whose BPS invariant Nd
jL,jR

is non-zero; more precisely, with such a

modification we have

WBPS =
ω2

4πi

∑
n>1

∑
jL,jR

∑
d>0

(−1)(2jL+2jR+1)n

n2
Nd
jL,jR

sin
[
(2jL+1)πnω1

ω2

]
sin
[
(2jR+1)πnω1

ω2

]
sin3

[
πnω1

ω2

] Qnd

(3.49)

instead of (3.36). The B-field is crucial in order to ensure poles cancellation in the quan-

tization conditions (3.47), and for the five-dimensional N = 1 SU(N) theories of interest

to us it can be chosen to be

B =

{
(0, 0, . . . , 0, 0), N even,

(0, 0, . . . , 0, 1), N odd.
(3.50)

The B-field is therefore irrelevant for N even, while when N is odd it has the effect of chang-

ing sign Q5d → −Q5d, Q̃5d → −Q̃5d in (3.36); alternatively, because of (3.48) one can think

of the effect of the B-field not as changing the sign of Q5d, Q̃5d but as identifying ε1 =

i(ω1+ω2) instead of ε1 = iω1 in (3.37). We can roughly think of (3.47) as the naive quantiza-

tion conditions (3.39) corrected by a non-perturbative contribution which depends on tilded

variables. The remarkable property of (3.47) is its S-duality symmetry, that is its invariance

under the exchange ω1 ↔ ω2: in fact it turns out that W0 is invariant under this exchange,

while the second and third terms in the left hand side of (3.47) are mapped into each other.

S-duality tells us that perturbative (or WKB) and non-perturbative sectors contribute in

the same way to the quantization conditions. S-duality also fits naturally with the existence

of the modular dual relativistic Toda system, since this is related to the original relativistic

Toda chain by the exchange ω1 ↔ ω2 and the two systems should admit a common solution.

To sum up, as we already saw happening in four dimensions (section 2.4), also for

the 2-particle relativistic Toda chain (and its dual) the quantization conditions admit two

different representations:

A) The one of [11, 16] given by (3.47), manifestly invariant under S-duality and written

in terms of the NS limit of the five-dimensional partition function (corrected by

the B-field when necessary) + non-perturbative (in ~) corrections; this is the five-

dimensional analogue of (2.46);

B) The one of [10] (which we only mentioned), equivalent to requiring a certain spectral

determinant to vanish, where this spectral determinant can be written in terms of

the unrefined limit of the five-dimensional partition function + non-perturbative (in

gs ∼ ~−1) corrections; this is the five-dimensional analogue of (2.82).
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A similar statement can be formulated for general N , although the situation in this case

is slightly more involved.17 As shown in [20] (see also [19]), these two representations are

not independent but can be related via the five-dimensional blow-up equations of [52, 53].

It might however be possible to give an alternative explanation for the compatibility of

these two representations by considering hyperKahler moduli spaces of double-periodic

monopoles. In fact, while four-dimensional N = 2 SU(N) theories are theories of class S
and as such they can be related to hyperKahler moduli spaces of Hitchin systems [58], five-

dimensional N = 1 SU(N) theories are instead associated to hyperKahler moduli spaces

of double-periodic monopoles [64, 65]. It is important to remark that, differently from the

Hitchin system moduli spaces, double-periodic monopoles are self-dual under Nahm trans-

form. Being hyperKahler, these moduli spaces admit many possible complex structures

usually labelled by a parameter ζ ∈ CP1, and we can denote a basis of complex structures

as I, J , K. As suggested in [57], relativistic closed Toda chains may appear differently

according to the complex structure under consideration; based on what happens in the

four-dimensional case [47, 50], one would be led to associate quantization conditions in the

representation A) to complex structure I and quantization conditions in the form B) to com-

plex structure J . It would certainly be interesting to understand this point in more detail.

3.3.3 A more refined proposal: five-dimensional gauge theory on curved space

As we have just discussed in section 3.3.3, there are two main differences between the naive

quantization conditions (3.39) proposed by [1] and the exact quantization conditions (3.47)

in the form A) (related to the ones in form B)) proposed by [11, 16]:

• Naive quantization conditions are missing the non-perturbative contributions in ~;

• Naive quantization conditions are missing the correction due to the B-field.

Is there a way to solve these two problems in a gauge theory framework?

A possibility would be to consider five-dimensional gauge theories on curved spaces,

rather than on the trivial flat background R4
ε1,ε2 × S1

R. In fact as noticed in [25] and

further elaborated in [19], exact quantization conditions in the A)-form (3.47) seem to

be compatible with a proposal put forward in [24]: this proposal states that the non-

perturbative completion of the refined closed topological string partition function (that is,

the five-dimensional partition function (3.27) for the cases of interest to us) is given by the

integrand of the partition function of our gauge theory on a squashed S5
ω1,ω2,ω3

background.

In an “NS-like” limit ω3 → 0 this geometry will reduce to S3
ω1,ω2

× R2, and the supersym-

metric vacua equations derived from the (integrand of the) S5
ω1,ω2,ω3

partition function seem

to reproduce (3.47). This interpretation naturally incorporates the symmetry ω1 ↔ ω2 of

the exact quantization conditions in the form A), as well as of the relativistic Toda and dual

17The approach of [10] was extended to quantum spectral curves of higher genus in [12, 13]. As we

mentioned in the Introduction, these works treat the quantum spectral curve as a quantum mechanical

operator and not as the Baxter equation of an integrable system: for the case at hand, this implies they

only provide 1 quantization condition instead of N − 1. It is however possible to recover the remaining

quantization conditions, as explained in [19, 20].
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Toda chain; let us however remark that there might be many five-dimensional geometries

which reduce to S3
ω1,ω2

×R2 in some limit, and since it feels a bit unnatural to consider the

integrand of a partition function instead of the partition function itself one might prefer to

consider some non-compact five-dimensional geometry which could eliminate the problem

of integration. Although this will be important if one wants to discuss non-perturbative

completions of refined topological strings at generic values of Omega background param-

eters, we will not be concerned with this problem since we expect all possible different

five-dimensional geometries to give the same answer when reduced to S3
ω1,ω2

× R2; there-

fore in the following we will always start from the integrand of the partition function on

S5
ω1,ω2,ω3

, keeping in mind that this might not be the most appropriate starting point.

Apart from this caveat, let us try to see in more detail if the proposal by [24] effectively

leads to (3.47) in the limit ω3 → 0 or not; the discussion here mostly follows appendix E

of [23]. We start by considering the squashed S5
ω1,ω2,ω3

geometry; this geometry can be

parametrized as

ω2
1|z1|2 + ω2

2|z2|2 + ω2
3|z3|2 = 1, z1, z2, z3 ∈ C, ω1, ω2, ω3 ∈ R+, (3.51)

and admits a U(1)3 isometry group. Alternatively, we can think of S5
ω1,ω2,ω3

as an (S1)3

fibration over a triangle: the three vertices of the triangle correspond to the three circles

S1
(i) of radii ω−1

i , i = 1, 2, 3 fixed under the action of the U(1)3 isometry group, while

the three edges correspond to three squashed three-spheres S3
ωi,ωj , i 6= j. The partition

function of N = 1 gauge theories on S5
ω1,ω2,ω3

has been discussed in [66–72]; in the case of a

pure N = 1 SU(N) theory without Chern-Simons term, it can schematically be written as

ZS5 =

∫
[da]Zcl

S5(~a, ω1, ω2, ω3,m0)Z1l
S5(~a, ω1, ω2, ω3)Z inst

S5 (~a, ω1, ω2, ω3,m0), (3.52)

with m0 = 4π2/g2
5d as defined in (3.37). The classical term of the integrand is given by

Zcl
S5(~a, ω1, ω2, ω3,m0) =

N∏
m=1

e
−πm0a

2
m

ω1ω2ω3 , (3.53)

while the one-loop part reads (|ω| = ω1 + ω2 + ω3)

Z1l
S5(~a, ω1, ω2, ω3) =

∏
α∈∆+

S3 (iα(~a)|ω1, ω2, ω3)S3 (−iα(~a)|ω1, ω2, ω3)

=
∏
α∈∆+

S3 (iα(~a)|ω1, ω2, ω3)S3 (iα(~a) + |ω||ω1, ω2, ω3) ,
(3.54)

where α ∈ ∆+ are the positive roots of SU(N) and S3 (x|ω1, ω2, ω3) is the triple sine

function defined in appendix B. By making use of the properties of the triple sine function

it is possible to show that the S5
ω1,ω2,ω3

one-loop term (3.54) factorizes into the product

of three R4
ε1,ε2 × S1

R one-loop terms: therefore at least for what the 1-loop terms are

concerned, the (integrand of the) S5
ω1,ω2,ω3

partition function can be thought as the

product of three copies of the R4
ε1,ε2 × S1

R partition function (3.27), where each copy is
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−iε1 −iε2 1/R

S1
(1) ω3 ω2 + ω1 ω1

S1
(2) ω1 + ω2 ω3 ω2

S1
(3) ω1 ω2 + ω3 ω3

Table 4. Identification S5
ω1,ω2,ω3

squashing parameters - gauge theory parameters.

associated to one of the three fixed circles of the U(1)3 action and ε1, ε2, R are identified

with ω1, ω2, ω3 differently for each of the three copies according to table 4.18

For what the instanton term Z inst
S5 is concerned, the situation is less clear: based on

what happens with the one-loop term it is expected that Z inst
S5 factorizes into the product of

three copies of the instanton partition function Z inst
5d (~a, ε1, ε2, R,m0) on flat space R4

ε1,ε2 ×
S1
R, that is

Z inst
S5 (~a, ω1, ω2, ω3,m0) =

= Z inst
5d,(1)(~a, iω3, i(ω2 + ω1), ω−1

1 ,m0)Z inst
5d,(2)(~a, i(ω1 + ω2), iω3, ω

−1
2 ,m0)

× Z inst
5d,(3)(~a, iω1, i(ω2 + ω3), ω−1

3 ,m0),

(3.55)

where again ε1, ε2, R are identified with ω1, ω2, ω3 differently for each of the three copies as

in table 4; however this expectation is still conjectural.19 Now, according to the proposal

of [24] we should consider the integrand of the partition function (3.52), that is

Z int
S5 (~a, ω1, ω2, ω3,m0) = Zcl

S5(~a, ω1, ω2, ω3,m0)Z1l
S5(~a, ω1, ω2, ω3)Z inst

S5 (~a, ω1, ω2, ω3,m0).

(3.56)

It is actually more convenient to rewrite (3.56) in a slightly different form, by separating

the BPS states contribution from the contribution due to classical terms; in practice we

rearrange the various terms as

Z int
S5 = Z0

S5Z
BPS
S5 = e−FS5 = e−F

0
S5
−FBPS

S5 . (3.57)

The Z0
S5 part is simply

Z0
S5 = e−F

0
S5 =

N∏
m=1

e
− 4π3

ω1ω2ω3

a2m
g2
5d (3.58)

×
N∏

m<n

e
− π

3ω1ω2ω3
(am−an)3+π

6

ω21+ω
2
2+ω

2
3

ω1ω2ω3
(am−an)+π

2
ω1ω2+ω1ω3+ω2ω3

ω1ω2ω3
(am−an)

18The unusual identification used in this table follows from the discussion in [24].
19We prefer to indicate the dependence on the gauge coupling via m0 rather than via the five-dimensional

instanton counting parameter Q5d = e−2πRm0 since Q5d depends on R and will therefore be different for

each of the three copies.
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and contains (3.53) as well as the exponential terms in (3.54) coming from the B3,3 poly-

nomials in the definition of triple sine functions (B.20), while the BPS part

ZBPS
S5 = e−F

BPS
S5 = Z inst

5d,(1) Z
inst
5d,(2) Z

inst
5d,(3)

N∏
j<k

Sω1,ω2,ω3

(
i(aj − ak)

)
Sω1,ω2,ω3

(
i(aj − ak) + |ω|

)
(3.59)

contains the Sω1,ω2,ω3 functions (defined in appendix B) coming from (3.54) together with

the instanton terms (3.55). The BPS part can be more compactly written as

e−F
BPS
S5 = e

−FBPS
5d,(1)

−FBPS
5d,(2)

−FBPS
5d,(3) (3.60)

in terms of three copies of the function (3.31), where as usual ε1, ε2, R are identified with

ω1, ω2, ω3 for each of the three copies as in table 4. The ti parameters are the flat Kähler

moduli and mass parameters used in [10, 11] and correspond to linear combinations of the

ai parameters and Yang-Mills coupling m0 = 4π2/g2
5d as in (3.30), that is

ti = ai − ai+1 (i = 1, . . . , N − 1) and tN = m0 +
N−1∑
i=1

ti. (3.61)

We now want to take the “NS limit” of (3.57); what we mean by this is the following.

As we saw, Z int
S5 roughly factorizes into three copies of the partition function on flat space

R4
ε1,ε2 × S

1
R. Let us focus for the moment on the second copy and take the NS limit here:

since ε2 = iω3 in this copy, this means that we have to take the limit iω3 → 0, and as a

consequence the squashed S5
ω1,ω2,ω3

geometry reduces to S3
ω1,ω2

×R2. What happens to the

other copies? For what the first copy is concerned, the limit we are considering corresponds

again to an NS limit because of the symmetry ε1 ↔ ε2 of the partition function on flat

space; on the third copy instead we are sending R→∞, which implies that FBPS
5d,(3) → 0.20

We therefore expect the “NS limit” of (3.57) to roughly reduce to two copies of the flat

space twisted effective superpotential (3.32), related by the exchange ω1 ↔ ω2; it is however

important to notice that these two copies will be slightly modified with respect to (3.36)

because of the non-trivial identifications in table 4, and the modification exactly coincides

with the effect of the B-field thus giving (3.49). Being more precise, in complete analogy

with the definition in (3.33) we can define the twisted effective superpotential on S5
ω1,ω2,ω3

as

WS5(~a, ω1, ω2,m0) = lim
ω3→0

[iω3FS5(~a, ω1, ω2, ω3,m0)] . (3.62)

This can be decomposed according to

WS5(~a, ω1, ω2,m0) =W0
S5(~a, ω1, ω2,m0) +WBPS

S5 (~a, ω1, ω2,m0), (3.63)

with

WBPS
S5 (~a, ω1, ω2,m0) =WBPS

5d (~a, i(ω1+ω2), ω−1
2 ,m0)+WBPS

5d (~a, i(ω2+ω1), ω−1
1 ,m0) (3.64)

20Large-volume formulae like (3.31) are only valid for ti →∞.
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given in terms of the flat-space function WBPS
5d (~a, ε1, R,m0) appearing in (3.35); let us

however stress once more that the non-trivial identifications for the εi parameters lead to

the B-field corrected formula (3.49).

To sum up, from the “NS limit” of the proposal by [24] we obtain the putative quan-

tization conditions

∂

∂am
WS5(~a, ω1, ω2,m0) = 2πinm , nm ∈ Z, m = 1, . . . , N. (3.65)

As we can see, the two problems that were affecting the naive quantization conditions (3.39)

are now solved in (3.65):

• The non-perturbative corrections (restoring S-duality) arise from a second copy of

the flat space twisted effective superpotential, related to the first copy by ω1 ↔ ω2,

naturally incorporated in the S3
ω1,ω2

× R2 geometry;

• The B-field is taken into account by the identification in table 4.

Working out the explicit expressions, in particular the non-BPS term W0
S5 in (3.63), it

is not hard to verify that (3.65) precisely coincides with the known exact quantization

conditions. Let us consider for example the pure 5d N = 1 SU(2) theory; this will be

associated to the 2-particle relativistic Toda chain and its dual, whose Hamiltonians can

be written as (by redefining variables)

Ĥ1 = e−iω1∂x + eiω1∂x + e
2πx
ω2 +Qrele

− 2πx
ω2 ,̂̃H1 = e−iω2∂x + eiω2∂x + e

2πx
ω1 + Q̃rele

− 2πx
ω1 .

