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1 Introduction

Berry phases commonly occur in quantum systems whose Hamiltonian depends continu-

ously on certain external parameters [1, 2]. If the parameters are fixed once and for all,

any state vector with energy E evolves in time according to multiplication by the dynam-

ical phase factor e−iEt/~. But when these parameters are slowly varied, the Hamiltonian

becomes time-dependent and gives rise to an extra phase, on top of the dynamical one,

picked up by any energy eigenstate along time evolution. For arbitrary paths in parameter

space, this phase is ambiguous; but for closed paths it becomes a well-defined, observable

Berry phase that follows from the parameter-dependence of energy eigenstates. The proto-

typical example of a system displaying such phenomena is a spin degree of freedom coupled

to a uniform magnetic field with constant norm but varying direction: the Hamiltonian

is essentially the projection of the spin operator along the magnetic field, so the space

of parameters can be identified with a sphere and the Berry phase picked up by a spin
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eigenstate along a closed curve in parameter space is proportional to the area enclosed by

that path on the sphere.

The latter example is actually a special case of the type of systems that we wish to

investigate in this paper. Namely, consider a unitary representation U of a symmetry group

G that contains time translations. The Hamiltonian operator H is one of the generators

of the Lie algebra of G, but what exactly one decides to call ‘the Hamiltonian’ relies on a

choice of frame. Indeed, for any group element f ∈ G, the operator U [f ]H U [f ]−1 is just

as good a Hamiltonian as H itself. One can think of f as a change of reference frame; then

U [f ]H U [f ]−1 is the Hamiltonian of an observer whose frame is related by f to a frame

where the Hamiltonian is H. Thus the representation comes equipped with an entire family

of Hamiltonians U [f ]H U [f ]−1, each labelled by a group element f . Moreover, if |φ〉 is an

eigensate of H, then U [f ]|φ〉 is an eigenstate of U [f ]H U [f ]−1 with the same eigenvalue.

When considering a closed path f(t) in G, one obtains a time-dependent Hamiltonian

U [f(t)]H U [f(t)]−1 and it is natural to investigate the Berry phase picked up by the states

U [f(t)]|φ〉. Such symmetry-based Berry phases were studied e.g. in [3–9], and it was shown

in [10] that they are related to symplectic fluxes on coadjoint orbits — an observation that

we will encounter repeatedly below. The above example of a spin system corresponds to

precisely such a configuration, where the Hilbert space is that of an irreducible unitary

representation of SU(2).

Our goal in this paper is to compute the Berry phases that occur in unitary repre-

sentations of the Virasoro algebra. As we shall see, this relies on a relation between the

Maurer-Cartan form on the Virasoro group and the Berry connection. The statement that

Virasoro representations contain Berry phases is not new: to our knowledge it first ap-

peared long ago in [11] with a formula for the Berry curvature, though the actual value

of these phases was not worked out. A similar curvature also appears in [12], albeit in a

different language and in the context of the quantum Hall effect. Furthermore the Maurer-

Cartan form of Virasoro is known [13–15], as is the relation between Maurer-Cartan forms

and Berry connections. But it seems that these coexisting patches of literature have never

been properly linked, so the first purpose of this work is to put these partial results in a

consistent whole and to point out that Virasoro Berry phases can be evaluated exactly,

despite living on an infinite-dimensional parameter space — see formula (4.8) below. A

second purpose is to relate these phases to gravity: since Virasoro describes the asymptotic

symmetries of gravitation on three-dimensional anti-de Sitter space (AdS3) [16], one may

ask if the Berry phases obtained here have a bulk interpretation when thinking of Virasoro

representations as particles dressed with boundary gravitons. To answer this we show that

the Berry phases associated with AdS3 isometries reproduce known formulas for Thomas

precession [17–19]. The phases due to asymptotic symmetry transformations that do not

belong to the isometry subgroup may then be seen as new, gravitational contributions to

Thomas precession. By extension to four-dimensional BMS symmetry [20–24], this sug-

gests that one can associate Berry phases with soft gravitons, or equivalently gravitational

vacua [25–27].

The plan of this paper is as follows. We start in section 2 by reviewing Berry phases

in general and explaining how they are related to Maurer-Cartan forms in the context of
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group representations. In section 3 we turn to the Virasoro group and evaluate its Maurer-

Cartan form; the latter has already appeared in [13–15], but to our knowledge the derivation

displayed here is new. Section 4 is the core of the paper: in it we compute explicit Berry

phases associated with arbitrary closed paths in the space of conformal transforms of a

primary state. By combining left and right conformal groups, these phases may be seen

as observable quantities associated with boundary gravitons in AdS3. Finally, section 5

is devoted to various open issues that stem from our analysis, while appendices A and B

illustrate our approach with representations of SU(2) and SL(2,R).

2 Berry phases and group representations

In this section we briefly review general aspects of Berry phases and apply them to unitary

group representations, where the Berry connection is closely related to the Maurer-Cartan

form. We refer e.g. to [28, chapter 10] and [29, chapter 17] or the reviews [30, 31] for an

introduction to Berry phases; see also [32, 33] for recent works on Berry phases in field

theory. The second part of this section will rely on various tools in group theory and

differential geometry; for more on this, see e.g. [34, chapter 5] or [35, chapter 5]. Note

that our presentation will not be mathematically rigorous. In particular, all manifolds,

bundles, functions and sections below are assumed to be smooth (except if explicitly stated

otherwise).

2.1 Generalities on Berry phases

Consider a quantum system with Hilbert space H whose Hamiltonian depends on certain

continuous external parameters. One can think of them as coordinates on a manifold M
and associate with each point p ∈M a Hamiltonian operator H(p). We shall assume that

the energy spectrum is discrete at all points of M; then for each p ∈ M the eigenvalues

En(p) of H(p) can be labelled by an integer n ∈ N. Each En defines a vector bundle [36]{
(p, |φ〉) ∈M×H

∣∣∣H(p)|φ〉 = En(p)|φ〉
}

(2.1)

whose base space isM and whose fibre at p is the subspace of H generated by eigenvectors

with eigenvalue En(p). Let us focus on one such eigenvalue En, assuming for simplicity

that it is non-degenerate for all p ∈ M. Then the corresponding bundle (2.1) has one-

dimensional fibres: it is a complex line bundle. If for each p we let |ψn(p)〉 be a normalized

eigenvector of H(p) with eigenvalue En(p), the map |ψn(·)〉 : M→ H : p 7→ |ψn(p)〉 is a

section of that bundle. Note that for any function α on M the vectors eiα(p)|ψn(p)〉 are

still normalized eigenstates of H(p) with the same eigenvalues En(p), so there are infinitely

many possible choices for the section |ψn(·)〉; different sections are related by U(1) gauge

transformations on M. (For degenerate eigenvalues the gauge group is non-Abelian [37],

but we will only deal with cases where such complications do not arise.)

Now suppose that the system is initially prepared in the state vector |ψn(p)〉 and let

the parameters vary in time so as to trace a path γ(t) on M with γ(0) = p. At this point

we do not ask why the parameters vary; typically, their value is fixed by an experimenter
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looking at the system from the outside, who can tune them at will. Thus the system is not

isolated and its Hamiltonian operator H(γ(t)) changes in time. We will only assume that

this change is very slow (adiabatic) in the sense that all eigenvalues of dH(γ(t))/dt are

negligible with respect to ∆E2/~, where ∆E > 0 is the smallest energy gap between |ψn〉
and any other energy eigenstate on the curve γ.1 The adiabatic theorem [39] then ensures

that at any time t the probability of finding the system in the state |ψn(γ(t))〉 equals one;

in other words the wavefunction |ψ(t)〉 at time t can be written as

|ψ(t)〉 = eiθn(t)|ψn(γ(t))〉+ · · · (2.2)

where θn is some real phase and the ellipsis represents terms that vanish in the adiabatic

limit. By plugging this Ansatz in the Schrödinger equation and taking the scalar product

with |ψn(γ(t))〉, one finds that in the adiabatic limit

θn(T ) = −1

~

∫ T

0
dtEn(γ(t)) + i

∫ T

0
dt
〈
ψn(γ(t))

∣∣ ∂
∂t

∣∣ψn(γ(t))
〉
. (2.3)

Here the first term is the expected dynamical phase due to the fact that each |ψn(γ(t))〉
is an energy eigenstate. But the interesting piece is the second term, which accounts for

the fact that the vector |ψn(p)〉 depends on the point p ∈ M in parameter space; it is an

extra phase of purely geometric (non-dynamical) origin, due to the ‘twisting’ of the line

bundle (2.1). More precisely, one can associate with the vectors |ψn(p)〉 a Berry connection

An ≡ i〈ψn(·)|d|ψn(·)〉 (2.4)

where the exterior derivative d is that of the parameter manifold M. By definition, this is

a one-form on M which, when paired with a vector γ̇(t) tangent to M at γ(t), returns a

real number2 (
An
)
γ(t)

(γ̇(t)) = i
〈
ψn(γ(t))

∣∣ ∂
∂t

∣∣ψn(γ(t))
〉
.