(3.66)

By setting a1 = −a2 = a
2 the parameter a = a1 − a2 gets identified with the Kahler

modulus t, while m0 is interpreted as a mass parameter in the language of topological

strings. Formula (3.65) for a1 gives

2πn =
1

i

∂WS5

∂a1
=

2

i

∂WS5

∂a
=

=
2πa2

ω1ω2
+

2πm0a

ω1ω2
− π

3

ω2
1 + ω2

2

ω1ω2
− π

+
∑
jL,jR

∑
n>1

∑
d1,d2

(−1)(2jL+2jR+1)n

n
(d1 + d2)Nd1,d2

jL,jR

×
sin
[
(2jL + 1)πnω1

ω2

]
sin
[
(2jR + 1)πnω1

ω2

]
sin3

[
πnω1

ω2

] e−2πnd1a/ω2e−2πnd2(m0+a)/ω2

+
∑
jL,jR

∑
n>1

∑
d1,d2

(−1)(2jL+2jR+1)n

n
(d1 + d2)Nd1,d2

jL,jR

×
sin
[
(2jL + 1)πnω2

ω1

]
sin
[
(2jR + 1)πnω2

ω1

]
sin3

[
πnω2

ω1

] e−2πnd1a/ω1e−2πnd2(m0+a)/ω1 .

(3.67)
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ω1 = 2−1/4, ω2 = 21/4

m0 = 0

ω1 = 1√
2
, ω2 = 1

m0 = − ln 3
2π

a(0) 0.9257432179. . . 0.8709463196. . .

ln
[
W

SU(2),(0)
�, ,NS

]
2.4605242719. . . 2.7528481019. . .

ln
[
W̃

SU(2),(0)
�, ,NS

]
3.4605592909. . . 3.8720036669. . .

a(1) 1.3615838159. . . 1.2357226878. . .

ln
[
W

SU(2),(1)
�, ,NS

]
3.5984708772. . . 3.8838346782. . .

ln
[
W̃

SU(2),(1)
�, ,NS

]
5.0869593531. . . 5.4902688202. . .

a(2) 1.6892652995. . . 1.5106117940. . .

ln
[
W

SU(2),(2)
�, ,NS

]
4.4628893132. . . 4.7460288538. . .

ln
[
W̃

SU(2),(2)
�, ,NS

]
6.3111090796. . . 6.7114798487. . .

Table 5. Energies W
SU(2),(n)
�, ,NS , W̃

SU(2),(n)
�, ,NS at level n = 0, 1, 2.

The same equation is obtained from taking the derivative with respect to a2. Notice

that the factor (−1)(2jL+2jR+1)n coming from the identification in table 4 exactly coincides

with the effect of introducing the B-field. It is easy to check that the quantization condi-

tions (3.67) coincide with the exact ones given in [16]; as such they are manifestly “S-dual”

(i.e. invariant under the exchange ω1 ↔ ω2) and free of poles at ω1/ω2 ∈ Q+.

Having obtained exact quantization conditions for the N -particle relativistic Toda

chain from the partition function of N = 1 SU(N) gauge theories on S3
ω1,ω2

× R2, we

can now move on to discuss how to compute its energy spectrum. As we said in (3.40),

the expectation is that energies will correspond to the NS limit of Wilson loops in an

appropriate representation wrapping a circle [35, 63, 73]. The background S3
ω1,ω2

× R2

naturally admits two such circles, of radii ω1 and ω2: this is because S3
ω1,ω2

can be thought

of as a non-trivial S1 fibration over S2 which contains two special circles at the north and

south pole of S2. It is then natural to identify Wilson loops wrapping these two circles

with the energies Em and dual energies Ẽm of the relativistic Toda chain and its dual.

For example, in the 2-particle case we only have Wilson loops in the fundamental

representation, so that21

E1 = W
SU(2)
�, ,NS = µ1/2 + µ−1/2 −Q5d (µ1/2 + µ−1/2)

q

(1− qµ)(1− qµ−1)
+ o(Q2

5d),

Ẽ1 = W̃
SU(2)
� ,NS = µ̃1/2 + µ̃−1/2 − Q̃5d (µ̃1/2 + µ̃−1/2)

q̃

(1− q̃µ̃)(1− q̃µ̃−1)
+ o(Q̃2

5d).
(3.68)

21Since N = 2 is even, the B-field plays no role and (3.68) coincides with the flat space result; for N

odd instead the B-field will induce a change of sign for Q5d, Q̃5d compared to the flat space results.
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These are invariant under the exchange q ↔ q−1, q̃ ↔ q̃−1 and, differently from what

happens with the quantization conditions, do not present any divergence at |q| = 1, |q̃| = 1

since they are one-dimensional observables; moreover, they coincide with the (inverse)

quantum mirror map of [10]. If we now fix the value of ω1, ω2, m0 and substitute the

solution a(n) of (3.67) for n > 0 into the expressions for W
SU(2)
�, ,NS, W̃

SU(2)
�, ,NS in (3.68), we should

be obtaining the exact spectrum for the 2-particle quantum relativistic Toda chain and its

modular dual. A few examples of energies for different values of ω1, ω2, m0, obtained via a

5-instanton computation, are listed in table 5; already at 5-instantons these can be seen to

coincide with the energies in table 3 obtained by a numerical study of the operators (3.66).

Using the values of a(n) generated by the naive quantization conditions (3.39) would instead

produce an energy spectrum which does not match with the numerical one.

We therefore conclude that it is possible to obtain exact quantization conditions and

energy spectrum for the relativistic closed Toda chain and its modular dual while remaining

in the framework of gauge theory (in the NS limit); the big difference with respect to the

naive proposal (3.39) is that differently from what happens in the four-dimensional case,

in five dimensions we have to consider a curved background S3
ω1,ω2

×R2 instead of the flat

one R2
ε1 × R2 × S1

R, thing which naturally takes into account the existence of the modular

dual relativistic Toda system. As a consequence, we expect that in order to obtain exact

eigenfunctions we should be considering codimension-two defects living on S3
ω1,ω2

instead

of the naive Dε1 × S1
R; this is what we are going to verify next.

3.4 Solution via gauge theory: eigenfunctions

As we mentioned at the beginning of section 3, while eigenfunctions for the N -particle

relativistic open Toda chain have been constructed in [21], much less is known about the

eigenfunctions of the relativistic closed Toda chain (or the associated Baxter equation).

Here we will propose a solution to this problem via gauge theory. Based on the analogy

with the “non-relativistic” (or four-dimensional) case reviewed in section 2.3.3, and from

what we have seen in section 3.3.3, the eigenfunctions we are looking for should correspond

to partition functions on S3
ω1,ω2

×R2 (rather than flat space Dε1×R2×S1
R) of codimension

two defects of type II or I wrapping S3
ω1,ω2

coupled to the five-dimensional N = 1 SU(N)

theory. Here we mostly focus on studying the solution to the Baxter equation for the case

N = 2 and compare it against the numerical results obtained in section 3.2; in section 3.6

we will comment on the general N case and provide some check for N = 3.

Open relativistic Toda chains. Let us start by looking for simultaneous eigenfunctions

Ψrel
~a (~x, ω1, ω2) of the N -particle relativistic open Toda chain and its dual. The solution to

this problem is known from Separation of Variables [21] and can be expressed recursively as

Ψrel
a1,...,aN

(x1, . . . , xN , ω1, ω2) =

=

∫
C

N−1∏
j=1

dσj

µ(~σ, ~)Q(~σ,~a, ω1, ω2)e
iπ

ω1ω2

∑N−1
j=1 σj(

∑N−1
j=1 σj−

∑N
m=1 am)

×Ψrel
σ1,...,σN−1

(x1, . . . , xN−1, ω1, ω2)e
2πixN
ω1ω2

(
∑N
m=1 am−

∑N−1
j=1 σj) (open chain),

(3.69)
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starting from the eigenfunction of the 1-particle problem Ψrel
a1 (x1, ω1, ω2) = eia1x1/ω1ω2 .

Here the integration contour C is as in (2.57), µ(~σ, ~) is an integration measure,

µ(~σ, ω1, ω2) =

N−1∏
j<k

sinh

(
π
σj − σk
ω1

)
sinh

(
π
σj − σk
ω2

)
, (3.70)

while

Q(~σ,~a, ω1, ω2) =

N−1∏
j=1

q(σj ,~a, ω1, ω2) =

N−1∏
j=1

N∏
m=1

S−1
2

(
− i(σj − am)|ω1, ω2

)
(3.71)

is the wave-function in separated variables, where S2(σ|ω1, ω2) is defined in appendix B.

Exactly as it happens in the non-relativistic case, the function q(σ,~a, ω1, ω2), although

not entire, formally satisfies the one-dimensional Baxter equation for the relativistic open

Toda chain and its dual:

(i)Nq(σ + iω1,~a, ω1, ω2) = E−
1
2

N trel(σ, ~E(~a))q(σ,~a, ω1, ω2),

(i)Nq(σ + iω2,~a, ω1, ω2) = Ẽ−
1
2

N t̃rel(σ,
~̃E(~a))q(σ,~a, ω1, ω2),

(3.72)

with t(σ, ~E(~a))), t̃(σ,
~̃E(~a))) as in the first line of (3.17), (3.18).

From the point of view of gauge theory, the functions Ψrel
~a (~x, ω1, ω2) and q(σ,~a, ω1, ω2)

can be interpreted respectively as partition functions of three-dimensional N = 2 theories

of type I (figure 2a) and II (figure 2b) living on a squashed three-sphere S3
ω1,ω2

[74]; these

three-dimensional theories should be considered as codimension two defects for the five-

dimensional N = 1 SU(N) theory on S3
ω1,ω2

×R2, in the limit in which the five-dimensional

gauge interaction is decoupled (i.e. m0 = 4π2/g2
5d →∞). More precisely:

• The S3
ω1,ω2

partition function for defects of type II, that is N free chiral/antichiral

multiplets, is given by

q(c)(σ,~a, ω1, ω2) =

N∏
m=1

S−1
2

(
− i(σ − am)|ω1, ω2

)
(chiral),

q(ac)(σ,~a, ω1, ω2) =
N∏
m=1

S−1
2

(
i(σ − am)|ω1, ω2

)
(antichiral);

(3.73)

these functions satisfy the equations

(i)Nq(c)(σ + iω1,~a, ω1, ω2) = E−
1
2

N trel(σ, ~E(~a))q(c)(σ,~a, ω1, ω2),

(i)Nq(c)(σ + iω2,~a, ω1, ω2) = Ẽ−
1
2

N t̃rel(σ,
~̃E(~a))q(c)(σ,~a, ω1, ω2),

(3.74)

and

(i)−Nq(ac)(σ − iω1,~a, ω1, ω2) = E−
1
2

N trel(σ, ~E(~a))q(ac)(σ,~a, ω1, ω2),

(i)−Nq(ac)(σ − iω2,~a, ω1, ω2) = Ẽ−
1
2

N t̃rel(σ,
~̃E(~a))q(ac)(σ,~a, ω1, ω2),

(3.75)
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respectively, with

EN =
N∏
m=1

e
2πam
ω2 , ẼN =

N∏
m=1

e
2πam
ω1 . (3.76)

The chiral partition function q(c)(σ,~a, ω1, ω2) exactly coincides with the function

q(σ,~a, ω1, ω2) appearing in (3.71).

• The S3
ω1,ω2

partition function for defects of type I with chiral multiplets (plus Chern-

Simons and mixed Chern-Simons terms)22 reads

Ψrel,(c)
a1,...,aN

(x1, . . . , xN , ω1, ω2) =

= e
2πixN
ω1ω2

∑N
m=1 am

∫
C

N−1∏
s=1

s∏
j=1

dσ
(s)
j

N−1∏
s=1

s∏
j<k

sinh

[
π
σ

(s)
j − σ

(s)
k

ω1

]
sinh

[
π
σ

(s)
j − σ

(s)
k

ω2

]

×
N−1∏
s=1

s∏
j=1

s+1∏
k=1

S−1
2

(
− i(σ(s)

j − σ
(s+1)
k )

)N−1∏
s=1

e
2πi

xs−xs+1
ω1ω2

∑s
j=1 σ

(s)
j

×
N−1∏
s=1

e
iπ

ω1ω2

∑s
j=1 σ

(s)
j

(∑s
j=1 σ

(s)
j −

∑s+1
k=1 σ

(s+1)
k

)
, (3.77)

where σ
(N)
m = am and the integration contour C is as in (2.57); this function is a

simultaneous eigenfunction of the relativistic open Toda and dual Toda Hamiltonians

Ĥm (3.5),
̂̃Hm (3.6). A similar expression can be obtained if we consider antichiral

instead of chiral multiplets. It is easy to show that (3.77) can be re-expressed in a

recursive form equivalent to (3.69).

As we can see, the defects we are considering are the same ones we used in section 2.3.3

for constructing the non-relativistic open Toda chain eigenfunctions; the only differences

are the dimensionality of the defect theories (three dimensions versus two dimensions) and

the background in which these theories live (S3
ω1,ω2

versus the disc Dε1).

Closed relativistic Toda chains. What about the relativistic closed Toda chain? Ac-

cording to the analysis of [21], Separation of Variables tells us that eigenfunctions of the

N -particle relativistic closed Toda chain can be obtained from the eigenfunction of the

(N − 1)-particle relativistic open Toda chain via

Ψrel
a1,...,aN

(x1,...,xN ,ω1,ω2,m0)=

=

∫
C

N−1∏
j=1

dσj

µ(~σ,ω1,ω2)Q(~σ,~τ(~a),ω1,ω2,m0)e
iπ

ω1ω2

∑N−1
j=1 σj(

∑N−1
j=1 σj−

∑N
m=1am)

×Ψrel
σ1,...,σN−1

(x1,...,xN−1,ω1,ω2)e
2πixN
ω1ω2

(
∑N
m=1am−

∑N−1
j=1 σj) (closed chain).

(3.78)

22Different Chern-Simons terms (last line of (3.77)) correspond to redefinitions of ~p, ~x variables in the

relativistic open Toda Hamiltonians Ĥm,
̂̃Hm.
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Here

Q(~σ, ~τ(~a), ω1, ω2,m0) =
N−1∏
j=1

q(σj , ~τ(~a), ω1, ω2,m0), (3.79)

and q(σ, ~τ(~a), ω1, ω2,m0) satisfies the one-dimensional Baxter equation for the relativistic

closed Toda chain and its dual

(i)Nq(σ + iω1, ~τ(~a), ω1, ω2,m0) +Qrel(i)
−Nq(σ − iω1, ~τ(~a), ω1, ω2,m0)

= E−
1
2

N trel(σ, ~E(~τ(~a)))q(σ, ~τ(~a), ω1, ω2,m0),

(i)Nq(σ + iω2, ~τ(~a), ω1, ω2,m0) + Q̃rel(i)
−Nq(σ − iω2, ~τ(~a), ω1, ω2,m0)

= Ẽ−
1
2

N t̃rel(σ,
~̃E(~τ(~a)))q(σ, ~τ(~a), ω1, ω2,m0),

(3.80)

with t(σ, ~E(~τ(~a)))), t̃(σ,
~̃E(~τ(~a)))) as in the second line of (3.17), (3.18). As we already

mentioned, these equations can be thought as the quantized versions of the classical spectral

curves (3.16). Always according to [21], the function (3.78) is a solution to the closed Toda

spectral problem (i.e. is an eigenfunction of the relativistic closed Toda and dual Toda

Hamiltonians Ĥm,
̂̃Hm with the appropriate boundary conditions) only if the solution

q(σ, ~τ(~a), ω1, ω2,m0) to the Baxter and dual Baxter equations (3.80) is entire in σ and

goes to zero fast enough as |σ| → ∞. From what we have seen in the non-relativistic

case, we expect these conditions will be satisfied only for certain values of the am (or τm)

auxiliary parameters, or equivalently only for certain quantized values of the energies Em,

Ẽm. Finding such a solution to (3.80) is still an open problem; what we are going to do

next is to propose a solution to this problem via gauge theory, keeping in mind what we

learnt in section 2.3 and section 3.3.