It follows that the geometric part of the phase (2.3) can be written as an integral of the

Berry connection over the path γ:

θn,geom ≡ i
∫ T

0
dt
〈
ψn(γ(t))

∣∣ ∂
∂t

∣∣ψn(γ(t))
〉

=

∫
γ
An. (2.5)

Since An is a one-form, this expression is invariant under reparametrizations of γ(t).

The terminology here stems from the fact that An is actually a connection one-form

for the line bundle (2.1). In particular, when changing the local phase of |ψn(p)〉 according

to |ψn(p)〉 7→ eiα(p)|ψn(p)〉 where α is some function on M, the one-form (2.4) changes as

An = i〈ψn|d|ψn〉 7→ i〈ψn|d|ψn〉 − dα = An − dα

so its transformation law is indeed that of a U(1) gauge field (connection) over M. In

that language the geometric phase (2.5) is generally gauge-dependent, since for generic

1See [38] for an approach that does not rely on the adiabatic approximation.
2Reality follows from 〈ψn(p)|ψn(p)〉 = 1 ∀ p ∈M, implying that 〈ψn|d|ψn〉 is purely imaginary.
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γ its value depends on the phase of the vectors |ψn(p)〉. But for closed curves γ the

integral (2.5) becomes independent of this arbitrary choice, leading to a gauge-invariant

Berry phase [1]

Bn[γ] =

∮
γ
i〈ψn|d|ψn〉 =

∮
γ
An. (2.6)

This expression is the (logarithm of the) holonomy of the connection (2.4) along the path

γ. Using Stokes’ theorem it can be written as the flux of the Berry curvature Fn ≡ dAn
through any two-surface with boundary γ. In physical terms, eq. (2.6) gives the geometric

phase picked up by the wavefunction (2.2) between the times t = 0 and t = T . It can be

observed in an interference experiment involving two copies of the same system H , one

with fixed parameters, the other with parameters following the curve γ. In the remainder

of this section we explain how Berry phases appear in unitary group representations.

2.2 Berry phases in group representations

Let G be a connected Lie group; we write its elements as f , g, etc. and let e denote the

identity. The tangent space TeG ≡ g is the Lie algebra of G and we write its elements

as X, Y , etc. Let also U be a unitary representation of G in some Hilbert space H ; it

associates with each f ∈ G a unitary operator U [f ], so G can be interpreted as the sym-

metry group of some quantum system. We shall assume that G contains a one-parameter

subgroup generated by a Lie algebra element X0 ∈ g such that all group elements etX0 are

interpreted as ‘time translations’. Then U [etX0 ] is an evolution operator and the Hamilto-

nian is the Hermitian operator H ≡ iu[X0], where u is the differential of U at the identity.

Equivalently, u is the Lie algebra representation such that

U [etX ] = et u[X] for all X ∈ g. (2.7)

Since U is unitary, u[X] is an anti-Hermitian operator for any X ∈ g.

The very fact that time translations are part of the symmetry group implies that the

choice of Hamiltonian is generally not unique. Indeed, any group element f can be seen

as a ‘change of reference frame’: if Alice measures a Hamiltonian H and if Bob’s frame is

related to Alice by the transformation f , then Bob measures a Hamiltonian U [f ]H U [f ]−1.

One can thus associate with the group G and the representation U an entire family of

Hamiltonian operators U [f ]H U [f ]−1 labelled by the elements of G. In this picture the

group manifold G is a space of ‘parameters’ f ∈ G on which the Hamiltonian depends, and

one may ask if this leads to Berry phases when f(t) is a closed path in G.

To answer this question, let |φ〉 ∈H be a normalized eigenstate of H with eigenvalue

E, which we assume to be isolated and non-degenerate. Then for each f ∈ G the vector

U [f ]|φ〉 is a normalized eigenstate of U [f ]H U [f ]−1 with the same eigenvalue. If we let

f : [0, T ] → G : t 7→ f(t) be a path in G, the Hamiltonian U [f(t)]H U [f(t)]−1 becomes

time-dependent; provided the process is adiabatic, the initial state U [f(0)]|φ〉 then evolves

into a state eiθ(T ) U [f(T )]|φ〉 with the phase (2.3) now given by

θ(T ) = −ET
~

+ i

∫ T

0
dt
〈
φ
∣∣U [f(t)]†

∂

∂t
U [f(t)]

∣∣φ〉.
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This contains a trivial dynamical piece involving ET , as well as a geometric piece (2.5); the

latter is due to the fact that the state U [f ]|φ〉 depends on the choice of ‘frame’ f . When

the path f(t) is closed, this geometric contribution becomes a Berry phase (2.6):

Bφ[f ] =

∮
f
i〈φ| U [·]−1d U [·]|φ〉, (2.8)

where we used unitarity to write U [·]† = U [·]−1. We denote by U [·]−1d U [·] the one-form

on G which, when paired with a vector ḟ(t) tangent to G at f(t), returns an anti-Hermitian

operator

U [f(t)]−1 ∂

∂t
U [f(t)] = u

[
∂

∂τ

∣∣∣∣
τ=t

(
f(t)−1 · f(τ)

)]
∈ End(H ),

where u is the Lie algebra representation defined by (2.7). The argument of u may be

recognized as the Maurer-Cartan form3 Θ on G (see e.g. [34, chapter 5] or [35, chapter 5]);

it is the g-valued one-form on G that associates with a vector ḟ(t) ∈ Tf(t)G (where f(t) is

a path in G) the Lie algebra element

Θf(t)(ḟ(t)) ≡ d

dτ

∣∣∣∣
τ=t

[
f(t)−1 · f(τ)

]
. (2.9)

Note that here the derivative only hits on f(τ), and not on f(t)−1. For matrix groups

one can rewrite (2.9) as f(t)−1ḟ(t), but for more abstract groups (such as Virasoro) the

general definition (2.9) is required. In any case, in terms of the Maurer-Cartan form the

group-theoretic Berry phase (2.8) can be compactly written as

Bφ[f ] =

∮
f
i〈φ|u[Θ]|φ〉 ≡

∮
f
Aφ (2.10)

where the Berry connection Aφ, given in general by (2.4), now coincides with the expecta-

tion value of the Hermitian operator iu[Θ] representing (2.9) in the state |φ〉:

Aφ = 〈φ|iu[Θ]|φ〉. (2.11)

In short, the Maurer-Cartan form of a Lie group can be used to evaluate the Berry phases

of its unitary representations. See appendices A and B for applications of this method to

highest-weight representations of SU(2) and SL(2,R), respectively.

Before applying this to Virasoro, let us investigate some important geometric aspects

of Berry phases in group representations. First, in deriving eq. (2.10) we demanded that

the path f(t) in G be closed, i.e. f(T ) = f(0). But this is overly restrictive: all we really

need is that the vectors U [f(T )]|φ〉 and U [f(0)]|φ〉 belong to the same ray in H so that

U [f(T )]|φ〉 = eiθ U [f(0)]|φ〉 (2.12)

for some phase θ ∈ R (which has nothing to do with the Berry phase). How should one

evaluate the Berry phase for such an open path? To answer this, let Gφ be the stabilizer

of |φ〉, i.e. the subgroup of G whose elements leave invariant the ray of |φ〉:

Gφ ≡
{
h ∈ G

∣∣U [h]|φ〉 ∝ |φ〉
}
.

3To be precise we should refer to Θ as the left Maurer-Cartan form (it is invariant under left multipli-

cation). There also exists a right Maurer-Cartan form, but we will not need it.
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Then eq. (2.12) says that f(T ) and f(0) differ by an element of the stabilizer: f(T ) = f(0)·h
with U [h]|φ〉 = eiθ|φ〉. If h is not the identity, the curve f(t) is open and formula (2.10)

does not apply; this can be corrected by defining a closed path

f̄(t) =

{
f(t) for t ∈ [0, T ]

f(T ) · h(t) for t ∈ [T, T ′]
(2.13)

where h(t) is a curve in Gφ such that h(T ) = e and h(T ′) = h−1 = f(T )−1f(0).4 Since

f̄(t) is closed, it can be plugged in eq. (2.10); the result is a sum of two terms coming from

the two pieces of (2.13): a bulk term that coincides with (2.10) but with open f(t), and

a boundary term due to h(t) that cancels the spurious phase θ of (2.12). That boundary

term is independent of the choice of path h(t), since it only depends on its endpoints, so

from now on we define Berry phases for open paths f by Bφ[f ] ≡ Bφ[f̄ ]:

Bφ[f ] =

∫
f
i
〈
φ
∣∣u[Θ]

∣∣φ〉− i log
〈
φ
∣∣U [f(0)−1f(T )]

∣∣φ〉. (2.14)

When f(T ) = f(0), the logarithmic boundary term vanishes and Bφ[f ] reduces to (2.10).