Let us focus here on the N = 2 case. Let us decouple the center of mass and set the

auxiliary variables as a1 = −a2 = a
2 . For what the relativistic open chain is concerned,

we know from (3.73) that when the five-dimensional gauge theory is decoupled (that is

g2
5d = 0 or equivalently m0 = ∞) the S3

ω1,ω2
partition function of a type II defect with

chiral multiplets

q(c)(σ, a, ω1, ω2) = S−1
2

(
− i(σ − a/2)|ω1, ω2

)
S−1

2

(
− i(σ + a/2)|ω1, ω2

)
(3.81)

formally satisfies [
eiω1∂σ + e

2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(c)(σ, a, ω1, ω2) = 0,[

eiω2∂σ + e
2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(c)(σ, a, ω1, ω2) = 0,

(3.82)

while the S3
ω1,ω2

partition function of a type II defect with antichiral multiplets

q(ac)(σ, a, ω1, ω2) = S−1
2

(
i(σ − a/2)|ω1, ω2

)
S−1

2

(
i(σ + a/2)|ω1, ω2

)
(3.83)

formally satisfies [
e−iω1∂σ + e

2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(ac)(σ, a, ω1, ω2) = 0,[

e−iω2∂σ + e
2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(ac)(σ, a, ω1, ω2) = 0,

(3.84)
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where

E1 = e
πa
ω2 + e

− πa
ω2 , Ẽ1 = e

πa
ω1 + e

− πa
ω1 (3.85)

are nothing but the m0 → ∞ limit of (3.68).23 Because of the properties of the double

sine function, our expressions (3.81), (3.83) are not entire but present poles. This is not

a problem, and is not unexpected either: in fact we encountered a similar situation in

section 2.3.3, where instead of double sine functions we had Gamma functions. In that

case we found that, by moving the Gamma functions from the numerator to the denomi-

nator, (2.52) can be rewritten as the product of an entire function times a function giving

a lattice of poles at σ = ±a+ in~, n ∈ Z. Although not necessary for our purposes, let us

just mention that something along the same lines can be done also for the case at hand:

more precisely, after introducing the θ-function

θ

(
iσ

ω2
,
ω1

ω2

)
=

(
e
− 2πσ
ω2 ; e

2πiω1
ω2

)
∞

(
e

2πσ
ω2 e

2πiω1
ω2 ; e

2πiω1
ω2

)
∞
, (3.86)

which is periodic in iω2 and quasi-periodic in iω1 and is such that

θ

(
iσ

ω1
,−ω2

ω1

)
= e
− iπσ2

ω1ω2
−πσ
ω1

+πσ
ω2

+iπ
ω21+ω

2
2

6ω1ω2
−iπ

2 θ

(
iσ

ω2
,
ω1

ω2

)
, (3.87)

we can use the properties of the double sine function to rewrite (3.81), (3.83) as

q(c)(σ, a, ω1, ω2) = e
− iπ
ω1ω2

(
σ2+a2

4

)
−π ω1+ω2

ω1ω2
σ+iπ

ω21+ω
2
2

6ω1ω2
+iπ

2

× (qwµ
1
2 ; q)∞(qwµ−

1
2 ; q)∞(q̃−1w̃−1µ̃

1
2 ; q̃−1)∞(q̃−1w̃−1µ̃−

1
2 ; q̃−1)∞

θ
(
iσ−a/2ω1

,−ω2
ω1

)
θ
(
iσ+a/2

ω1
,−ω2

ω1

) ,

q(ac)(σ, a, ω1, ω2) = e
iπ

ω1ω2

(
σ2+a2

4

)
−π ω1+ω2

ω1ω2
σ−iπ ω

2
1+ω

2
2

6ω1ω2
−iπ

2 (3.88)

× (qw−1µ
1
2 ; q)∞(qw−1µ−

1
2 ; q)∞(q̃−1w̃µ̃

1
2 ; q̃−1)∞(q̃−1w̃µ̃−

1
2 ; q̃−1)∞

θ
(
iσ−a/2ω2

, ω1
ω2

)
θ
(
iσ+a/2

ω2
, ω1
ω2

) ,

where we remind that

q = e
2πiω1
ω2 , w = e

− 2πσ
ω2 , µ = e

2πa
ω2 and q̃ = e

2πiω2
ω1 , w̃ = e

− 2πσ
ω1 , µ̃ = e

2πa
ω1 . (3.89)

Expressions (3.88) are actually only valid for Im(ω1/ω2) > 0, but can also be used when

Im(ω1/ω2) = 0 with ω1/ω2 /∈ Q+ (in the case ω1/ω2 ∈ Q+ instead we can only use the

original formulae (3.81), (3.83) written in terms of double sine functions). In this form

we can easily see the similarity between (3.88) and (2.55): in particular the terms at the

numerator give an entire function, while the quasi-periodic θ-functions at the denominator

generate a lattice of simple poles at σ = ±a
2 + imω1 + inω2, m,n ∈ Z and play the same

role of the sinh functions at the denominator of (2.55) in the non-relativistic Toda case.

23SU(2) gauge Wilson loops (3.68) reduce to flavour Wilson loops as m0 →∞.
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Let us now move to the relativistic 2-particle closed Toda chain. Here we should look

for an entire L2(R) solution q(σ, a, ω1, ω2,m0) to the relativistic closed chain Baxter and

dual Baxter equations (3.80), that is[
eiω1∂σ +Qrele

−iω1∂σ + e
2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(σ, a, ω1, ω2,m0) = 0, (3.90a)[

eiω2∂σ + Q̃rele
−iω2∂σ + e

2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(σ, a, ω1, ω2,m0) = 0, (3.90b)

where the energies E1, Ẽ1 are given by (3.68). Sometimes it will be more convenient to

consider the function

q(σ, a, ω1, ω2,m0) = e
− iπm0σ

ω1ω2 q(σ, a, ω1, ω2,m0), (3.91)

which should be an entire solution of the more symmetric equations[
Q

1
2
rel

(
eiω1∂σ + e−iω1∂σ

)
+ e

2πσ
ω2 + e

− 2πσ
ω2 − E1

]
q(σ, a, ω1, ω2,m0) = 0, (3.92a)[

Q̃
1
2
rel

(
eiω2∂σ + e−iω2∂σ

)
+ e

2πσ
ω1 + e

− 2πσ
ω1 − Ẽ1

]
q(σ, a, ω1, ω2,m0) = 0, (3.92b)

studied numerically in section 3.2. Again, based on the analogy with the non-relativistic

case (2.71) and the analysis of [21] we expect a linear combination of the form

q(σ, a, ω1, ω2,m0) ∝ q(ac)(σ, a, ω1, ω2,m0)− ξq(c)(σ, a, ω1, ω2,m0) (3.93)

to be the correct eigenfunction of the Baxter and dual Baxter problem (modulo an overall

σ-independent factor), where ξ ∈ C and, similarly to (2.63),

q(c)(σ, a, ω1, ω2,m0) = q(c)(σ, a, ω1, ω2)q
(c),inst
NS (σ, a, ω1, ω2,m0),

q(ac)(σ, a, ω1, ω2,m0) = e
2iπm0σ
ω1ω2 q(ac)(σ, a, ω1, ω2)q

(ac),inst
NS (σ, a, ω1, ω2,m0),

(3.94)

should be the “NS limit” of the partition function of the five-dimensional N = 1 SU(2)

theory on S3
ω1,ω2

× R2 in the presence of a type II codimension-two defect on S3
ω1,ω2

with

chiral/antichiral multiplets, in line with the discussion of section 3.3.3. More precisely we

expect (3.94) will have the correct asymptotic behaviour, but will not be entire functions if

taken separately (because of the poles coming from the θ-functions/double sine functions);

nevertheless their linear combination should be an entire function, even if only for those

values of a satisfying the exact quantization conditions (3.67).

In order to check this expectation, we need to compute the functions (3.94); since we

already know the perturbative part from (3.81), (3.83), all it remains to understand is how

to include instanton corrections. According to [73], and similarly to what suggested for the

S5
ω1,ω2,ω3

partition function, the instanton contributions q
(c),inst
NS , q

(ac),inst
NS should factorize

into the product of two copies of the type II defect instanton partition function Z
(c),inst
3d/5d,NS

or Z
(ac),inst
3d/5d,NS on flat space R2

ε1 ×R2×S1
R, with ε1, R and ω1, ω2 identified as in the first two
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lines24 of table 4. The functions Z
(c),inst
3d/5d,NS, Z

(ac),inst
3d/5d,NS can be computed as discussed in [35,

63]; we collected the relevant formulae in appendix A. In terms of the flat space variables

q1 = e2πRε1 , w = e−2πRσ, µ = e2πRa, Q5d = e−2πRm0 (3.95)

we find

Z
(c),inst
3d/5d,NS(w,µ,q1,Q5d)=1+

Q5dq
2
1w(µ1/2+µ−1/2−q1w−q21w)

(1−q1)(1−q1µ)(1−q1µ−1)(1−q1wµ1/2)(1−q1wµ−1/2)

+
Q2

5dq
4
1w

(1−q1)(1−q21)
(

1− q1
µ

)
3(1−µq1)3

(
1− q21

µ

)
(1−µq21)

(
1− q1w√

µ

)(
1−√µq1w

)(
1− q21w√

µ

)(
1−√µq21w

)
[(
µ

1
2 +µ−

1
2

)(
1−q21

)[
(q1
(
3q21+4q1+3

)
−
(
µ+µ−1

)(
q41+q31+q21+q1+1

)]
+
(
µ

1
2 +µ−

1
2

)2
q1w

[(
µ2+µ−2

)
q31+

(
µ+µ−1

)(
−q71−2q61−q51−q41+q1

)
+4q61+7q51+2q41−3q31−5q21+1

]
+
(
µ

1
2 +µ−

1
2

)
(q1+1)q31w

2
[(
µ2+µ−2

)(
q51−q41−q31−q21

)
+
(
µ+µ−1

)(
q61+3q51−q41+3q31+2q21+q1−1

)
−q61−3q51−9q41−q31+2q21+2q1−2

]
+q51w

3
[(
µ2+µ−2

)(
2q41+q31+q21

)
+
(
µ+µ−1

)(
−2q71−3q61−4q51−5q31−2q21−q1+1

)
+q81+q71+5q61+7q51+11q41−q31−q21−q1+2

]]
+o(Q3

5d), (3.96)

while

Z
(ac),inst
3d/5d,NS(w, µ, q1, Q5d) = Z

(c),inst
3d/5d,NS(w, µ, q−1

1 , Q5d). (3.97)

A few properties of the function (3.96) should be mentioned:

• The flat space defect instanton partition function (3.96) presents poles at −iRε1 ∈
Q+ (or ω1/ω2 ∈ Q+): these are the same poles that were affecting the “naive”

quantization conditions (3.39) one would obtain from considering gauge theories in

flat space. Moving to curved background S3
ω1,ω2

×R2 we get two copies of this function,

related by the exchange ω1 ↔ ω2, and the expectation is that their poles will cancel

each other (similarly to what happens for the exact quantization conditions (3.67)).

• The function (3.96) (and similarly (3.97)) can also be written in the form

Z
(c),inst
3d/5d,NS(w, µ, q1, Q5d) = exp

(
−F (c),inst

3d/5d,NS(w, µ, q1, Q5d)
)
, (3.98)

where

F
(c),inst
3d/5d,NS(w,µ,q1,Qrel)=

∞∑
n=1

∑
s1

∑
d1,d2>0

∑
m∈Z

Ds1
m,d1,d2

qns11

n(1−qn1 )
(µ−1)nd1(µ−1Qrel)

nd2wmn.

(3.99)

24The “NS limit” on S5
ω1,ω2,ω3

we are considering corresponds to sending ω3 → 0; in this limit only the

first two fixed points remain, corresponding to north and south pole of S3
ω1,ω2

in S3
ω1,ω2

× R2.
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Here d2 is taken to run over N, while d1 is allowed to take values in N/2.25 This

expression is almost the same as the BPS part of the open topological string partition

function (3.46), except for the fact that the BPS states associated to the 1-loop factor

in (3.42) (which in the present setting would correspond to (qwµ
1
2 ; q)∞(qwµ−

1
2 ; q)∞

in the numerator of (3.88)) are missing in (3.99).

• The function (3.96) is symmetric under exchange µ↔ µ−1, i.e.

Z
(c),inst
3d/5d,NS(w, µ, q1, Q5d) = Z

(c),inst
3d/5d,NS(w, µ−1, q1, Q5d), (3.100)

and also satisfies

Z
(c),inst
3d/5d,NS(w, µ, q1, Q5d) ∝ Z

(c),inst
3d/5d,NS(w−1, µ, q−1

1 , Q5d), (3.101)

where the proportionality factor is σ-independent.

At this point, after moving from flat space variables (3.95) to curved space ones (3.89) and

using the identifications in table 4, according to [73] we should have

q
(c),inst
NS (σ, a, ω1, ω2,m0) ∝ Z

(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel)Z

(c),inst
3d/5d,NS(w̃−1, µ̃, e−2πiq̃−1, Q̃rel),

q
(ac),inst
NS (σ, a, ω1, ω2,m0) ∝ Z

(ac),inst
3d/5d,NS(w−1, µ, e−2πiq−1, Qrel)Z

(ac),inst
3d/5d,NS(w̃, µ̃, e2πiq̃, Q̃rel)

= Z
(c),inst
3d/5d,NS(w−1, µ, e2πiq,Qrel)Z

(c),inst
3d/5d,NS(w̃, µ̃, e−2πiq̃−1, Q̃rel),

(3.102)

modulo σ-independent terms. Here powers of w±1, q±1 in the various factors are chosen

in such a way that, when combined with the numerators in (3.88), the functions Z
(c),inst
3d/5d,NS

will be completed to full open topological string partition functions, but this is not the only

possibility: in fact by using property (3.101) other choices are possible, all of them only

differing by σ-independent terms. In fact a more convenient choice would be to remove

these σ-independent terms completely, in the following sense: remembering property (3.98),

we can separate the m ∈ Z sum in

F
(c),inst
3d/5d,NS(w,µ,e2πiq,Qrel)=

∞∑
n=1

∑
s1

∑
d1,d2>0

∑
m∈Z

Ds1
m,d1,d2

(−1)2ns1qns1

n(1−qn)
(µ−1)nd1(µ−1Qrel)

nd2wmn

(3.103)

into three sums over m > 0, m = 0 and m < 0:

F
(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel) = (3.104)

= F
(c),inst,(+)
3d/5d,NS (w, µ, e2πiq,Qrel) + F

(c),inst,(0)
3d/5d,NS (µ, e2πiq,Qrel) + F

(c),inst,(−)
3d/5d,NS (w, µ, e2πiq,Qrel);

the m = 0 part is independent of σ, while the m > 0 and m < 0 parts turn out to be

related by

F
(c),inst,(+)
3d/5d,NS (w, µ, e2πiq,Qrel) = F

(c),inst,(−)
3d/5d,NS (w−1, µ, e−2πiq−1, Qrel). (3.105)

25This is in contrast to the usual conventions in the literature, see for example [22], in which σ is shifted

by a/2 in such a way to have d1 integer; as a consequence, our BPS invariants Ds1
m,d1,d2

will be different

from the ones in the literature.
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Because of this property, if we remove the (σ-independent) m = 0 contribution the modified

prepotential

F̂
(c),inst
3d/5d,NS(w,µ,e2πiq,Qrel)=F

(c),inst
3d/5d,NS(w,µ,e2πiq,Qrel)−F

(c),inst,(0)
3d/5d,NS (µ,e2πiq,Qrel) (3.106)

=F
(c),inst,(+)
3d/5d,NS (w,µ,e2πiq,Qrel)+F

(c),inst,(−)
3d/5d,NS (w,µ,e2πiq,Qrel)

and the modified type II defect instanton partition function

Ẑ
(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel) = exp

(
−F̂ (c),inst

3d/5d,NS(w, µ, e2πiq,Qrel)
)

(3.107)

satisfy the additional property

F̂
(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel) = F̂

(c),inst
3d/5d,NS(w−1, µ, e−2πiq−1, Qrel),

Ẑ
(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel) = Ẑ

(c),inst
3d/5d,NS(w−1, µ, e−2πiq−1, Qrel),

(3.108)

instead of (3.101) which involves a proportionality factor. If we now choose to fix the

σ-independent term in (3.102) according to

q
(c),inst
NS (σ,a,ω1,ω2,m0)= Ẑ

(c),inst
3d/5d,NS(w,µ,e2πiq,Qrel)Ẑ

(c),inst
3d/5d,NS(w̃−1,µ̃,e−2πiq̃−1,Q̃rel),

q
(ac),inst
NS (σ,a,ω1,ω2,m0)= Ẑ

(ac),inst
3d/5d,NS(w−1,µ,e−2πiq−1,Qrel)Ẑ

(ac),inst
3d/5d,NS(w̃,µ̃,e2πiq̃,Q̃rel)

= Ẑ
(c),inst
3d/5d,NS(w−1,µ,e2πiq,Qrel)Ẑ

(c),inst
3d/5d,NS(w̃,µ̃,e−2πiq̃−1,Q̃rel),

(3.109)

then q
(c),inst
NS , q

(ac),inst
NS are mapped into each other under complex conjugation26 as well

as under the exchange σ ↔ −σ; these two properties, together with property (B.15) for

the double sine function, imply that our proposed solution q(σ, a, ω1, ω2,m0) (modulo an

overall normalization)

q(σ, a, ω1, ω2,m0) ∝ (3.110)

∝ e
iπm0σ
ω1ω2 S−1

2

(
i(σ − a/2)|ω1, ω2

)
S−1

2

(
i(σ + a/2)|ω1, ω2

)
q

(ac),inst
NS (σ, a, ω1, ω2,m0)

− ξ e−
iπm0σ
ω1ω2 S−1

2

(
− i(σ − a/2)|ω1, ω2

)
S−1

2

(
− i(σ + a/2)|ω1, ω2

)
q

(c),inst
NS (σ, a, ω1, ω2,m0)

with instanton contributions as in (3.109) will be either purely real or purely imaginary

and with definite σ ↔ −σ parity if we choose ξ = −(−1)n for the level n eigenfunction:

this is as expected, due to the symmetry σ ↔ −σ of the problem (3.92).

We now have all the ingredients entering our proposed solution (3.110) to the Baxter

and dual Baxter equations associated to the 2-particle relativistic Toda chain. It is easy

to check that the two functions entering in the linear combination (3.110) separately are

at least formal solutions to (3.92) perturbatively in Qrel, Q̃rel; however, there are a few

problems we should face:

• First, we have to check that poles at ω1/ω2 ∈ Q+ of the function (3.96) will cancel if

we consider two copies of it in the combinations (3.109);

26This is true both at ω1, ω2 ∈ R and ω1 = ω2 ∈ C for σ, a, m0 ∈ R.
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• Second, it is not clear that our proposed solution (3.110) will be entire and L2(R)

for the values of a = a(n) satisfying the exact quantization conditions and for some

appropriate value of ξ (which we fixed to ξ = −(−1)n due to the symmetry σ ↔ −σ
of the problem (3.92)).

The first point can be addressed easily, since it has already been shown in [22] that the

combinations

F̂
(c),inst
3d/5d,NS(w±, µ, e2πiq,Qrel) + F̂

(c),inst
3d/5d,NS(w̃±1, µ̃, e2πiq̃, Q̃rel) (3.111)

appearing in (3.109) are free of poles at ω1/ω2 ∈ Q+; a key ingredient for the poles cancella-

tion argument of [22] is the term (−1)2ns1 in (3.103), which arises due to the identification of

table 4 (or alternatively to the B-field).27 Since the perturbative contributions (3.81), (3.83)

do not present poles at ω1/ω2 ∈ Q+ because of the definition of double sine function, we

can conclude that (3.110) will be free of divergences at ω1/ω2 ∈ Q+.

However, we should still understand if our proposal (3.110) is an entire and L2(R)

function when the quantization conditions are satisfied. One observation is that the poles

in σ coming from the instanton contributions (3.109) seem to be cancelled by the zeroes of

the numerators in (3.88), thus leaving only the poles coming from the θ-functions in (3.88)

as possible singularities of q(σ, a, ω1, ω2,m0). It seems however hard to show analytically

that these poles actually disappear at the particular values a = a(n) determined by the

exact quantization conditions (3.67) since we do not have a closed form or TBA-like ex-

pression for the instanton contribution (3.109); for the same reason it would be hard to

prove L2(R)-normalizability. We will therefore content ourselves with performing some

numerical check of our proposal: more precisely, as we did in section 2.3.3, we plot our

proposed solution q(σ, a, ω1, ω2,m0) (computed up to 4 instantons) for σ ∈ R and compare

the resulting plot against the Baxter eigenfunctions obtained via numerical methods in

section 3.2.28 For example, in figure 14b we fixed ω1 = 1√
2
, ω2 = 1, m0 = − ln 3

2π and plotted

our proposed gauge theory Baxter solution Re[q(σ)], Im[q(σ)], Re[q(σ)] for energy levels

n = 0, 1, 2 respectively (the other real or imaginary component being zero), evaluated at

those a(n) solving the exact quantization conditions (see table 5) and for ξ = −(−1)n;

figure 14c instead represents the difference between gauge theory and numerical solutions

(figure 14a).29 Another example for ω1 = 2−
1
4 , ω2 = 2

1
4 , m0 = 0 is presented in figure 15.

By the naked eye, numerical (blue) and gauge theory (orange) Baxter solutions seem to

agree: in particular, the singularities at σ = ±a(n)/2 of our proposed gauge theory so-

lution seem to disappear30 already with a 4-instantons computation, in contrast to what

we would get without considering instanton corrections (figure 16), or without considering

both copies of the defect instanton partition function in (3.109) (figure 17, in which we did

27As we already mentioned the B-field is trivial in the N = 2 case or more in general for N even, but it

has an important effect for odd N .
28We thank Ivan Chi-Ho Ip for explanations on [75] about the problem of plotting the double sine function.
29As for the non-relativistic Toda chain studied in section 2.3, the Baxter solution obtained from gauge

theory (3.110) is not normalized to 1; we therefore divide it by its norm in order to make comparison

against numerical results.
30Clearly one of the two poles can always be eliminated by appropriately choosing ξ; however, the

expectation is that both poles disappear only when a = a(n) satisfies the exact quantization conditions.
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(a) Numerical results.
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(b) Gauge theory results.
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Figure 14. Level n = 0, 1, 2 gauge theory 2-particle Baxter solution q(σ) for

ω1 = 1√
2
, ω2 = 1, m0 = − ln 3

2π .

not consider the contribution coming from the second copy with tilded variables), or by us-

ing a value for a not satisfying the exact quantization conditions (figure 18). In reality the

singularities are still there, as they should disappear only when considering all instanton

contributions, but we may need a bigger resolution in our plots to see them. For example

these singularities can be seen in the plot of the difference (red) between level n = 0 nu-

merical and gauge theory solutions in figure 14c, but we need to consider lengths of order

∼ 10−9 to notice them; the same plot for levels n = 1, 2 seems not to have singularities,

but this simply means we need an even bigger resolution (so we should more appropriately

think of these red plots as indicating the difference between numerical and gauge theory so-

lution away from singular points). More precisely what we should expect is that, by adding

more and more instanton corrections, the gauge theory solution approaches the exact one

better and better, the singularities are smoothed away and the discontinuities get smaller

and smaller. An example of this behaviour is shown in figure 19 for the level n = 1 solution

in the case ω1 = 2−
1
4 , ω2 = 2

1
4 , m0 = 0: while the numerical (blue dots) solution is smooth

around σ = a(1)/2, the gauge theory one (orange dots) diverges, but this divergence gets
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(b) Gauge theory results.
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Figure 15. Level n = 0, 1, 2 gauge theory 2-particle Baxter solution q(σ) for

ω1 = 2−
1
4 , ω2 = 2

1
4 , m0 = 0.
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1.5

Figure 16. Level n = 0 gauge theory 2-particle Baxter solution q(σ) for ω1 = 1√
2
, ω2 = 1,

m0 = − ln 3
2π without instanton corrections.

milder and tends to disappear by increasing the number of instantons (from 3 to 4 in this

example), and we need to “zoom” more in order to see it. This is completely analogous to

what we saw happening in section 2.3 for the non-relativistic Toda chain, and provides a

few numerical checks of the validity of our proposal.
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Figure 17. Level n = 0 gauge theory 2-particle Baxter solution q(σ) for ω1 = 1√
2
, ω2 = 1,

m0 = − ln 3
2π with only one copy of the instanton corrections.
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Figure 18. Gauge theory 2-particle Baxter solution q(σ) for ω1 = 1√
2
, ω2 = 1, m0 = − ln 3

2π at

a = 0.87 (value not satisfying the quantization conditions).
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Figure 19. Level n = 1 numerical (blue dots) and gauge theory (orange dots) 2-particle Baxter

solution q(σ) for ω1 = 2−
1
4 , ω2 = 2

1
4 , m0 = 0 near σ = a(1)/2. Left: 3-instanton results; right:

4-instanton results.
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3.5 Additional remarks

There are a number of points which deserve further comments.

• As we discussed, our proposed solution (3.110) is free of poles at ω1/ω2 ∈ Q+ thanks

to the argument of [22]; nevertheless, we were only able to plot it for ω1/ω2 /∈ Q+.

The problem is not in the double sine functions, which admit nice representations

when ω1/ω2 ∈ Q+ [76], but it is due to the complicated expressions for the instanton

corrections which make it hard to study these particular values of the ωi’s. In fact,

already in order to show the absence of poles it is more convenient to rewrite the

instanton corrections in an open topological string form; this alternative form is

however not very good for plots since it is not exact in w but is a Laurent series.

It would be important to be able to study at least the self-dual point ω1 = ω2 = 1,

m0 = 0 in order to compare our proposal to the eigenfunction given in [26, 27]. In any

case, we think that this issue can be solved by a better computer analysis of (3.110).

• In the 2-particle non-relativistic Toda chain, cancellation of poles at σ = ±a(n) implies

cancellation of poles at σ = ±a(n) + i~m, m ∈ Z (and therefore entirety of the Baxter

solution on the whole complex σ plane) because of the periodicity property of the

Wronskian of the two formal Baxter solutions, see formulae (2.30), (2.26). In the

relativistic case we only checked that poles cancel at σ = ±a(n), but this is not

enough to claim that the Baxter solution will be entire since there may be poles

at σ = ±a(n) + iω1m + iω2l with (m, l) 6= (0, 0) ∈ Z2. Although we are not able

to prove this, our expectation (based on what happens in the non-relativistic case)

is that the Wronskian of the two formal Baxter solutions will be (quasi)-double-

periodic in iω1, iω2; this would ensure entirety of our proposed Baxter solution. It

may be helpful in proving this statement to derive TBA formulae for the 5d instanton

partition function of N = 1 SU(N) theories, with and without codimension 2 defects,

and follow a procedure similar to the one discussed in [8] for the non-relativistic case;

unfortunately such 5d TBA equations have not yet been studied in the literature.

• In addition to studying the 2-particle relativistic closed Toda eigenfunction at special

values ω1 = ω2 = 1 and m0 = 0 (case in which Toda equations (3.25) and Baxter

equations (3.21) coincide), the authors of [27] also considered the case ω1, ω2 ∈ C with

ω1 = ω2 and m0 = 0.31 It is not difficult to show that the gauge theory solution to the

Baxter equation we proposed in section 3.4 reduces to the one of [27] for complex ωi’s

if we re-adjust the constant factors. Let us choose for definiteness Im(ω1/ω2) > 0,

31As we already mentioned (see footnote 11) it is possible to define good quantum mechanical problems

both at ω1, ω2 ∈ R and at ω1 = ω2 ∈ C [21].
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which implies |q| < 1, |q̃−1| < 1, and consider the linear combination

q′(σ,a,ω1,ω2,m0)=

=e
iπm0σ
ω1ω2

e
iπ

ω1ω2

(
σ2+a2

4

)
−π ω1+ω2

ω1ω2
σ−iπ ω

2
1+ω

2
2

6ω1ω2
−iπ

2

θ
(
iσ−a/2ω2

, ω1
ω2

)
θ
(
iσ+a/2

ω2
, ω1
ω2

)
×(qw−1µ

1
2 ;q)∞(qw−1µ−

1
2 ;q)∞Z

(c),inst
3d/5d,NS(w−1,µ,e2πiq,Qrel)

×(q̃−1w̃µ̃
1
2 ;q̃−1)∞(q̃−1w̃µ̃−

1
2 ;q̃−1)∞Z

(c),inst
3d/5d,NS(w̃,µ̃,e−2πiq̃−1,Q̃rel)

−ξe−
iπm0σ
ω1ω2

e
− iπ
ω1ω2

(
σ2+a2

4

)
−π ω1+ω2

ω1ω2
σ+iπ

ω21+ω
2
2

6ω1ω2
+iπ

2

θ
(
iσ−a/2ω1

,−ω2
ω1

)
θ
(
iσ+a/2

ω1
,−ω2

ω1

)
×(qwµ

1
2 ;q)∞(qwµ−

1
2 ;q)∞Z

(c),inst
3d/5d,NS(w,µ,e2πiq,Qrel)

×(q̃−1w̃−1µ̃
1
2 ;q̃−1)∞(q̃−1w̃−1µ̃−

1
2 ;q̃−1)∞Z

(c),inst
3d/5d,NS(w̃−1,µ̃,e−2πiq̃−1,Q̃rel).

(3.112)

This is very similar to our proposed solution (3.110), but instead of using the function

Ẑ
(c),inst
3d/5d,NS appearing in (3.109) as instanton correction we are using Z

(c),inst
3d/5d,NS (which

only differ by a constant factor). Because of the symmetry σ ↔ −σ we can choose

ξ = ±1; then (3.112) will be either purely real or purely imaginary since under

complex conjugation ω1 and ω2 get exchanged.32 At this point we notice that the

coefficients cn(E1, q,Qrel) of the w ∼ 0 expansion of

(qwµ
1
2 ; q)∞(qwµ−

1
2 ; q)∞Z

(c),inst
3d/5d,NS(w, µ, e2πiq,Qrel) =

=

∞∑
n>0

cn(E1, q,Qrel)
wn

(q−1; q−1)n
=

∞∑
n>0

(−1)nq
n(n+1)

2 cn(E1, q,Qrel)
wn

(q; q)n

(3.113)

can be written directly in terms of the energy E1 (and q, Qrel) rather than the auxiliary

variable µ; for example

c0 = 1, c1 = E1, c2 = E2
1 + q−1(1− q)(1− qQrel),

c3 = E1

[
E2

1 + q−1(1− q)(1− qQrel) + q−2(1− q2)(1− q2Qrel)
]
, . . . .

(3.114)

This series was shown in [27] to be convergent for |q| < 1 (and m0 = 0) and was a key

ingredient in their construction of the 2-particle Toda eigenfunction at ω1 = ω2. In

fact it is easy to realize, after this observation, that (3.112) coincides with the solution

of [27] (modulo constant factors), where the θ-functions in (3.112) due to the double

sine functions coincide with the contribution of the Wronskian of two special solutions

to the main functional equation analysed in [27]. We therefore expect our proposed

solution (3.110) to be an eigenfunction of both the quantum mechanical problem

at ω1, ω2 ∈ R and the quantum mechanical problem at ω1 = ω2 ∈ C, after the

appropriate normalization factors (or values of ξ) are taken into account.

32This would no longer be true if we were to consider ω1, ω2 ∈ R. In that case, in order to get a purely real

or purely imaginary function we should remove an appropriate constant term from the instanton corrections;

this is what we did in (3.110) where we used Ẑ
(c),inst

3d/5d,NS instead of Z
(c),inst

3d/5d,NS.
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• Cancellation of poles at σ = ±a(n)

2 for our proposed solution (3.110) requires (the

relativistic analogue of) conditions (2.31) to be satisfied or, equivalently, that

Res
[
q(σ, a, ω1, ω2,m0)

]∣∣∣
σ=±a(n)

2

= 0. (3.115)

Since in our case ξ = −(−1)n, focussing on σ = −a(n)

2 this condition reduces to

(−1)n = e−iπn = e
− iπm0a

(n)

ω1ω2
S−1

2

(
−ia(n)|ω1, ω2

)
S−1

2

(
ia(n)|ω1, ω2

) q
(ac),inst
NS (−a(n)

2 , a(n), ω1, ω2,m0)

q
(c),inst
NS (−a(n)

2 , a(n), ω1, ω2,m0)
.