Note the change of perspective of the last few lines: from now on, we no longer need to

assume that the path f(t) is closed, as long as its endpoint f(T ) is such that f(0)−1f(T )

belongs to the stabilizer of |φ〉. To further illustrate this point, suppose that f(t) is a curve

(not necessarily closed) entirely contained within Gφ so that U [f(t)]|φ〉 = eiθ(t)|φ〉 for all t.

Then f(0)−1f(T ) certainly belongs to Gφ, so eq. (2.14) applies and one can verify that it

leads to a vanishing Berry phase. This confirms that the relative sign in (2.14) is correct:

for f(t) ∈ Gφ, each f(t) leaves the ray of |φ〉 unaffected and adiabatic evolution along

such a path should have no physical effect, so the corresponding Berry phase must vanish.

More generally, any curve of the form f(t) = f(0) · h(t) with h(t) ∈ Gφ gives a vanishing

Berry phase.

2.3 Coadjoint orbits and quantization

The fact that curves contained in the stabilizer of |φ〉 have zero Berry phases illustrates

an important point: when ‘varying the parameters’ of the representation by adiabatically

following a path f(t) in G, what truly matters for the Berry phase is not the path itself, but

rather its projection down to the quotient space G/Gφ = {f · Gφ|f ∈ G}. The phase can

be non-zero only when this projected path is non-trivial. From that point of view, allowing

the curve f(t) in (2.14) to be open provided f(0)−1f(T ) ∈ Gφ is just saying that the corre-

sponding projected path in G/Gφ must be closed (see figure 1). Thus the Berry phase (2.14)

is related to the geometry of the group manifold G, seen as a principal Gφ-bundle over the

quotient space G/Gφ. In particular the Berry connection that gives rise to the phase is not

quite the one in (2.11), which lives on the group manifold, but rather its pullback to G/Gφ
by a section of the bundle. The boundary term in eq. (2.14) accounts for this subtlety.

These observations are related to geometric quantization and the ‘orbit method’ for

building group representations [40–42]: one can think of G/Gφ as a homogeneous space

4Here we are assuming that h belongs to the component of the identity in Gφ.
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Figure 1. A path f(t) in G such that f(T ) = f(0) · h with h ∈ Gφ is mapped on a closed curve in

G/Gφ by the projection π : G → G/Gφ : f 7→ f · Gφ. When G/Gφ is a coadjoint orbit, the Berry

phase along f(t) coincides with the flux of the Kirillov-Kostant symplectic form through any surface

enclosed by the projected path on G/Gφ. For f(t) = f(0) · h(t) with h(t) ∈ Gφ, the projected path

is a point and the Berry phase vanishes.

that coincides with a coadjoint orbit of G when |φ〉 is a coherent state corresponding to the

‘highest weight point’ on the orbit.5 Then the pullback of (2.11) by a section of the bundle

G → G/Gφ coincides with the symplectic potential on G/Gφ and the Berry curvature

coincides with the natural symplectic form on the orbit (the Kirillov-Kostant symplectic

form). In particular, the Berry phase (2.14) is the flux of the symplectic form through any

surface whose boundary is the projection of f(t) on G/Gφ [10]. Our goal in this paper is to

show that such fluxes can be evaluated exactly on Virasoro coadjoint orbits, despite their

being infinite-dimensional (see [44, 45] for related considerations).

3 Maurer-Cartan form on the Virasoro group

In this section we describe the Virasoro group, i.e. the central extension of the group

of diffeomorphisms of the circle, and evaluate its Maurer-Cartan form (2.9). This is a

necessary first step towards the Virasoro Berry phases of section 4. The computation relies

on certain group-theoretic tools that we will describe only superficially; we refer e.g. to [46,

chapter 4] or [35, chapter 6] for a much more thorough presentation.

3.1 Virasoro group

Let DiffS1 be the group of diffeomorphisms of the circle with the group operation given

by composition of maps; writing its elements as f , g, etc., their product is f · g ≡ f ◦ g.

DiffS1 is an infinite-dimensional Lie group with two connected components; the identity

component is the group Diff+S1 of orientation-preserving diffeomorphisms. The group

elements are most easily described by thinking of S1 as a quotient R/2πZ and labelling

its points by an angular coordinate ϕ ∈ R identified as ϕ ∼ ϕ + 2π. In these terms, any

5For the definition of coherent states in group representations, see e.g. [43].
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element of Diff+S1 can be represented by a smooth map f : R→ R : ϕ 7→ f(ϕ) such that

f ′(ϕ) > 0 and f(ϕ+ 2π) = f(ϕ) + 2π ∀ϕ ∈ R. (3.1)

The identity is e(ϕ) = ϕ and the inverse f−1 of f is such that f(f−1(ϕ)) = f−1(f(ϕ)) = ϕ.

The set of maps satisfying (3.1) is actually the universal covering group D̃iff+S1, while

Diff+S1 as such is obtained by enforcing the extra identification f ∼ f + 2π. (The proper

terminology is that functions satisfying (3.1) are lifts of S1 diffeomorphisms, but we will

simply refer to them as diffeomorphisms of the circle.) If one thinks of ϕ as a light-cone

coordinate x+ say, then the group D̃iff+S1 of maps x+ 7→ f(x+) is the chiral half of the

conformal group of a Lorentzian cylinder. In that sense D̃iff+S1 is a group of conformal

transformations. To lighten the notation, from now on we simply denote D̃iff+S1 by DiffS1

and take all its elements to be maps ϕ 7→ f(ϕ) which satisfy (3.1).

The Virasoro group is the universal central extension of Diff S1. It can be described

as follows: for any two elements f, g ∈ DiffS1, we define a real number

C(f, g) ≡ − 1

48π

∫ 2π

0
dϕ log

[
f ′(g(ϕ))

]g′′(ϕ)

g′(ϕ)
. (3.2)

This specifies a map C : DiffS1 × DiffS1 → R known as the Bott(-Thurston) cocycle [47].

Then the Virasoro group is defined as the set

D̂iffS1 ≡ DiffS1 × R (3.3)

whose elements are pairs (f, α) with f ∈ DiffS1 and α ∈ R, multiplied according to

(f, α) · (g, β) ≡
(
f ◦ g, α+ β + C(f, g)

)
. (3.4)

One may verify that this is indeed a group operation; for instance, associativity follows

from the cocycle identity satisfied by (3.2):

C(f, g) + C(f ◦ g, h) = C(f, g ◦ h) + C(g, h).

Using C(f, f−1) = C(f−1, f) = 0, the product (3.4) implies that the inverse of (f, α) is

(f, α)−1 = (f−1,−α). (3.5)

We will use this below to evaluate the Maurer-Cartan form (2.9).

At this point, the definition of the Virasoro group, and in particular the Bott

cocycle (3.2), seem to come completely out of the blue. We will not go into the details of

their construction here; instead we will verify below that the Lie algebra of the group de-

fined here is the familiar Virasoro algebra. Furthermore one can show that the Bott cocycle

measures the symplectic area of certain triangles on Virasoro coadjoint orbits [44, 45]; this

observation is closely related to Berry phases, and indeed we shall see that these phases

are essentially integrals of the differential of the Bott cocycle.
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3.2 Virasoro algebra

For future reference it is useful to review the link between the Virasoro group and its Lie

algebra. First recall that the flow of any vector field defines a one-parameter family of

diffeomorphisms, so the Lie algebra of DiffS1 is the space VectS1 of vector fields on the

circle; we write them as X = X(ϕ) ∂
∂ϕ with a 2π-periodic component X(ϕ). Similarly, the

Lie algebra of the Virasoro group (3.3) is VectS1 ⊕ R, whose elements are pairs (X,α)

consisting of a vector field X and a real number α. It remains to find the Lie bracket of

these elements, which we will do by evaluating the differential of the adjoint representation

of the Virasoro group. This procedure is described in greater detail in [35, section 6.4] (see

also [48, appendix A.1] for similar considerations in the warped Virasoro group).

By definition, the adjoint representation of a Lie group G is the map that associates

with f ∈ G a linear operator Adf acting on the Lie algebra g according to

Adf (X) =
d

dt

∣∣∣∣
t=0

f · etX · f−1 ∀X ∈ g.

For matrix groups this reduces to AdfX = fXf−1, but this is not true in general. For

DiffS1, the group operation is given by composition and one can show that the adjoint

representation coincides with the transformation law of vector fields on the circle:

(
AdfX

)
(ϕ) =

X(f−1(ϕ))

(f−1)′(ϕ)
, i.e.

(
AdfX

)
(f(ϕ)) = f ′(ϕ)X(ϕ). (3.6)

Here both sides of the equations should be interpreted as the component of a vector field.

Of course the story is more complicated when the central extension is switched on: in that

case one must use the group operation (3.4) and the inverse (3.5) to evaluate

(f, α) · (etX , tβ) · (f, α)−1 =
(
f ◦ etX ◦ f−1, tβ + C

(
f, etX

)
+ C

(
f ◦ etX , f−1

))
where C is the Bott cocycle (3.2). The first entry of this expression is the one that leads

to (3.6), but the second one is new; one can show that the result is

Ad(f,α)(X,β) =

(
AdfX,β −

1

24π

∫ 2π

0
dϕ {f ;ϕ}X(ϕ)

)
(3.7)

where the first entry is the centreless adjoint representation (3.6) while the second entry

involves the Schwarzian derivative

{f ;ϕ} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(3.8)

with the right-hand side evaluated at ϕ. Note that in (3.7) the central element α acts

trivially, as it should. So much for the adjoint representation of the Virasoro group.

By differentiating the adjoint representation of a group, one can read off the bracket

of its Lie algebra. Thus we define the brackets of elements of the Virasoro algebra as[
(X,α), (Y, β)

]
≡ d

dt

∣∣∣∣
t=0

Ad(etX ,tα)(Y, β). (3.9)
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Using the Virasoro adjoint representation (3.7), one then finds[
(X,α), (Y, β)

]
=

(
−[X,Y ],− 1

24π

∫ 2π

0
dϕX ′′′(ϕ)Y (ϕ)

)
(3.10)

where the first entry on the right-hand side is the opposite of the usual Lie bracket of vector

fields,

−[X(ϕ)∂ϕ, Y (ϕ)∂ϕ] =
(
−X(ϕ)Y ′(ϕ) + Y (ϕ)X ′(ϕ)

)
∂ϕ.

This awkward sign is actually common for groups of diffeomorphisms (see e.g. [49, exer-

cise 4.1G]); it can be absorbed by adding an extra sign in the definition of the bracket (3.9),

but here we will stick to the sign in (3.10) since it allows us to use the same conventions for

Berry phases as in section 2.2. As for the second entry of (3.10), it is a central extension that

involves a term X ′′′ due to the Schwarzian derivative (3.8) of f(ϕ) = ϕ+tX(ϕ)+O(t2) [50].

Note that the central terms α, β in (3.10) do not contribute to the bracket, as they should.

To relate eq. (3.10) to the standard presentation of the Virasoro algebra in physics,

recall that X(ϕ) and Y (ϕ) are functions on the circle and can be expanded in Fourier

modes. This motivates the definition of the (complex) Virasoro generators

`m ≡
(
−ieimϕ∂ϕ,−

i

24
δm,0

)
, Z ≡ (0,−i), m ∈ Z. (3.11)

Any element of the Virasoro algebra can then be written as a linear combination

(X,α) =
∑

m∈ZXm`m + iαZ with X∗m = −X−m. The bracket (3.10) yields

[`m, `n] = (m− n)`m+n +
Z

12
m(m2 − 1)δm+n,0 (3.12)

while all brackets involving Z vanish. Thus Z is a central charge that commutes with all

Virasoro generators, and takes a definite value Z = c in any (irreducible) representation of

the Virasoro algebra. We will use these properties in section 4 below.

3.3 Maurer-Cartan form

We now evaluate the Maurer-Cartan form (2.9) on the Virasoro group (3.3). To do this we

will first deal with the centreless group Diff S1, then include its central extension (3.2). The

Maurer-Cartan form for Virasoro has previously appeared in [13–15], without reference to

the group operation (3.4). Our derivation here will be technically different in that it relies

heavily on the Bott cocycle (3.2), but the result will of course be identical.

To begin, consider the group DiffS1 of (lifts of orientation-preserving) diffeomorphisms

of the circle. At any point f ∈ DiffS1, the tangent space TfDiffS1 consists of time

derivatives of paths γ : (−ε, ε) → DiffS1 : t 7→ γ(t, ·) such that γ(0, ϕ) = f(ϕ). Then the

Maurer-Cartan form (2.9) evaluated at f is a linear isomorphism mapping TfDiffS1 on

TeDiffS1 = VectS1. To evaluate it, we let γ be a path in DiffS1 such that γ(0) = f and

use the chain rule to act with the Maurer-Cartan form Θ on the vector γ̇(0):6

Θf

(
γ̇(0)

) (2.9)
=

d

dt

(
f−1 ◦ γ(t)

)
= γ̇(0) ·

(
f−1

)′ ◦ f. (3.13)

6The dot in γ̇ denotes a time derivative, while the middle dot in (3.13) denotes standard pointwise

multiplication of functions on the circle.
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Note that the function γ̇(0, ϕ) is 2π-periodic since each γ(t, ϕ) is a diffeomorphism that

satisfies (3.1), so (3.13) is a vector field X(ϕ) ∂
∂ϕ on S1 whose 2π-periodic component is

X(ϕ) = Θf

(
γ̇(0)

)
(ϕ)

(3.13)
= γ̇(0, ϕ) ·

(
f−1

)′
(f(ϕ)) =

γ̇(0, ϕ)

f ′(ϕ)
, (3.14)

where we used f ′ ·(f−1)′ ◦f = 1. This defines the Maurer-Cartan form on the group Diff S1

and is sometimes written as Θf = δf/f ′ [13].

Let us now apply similar arguments to the Virasoro group. To lighten the notation,

we write G = DiffS1 and Ĝ = D̂iffS1 = G × R; the group elements are pairs (f, α), so

a path in the Virasoro group is written as (γ(t), µ(t)) with γ a path in G and µ a path

on the real line. If γ(0) = f and µ(0) = α, this path defines a vector (γ̇(0), µ̇(0)) tangent

to Ĝ at the point (f, α). The Maurer-Cartan form (2.9) evaluated at (f, α) maps this

vector on a certain element of the Virasoro algebra, which we want to find. Denoting the

Maurer-Cartan form on the Virasoro group by Θ̂, the definition (2.9) gives

Θ̂(f,α)

(
γ̇(0), µ̇(0)

)
=

d

dt

∣∣∣∣
t=0

[
(f, α)−1 ·

(
γ(t), µ(t)

)]
=

d

dt

∣∣∣∣
t=0

(
f−1 ◦ γ(t),−α+ µ(t) + C

(
f−1, γ(t)

))
(3.15)

where we used the inverse (3.5) and the group operation (3.4). The time derivative applies

separately to the two entries of this expression. In the first entry we recognize the centreless

Maurer-Cartan form Θ given by (3.13), so we can write

Θ̂(f,α)

(
γ̇(0), µ̇(0)

)
=

(
Θf

(
γ̇(0)

)
, µ̇(0) +

d

dt

∣∣∣∣
t=0

C
(
f−1, γ(t)

))
(3.16)

where the time-independent term α of (3.15) does not contribute. We can make the struc-

ture of this result more apparent by defining for each f ∈ G a linear map

Df : TfG→ R : γ̇(0) 7→ Df
(
γ̇(0)

)
=

d

dt

∣∣∣∣
t=0

C
(
f−1, γ(t)

)
, (3.17)

which is essentially the derivative of the cocycle C with respect to its second argument

(hence the notation ‘D’). Thinking of the tangent space T(f,α)Ĝ as a direct sum TfG ⊕
TαR = TfG ⊕ R and similarly for the Lie algebra T(e,0)Ĝ = TeG ⊕ R, the Maurer-Cartan

form (3.16) is a linear map

Θ̂(f,α) : T(f,α)Ĝ→ T(e,0)Ĝ :

(
γ̇(0)

µ̇(0)

)
7→ Θ̂(f,α) ·

(
γ̇(0)

µ̇(0)

)
that can be written as a matrix

Θ̂(f,α) =

(
Θf 0

Df 1

)
. (3.18)

Here Θ is the centreless Maurer-Cartan form on G (given by (3.14) for G = DiffS1) and

D is the map (3.17); were it not for D, the centrally extended Maurer-Cartan form (3.18)
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would be a diagonal map. In particular, when the central path µ(t) is set to zero, the

action of (3.18) on the tangent vector (γ̇(0), 0) reduces to

Θ̂(f,α)

(
γ̇(0), 0

)
=
(

Θf

(
γ̇(0)

)
,Df

(
γ̇(0)

))
. (3.19)

Note that these results hold for any Lie group with a differentiable central extension C.

As far as the Maurer-Cartan form of the Virasoro group is concerned, we already know

its centreless piece (3.14); in order to write the matrix (3.18) explicitly we only have to

compute the operator Df defined in (3.17). So let γ(t) be a path in DiffS1 such that

γ(0) = f ; it defines a tangent vector γ̇(0) ∈ TfDiffS1. Using the Bott cocycle (3.2) and an

integration by parts, one finds

Df
(
γ̇(0)

)
= − 1

48π

∫
S1

[
∂

∂t

∣∣∣∣
0

(
log
(
(f−1)′ ◦ γ(t)

))
+

∂

∂t

∣∣∣∣
0

log(γ(t)′)

]
d log(f ′).

Performing the time derivatives and integrating by parts once more to remove the ϕ deriva-

tive from γ̇′(0, ϕ), one ends up with

Df
(
γ̇(0)

)
=

1

48π

∫ 2π

0
dϕ

γ̇(0, ϕ)

f ′(ϕ)

(
f ′′

f ′

)′
(ϕ). (3.20)

This is a linear functional of γ̇(0, ·), as it should. Combined with the centreless

Maurer-Cartan form (3.14), it entirely specifies the Maurer-Cartan form (3.18) of the

Virasoro group.