(3.116)

These are quantization conditions for the parameter a: only when a = a(n) sat-

isfies (3.116) our solution (3.110) will be free of singularities in σ. By consis-

tency, (3.116) should then be equivalent to the exact quantization conditions (3.67);

let us try to see if this is the case. First of all, by making use of the properties of the

double sine function we can rewrite (3.116) as

e−iπn = e
− iπm0a

ω1ω2
− iπa2

ω1ω2
+ iπ

6

ω21+ω
2
2

ω1ω2
+ iπ

2

(
qe
− 2πa
ω2 ; q

)
∞

(
e
− 2πa
ω2 ; q

)
∞(

q̃−1e
− 2πa
ω1 ; q̃−1

)
∞

(
e
− 2πa
ω1 ; q̃−1

)
∞

×
q

(ac),inst
NS (−a

2 , a, ω1, ω2,m0)

q
(c),inst
NS (−a

2 , a, ω1, ω2,m0)
at a = a(n).

(3.117)

Moving to logarithms (and multiplying by 2i) we obtain

2πn =
2πm0a

ω1ω2
+

2πa2

ω1ω2
− π

3

ω2
1 + ω2

2

ω1ω2
− π − 2i

∑
k>1

1

k

1 + qk

1− qk
µ−k − 2i

∑
k>1

1

k

1 + q̃k

1− q̃k
µ̃−k

− 2iF̂
(ac),inst
3d/5d,NS(µ1/2, µ, e2πiq,Qrel)− 2iF̂

(ac),inst
3d/5d,NS(µ̃1/2, µ̃, e2πiq̃, Q̃rel)

+ 2iF̂
(c),inst
3d/5d,NS(µ1/2, µ, e2πiq,Qrel) + 2iF̂

(c),inst
3d/5d,NS(µ̃1/2, µ̃, e2πiq̃, Q̃rel) (3.118)

at a = a(n). It is easy to recognize that the first line of (3.118) precisely reproduces the

classical part of the exact quantization conditions (3.67) as well as the contribution

coming from the BPS states with d2 = 0, i.e. (jL, jR)d1,d2 = (0, 1
2)1,0 with N1,0

0, 1
2

= 1;

a full matching between (3.67) and (3.118) will therefore be obtained if

2

i
∂aW inst

5d (µ, e2πiq,Qrel) =

= −2iF̂
(ac),inst
3d/5d,NS(µ1/2, µ, e2πiq,Qrel) + 2iF̂

(c),inst
3d/5d,NS(µ1/2, µ, e2πiq,Qrel),

2

i
∂aW inst

5d (µ̃, e2πiq̃, Q̃rel) =

= −2iF̂
(ac),inst
3d/5d,NS(µ̃1/2, µ̃, e2πiq̃, Q̃rel) + 2iF̂

(c),inst
3d/5d,NS(µ̃1/2, µ̃, e2πiq̃, Q̃rel),

(3.119)

with W inst
5d as in (3.34). In order for (3.119) to be true, some non-trivial relation

should exist between closed BPS invariants N jL,jR
d1,d2

appearing in W inst
5d and open BPS
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invariants Ds1
m,d1,d2

appearing in F̂
(c),inst
3d/5d,NS, as already suggested in [22] based on

previous works [77–79]. Although it may be difficult to prove (3.119), we were able

to check its validity up to 4-instantons; it is therefore plausible for (3.116) to coincide

with the exact quantization conditions (3.67) as expected.

• Assuming our proposal (3.110) is the entire L2(R) solution to the Baxter and dual

Baxter equations associated to the 2-particle relativistic closed Toda system, the

simultaneous eigenfunction Ψrel
a (x, ω1, ω2,m0) of the relativistic Toda and dual Toda

Hamiltonians Ĥ1,
̂̃H1 can be obtained via Separation of Variables as in (3.78): in our

case, this means that

Ψrel
a (x, ω1, ω2,m0) =

∫
R
dσ q(σ, a, ω1, ω2,m0)e

2πiσx
ω1ω2 (3.120)

will be the (not normalized) eigenfunction satisfying33[
eiω1∂x + e−iω1∂x + e

2πx
ω2 +Qrele

− 2πx
ω2 − E1

]
Ψrel
a (x, ω1, ω2,m0) = 0, (3.121a)[

eiω2∂x + e−iω2∂x + e
2πx
ω1 + Q̃rele

− 2πx
ω1 − Ẽ1

]
Ψrel
a (x, ω1, ω2,m0) = 0. (3.121b)

This is the analogue of (2.75) for the non-relativistic Toda chain. In the non-

relativistic chain, performing the integral leads to an expression like (2.33); going to

the relativistic system, the integral will produce a double infinite sum over n, n′ ∈ Z
involving a + inω1 + in′ω2, which should reduce to a single sum over n ∈ Z when

ω1 = ω2 = 1. This sum would be the same as the one appearing in the expres-

sion for the 2-particle relativistic Toda eigenfunction discussed in [26], although the

summands we are considering are different: in our case we only have NS limits of

partition functions in the presence of codimension 2 defects, while in [26] both the NS

and the unrefined limits are needed. It would be interesting to understand if the two

expressions are actually the same, maybe because of some identity relating different

limits of codimension two defect instanton partition functions.

In addition, as we already mentioned for the non-relativistic case, (3.120) is expected

to coincide with (a linear combination of) type I defect partition functions when

evaluated at those values a = a(n) satisfying the exact quantization conditions: it

would be interesting to check this explicitly. The ideas in the work [39] may be

helpful in this respect, although their focus is mostly on four-dimensional theories.

• Finally, we would like to come back to a comment we made in section 2.4. As we

mentioned there, quantization conditions for the (non-relativistic) 2-particle closed

Toda chain seem to be expressible in two different but equivalent ways: the first one is

related to the NS limit of the four-dimensional N = 2 SU(2) partition function, while

the second one is related to its unrefined limit. Independently on how we express

them, these quantization conditions seem to determine the spectrum of two different

33These operators are obtained from (3.5), (3.6) after a redefinition of variables; the eigenfunction for

the original operators is obtained from (3.78), and requires adding Chern-Simons terms in the integrand.
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quantum mechanical systems, that is the 2-particle closed Toda chain and a Fermi

gas, whose “off-shell” energies are given by (2.47) and (2.83) respectively.

As hypothesized by [57], the relation between these two systems may be clearer if

we start from five dimensions / from the 2-particle relativistic closed Toda chain and

take an appropriate limit. According to what we discussed until now, a practical

way to realize this suggestion might be to take the four-dimensional limit of our

five-dimensional N = 1 SU(2) theory on S3
ω1,ω2

× R2 and see what happens. This

limit will break the symmetry ω1 ↔ ω2; one possibility would be to send ω2 → ∞
while keeping all other parameters fixed, and remembering that when going to four

dimensions the gauge coupling scales according to

4π2

g2
5d

= m0 −→ −ω2

2π
ln

(
2π

ω2
Q

1/4
4d

)4

. (3.122)

If we further redefine a → 2a, ω1 → ~, we find that the “off-shell” relativistic Toda

and dual Toda energies E1, Ẽ1 (3.68) reduce to

E1 −→ 2 +
4π2

ω2
2

E2(a, ~, Q4d) + o(ω−3
2 ),

Ẽ1 −→ e
2πa
~ + e−

2πa
~ .

(3.123)

As we can see, the four-dimensional limit of E1 reproduces the (non-relativistic) 2-

particle closed Toda energy E2(a, ~, Q4d) (2.47), while the four-dimensional limit

of Ẽ1 reproduces the Fermi gas energy (2.83) modulo overall factors. In addition,

relativistic Toda exact quantization conditions will reduce to the non-relativistic Toda

ones (in the A)-representation according to the notation of section 2.4); in this way

we may be able to obtain the energy spectrum of both systems in an unified way.

It is important to stress that the interpretation of the four-dimensional limit of Ẽ1 can

be a bit tricky. The limit (3.122) basically sets Q̃5d → 0 in Ẽ1, but this also happens

when we consider the dual relativistic open Toda chain, which has the same “off-shell”

energy of our Fermi gas although its energy spectrum is continuous. However, in our

opinion it makes more sense to think of (2.83) as the energy of the Fermi gas when

considering it as arising from the four-dimensional limit (3.122), since in this case

E1 does not reduce to the relativistic open Toda energy. On the other hand, (2.83)

should be interpreted as the dual relativistic open Toda energy in the different limit

m0 → ∞ with ω2 and all other parameters fixed, case in which also E1 reduces to

the relativistic open Toda energy; this different limit is not related to dimensional

reduction, but to turning off the five-dimensional gauge interaction.

3.6 A further example: the 3-particle case

Up to now a large part of our discussion has been valid for general N , but most of the details

(especially about the solution to the Baxter equation) were only given for N = 2. Since

this case might be a bit too special, we will consider N = 3 in this section; we will thus be

able to see the importance of the B-field, which is trivial for N = 2. However, increasing
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N makes all gauge theory computations more cumbersome, and all we were able to do is

considering instanton corrections up to order 3 for all the relevant gauge theory quantities;

we therefore expect our results to be less precise than the ones we obtained for N = 2.

Let us start by considering quantization conditions and spectrum for N = 3, which

were already studied in [11]. First of all, in this case we have three auxiliary parameters a1,

a2, a3 (the Coulomb branch parameters of our five-dimensional SU(3) theory); decoupling

the center of mass corresponds to imposing a1 + a2 + a3 = 0, and this is usually done by

moving to the variables

a12 = a1 − a2, a23 = a2 − a3, (3.124)

which are nothing else but the Kahler parameters t1, t2 in (3.30) (the remaining parameter

being t3 = m0 + a12 + a23). In terms of these variables, we have

a1 =
2

3
a12 +

1

3
a23, a2 = −1

3
a12 +

1

3
a23, a3 = −1

3
a12 −

2

3
a23. (3.125)

We will also often use the notation

µ12 = e
2πa12
ω2 , µ23 = e

2πa23
ω2 and µ̃12 = e

2πa12
ω1 , µ̃23 = e

2πa23
ω1 . (3.126)

As we discussed in section 3.3.3, exact quantization conditions are obtained by extremizing

the effective twisted superpotential (3.63) which is computed from the “NS limit” of the

(integrand of the) partition function on S5
ω1,ω2,ω3

; the non-BPS part in (3.63) is easily

extracted from (3.58), while the BPS part is written in terms of the function (3.49) corrected

by the B-field (arising in this setting from the identifications in table 4). We then obtain

1

i
WSU(3)
S5 =

π

3ω1ω2

(
a312+a323+(a12+a23)3

)
+

2πm0

3ω1ω2

(
a212+a12a23+a223

)
−π

3

ω2
1+ω2

2

ω1ω2
(a12+a23)−π(a12+a23)

−ω2

4π

∑
n>1

∑
d1,d2,d3

∑
jL,jR

(−1)(2jL+2jR+1)n

n2
Nd1,d2,d3
jL,jR

(3.127)

×
sin
[
(2jL+1)πnω1

ω2

]
sin
[
(2jR+1)πnω1

ω2

]
sin3

[
πnω1

ω2

] e−
2πnd1a12

ω2 e−
2πnd2a23

ω2 e−
2πnd3(a12+a23+m0)

ω2

−ω1

4π

∑
n>1

∑
d1,d2,d3

∑
jL,jR

(−1)(2jL+2jR+1)n

n2
Nd1,d2,d3
jL,jR

×
sin
[
(2jL+1)πnω2

ω1

]
sin
[
(2jR+1)πnω2

ω1

]
sin3

[
πnω2

ω1

] e−
2πnd1a12

ω1 e−
2πnd2a23

ω1 e−
2πnd3(a12+a23+m0)

ω1 ,

manifestly symmetric under exchange ω1 ↔ ω2 (the Nd1,d2,d3
jL,jR

numbers can be found for

example in [19]); exact quantization conditions (3.65) will therefore reduce to solving the

equations 
1

i
(2∂a12 − ∂a23)WSU(3)

S5 = 2πn12,

1

i
(−∂a12 + 2∂a23)WSU(3)

S5 = 2πn23,
(3.128)
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Case m0 = 0 :

a
(0,0)
12 = a

(0,0)
23 = 0.4927628697 . . .

Case m0 = 1 :

a
(0,0)
12 = a

(0,0)
23 = 0.3342262919 . . .

E(0,0)1 = E(0,0)2 Ẽ(0,0)1 = Ẽ(0,0)2 E(0,0)1 = E(0,0)2 Ẽ(0,0)1 = Ẽ(0,0)2

gauge theory

(3-instantons)
23.1546976231. . . 80.7368446681. . . 9.2886369712. . . 20.5404347303. . .

numerics 23.1546976231. . . 80.7368446681. . . 9.2886369712. . . 20.5404347303. . .

Table 6. 3-particle relativistic Toda energies and dual energies for the ground state (n12, n23) =

(0, 0) at ω1 = 1√
2
, ω2 = 1 and m0 = 0 or m0 = 1.

in terms of the a12, a23 variables at fixed ω1, ω2, m0 and for chosen levels n12, n23 ∈ N.

These quantization conditions precisely match with the ones given in [11].

Energies E(n12,n23)
1 , E(n12,n23)

2 and dual energies Ẽ(n12,n23)
1 , Ẽ(n12,n23)

2 at level (n12, n23)

will instead be given by the NS limit of vacuum expectation values of Wilson loops in

fundamental ( ) and antisymmetric ( ) representations of SU(3) wrapping the two special

circles in S3
ω1,ω2

× R2, evaluated at those values a12 = a
(n12,n23)
12 , a23 = a

(n12,n23)
23 satisfying

the quantization conditions (3.127).34 These Wilson loops are basically the same as the

ones in flat space, modulo taking into account the effect of the B-field: more precisely, if

we denote the (NS limit of the) fundamental and antisymmetric Wilson loops in flat space

R2
ε1 × R2 × S1

R wrapping S1
R as

W
SU(3)
,NS(a12, a23, ε1, R,m0), W

SU(3)

,NS
(a12, a23, ε1, R,m0), (3.129)

then the energies of the 3-particle relativistic closed Toda chain are35

E1(a12, a23, ω1, ω2,m0) = W
SU(3)
,NS(a12, a23, i(ω1 + ω2), ω−1

2 ,m0),

E2(a12, a23, ω1, ω2,m0) = W
SU(3)

,NS
(a12, a23, i(ω1 + ω2), ω−1

2 ,m0),
(3.130)

while the energies of the dual system are

Ẽ1(a12, a23, ω1, ω2,m0) = W
SU(3)
,NS(a12, a23, i(ω2 + ω1), ω−1

1 ,m0),

Ẽ2(a12, a23, ω1, ω2,m0) = W
SU(3)

,NS
(a12, a23, i(ω2 + ω1), ω−1

1 ,m0).
(3.131)

34The qq-character introduced in [80] is a particular gauge theory observable which for SU(N) gauge

theories can be thought as the generating function of Wilson loops in the m-th antisymmetric representation

(see [81] for a detailed explanation). When ε1, ε2 → 0, the qq-character reduces to the function trel(σ, ~E)

appearing in the spectral/Seiberg-Witten curve (3.16); in the NS limit instead it reduces to the q-character,

which is nothing else but the quantum version of trel(σ, ~E) appearing in the Baxter equation [80]. From

these facts it is easy to realize that the energies Em will be given by the NS limit of Wilson loops in the

m-th antisymmetric representation.
35As we already mentioned, for N odd identifying ε1 = i(ω1 + ω2) is equivalent to identify ε1 = iω1 and

change sign to the instanton counting parameter (Q5d → −Q5d, Q̃5d → −Q̃5d).
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Explicit expressions can be obtained for example by computing the NS limit of the

SU(3) fundamental qq-character with the formulae of [81], but already at 1-instanton the

results are too long to be written down here; let us however mention that our energies will

be given by instanton series expansions starting as

E1 = µ
2
3
12µ

1
3
23 + µ

− 1
3

12 µ
1
3
23 + µ

− 1
3

12 µ
− 2

3
23 + o(Q5d),

E2 = µ
1
3
12µ

2
3
23 + µ

1
3
12µ
− 1

3
23 + µ

− 2
3

12 µ
− 1

3
23 + o(Q5d),

Ẽ1 = µ̃
2
3
12µ̃

1
3
23 + µ̃

− 1
3

12 µ̃
1
3
23 + µ̃

− 1
3

12 µ̃
− 2

3
23 + o(Q̃5d),

Ẽ2 = µ̃
1
3
12µ̃

2
3
23 + µ̃

1
3
12µ̃
− 1

3
23 + µ̃

− 2
3

12 µ̃
− 1

3
23 + o(Q̃5d),

(3.132)

and moreover

E1 ↔ E2, Ẽ1 ↔ Ẽ2 under a12 ↔ a23. (3.133)

An example of ground state energies computed via these formulae is shown in table 6;

as we can see, already at 3-instantons gauge theory results are in good agreement with

numerical ones, and the agreement gets better and better by considering more instanton

corrections.36

Let us now move to discuss the solution q(σ, a12, a23, ω1, ω2,m0) to the Baxter and dual

Baxter equations (3.80) (with center of mass decoupled), which in the N = 3 case read[
(i)3eiω1∂σ +Qrel(i)

−3e−iω1∂σ
]
q(σ, a12, a23, ω1, ω2,m0) =

=
[
e

2π
ω2

3σ
2 − E1e

2π
ω2

σ
2 + E2e

− 2π
ω2

σ
2 − e−

2π
ω2

3σ
2

]
q(σ, a12, a23, ω1, ω2,m0),[

(i)3eiω2∂σ + Q̃rel(i)
−3e−iω2∂σ

]
q(σ, a12, a23, ω1, ω2,m0) =

=
[
e

2π
ω1

3σ
2 − Ẽ1e

2π
ω1

σ
2 + Ẽ2e

− 2π
ω1

σ
2 − e−

2π
ω1

3σ
2

]
q(σ, a12, a23, ω1, ω2,m0).