For future reference, let us rewrite (3.14) and (3.20) with a simpler notation. Namely,

instead of denoting the path on DiffS1 by γ(t, ϕ), we write it as f(t, ϕ) where each f(t, ·)
is a diffeomorphism of the circle.7 Furthermore, at each time t the time derivative ḟ(t, ·) is

a vector tangent to DiffS1 at f(t, ·). Then, using (3.19) and the results (3.14) and (3.20),

we can write the action of the Virasoro Maurer-Cartan form Θ̂ on ḟ(t, ·) as

Θ̂(f,α)

(
ḟ(t, ·), 0

)
=

(
ḟ(t, ϕ)

f ′(t, ϕ)

∂

∂ϕ
,

1

48π

∫ 2π

0
dϕ

ḟ(t, ϕ)

f ′(t, ϕ)

(
f ′′(t, ϕ)

f ′(t, ϕ)

)′)
. (3.21)

The entries on the right-hand side are respectively a vector field on the circle and a real

number, so the result belongs to the Virasoro algebra as it should. It contains a non-zero

central piece due to the Bott cocycle. It now remains to use this formula to evaluate the

Berry phases of Virasoro representations.

4 Virasoro Berry phases

In this section we evaluate the Berry phases (2.14) that appear in unitary highest weight

representations of the Virasoro algebra. After deriving the general formula, which will

coincide with the geometric action functional studied in [13–15], we apply it to circular

paths in the space of conformal transformations. When combining left- and right-moving

sectors and identifying the conformal group with the asymptotic symmetry group of AdS3

gravity, our results generalize Thomas precession. We also briefly discuss the relation of

these observations with gravitational memory.

7Sometimes we also write f(t, ·) ≡ f(t) provided there is no danger of confusion.
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4.1 General derivation

Consider a unitary highest weight representation u of the Virasoro algebra with central

charge c > 0 and highest weight h. The generators (3.11) are represented by operators

u[`m] ≡ Lm and u[Z] = cÎ, m ∈ Z,

where Î is the identity. Unitarity means that any real vector field X(ϕ)∂ϕ is represented

by an anti-Hermitian operator u[X], which implies that the operators Lm satisfy the Her-

miticity conditions L†m = L−m. Their commutators reproduce the bracket (3.12):

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0.

A basis of the Hilbert space H is provided by the highest weight state |h〉 such that

L0|h〉 = h|h〉, Lm|h〉 = 0 if m > 0, (4.1)

together with its descendants L−m1 . . . L−mN |h〉, where 1 ≤ m1 ≤ . . . ≤ mN . For the

vacuum representation h = 0 we also demand SL(2,R) invariance, L−1|0〉 = 0.

We will assume that the algebra representation u integrates into a representation Û of

the Virasoro group; the hat stresses that Û represents Virasoro rather than just Diff S1.

Since u is the differential of Û at the identity, eq. (2.7) can now be written as

Û [(etX , tα)] = et u[(X,α)] for all (X,α) ∈ VectS1 ⊕ R.

The representation Û is such that Û [(f, α)] = eic α U [f ], where U [f ] is a unitary operator

acting on H . Compatibility with the group operation (3.4) implies that the operators

U [f ] satisfy the composition law

U [f ] ◦ U [g] = eicC(f,g) U [f ◦ g]

where C is the Bott cocycle (3.2). Thus U represents the group DiffS1 up to a generally

non-vanishing phase due to the central extension (for more on representations up to phases,

see e.g. [51, section 2.2] or [35, chapter 2]).

As before, we are interested in the Berry phases that appear when applying symmetry

transformations to an energy eigenstate. Specifically, consider the highest weight vector

|h〉; it is an eigenstate of the ‘standard Hamiltonian’ L0. For h > 0 the stabilizer of |h〉 is

the U(1) subgroup of DiffS1 generated by L0, but generic conformal transformations act

non-trivially on |h〉: the set of physically inequivalent states that can be reached from |h〉
is an infinite-dimensional homogeneous manifold Diff S1/S1.8 It is in fact a coadjoint orbit

of the Virasoro group [42, 52, 53], and to evaluate Berry phases we will need to compute

certain holonomies along closed paths on that orbit. In principle we could choose a section

of the bundle DiffS1 → DiffS1/S1 and use it to pullback the Maurer-Cartan form, but in

practice it will be much easier to use eq. (2.14) directly. In that approach our weapon of

8More precisely, the U(1) subgroup of Diff+S1 becomes an R subgroup of the universal covering D̃iff+S1

such that Diff+S1/S1 = D̃iff+S1/R; we write this as DiffS1/S1 for brevity.
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choice will be the Maurer-Cartan form (3.21). Similar considerations apply to the vacuum

case h = 0, except that the corresponding orbit is Diff S1/PSL(2,R) due to the enhanced

stabilizer.

With the notation used above (3.21), let f(t, ·) be a path in DiffS1; for each t ∈ [0, T ]

we have a circle diffeomorphism ϕ 7→ f(t, ϕ).9 In order for the curve to be closed when

projected on DiffS1/S1, we require that f(0)−1 ◦ f(T ) be a rotation by some angle θ:

f−1
(
0, f(T, ϕ)

)
= ϕ+ θ. (4.2)

Then eq. (2.14) says that we can associate with that path a well-defined Berry phase

Bh,c[f ] =

∫
f
i〈h|u[Θ̂]|h〉 − i log〈h| Û

[(
f(0)−1, 0

)
·
(
f(T ), 0

)]
|h〉 (4.3)

picked up by the states Û
[
(f(t), 0)

]
|h〉 along the curve f(t). Here Θ̂ is the Maurer-Cartan

form (3.18) and contains two terms: a centreless piece Θ that coincides with (3.14), and a

central piece D written in (3.20). When plugged into (4.3), the centreless piece yields∫
f
i〈h|u

[
(Θ, 0)

]
|h〉 =

∫ T

0
dt i〈h|u

[(
ḟ

f ′
, 0

)]
|h〉. (4.4)

Since ḟ/f ′ is the component of a vector field (3.14) on the circle, it can be written as a

Fourier series with modes eimϕ. When plugged into u, the mth mode gives a contribution

proportional to the operator Lm. But to evaluate (4.4) we only need the expectation value

in the state |h〉 and eq. (4.1) implies 〈h|Lm|h〉 = 0 for m 6= 0, so the only mode that

survives is the zeroth one. The latter is the integral of ḟ/f ′ over S1 and one has∫
f
i〈h|u

[
(Θ, 0)

]
|h〉 = −

(
h− c

24

) 1

2π

∫ T

0
dt

∫ 2π

0
dϕ

ḟ(t, ϕ)

f ′(t, ϕ)
, (4.5)

where the coefficient h − c/24 comes from L0|h〉 = h|h〉 and the normalization of `0
in (3.11). So much for the centreless piece of (4.3). For the central piece we recall that

u[(0, α)]|φ〉 = ic α|φ〉 for any vector |φ〉, so we can write∫
f
i〈h|u[(0,D)]|h〉 = −c

∫ T

0
dtDf (ḟ)

(3.20)
= − c

48π

∫ T

0
dt

∫ 2π

0
dϕ

ḟ(t, ϕ)

f ′(t, ϕ)

(
f ′′(t, ϕ)

f ′(t, ϕ)

)′
. (4.6)

We can now combine (4.5) and (4.6) to write the complete Berry phase (4.3) as

Bh,c[f ] = − 1

2π

∫ T

0
dt

∫ 2π

0
dϕ

ḟ

f ′

[
h− c

24
+
c

24

(
f ′′

f ′

)′ ]
− i log〈h| U

[
f(0)−1 ◦ f(T )

]
|h〉. (4.7)

To simplify this further, recall that f(0)−1 ◦ f(T ) is a rotation (4.2) by an angle

θ = f−1
(
0, f(T, 0)

)
. Since the state |h〉 is an eigenvector of L0, a rotation by θ maps it on

Û [(rotθ, 0)]|h〉 = eiθ(L0−c/24)|h〉 = eiθ(h−c/24)|h〉.
9Technically we should consider a path (f(t), µ(t)) in the Virasoro group with a central piece µ(t), but

the latter does not contribute to Berry phases so we set it to zero without loss of generality.
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It follows that the Berry phase (4.7) can finally be rewritten as

Bh,c[f ] = − 1

2π

∫ T

0
dt

∫ 2π

0
dϕ

ḟ

f ′

[
h− c

24
+
c

24

(
f ′′

f ′

)′ ]
+
(
h− c

24

)
f−1

(
0, f(T, 0)

)
. (4.8)

This is our main result; the phase is clearly non-zero for generic paths in Diff S1, and it is

manifestly invariant under reparametrizations of t (as it should). Furthermore the formula

is explicit: in principle, given any time-dependent family of diffeomorphisms f(t, ϕ), one

can plug it in (4.8) and read off the Berry phase. The latter can also be seen as the

holonomy of a Berry connection on an infinite-dimensional manifold Diff S1/S1, with a

curvature that coincides with the Kirillov-Kostant symplectic form [11]. In line with the

general results outlined in section 2.3, the Berry phase can thus be interpreted as the flux

of the symplectic form through any surface whose boundary is the path f(t, ·) projected

on DiffS1/S1 (or DiffS1/PSL(2,R) if h = 0). This generalizes the formulas of appendix B

to the Virasoro group and allows us to interpret the Berry phase as (the kinetic piece of)

an action functional. Indeed, eq. (4.8) coincides with the ‘geometric action’ describing

the path f(t, ϕ) when the latter is seen as a dynamical field on a cylinder [13–15];10 for

comparison we refer e.g. to eq. (25) of [13], noting that what the authors call F in that

reference is what we would write as f−1 and that their b0 is our (h− c/24)/2π.