(3.134)

According to the discussion in section 3.4, this solution should involve the NS limit of the

partition function of codimension-two defects of type II wrapping S3
ω1,ω2

. As usual, we first

consider the m0 → ∞ limit (relativistic open Toda chain); the S3
ω1,ω2

partition function

for a type II chiral/antichiral defect in this limit is given for general N in (3.73), which for

N = 3 and decoupling the center of mass reduces to

q(c)(σ,a12,a23,ω1,ω2) = S−1
2

(
−i
(
σ− 2a12

3
− a23

3

)
|ω1,ω2

)
S−1

2

(
−i
(
σ+

a12

3
− a23

3

)
|ω1,ω2

)
×S−1

2

(
−i
(
σ+

a12

3
+

2a23

3

)
|ω1,ω2

)
, (3.135)

q(ac)(σ,a12,a23,ω1,ω2) = S−1
2

(
i

(
σ− 2a12

3
− a23

3

)
|ω1,ω2

)
S−1

2

(
i
(
σ+

a12

3
− a23

3

)
|ω1,ω2

)
×S−1

2

(
i

(
σ+

a12

3
+

2a23

3

)
|ω1,ω2

)
.

36Numerical results are obtained by considering 350× 350 matrices as in section 3.2; see [11, 17] for more

details on numerical computations.
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Moving to the closed chain, we expect the solution to (3.134) to be the linear combination

q(σ, a12, a23, ω1, ω2,m0) ∝ q(ac)(σ, a12, a23, ω1, ω2,m0)− ξq(c)(σ, a12, a23, ω1, ω2,m0)

(3.136)

modulo an overall (complex) σ-independent term and for some value of ξ ∈ C, where

q(c)(σ, a12, a23, ω1, ω2,m0) = q(c)(σ, a12, a23, ω1, ω2)q
(c),inst
NS (σ, a12, a23, ω1, ω2,m0), (3.137)

q(ac)(σ, a12, a23, ω1, ω2,m0) = e
2iπm0σ
ω1ω2 q(ac)(σ, a12, a23, ω1, ω2)q

(ac),inst
NS (σ, a12, a23, ω1, ω2,m0),

are the instanton-corrected version of the open chain ones (3.135). Again, the instanton

contributions are expected to be given by two copies of the NS limit of the type II defect

instanton partition function Z
(c),inst
3d/5d,NS or Z

(ac),inst
3d/5d,NS on flat space R2

ε1 ×R2 × S1
R, which can

be computed with the formulae in appendix A. The results are too involved to be shown

here: let us just mention that, in terms of the flat space variables

q1 = e2πRε1 , w = e−2πRσ, µ12 = e2πRa12 , µ23 = e2πRa23 , Q5d = e−2πRm0 , (3.138)

these function are related as

Z
(ac),inst
3d/5d,NS(w, µ12, µ23, q1, Q5d) = Z

(c),inst
3d/5d,NS(w, µ12, µ23, q

−1
1 , Q5d); (3.139)

moreover

Z
(c),inst
3d/5d,NS(w, µ12, µ23, q1, Q5d) ∝ Z

(c),inst
3d/5d,NS(w−1, µ−1

12 , µ
−1
23 , q

−1
1 , Q5d), (3.140)

where the proportionality factor is independent of σ. In addition, the defect instanton

partition function admits an open topological string like representation as

Z
(c),inst
3d/5d,NS(w, µ12, µ23, q1, Q5d) = exp

(
−F (c),inst

3d/5d,NS(w, µ12, µ23, q1, Q5d)
)
, (3.141)

with37

F
(c),inst
3d/5d,NS(w, µ12, µ23, q1, Q5d) =

=
∞∑
n=1

∑
s1

∑
d1,d2,d3>0

∑
m∈Z

Ds1
m,d1,d2,d3

qns11

n(1− qn1 )
µ−nd112 µ−nd223

(
Q5dµ

−1
12 µ

−1
23

)nd3
wmn.

(3.142)

Because of the property (3.140), the instanton contributions can be written in many dif-

ferent ways, all equivalent modulo σ-independent terms and different values of ξ; here we

will choose to write them as

q
(c),inst
NS (σ, a12, a23, ω1, ω2,m0) =

= Z
(c),inst
3d/5d,NS(w, µ12, µ23, e

2πiq,Qrel)Z
(c),inst
3d/5d,NS(w̃, µ̃12, µ̃23, e

2πiq̃, Q̃rel),

q
(ac),inst
NS (σ, a12, a23, ω1, ω2,m0) =

= Z
(c),inst
3d/5d,NS(w, µ12, µ23, e

−2πiq−1, Qrel)Z
(c),inst
3d/5d,NS(w̃, µ̃12, µ̃23, e

−2πiq̃−1, Q̃rel),

(3.143)

37As in (3.99), not all BPS states are contained in the instanton contributions: some of them arise from

the double sine functions in (3.135).
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Figure 20. N = 3 Baxter solution q(σ) for the ground state (0, 0) at ω1 = 1√
2
, ω2 = 1, m0 = 0.

Left: numerical result; center: gauge theory result; right: difference.

where we moved from flat space variables (3.138) to curved space ones following table 4

(here q = e2πiω1/ω2 , q̃ = e2πiω2/ω1). By using the representation (3.141), it is immediate to

apply the argument of [22] and show that the combinations appearing in (3.143) are free

of divergences at ω1/ω2 ∈ Q+.

To sum up, our proposed solution to the Baxter and dual Baxter equations (3.134)

associated to the 3-particle relativistic closed Toda chain is given by the linear combi-

nation (3.136), which involves the perturbative part (3.135) and the instanton contribu-

tions (3.143), modulo an overall complex σ-independent term and with ξ ∈ C determined

as in (2.31); this is expected to be entire only at the values a12 = a
(n12,n23)
12 , a23 = a

(n12,n23)
23

satisfying the exact quantization conditions (3.128). As usual, in order to check this pro-

posal we plot it and compare against numerical results; for this purpose it is actually more

convenient to consider the related function

q(σ, a12, a23, ω1, ω2,m0) = e
− iπm0σ

ω1ω2 q(σ, a12, a23, ω1, ω2,m0), (3.144)

since it satisfies a more symmetric problem. Figures 20 and 21 show the ground state

(n12, n23) = (0, 0) eigenfunction obtained via numerical methods (blue) and via our gauge

theory proposal (3.136) (orange)38 for ω1 = 1√
2
, ω2 = 1 and m0 = 0 or m0 = 1 respec-

tively; as we can see from the left-most plots (red) the difference between numerical and

gauge theory result away from singular points is quite small already considering 3-instanton

expressions,39 while divergences tend to close by considering more and more instanton cor-

rections. Eigenfunctions for excited states can also be easily obtained from (3.136), but

comparison against numerical results becomes harder since excited stated are more prob-

lematic to treat numerically.

For general N , we expect a similar story to be true: the simultaneous solution to the

Baxter and dual Baxter equations for the N -particle relativistic closed Toda chain will be

given by a linear combination

q(σ,~a, ω1, ω2,m0) ∝ q(ac)(σ,~a, ω1, ω2,m0)− ξq(c)(σ,~a, ω1, ω2,m0), (3.145)

38The orange plot shows the gauge theory function Re [q(σ)] divided by its norm; the overall complex

σ-independent term has been fixed numerically in such a way to have Im [q(σ)] = 0.
39Here we fixed ξ in such a way to cancel the singularity at σ = 0, so that only the other two singular

points are visible. Moreover, the asymmetry in the red plots is due to numerical results, which are obtained

not from diagonalizing (3.134) but from considering a closely related operator: see [11, 17] for more details.
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Figure 21. N = 3 Baxter solution q(σ) for the ground state (0, 0) at ω1 = 1√
2
, ω2 = 1, m0 = 1.

Left: numerical result; center: gauge theory result; right: difference.

modulo an overall σ-independent term and with ξ ∈ C determined by (2.31).40 Here we

have ~a = (a1, . . . , aN ) with a1 + . . .+ aN = 0 and

q(c)(σ,~a, ω1, ω2,m0) = q(c)(σ,~a, ω1, ω2)q
(c),inst
NS (σ,~a, ω1, ω2,m0),

q(ac)(σ,~a, ω1, ω2,m0) = e
2iπm0σ
ω1ω2 q(ac)(σ,~a, ω1, ω2)q

(ac),inst
NS (σ,~a, ω1, ω2,m0),

(3.146)

where

q(c)(σ,~a, ω1, ω2) =
N∏
m=1

S−1
2

(
− i(σ − am)|ω1, ω2

)
,

q(ac)(σ,~a, ω1, ω2) =
N∏
m=1

S−1
2

(
i(σ − am)|ω1, ω2

)
,

(3.147)

while the instanton contributions can be written in terms of the NS limit of the flat space

instanton partition function Z
(c),inst
3d/5d,NS for pure five-dimensional N = 1 SU(N) Yang-Mills

in the presence of a codimension-two defect of type II and can be chosen to be

q
(c),inst
NS (σ,~a, ω1, ω2,m0) = Z

(c),inst
3d/5d,NS(w, ~µ, e2πiq,Qrel)Z

(c),inst
3d/5d,NS(w̃, ~µ, e2πiq̃, Q̃rel), (3.148)

q
(ac),inst
NS (σ,~a, ω1, ω2,m0) = Z

(c),inst
3d/5d,NS(w, ~µ, e−2πiq−1, Qrel)Z

(c),inst
3d/5d,NS(w̃, ~µ, e−2πiq̃−1, Q̃rel),

assuming that for generic N it still holds

Z
(ac),inst
3d/5d,NS(w, ~µ, q1, Q5d) = Z

(c),inst
3d/5d,NS(w, ~µ, q−1

1 , Q5d). (3.149)

This solution will only be entire for those values of ~a satisfying the exact quantization

conditions; energies for the Toda and dual Toda systems will then be given by vacuum

expectation values of Wilson loop at the north and south poles of S3
ω1,ω2

in appropriate

representations of SU(N).

4 Conclusions

In this paper we proposed a gauge theory approach to solve the problem of constructing

an entire, simultaneous solution to the Baxter and dual Baxter equations associated to

40It would be desirable to have an explicit gauge theory expression for this σ-independent term and for

ξ in such a way that the resulting eigenfunction will be normalized to 1, but we weren’t able to find it yet.
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the N -particle relativistic closed Toda chain, out of which relativistic Toda and dual Toda

eigenfunctions can be obtained via Separation of Variables techniques, and we tested

our proposal against numerical results finding good agreement. Our proposal basically

consists of considering various defects for the five-dimensional N = 1 SU(N) theory

on the squashed S5
ω1,ω2,ω3

background in the “NS limit” ω3 → 0, rather than the flat

R2
ε1 × R2

ε2 × S
1
R background in the NS limit ε2 → 0 usually considered in the literature.

From this set-up, which seems to automatically incorporate the effect of the B-field and

“S-duality” ω1 ↔ ω2 (related to the existence of the modular dual system), we were able

to extract exact quantization conditions, exact spectrum and exact Baxter eigenfunctions

in an unified setting; it is however not clear if the S5
ω1,ω2,ω3

background is the most

appropriate one to start with, since any other background that reduces to S3
ω1,ω2

× R2 in

some limit may be equivalently good. In any case it is important to notice that, although

usually stated otherwise, the type II defect partition function on flat space R2
ε1 ×R2 × S1

R

turns out not to be the correct solution to the Baxter equation by itself, but a second

copy of it (containing non-perturbative contributions) is needed.

We should stress that, although it seems to match numerical results for the cases we

checked, at this stage our proposal can only be regarded as a proposal, and we do not

know of any way to demonstrate it. What is more, even assuming this proposal turns

out to be correct, at the moment it is not clear to us why considering gauge theories on

curved backgrounds should work. Our motivation to do so came from realizing that the

known eigenfunctions of the relativistic open Toda chain given in [21] coincide with the

S3
ω1,ω2

partition function of some particular three-dimensional theory: based on this fact,

on what happens in the non-relativistic (or four-dimensional) case, and on the existence of

the modular dual structure of the relativistic Toda chain, we were naturally led to consider

gauge theories on S3
ω1,ω2

×R2; nevertheless, a good explanation for this has yet to be found.

One could say that starting from the (integrand of the) partition function on S5
ω1,ω2,ω3

may

be meaningful because this was suggested in [24] to provide a non-perturbative completion

of the topological string partition function, but this claim itself is simply another proposal.

A deeper understanding of this point is surely desirable.

Another important remark is that, as we mentioned at various points in this paper,

there are two quantum mechanical problems one can associate to the same spectral curve,

and in both of them non-perturbative contributions are essential to get correct results,

although these contributions appear in different ways. The first problem, which is the one

studied in this work and in [11, 16] among others, consists of thinking of the quantized

spectral curve as the Baxter equation for a Quantum Integrable system; in this case all

energies are quantized, all “off-shell” formulas are manifestly S-duality invariant (in agree-

ment with the modular double structure of our problem), and all formulas only involve the

NS limit of the refined topological string partition function (closed or open). The second

problem instead, analysed in [10, 26] among others, concerns the study of the quantized

spectral curve interpreted as a finite-difference Schrödinger operator; in this case only one

energy (or “true” modulus) is quantized, and spectral (Fredholm) determinants and minors

associated to the inverse of this Schrödinger operator can be expressed in terms of (closed

or open) refined topological string partition function, but these expressions involve both
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the unrefined and the NS limit. As we have seen, at least for what quantization conditions

and spectrum are concerned the two problems can be related [19, 20] (in particular, the

first problem can be thought of as a special case of the second one); it would be interesting

to understand how this relation is realized at the level of eigenfunctions.

It is also worth noticing that these two problems seem to have an analogue in four

dimensions. The first problem reduces to solving the non-relativistic Toda chain: this can

be done via the original gauge theory proposal of [1], which only involves the NS limit of

four-dimensional gauge theory observables. The second problem instead is more related

to Fermi gases as discussed in the work [50], where the spectral determinant for a Fermi

gas associated to the O(2) matrix model is expressed solely in terms of the unrefined

limit of the four-dimensional partition function. These two systems may descend from

the relativistic Toda and dual Toda chains respectively as we discussed in section 3.5, but

further investigation is needed in order to clarify this point.