4.2 Circular paths and superboosts

We now apply formula (4.8) to curves f(t) such that the expectation value of L0 is constant

in the states U [f(t)]|h〉. Those are circular paths, each of which can be written as

f(t, ϕ) = g(ϕ) + ωt (4.9)

where g is some fixed diffeomorphism and ω > 0 is some angular velocity. In other words

f(t) = rotωt ◦ g, the entire time-dependence being contained in the rotation. The time

parameter ranges from t = 0 to some upper bound t = T ; we take T = 2π/ω so that (4.9)

turns exactly once around the tip of Diff S1/S1. The corresponding diffeomorphism (4.2)

is a pure rotation

f−1
(
0, f(2π/ω, ϕ)

)
= g−1

(
g(ϕ) + 2π

) (3.1)
= ϕ+ 2π,

so the Berry phase formula (4.8) applies. Note that this relies crucially on the value of T :

only for T = 2πn/ω with integer n is it true that f−1
(
0, f(T, ϕ)

)
= ϕ+2πn regardless of g;

in general, only this discrete family of intervals gives closed paths on Diff S1/S1. (Certain

non-generic choices of g may be ‘more symmetric’ and ensure that f−1
(
0, f(T, ϕ)

)
is a

rotation even for lower values of T ; this will be the case for superboosts below.)

Let us now write the Berry phase (4.8) for the circular path (4.9) and T = 2π/ω. Since

ḟ = ω and f ′ = g′, the computation of the time integral is straightforward and gives

Bh,c[rotωt ◦ g] = −
∫ 2π

0

dϕ

g′

[
h− c

24
+

c

24

(
g′′

g′

)′ ]
+ 2π

(
h− c

24

)
. (4.10)

10See also [54–56] for related considerations, and [57] for a recent application to the SYK model.
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This result is independent of ω: the Berry phase is the same for any strictly positive

value of angular velocity, however small. (For negative values of ω one would obtain the

opposite of (4.10); more on that in section 4.3.) This is a consequence of reparametrization

invariance, but one should keep in mind that Berry phases can only be observed in the

adiabatic regime. In the case at hand this means that ω should be much smaller than the

energy gap between |h〉 and any other state; in AdS3 this gap is of order 1/` in terms of

the AdS3 radius `, so the angular velocity must satisfy ω � 1/`.

For circular paths there is no way to go beyond eq. (4.10) without specifying g(ϕ). In

what follows we evaluate (4.10) for transformations g(ϕ) that are ‘superboosts’ and relate

the result to Thomas precession. As a motivation, note that the Virasoro group contains

infinitely many different subgroups that are all locally isomorphic to SL(2,R). Indeed, let

α, β be complex numbers such that |α|2 − |β|2 = 1 and let n be a strictly positive integer;

then one can define a diffeomorphism f ∈ DiffS1 (satisfying (3.1)) by

einf(ϕ) =
αeinϕ + β

β∗einϕ + α∗
. (4.11)

The set of such f ’s (at fixed n but varying α, β) is a group isomorphic to the n-fold cover

of PSL(2,R) = SL(2,R)/Z2; the PSL(2,R) group leaving the vacuum invariant has n = 1.

One can think of the Virasoro group as half of the asymptotic symmetry group of AdS3

gravity [16]. A map f ∈ DiffS1 then acts on the left light-cone coordinate x+ on the cylinder

at infinity according to x+ 7→ f(x+). From that point of view, PSL(2,R) isometries of

global AdS3 take the form (4.11) with n = 1, while transformations with n > 1 are genuine

asymptotic symmetries that would not occur if gravitation was switched off. Similarly,

asymptotic symmetries of Minkowskian space-times span the BMS group [20–24] where

Poincaré isometries are extended to supertranslations and superrotations. To apply an

analogous terminology to Virasoro, note that a map (4.11) with n = 1 and α = cosh(λ/2),

β = sinh(λ/2) corresponds to (half of) an AdS3 boost with rapidity λ in the direction

ϕ = 0. Accordingly we shall refer to any diffeomorphism g given by

eing(ϕ) =
cosh(λ/2)einϕ + sinh(λ/2)

sinh(λ/2)einϕ + cosh(λ/2)
(4.12)

as a superboost of order n with rapidity λ (see figure 2). The normalization λ/2 has

to do with the fact that SL(2,R) is a double cover of the group PSL(2,R) spanned by

transformations (4.11).

Our goal now is to evaluate the Berry phase (4.10) for a circular path (4.9) in which g is

a superboost. Thanks to the Zn symmetry of (4.12) under ϕ 7→ ϕ+ 2π/n, we could let the

time parameter t range from 0 to 2π/(ωn) and still get a well-defined Berry phase (4.8);

nevertheless we will use the same time interval [0, 2π/ω] as in the general case. Then,

using (4.12) to evaluate derivatives of g, the phase (4.10) reads

Bh,c[rotωt ◦ g] = −2π
(
h− c

24

) (
coshλ− 1

)
− c n2sinhλ

24

∫ 2π

0
dx

sin2 x

cotanhλ+ cosx
,
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−−−−−→

Figure 2. A circle with uniformly spaced dots is acted upon by a superboost (4.12) of order n = 3

with positive λ. The dots converge towards the points ϕ = 0, 2π/3, 4π/3 and move away from

ϕ = π/3, π, 5π/3. Analogous observations apply to all superboosts.

where we have changed variables according to x = nϕ. It remains to evaluate the integral

over x; this can be done for instance thanks to the residue theorem, and yields11

Bh,c(n, λ) = −2π
(
h+

c

24
(n2 − 1)

) (
coshλ− 1

)
. (4.13)

This is the Berry phase associated with a circular path of superboosts of order n and with

rapidity λ; one can view it as the integral over a disk of the Berry curvature displayed in

eq. (3.11) of [11] (see also eq. (5.11) of [12]). It vanishes for λ = 0, as it should since in that

case the transformation (4.12) is the identity. Note also that for n = 1 the term proportional

to the central charge disappears and (4.13) reduces to an SL(2,R) Berry phase,12

Bh,c(1, λ) = −2πh(coshλ− 1). (4.14)

This formula should be familiar from special relativity: when h is identified with the spin

of a particle that follows a circular trajectory at rapidity λ, the phase (4.14) reflects the

net rotation undergone by its locally inertial reference frame after one revolution. This

phenomenon is known as Thomas precession [17]; it is due to the fact that products of

non-collinear Lorentz boosts contain Wigner rotations [58] (see also [59, chapter 6] or [60,

section 11.8]). In this sense Virasoro Berry phases include and extend Thomas precession.

4.3 Combining left and right sectors

So far we have only considered one chiral copy of the Virasoro group; we now combine

two of them into a direct product, as follows. Consider a two-dimensional conformal field

theory (CFT) on a Lorentzian cylinder with radius ` and a metric proportional to

ds2 = −dt2 + `2dϕ2 (4.15)

where t ∈ R is a time coordinate and ϕ ∈ R is an angular coordinate identified as ϕ ∼ ϕ+2π.

These can be combined into dimensionless light-cone coordinates

x± ≡ t

`
± ϕ. (4.16)

11With a time interval [0, 2π/(ωn)] the result (4.13) would be divided by n.
12See appendix B for the derivation of (4.14) in a highest weight representation of SL(2,R).
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In terms of x±, conformal transformations of the cylinder take the form

(x+, x−) 7→
(
f(x+), f̄(x−)

)
(4.17)

where f and f̄ are independent diffeomorphisms of the real line that preserve the orienta-

tion of the cylinder in the sense that f ′(x+) and f̄ ′(x−) are positive. Moreover they must

preserve the identification ϕ ∼ ϕ+ 2π, which implies that f and f̄ both satisfy the condi-

tions (3.1) in terms of their arguments. It follows that the group of orientation-preserving

conformal transformations of a Lorentzian cylinder is a direct product D̃iff+S1 × D̃iff+S1

whose elements are pairs (f, f̄) acting according to (4.17). As in section 3.1, we will lighten

the notation by writing that group simply as Diff S1 ×DiffS1.