Finally, it would be very interesting to understand if our proposal for the solution to

the Baxter and dual Baxter equation can be extended to include purely topological string

cases like local P2, which are not associated to any gauge theory. This may be possible

since our proposal can be written in terms of the NS limit of the refined open topological

string partition function, which can be computed even for cases without a gauge theory

interpretation; we hope to be able to discuss this point in more detail in the near future.
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A Instanton partition functions with defects

In this appendix we collect the relevant contour integral formulae computing the instanton

contributions to the partition functions of 4d and 5d theories in the presence of various

codimension two defects.

A.1 Four-dimensional theories

The perturbative part of the partition function for a four-dimensional N = 2 SU(N) theory

living on R2
ε1 × R2

ε2 is given by

Zpert
4d (~a, ε1, ε2, Q4d) = exp

− N∑
l 6=m

γε1,ε2(al − am;Q4d)

 (A.1)

in terms of the function

γε1,ε2(x;Q4d) =
d

ds

[
Q
s/4
4d

Γ(s)

∫ ∞
0

dt

t
ts

e−tx

(eε1t − 1)(eε2t − 1)

]
s=0

. (A.2)
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The instanton part instead reads

Z inst
4d (~a, ε1, ε2, Q4d) =

∞∑
k=0

Qk4dZ
(k)
4d (~a, ε1, ε2), (A.3)

where ~a = (a1, . . . , aN ) and

Z
(k)
4d (~a,ε1,ε2)=

1

k!

∮ [ k∏
s=1

dφs
2πi

]
Z

(k),int
4d (~φ,~a,ε1,ε2), (A.4)

Z
(k),int
4d (~φ,~a,ε1,ε2)=

(
−ε1+ε2

ε1ε2

)k k∏
s>t

φ2
st(φ

2
st−ε2+)

(φ2
st−ε21)(φ2

st−ε22)

N∏
m=1

k∏
s=1

1

(φs−am− ε+
2 )(φs−am+ ε+

2 )
.

(A.5)

Here we are using the short-hand notation ε+ = ε1 + ε2 and φst = φs−φt. The poles to be

considered are labelled by N -tuples of Young tableaux ~Y = (Y1, . . . , YN ) and are located at

φs = am +
ε1 + ε2

2
+ (i− 1)ε1 + (j − 1)ε2, (A.6)

with (i, j) box in the m-th Young tableau Ym.

Similarly, the instanton part of the partition function of our 4d N = 2 SU(N) theory

in the presence of a codimension two defect of type II with chiral multiplets (figure 2b) is

computed by

Z
(c),inst
2d/4d (σ,~a, ε1, ε2, Q4d) =

∞∑
k=0

Qk4dZ
(c),(k)
2d/4d (σ,~a, ε1, ε2), (A.7)

with

Z
(c),(k)
2d/4d (σ,~a,ε1,ε2)=

1

k!

∮ [ k∏
s=1

dφs
2πi

]
Z

(k),int
4d (~φ,~a,ε1,ε2)Z

(c),(k),int
2d/4d (~φ,σ,~a,ε1,ε2), (A.8)

Z
(c),(k),int
2d/4d (~φ,σ,~a,ε1,ε2)=

k∏
s=1

φs−σ+ ε1+ε2
2

φs−σ+ ε1+ε2
2 −ε2

; (A.9)

the relevant poles to be considered are the same N -tuples of Young tableaux as in (A.6).

If the type II defect consists of antichiral multiplets instead, the formulae are modified

according to

Z
(ac),inst
2d/4d (σ,~a,ε1,ε2,Q4d)=

∞∑
k=0

Qk4dZ
(ac),(k)
2d/4d (σ,~a,ε1,ε2), (A.10)

Z
(ac),(k)
2d/4d (σ,~a,ε1,ε2)=

1

k!

∮ [ k∏
s=1

dφs
2πi

]
Z

(k),int
4d (~φ,~a,ε1,ε2)Z

(ac),(k),int
2d/4d (~φ,σ,~a,ε1,ε2), (A.11)

Z
(ac),(k),int
2d/4d (~φ,σ,~a,ε1,ε2)=

k∏
s=1

φs−σ− ε1+ε2
2

φs−σ− ε1+ε2
2 +ε2

; (A.12)
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the poles contributing to the integral in this case are (N + 1)-tuples of Young tableaux
~Y = (Y1, . . . , YN , YN+1), where the first N tableaux are as in (A.6) while the tableau YN+1

contains poles at

φs = σ +
ε1 + ε2

2
− ε2 + (i− 1)ε1 + (j − 1)ε2, (A.13)

with (i, j) box in YN+1.

Moving to defects of type I (figure 2a), denoting ~k = (k1, . . . , kN ) and kN+1 = k1 we

have

Z
(I)
2d/4d(~x,~a, ε1, ε2, Q4d) =

∞∑
k1,...,kN=0

qk11 . . . qkNN Z
(I),(~k)
2d/4d (~a, ε1, ε2) (A.14)

with qi = exi−xi+1 for i = 1, . . . , N − 1 while qN = Q4de
xN−x1 and

Z
(I),(~k)
2d/4d (~a,ε1,ε2)=

1

k1!...kN !

∮ [ N∏
b=1

kb∏
s=1

dφ
(b)
s

2πi

]
Z

(I),(~k),int
2d/4d ({~φ},~a,ε1,ε2), (A.15)

Z
(I),(~k),int
2d/4d ({~φ},~a,ε1,ε2)=ε

−(k1+...+kN )
1

N∏
b=1

kb∏
s 6=t

φ
(b)
s −φ(b)

t

φ
(b)
s −φ(b)

t +ε1

N∏
b=1

kb∏
s=1

kb+1∏
t=1

φ
(b)
s −φ(b+1)

t +ε1+ ε2
N

φ
(b)
s −φ(b+1)

t + ε2
N

×
N−1∏
b=1

kb∏
s=1

1

(φ
(b)
s −ab− bε2

N )(φ
(b)
s −ab+1+ε1− bε2

N )

kN∏
s=1

1

(φ
(N)
s −aN−ε2)(φ

(N)
s −a1+ε1)

, (A.16)

for {~φ} = (~φ(1), . . . , ~φ(N)); more details on the computation of this partition function can

be found for example in [34].

Thermodynamic Bethe Ansatz (TBA) formulae. When considered in the NS limit

ε2 → 0, ε1 = i~, some of these instanton partition functions admit a TBA expression,

which is typically easier to work with. For example, by defining the function ϕ(µ) via

ϕ(µ) = −
∫ ∞
−∞

dλ

2π
K(µ− λ) ln

(
1 +Q4dΘ(λ)e−ϕ(λ)

)
, (A.17)

where

K(µ) =
2~

µ2 + ~2
, Θ(µ) =

N∏
m=1

1

(µ− am − i~/2)(µ− am + i~/2)
, (A.18)

we have the following TBA formula for W inst
4d :

W inst
4d = − ~

2π

∫ ∞
−∞

dµ

[
−1

2
ϕ(µ) ln

(
1 +Q4dΘ(µ)e−ϕ(µ)

)
+ Li2

(
−QΘ(µ)e−ϕ(µ)

)]
.

(A.19)

There are also TBA formulae for q
(c),NS
inst (σ) and q

(ac),NS
inst (σ), introduced in [8]:

ln q
(c),NS
inst (σ)(σ) =

∫ ∞
−∞

dµ

2πi

1

σ − µ− i~/2
ln
(

1 +QΘ(µ)e−ϕ(µ)
)
,

ln q
(ac),NS
inst (σ) = −

∫ ∞
−∞

dµ

2πi

1

σ − µ+ i~/2
ln
(

1 +QΘ(µ)e−ϕ(µ)
)
.

(A.20)

These formulae are equivalent to the NS limit of the type II defect instanton partition

function with chiral/antichiral multiplets respectively.
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A.2 Five-dimensional theories

The instanton part of the partition function for a five-dimensional N = 1 SU(N) theory

living on R2
ε1 × R2

ε2 × S
1
R is given by the contour integral formula

Z inst
5d (~a, ε1, ε2, R,Q5d) =

∞∑
k=0

Qk5dZ
(k)
5d (~a, ε1, ε2, R), (A.21)

where

Z
(k)
5d (~a, ε1, ε2, R) =

1

k!

∮ [ k∏
s=1

d(2πRφs)

2πi

]
Z

(k),int
5d (~φ,~a, ε1, ε2, R) (A.22)

and

Z
(k),int
5d (~φ,~a,ε1,ε2,R)=

(
− 2sinh[πR(ε1+ε2)]

2sinh[πRε1]·2sinh[πRε2]

)k
(A.23)

×
k∏

s,t=1
s 6=t

2sinh[πR(φs−φt)]·2sinh[πR(φs−φt+ε1+ε2)]

2sinh[πR(φs−φt+ε1)]·2sinh[πR(φs−φt+ε2)]

×
k∏
s=1

N∏
j=1

1

2sinh
[
πR(φs−aj+ ε1+ε2

2 )
]
·2sinh

[
πR(−φs+aj+ ε1+ε2

2 )
] .

Written in terms of σs = e2πRφs , q1 = e2πRε1 , q2 = e2πRε2 , µj = e2πRaj this becomes

Z
(k)
5d (~µ, q1, q2) =

1

k!

∮ [ k∏
s=1

dσs
2πiσs

]
Z

(k),int
5d (~σ, ~µ, q1, q2), (A.24)

with

Z
(k),int
5d (~σ, ~µ, q1, q2) =

(
1− q1q2

(1− q1)(1− q2)

)k k∏
s,t=1
s 6=t

(1− σsσ−1
t )(1− σsσ−1

t q1q2)

(1− σsσ−1
t q1)(1− σsσ−1

t q2)

×
k∏
s=1

N∏
j=1

√
q1q2

(1− σsµ−1
j

√
q1q2)(1− σ−1

s µj
√
q1q2)

.

(A.25)

The poles to be considered for the evaluation of the integral are labelled by N -tuples of

Young tableaux ~Y = (Y1, . . . , YN ) and are located at

φs = am +
ε1 + ε2

2
+ (i− 1)ε1 + (j − 1)ε2, (A.26)

with (i, j) box in the m-th Young tableau Ym.

Moving to defects, it was shown in [35, 63] that the instanton part of the partition

function for a 5d N = 1 U(N) theory in the presence of a type II codimension-two defect

(figure 2b) living on R2
ε1 × S1

R represented by N 3d chiral fields (S-dual to the simple

defect/type III defect of figure 2c) admits the contour integral representation

Z
(c),inst
3d/5d (σ,~a, ε1, ε2, R,Q5d) =

∞∑
k=0

Qk5dZ
(c),(k)
3d/5d (σ,~a, ε1, ε2, R), (A.27)
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where

Z
(c),(k)
3d/5d (σ,~a,ε1,ε2,R)=

1

k!

∮ [ k∏
s=1

d(2πRφs)

2πi

]
Z

(k),int
5d (~φ,~a,ε1,ε2,R)Z

(c),(k),int
3d/5d (σ,~φ,~a,ε1,ε2,R)

(A.28)

and

Z
(c),(k),int
3d/5d (σ, ~φ,~a, ε1, ε2, R) =

k∏
s=1

eπRε2
2 sinh

[
πR(φs − σ + ε1+ε2

2 )
]

2 sinh
[
πR(φs − σ + ε1+ε2

2 − ε2)
] . (A.29)

Written in terms of σs = e2πRφs , q1 = e2πRε1 , q2 = e2πRε2 , µj = e2πRaj , w = e−2πRσ this

becomes

Z
(c),(k)
3d/5d (w, ~µ, q1, q2) =

1

k!

∮ [ k∏
s=1

dσs
2πiσs

]
Z

(k),int
5d (~σ, ~µ, q1, q2)Z

(c),(k),int
3d/5d (w,~σ, ~µ, q1, q2),

(A.30)

with

Z
(c),(k),int
3d/5d (w,~σ, ~µ, q1, q2) =

k∏
s=1

1− σsw
√
q1q2

1− σsw q−1
2
√
q1q2

. (A.31)

The contributing poles are as in (A.26) and correspond to the usual Young tableau coming

only from the Z5d
k part.

We can also consider a type II defect with antichiral fields; in this case we have

Z
(ac),inst
3d/5d (σ,~a, ε1, ε2, R,Q5d) =

∞∑
k=0

Qk5dZ
(ac),(k)
3d/5d (σ,~a, ε1, ε2, R), (A.32)

where

Z
(ac),(k)
3d/5d (σ,~a,ε1,ε2,R)=

1

k!

∮ [ k∏
s=1

d(2πRφs)

2πi

]
Z

(k),int
5d (~φ,~a,ε1,ε2,R)Z

(ac),(k),int
3d/5d (σ,~φ,~a,ε1,ε2,R)

(A.33)

and

Z
(ac),(k),int
3d/5d (σ, ~φ,~a, ε1, ε2, R) =

k∏
s=1

e−πRε2
2 sinh

[
πR(φs − σ − ε1+ε2

2 )
]

2 sinh
[
πR(φs − σ − ε1+ε2

2 + ε2)
] . (A.34)

Written in terms of σs = e2πRφs , q1 = e2πRε1 , q2 = e2πRε2 , µj = e2πRaj , w = e−2πRσ this

becomes

Z
(ac),(k)
3d/5d (w, ~µ, q1, q2) =

1

k!

∮ [ k∏
s=1

dσs
2πiσs

]
Z

(k),int
5d (~σ, ~µ, q1, q2)Z

(ac),(k),int
3d/5d (w,~σ, ~µ, q1, q2),

(A.35)

with

Z
(ac),(k),int
3d/5d (w,~σ, ~µ, q1, q2) =

k∏
s=1

1− σsw/
√
q1q2

1− σsw q2/
√
q1q2

. (A.36)
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In this case poles are labelled by (N+1)-tuples of Young tableaux ~Y = (Y1, . . . , YN , YN+1);

the first N Young tableaux correspond to the poles (A.26), while in the tableau YN+1 we

have poles of the form

φs = σ +
ε1 + ε2

2
− ε2 + (i− 1)ε1 + (j − 1)ε2, (A.37)

with (i, j) box in YN+1.

Finally, the vacuum expectation value of a Wilson loop in the fundamental represen-

tation of SU(N) wrapping S1
R can be computed as

W
SU(N)
� (~a, ε1, ε2, R,Q5d) =

∞∑
k=0

Qk5dW
SU(N),(k)
� (~a, ε1, ε2, R), (A.38)

where

W
SU(N),(k)
� (~a, ε1, ε2, R) =

1

k!

∮ [ k∏
s=1

d (2πRφs)

2πi

]
Z

(k),int
5d (~φ,~a, ε1, ε2, R)

×

[
N∑
m=1

e2πRam − (1− e2πRε1)(1− e2πRε2)e−πR(ε1+ε2)
k∑
s=1

e2πRφs

]
.

(A.39)

The contributing poles are once again the ones in (A.26).

B Special functions

In this appendix we collect the definition and main properties of the double sine and triple

sine functions, which naturally appear when considering partition functions of supersym-

metric gauge theories on curved spaces.

B.1 Double sine function

The function Sω1,ω2(x) is defined as

Sω1,ω2(x) = exp

(∫
R+i0

exz

(eω1z − 1)(eω2z − 1)

dz

z

)
, (B.1)

in the strip 0 < Re z < Re(ω1 + ω2) when all Re(ωj) > 0. This function is related to the

quantum dilogarithm Φω1,ω2(x) intrdoduced in [59]

Φω1,ω2(x) = exp

(∫
R+i0

e−2ixz

2 sinh(ω1z) · 2 sinh(ω2z)

dz

z

)
, (B.2)

according to

Sω1,ω2

(
−ix+

ω1 + ω2

2

)
= Φω1,ω2(x). (B.3)

When Im (ω1/ω2) > 0 or ω1/ω2 /∈ Q it admits the infinite product representation

Sω1,ω2 (ix+ ω1 + ω2) = Φω1,ω2

(
−x+ i

ω1 + ω2

2

)
=

(qe−2πx/ω2 ; q)∞

(e−2πx/ω1 ; q̃−1)∞
, (B.4)
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where we introduced the parameters

q = e2πiω1/ω2 , q̃ = e2πiω2/ω1 , (B.5)

and the q-Pochhammer symbol

(w; q)∞ =
∞∏
k=0

(1− qkw). (B.6)

A useful formula related to the q-Pochhammer symbol is

exp

−∑
k>1

qkwk

k(1− qk)

 =


∏
k>0(1− qk+1w) , |q| < 1;∏
k>0

1

(1− q−kw)
, |q| > 1.