It was shown in [16] that gravity on AdS3 admits fall-off conditions such that the

resulting asymptotic symmetry group coincides with the conformal group of a Lorentzian

cylinder. In that picture the length scale ` in (4.15) coincides with the AdS3 radius and the

light-cone coordinates (4.16) label points at spatial infinity, i.e. on the cylindrical boundary

of AdS3. Asymptotic symmetry transformations are pairs (f, f̄) ∈ DiffS1 × DiffS1 that

act on x± according to (4.17) up to corrections that vanish at infinity. In addition, the

realization of the asymptotic symmetry group on phase space is projective, with non-zero

left and right central charges whose standard normalization is c = c̄ = 3`/2G (G being

the Newton constant in three dimensions). In parity-breaking theories of gravity such as

topologically massive gravity [61], essentially the same conclusions hold up to the fact that

left and right central charges may differ (see e.g. [62]).

Accordingly, from now on we will think of the product of two Virasoro groups as

the asymptotic symmetry group of AdS3 gravity. Irreducible unitary representations of

D̂iffS1 × D̂iffS1 with highest weights h, h̄ can then be interpreted as particles in AdS3

dressed with quantized boundary gravitons, with mass (h+ h̄)/` and spin h− h̄.13 For the

sake of generality we allow the left and right central charges c, c̄ to differ. One may then

consider the state |h, h̄〉 = |h〉 ⊗ |h̄〉 in the tensor product of two Virasoro representations,

act on it with a family of transformations U [f(t)] ⊗ Ū [f̄(t)], and investigate the Berry

phase that arises when the path
(
f(t), f̄(t)

)
is closed up to an element of the stabilizer of

|h, h̄〉. The analysis is the same as in section 4.1; the result is a sum of left-and right-moving

Berry phases, each of which takes the form (4.8) with the integral over ϕ replaced by an

integral over x+ or x−, respectively:

Bh,h̄,c,c̄[f, f̄ ] = Bh,c[f ] +Bh̄,c̄[f̄ ]. (4.18)

One should keep in mind that there is, in general, no relation between f(t, x+) and f̄(t, x−).

In particular, one is free to leave one of the two paths at the identity, say f̄(t, x−) = x− for

all t, in which case (4.18) reduces to the chiral Berry phase (4.8). Note also that the time

parameter t along the path (f(t), f̄(t)) has a very different status than the coordinates

x±: when writing e.g. f(t, x+), each f(t, ·) is a chiral conformal transformation, so the

dependence of f on x+ is merely a reminder of the fact that f acts on a cylinder. On the

13The AdS3 mass may receive corrections of order 1/`2, but they will be unimportant for us.
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other hand the parameter t in f(t, ·) indicates a genuine, explicit time-dependence of f .

As before we only assume that this dependence is adiabatic.

Let us now consider circular paths in DiffS1 × DiffS1. In contrast to the chiral case

studied earlier, we now have two possibilities for what ‘circular’ means: a first choice is

f(t, x+) = g(x+) + ωt and f̄(t, x−) = ḡ(x−) + ωt, but an inequivalent second choice is

obtained by changing the relative sign in f̄ while keeping the same f .14 To illustrate

the difference between those two options we can relate x± to coordinates (t, ϕ) thanks to

eq. (4.16); the transformations of (t, ϕ) corresponding to the two cases then are

(t, ϕ) 7→
(
`

2
(g(x+) + ḡ(x−)) + `ωt,

1

2
(g(x+)− ḡ(x−))

)
(option 1),

(t, ϕ) 7→
(
`

2
(g(x+) + ḡ(x−)),

1

2
(g(x+)− ḡ(x−)) + ωt

)
(option 2).

(4.19)

This shows that only the second choice can truly be interpreted as a ‘circular’ or ‘rotating’

path; by contrast, the first option is a ‘time-translating’ path. In any case, provided

ω > 0 is small enough in the sense that ω � 1/`, the time-dependence of the Hamiltonian

U [f(t)]L0 U [f(t)]−1 + Ū [f̄(t)]L̄0Ū [f̄(t)]−1 is adiabatic and it makes sense to investigate

the Berry phase picked up by the states U [f(t)]|h〉 ⊗ Ū [f̄(t)]|h̄〉 as t runs from t = 0 to

t = T = 2π/ω. The phase can be evaluated as in the chiral case (4.10) and reads

Bh,h̄,c,c̄[rotωt ◦ g, rot±ωt ◦ ḡ] = −
∫ 2π

0

dx+

g′

[
h− c

24
+

c

24

(
g′′

g′

)′ ]
+ 2π

(
h− c

24

)
∓
∫ 2π

0

dx−

ḡ′

[
h̄− c̄

24
+

c̄

24

(
ḡ′′

ḡ′

)′ ]
± 2π

(
h̄− c̄

24

)
where the upper and lower signs respectively correspond to the first and second options

in (4.19), while prime denotes differentiation with respect to the appropriate argument.

For instance, when g and ḡ are superboosts (4.12), the Berry phase becomes

Bh,h̄,c,c̄(n, λ, n̄, λ̄) = −2π
(
h+

c

24
(n2 − 1)

)(
coshλ− 1

)
∓ 2π

(
h̄+

c̄

24
(n̄2 − 1)

)(
coshλ̄− 1

)
(4.20)

where (λ, n) and (λ̄, n̄) are the respective parameters of g and ḡ.

4.4 Thomas precession, boundary gravitons and memory

When n = n̄ = 1 in eq. (4.20), the contributions involving central charges vanish and the

Virasoro Berry phase reduces to a sum/difference of SL(2,R) Berry phases (4.14). When in

addition λ = λ̄, and if we choose a rotating path to select the lower sign in (4.20), the Berry

phase coincides with formula (4.14) up to the replacement of h by the spin h − h̄. Thus

Virasoro Berry phases in AdS3 contain Thomas precession [17], since (4.14) is precisely the

angle of rotation undergone after one revolution by the locally inertial frame of a particle

with spin h moving along a circle at rapidity λ.

From this perspective the general formulas (4.8) or (4.20) may be seen as general-

izations of Thomas precession corresponding to closed paths in the group of asymptotic

14We could even let f and f̄ have different angular velocities, but we will not consider such paths here.
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symmetry transformations in AdS3. To get a grasp on what this means, let us see how

far the analogy goes. Standard Thomas precession takes place when a particle follows

a closed path in momentum space (hence also in position space) as a result of some ex-

ternal influence — for instance the Coulomb attraction due to an atomic nucleus. The

actual shape of the path is determined by the dynamics of that interaction; for example,

the velocity of a particle orbiting around a nucleus depends on their masses and electric

charges. Such parameters have to be plugged into the Berry phase/Thomas precession

formula and cannot be determined by group theory alone. However, once the path is

known, the corresponding Berry phase is entirely determined by symmetry considerations

and does not explicitly depend on any dynamical parameter. The same reasoning applies

to the AdS3 Berry phases (4.18)–(4.20): the one-parameter family of conformal transfor-

mations (f(t), f̄(t)) corresponds to a closed path in the space of CFT stress tensors dual

to a dressed particle in AdS3. The actual shape of that path depends on some dynamics

that need to be used as input; for instance, a field may propagate in AdS3 in such a way

that the back-reacted space-time metric undergoes a family of Brown-Henneaux transfor-

mations (f(t), f̄(t)).15 If this perturbation is such that the gravitational field returns to

its original configuration once the disturbance has passed, then the particle’s wavefunc-

tion should pick up a Berry phase (4.18). The latter is entirely determined by Virasoro

symmetry: it depends on the path (f(t), f̄(t)), the weights h, h̄ and the central charges

c, c̄, but it does not depend explicitly on the various interactions that triggered the path.

This is pleasant, but it also raises the question how, concretely, one is supposed to switch

on perturbations that generate gravitational Berry phases. We will not address this issue

here, only briefly returning to it in the next section.

A surprising aspect of the Berry phases (4.18)–(4.20) is that they are generally non-

zero even when h = h̄ = 0 and c = c̄. This means that the AdS3 vacuum state |0〉 can

pick up a non-zero Berry phase when subjected to a one-parameter family of conformal

transformations (f(t), f̄(t)). In some very symmetric cases the phase vanishes (e.g. when

f(t, x+) = g(x+)+ωt and f̄(t, x−) = ḡ(x−)−ωt with g(ϕ) = ḡ(ϕ)), but for generic, left-right

asymmetric paths, it does not. One may think of it as a phase due to boundary gravitons

dressing the AdS3 vacuum. In the language of BMS symmetry [25–27, 63], such phases are

caused by the infinitely many vacua of the gravitational field.16 Berry phases probe the

geometry of this space of vacua by measuring fluxes of its symplectic form (see figure 3).