(B.7)

The Sω1,ω2(x) function satisfies the identities

Sω1,ω2 (ix+ ω1 + ω2 − ω1) =
(

1− e−2πx/ω2

)
Sω1,ω2 (ix+ ω1 + ω2) ,

Sω1,ω2 (ix+ ω1 + ω2 − ω2) =
(

1− e−2πx/ω1

)
Sω1,ω2 (ix+ ω1 + ω2) ,

(B.8)

and

Sω1,ω2 (ix+ ω1 + ω2 + ω1) =
1(

1− qe−2πx/ω2
)Sω1,ω2 (ix+ ω1 + ω2) ,

Sω1,ω2 (ix+ ω1 + ω2 + ω2) =
1(

1− q̃e−2πx/ω1
)Sω1,ω2 (ix+ ω1 + ω2) ,

(B.9)

as well as

Sω1,ω2

(
−ix+

ω1 + ω2

2

)
Sω1,ω2

(
ix+

ω1 + ω2

2

)
=

= Φω1,ω2(x)Φω1,ω2(−x) = e
iπ x2

ω1ω2
+iπ

ω21+ω
2
2

12ω1ω2 .

(B.10)

We also introduce the double sine function S2(x|ω1, ω2) defined as

S2(x|ω1, ω2) = e
iπ
2
B2,2(x|ω1,ω2)Sω1,ω2(x), (B.11)

where

B2,2(x|ω1, ω2) =
x2

ω1ω2
− ω1 + ω2

ω1ω2
x+

ω2
1 + 3ω1ω2 + ω2

2

6ω1ω2
. (B.12)

The double sine function can be thought as the regularization of the infinite product

S2(x|ω1, ω2) =
∏

m,n>0

mω1 + nω2 + x

mω1 + nω2 + ω1 + ω2 − x
. (B.13)

This function satisfies

S2(x|ω1, ω2)S2(−x+ ω1 + ω2|ω1, ω2) = 1, (B.14)
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as well as

S2(x|ω1, ω2) = S2(x|ω1, ω2) (B.15)

and

S−1
2 (−ix+ ω1|ω1, ω2) = −i · 2 sinh

[
πx

ω2

]
S−1

2 (−ix|ω1, ω2),

S−1
2 (−ix+ ω2|ω1, ω2) = −i · 2 sinh

[
πx

ω1

]
S−1

2 (−ix|ω1, ω2),

S−1
2 (−ix− ω1|ω1, ω2) =

1

−i · 2 sinh
[
πx
ω2
− iπ ω1

ω2

]S−1
2 (−ix|ω1, ω2),

S−1
2 (−ix− ω2|ω1, ω2) =

1

−i · 2 sinh
[
πx
ω1
− iπ ω2

ω1

]S−1
2 (−ix|ω1, ω2),

S−1
2 (ix− ω1|ω1, ω2) =

1

i · 2 sinh
[
πx
ω2

+ iπ ω1
ω2

]S−1
2 (ix|ω1, ω2),

S−1
2 (ix− ω2|ω1, ω2) =

1

i · 2 sinh
[
πx
ω1

+ iπ ω2
ω1

]S−1
2 (ix|ω1, ω2).

(B.16)

B.2 Triple sine function

Let us also introduce the function Sω1,ω2,ω3(x), defined as

Sω1,ω2,ω3(x) = exp

(
−
∫
R+i0

exz

(eω1z − 1)(eω2z − 1)(eω3z − 1)

dz

z

)
(B.17)

in the strip 0 < Re z < Re(ω1 + ω2 + ω3) when all Re(ωj) > 0. When Im (ω1/ω2) > 0,

Im (ω1/ω3) > 0, Im (ω3/ω2) > 0 or when ω1/ω2, ω1/ω3, ω3/ω2 /∈ Q this admits the infinite

product representation

Sω1,ω2,ω3 (x) = (B.18)

=
(e2πix/ω2 ; e2πiω1/ω2 ; e2πiω3/ω2)∞(e−2πiω3/ω1e−2πiω2/ω1e2πix/ω1 ; e−2πiω3/ω1 ; e−2πiω2/ω1)∞

(e−2πiω2/ω3e2πix/ω3 ; e2πiω1/ω3 ; e−2πiω2/ω3)∞
,

where we introduced the notation(
e2πix/ω2 ;e2πiω1/ω2 ;e2πiω3/ω2

)
∞

=
∏
j,k>0

(
1−e2πix/ω2e2πiω1j/ω2e2πiω3k/ω2

)
=

=exp

(
−
∑
n>1

e2πnix/ω2

n(1−e2πiω1n/ω2)(1−e2πiω3n/ω2)

)
.

(B.19)

The triple sine function is defined as

S3(x|ω1, ω2, ω3) = e−
iπ
6
B3,3(x|ω1,ω2,ω3)Sω1,ω2,ω3(x), (B.20)
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where

B3,3(x|ω1, ω2, ω3) =
x3

ω1ω2ω3
− 3

2

ω1 + ω2 + ω3

ω1, ω2, ω3
x2

+
ω2

1 + ω2
2 + ω2

3 + 3(ω1ω2 + ω1ω3 + ω2ω3)

2ω1ω2ω3
x

− (ω1 + ω2 + ω3)(ω1ω2 + ω1ω3 + ω2ω3)

4ω1ω2ω3
,

(B.21)

and satisfies

S3(x|ω1, ω2, ω3) = S3(−x+ ω1 + ω2 + ω3|ω1, ω2, ω3). (B.22)
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[51] A.B. Zamolodchikov, Painlevé III and 2D polymers, Nucl. Phys. B 432 (1994) 427

[hep-th/9409108] [INSPIRE].

[52] H. Nakajima and K. Yoshioka, Instanton counting on blowup II. K-theoretic partition

function, math/0505553 [INSPIRE].

– 84 –

https://doi.org/10.1007/s11005-010-0422-4
https://doi.org/10.1007/s11005-010-0422-4
https://arxiv.org/abs/1005.4469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4469
https://doi.org/10.1007/JHEP06(2011)119
https://arxiv.org/abs/1105.0357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0357
https://doi.org/10.1007/JHEP10(2016)012
https://doi.org/10.1007/JHEP10(2016)012
https://arxiv.org/abs/1412.2781
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2781
https://arxiv.org/abs/1308.2438
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2438
https://doi.org/10.1007/JHEP09(2015)140
https://arxiv.org/abs/1308.2217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2217
https://doi.org/10.1007/JHEP11(2013)021
https://arxiv.org/abs/1308.1973
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1973
https://doi.org/10.1016/j.nuclphysb.2017.04.010
https://arxiv.org/abs/1702.03330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.03330
https://doi.org/10.1088/1751-8113/46/33/335203
https://arxiv.org/abs/1302.1832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1832
https://doi.org/10.1093/imrn/rnu209
https://arxiv.org/abs/1403.1235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1235
https://doi.org/10.1007/s00220-015-2427-4
https://arxiv.org/abs/1406.3008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3008
https://doi.org/10.1088/1751-8121/aa59c9
https://arxiv.org/abs/1608.02568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02568
https://doi.org/10.1007/JHEP10(2012)038
https://doi.org/10.1007/JHEP10(2012)038
https://arxiv.org/abs/1207.0787
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0787
https://doi.org/10.1007/JHEP12(2013)029
https://arxiv.org/abs/1308.4092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4092
https://doi.org/10.1007/s00220-014-2245-0
https://arxiv.org/abs/1401.6104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6104
https://arxiv.org/abs/1612.06235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06235
https://arxiv.org/abs/1403.6137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6137
https://doi.org/10.1016/j.nuclphysBPS.2011.04.150
https://arxiv.org/abs/1103.3919
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3919
https://doi.org/10.1007/s11005-017-0945-z
https://doi.org/10.1007/s11005-017-0945-z
https://arxiv.org/abs/1603.01174
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.01174
https://doi.org/10.1016/0550-3213(94)90029-9
https://arxiv.org/abs/hep-th/9409108
https://inspirehep.net/search?p=find+EPRINT+hep-th/9409108
https://arxiv.org/abs/math/0505553
https://inspirehep.net/search?p=find+EPRINT+math/0505553


J
H
E
P
1
0
(
2
0
1
7
)
1
1
6

[53] L. Gottsche, H. Nakajima and K. Yoshioka, K-theoretic Donaldson invariants via instanton

counting, Pure Appl. Math. Quart. 5 (2009) 1029 [math/0611945] [INSPIRE].

[54] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1, Invent. Math. 162 (2005)

313 [math/0306198] [INSPIRE].

[55] H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058 [INSPIRE].

[56] P. Boalch, Poisson varieties from Riemann surfaces, arXiv:1309.7202.

[57] H. Williams, Toda systems, cluster characters and spectral networks, Commun. Math. Phys.

348 (2016) 145 [arXiv:1411.3692] [INSPIRE].

[58] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB

approximation, arXiv:0907.3987 [INSPIRE].

[59] L.D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34

(1995) 249 [hep-th/9504111] [INSPIRE].

[60] L.D. Faddeev, Modular double of quantum group, Math. Phys. Stud. 21 (2000) 149

[math/9912078] [INSPIRE].

[61] N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys.

B 531 (1998) 323 [hep-th/9609219] [INSPIRE].

[62] M. Aganagic and S. Shakirov, Knot homology and refined Chern-Simons index, Commun.

Math. Phys. 333 (2015) 187 [arXiv:1105.5117] [INSPIRE].

[63] M. Bullimore, H.-C. Kim and P. Koroteev, Defects and quantum Seiberg-Witten geometry,

JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].

[64] S.A. Cherkis and R.S. Ward, Moduli of monopole walls and amoebas, JHEP 05 (2012) 090

[arXiv:1202.1294] [INSPIRE].

[65] S.A. Cherkis, Phases of five-dimensional theories, monopole walls and melting crystals,

JHEP 06 (2014) 027 [arXiv:1402.7117] [INSPIRE].

[66] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144

[arXiv:1206.6339] [INSPIRE].

[67] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

arXiv:1211.0144 [INSPIRE].

[68] J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact

geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

[69] K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the

five-sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].

[70] J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D

Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]

[INSPIRE].

[71] Y. Imamura, Supersymmetric theories on squashed five-sphere, PTEP 2013 (2013) 013B04

[arXiv:1209.0561] [INSPIRE].

[72] Y. Imamura, Perturbative partition function for squashed S5, PTEP 2013 (2013) 073B01

[arXiv:1210.6308] [INSPIRE].

[73] M. Bullimore and H.-C. Kim, The superconformal index of the (2, 0) theory with defects,

JHEP 05 (2015) 048 [arXiv:1412.3872] [INSPIRE].

– 85 –

https://doi.org/10.4310/PAMQ.2009.v5.n3.a5
https://arxiv.org/abs/math/0611945
https://inspirehep.net/search?p=find+EPRINT+math/0611945
https://doi.org/10.1007/s00222-005-0444-1
https://doi.org/10.1007/s00222-005-0444-1
https://arxiv.org/abs/math/0306198
https://inspirehep.net/search?p=find+EPRINT+math/0306198
https://arxiv.org/abs/math/0311058
https://inspirehep.net/search?p=find+EPRINT+math/0311058
https://arxiv.org/abs/1309.7202
https://doi.org/10.1007/s00220-016-2692-x
https://doi.org/10.1007/s00220-016-2692-x
https://arxiv.org/abs/1411.3692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3692
https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
https://doi.org/10.1007/BF01872779
https://doi.org/10.1007/BF01872779
https://arxiv.org/abs/hep-th/9504111
https://inspirehep.net/search?p=find+EPRINT+hep-th/9504111
https://arxiv.org/abs/math/9912078
https://inspirehep.net/search?p=find+EPRINT+math/9912078
https://doi.org/10.1016/S0550-3213(98)00436-2
https://doi.org/10.1016/S0550-3213(98)00436-2
https://arxiv.org/abs/hep-th/9609219
https://inspirehep.net/search?p=find+EPRINT+hep-th/9609219
https://doi.org/10.1007/s00220-014-2197-4
https://doi.org/10.1007/s00220-014-2197-4
https://arxiv.org/abs/1105.5117
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5117
https://doi.org/10.1007/JHEP05(2015)095
https://arxiv.org/abs/1412.6081
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6081
https://doi.org/10.1007/JHEP05(2012)090
https://arxiv.org/abs/1202.1294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1294
https://doi.org/10.1007/JHEP06(2014)027
https://arxiv.org/abs/1402.7117
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.7117
https://doi.org/10.1007/JHEP05(2013)144
https://arxiv.org/abs/1206.6339
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6339
https://arxiv.org/abs/1211.0144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0144
https://doi.org/10.1007/JHEP05(2012)125
https://arxiv.org/abs/1202.1956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1956
https://doi.org/10.1016/j.nuclphysb.2012.08.007
https://arxiv.org/abs/1203.0371
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0371
https://doi.org/10.1007/JHEP08(2012)157
https://arxiv.org/abs/1206.6008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6008
https://doi.org/10.1093/ptep/pts052
https://arxiv.org/abs/1209.0561
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0561
https://doi.org/10.1093/ptep/ptt044
https://arxiv.org/abs/1210.6308
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6308
https://doi.org/10.1007/JHEP05(2015)048
https://arxiv.org/abs/1412.3872
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3872


J
H
E
P
1
0
(
2
0
1
7
)
1
1
6

[74] N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP

05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[75] I. Chi-Ho Ip, The graphs of quantum dilogarithm, arXiv:1108.5376.

[76] S. Garoufalidis and R. Kashaev, Evaluation of state integrals at rational points, Commun.

Num. Theor. Phys. 09 (2015) 549 [arXiv:1411.6062] [INSPIRE].

[77] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and

integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

[78] A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals,

JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

[79] M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of

refined topological strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].

[80] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and

qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].

[81] H.-C. Kim, Line defects and 5d instanton partition functions, JHEP 03 (2016) 199

[arXiv:1601.06841] [INSPIRE].

– 86 –

https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1007/JHEP05(2011)014
https://arxiv.org/abs/1102.4716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4716
https://arxiv.org/abs/1108.5376
https://doi.org/10.4310/CNTP.2015.v9.n3.a3
https://doi.org/10.4310/CNTP.2015.v9.n3.a3
https://arxiv.org/abs/1411.6062
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6062
https://doi.org/10.1007/s00220-005-1448-9
https://arxiv.org/abs/hep-th/0312085
https://inspirehep.net/search?p=find+EPRINT+hep-th/0312085
https://doi.org/10.1007/JHEP04(2010)040
https://arxiv.org/abs/0910.5670
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5670
https://doi.org/10.1007/JHEP11(2012)019
https://arxiv.org/abs/1105.0630
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0630
https://doi.org/10.1007/JHEP03(2016)181
https://arxiv.org/abs/1512.05388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05388
https://doi.org/10.1007/JHEP03(2016)199
https://arxiv.org/abs/1601.06841
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06841

	Introduction
	Toda integrable systems
	Quantum Toda chain (open and closed)
	Solution via Separation of Variables
	Solution via gauge theory
	Quantization conditions and energy spectrum
	Numerical study
	Eigenfunctions

	Comments

	Relativistic Toda integrable systems
	Quantum relativistic Toda chain (open and closed)
	Numerical study of spectrum and eigenfunctions
	Solution via gauge theory: quantization conditions and energy spectrum
	The naive proposal: five-dimensional gauge theory on flat space
	Exact quantization conditions and spectrum
	A more refined proposal: five-dimensional gauge theory on curved space

	Solution via gauge theory: eigenfunctions
	Additional remarks
	A further example: the 3-particle case

	Conclusions
	Instanton partition functions with defects
	Four-dimensional theories
	Five-dimensional theories

	Special functions
	Double sine function
	Triple sine function