These observations hint at a relation between Berry phases and the gravitational mem-

ory effect [64–72], which refers to the space-time displacement of observers at infinity who

are exposed to a burst of gravitational radiation. It was recently shown [63] that this phe-

nomenon can be interpreted as a BMS supertranslation caused by the passing gravitational

wave; this is similar in spirit to the mechanism described above for generating Berry phases

of boundary gravitons, since in the latter case we also referred to an asymptotic symmetry

transformation caused by some propagating local field. Thus one can think of Virasoro

15The gravitational field in three dimensions has no local degrees of freedom, so the perturbation must

be caused by some other field — e.g. a scalar field or a gauge field.
16The word ‘vacuum’ here is used merely as an analogy: in contrast to BMS supertranslations, Brown-

Henneaux diffeomorphisms typically change the energy of a state.

– 21 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
4

Figure 3. Boundary gravitons in AdS3 span an infinite-dimensional manifold

M∼= DiffS1/PSL(2,R)×DiffS1/PSL(2,R). Any loop γ in M encloses a two-dimensional

surface embedded in M. The symplectic flux through that surface coincides with the Berry phase

picked up by boundary gravitons as they undergo a family of conformal transformations whose

projection on M is the path γ.

Berry phases as a ‘memory’ of dressed particles. The interpretation of Berry phases as a

memory effect actually predates their very discovery [73, 74] (see also [75]); in that respect

it is no surprise that Berry phases associated with asymptotic symmetries are related to

gravitational memory.

5 Discussion

In the previous pages we have seen how Virasoro symmetry can be used to evaluate the

Berry phase picked up by a primary state as it undergoes a family of conformal transforma-

tions. The result is displayed in eq. (4.8) and solely depends on group-theoretic data; it can

be interpreted as a flux of the natural symplectic form on an infinite-dimensional coadjoint

orbit of the Virasoro group. One can also combine left and right conformal groups into a

direct product, leading to a Berry phase (4.18) picked up by the wavefunction of a dressed

particle in AdS3 subjected to a family of Brown-Henneaux diffeomorphisms. When these

transformations are just AdS3 boosts, the phase reproduces Thomas precession; generic

asymptotic symmetry transformations, on the other hand, provide a gravitational gener-

alization of Thomas precession that can be interpreted as a memory effect. When applied

to conformal transformations of the AdS3 vacuum state, Virasoro Berry phases probe the

geometry of the space of ‘boundary gravitons’ that dress AdS3.

These statements leave open a great many questions, both conceptual and practical.

Perhaps the most pressing one is the issue raised at the end of section 4.4: what dynamical

mechanism, if any, could switch on Virasoro Berry phases? Since this requires an explicitly

time-dependent Hamiltonian, one presumably needs to couple a two-dimensional CFT to

an ‘external’ system that triggers time-dependent changes of conformal frames. In the case

of Thomas precession, the rotation of a particle around an atomic nucleus corresponds

to a continuous family of Lorentz boosts with varying direction, and the source of that

variation is the Coulombian attraction. To generate Virasoro Berry phases, one similarly

needs to drive a CFT with some external force that obliges the stress tensor to violate
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its conservation law ∂−T++ = ∂+T−− = 0. It would be interesting to find explicit field-

theoretic realizations of this situation. A related problem is to understand if/how Virasoro

Berry phases can be recast as statements on CFT correlation functions, and of course

whether such phases have any chance of being observed in experiments. A promising

setting might be provided by the quantum Hall effect, where Berry phases on an infinite-

dimensional parameter space were studied in [12], though the exact relation between this

work and ours is not clear at this stage.

From the AdS3 perspective, driven CFTs might be obtained by coupling gravity to

a local field whose fall-off conditions allow information to flow into or out of the bulk.

This kind of behaviour is admittedly more suggestive of Minkowskian physics (see e.g.

the Einstein-Maxwell system of [76]), but surprisingly similar observations in AdS3 have

recently appeared in [77].

Aside from these obvious puzzles, the tools developed in this paper should apply to

many other contexts that involve some sort of Virasoro symmetry. This includes most

notably BMS in three and four dimensions, warped Virasoro [78], or the W algebras that

describe asymptotic symmetries of higher-spin theories in three dimensions [79, 80]. We

hope to say more about some of these topics in the near future.
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A Spin in a magnetic field

In this appendix we illustrate the method of section 2 with the group SU(2), which pro-

vides the textbook example of Berry phases (see e.g. [28, chapter 10] or [81, chapter 10]).

Accordingly, consider an irreducible unitary representation U of SU(2). In physical terms

this corresponds to a single (‘irreducible’) quantum (‘unitary’) spin degree of freedom (‘rep-

resentation of SU(2)’) embedded in a uniform magnetic field B; the Hamiltonian of the

system is proportional to the projection of the spin operator Ŝ along B:

H = −γ Ŝ ·B. (A.1)

Here γ ∈ R is the gyromagnetic ratio and Ŝ = (Ŝ1, Ŝ2, Ŝ3) is a set of three Hermitian

operators representing rotation generators in the Hilbert space of the representation. Their

commutators are [Ŝi, Ŝj ] = iεijkŜk (we set ~ = 1) and they can be written as

Ŝj = iu[−iσj/2] (A.2)

where the σj ’s are Pauli matrices and the algebra representation u is related to U by (2.7).

– 23 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
4

The hat in Ŝ stresses that the Ŝj ’s are operators, while B is merely a set of three

real parameters on which the Hamiltonian (A.1) depends. Suppose then that the mag-

netic field varies adiabatically by changing its direction while keeping a constant norm.

From a group-theoretic standpoint this is precisely the setting described in section 2.2: in

a ‘standard’ reference frame the magnetic field is aligned with the vertical axis and the

Hamiltonian (A.1) is proportional to Ŝ3, but under a rotation f ∈ SU(2) the Hamilto-

nian becomes proportional to U [f ]Ŝ3 U [f ]−1. For a time-dependent family of rotations

f(t) whose projection on the sphere SU(2)/S1 ∼= S2 is a closed path, one gets a Berry

phase (2.14) that we shall now compute.

Let j ≥ 0 be the spin of the representation U ; then a basis of the carrier space of

U is provided by (2j + 1) states |m〉 such that Ŝ3|m〉 = m|m〉 for m = j, j − 1, . . . ,−j.
Consider in particular the highest weight state |j〉; its stabilizer is the U(1) subgroup of

SU(2) generated by Ŝ3, but generic rotations act non-trivially on it: in terms of polar

coordinates (θ, ϕ) on SU(2)/S1 ∼= S2, a rotation f that maps the North pole of S2 on

(θ, ϕ) also maps |j〉 on a vector U [f ]|j〉 that represents a spin pointing in the direction

(θ, ϕ). This provides a family of states |j; θ, ϕ〉 obtained by acting on |j〉 with suitable

rotations; each such vector is an eigenstate of the Hamiltonian (A.1) when the magnetic

field points in the direction (θ, ϕ). Our goal is to find the Berry phase picked up by these

states when the direction of the magnetic field traces a closed path (θ(t), ϕ(t)) on S2.

(The existence of this phase was pointed out already in Berry’s seminal paper [1], and its

classical analogue was experimentally observed shortly thereafter [82, 83]; see also [84, 85]

for recent observations of SU(2) Berry phases in qubit systems.)

To describe the states |j; θ, ϕ〉 we need a family of rotations g(θ,ϕ) ∈ SU(2), each

mapping the North pole to the point (θ, ϕ) on S2, such that

|j; θ, ϕ〉 = U [g(θ,ϕ)]|j〉. (A.3)

One can think of this family as a section of the U(1) bundle SU(2) → S2, associating a

group element g(θ,ϕ) with a point (θ, ϕ). Since the bundle is non-trivial, there is no section

that depends continuously on (θ, ϕ) at all points of S2; but such sections do exist locally,

and this will be enough to evaluate Berry phases. In particular we may choose

g(θ,ϕ) =

(
cos(θ/2) −e−iϕ sin(θ/2)

eiϕ sin(θ/2) cos(θ/2)

)
, (A.4)

which is smooth on S2\{South pole}, since it is well-defined everywhere except at θ = π.

(Another section would have different singularities, but it would certainly have at least

one due to the non-triviality of the bundle; this is an incarnation of the ‘Dirac strings’

that arise in the study of magnetic monopoles [86].) The normalization is such that the

SO(3) rotation which corresponds to (A.4) by the isomorphism SO(3) ∼= SU(2)/Z2 maps

the North pole of S2 on the point with coordinates (θ, ϕ). Indeed, with the conventions

of [87], this isomorphism is obtained by defining a map

F : SU(2)→ SO(3) :

(
a b

c d

)
7→ F

[(
a b

c d

)]

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
4

that associates an SO(3) rotation with any SU(2) group element, according to

F

[(
a b

c d

)]
=

Re(a∗d+ b∗c) Im(ad∗ − bc∗) Re(a∗c− b∗d)

Im(a∗d+ b∗c) Re(ad∗ − bc∗) Im(a∗c− b∗d)

Re(ab∗ − cd∗) Im(ab∗ − cd∗) 1
2(|a|2 − |b|2 − |c|2 + |d|2)

 . (A.5)

One can show that F is a surjective homomorphism whose kernel consists of the identity

matrix and its opposite (see e.g. [87, 88]), which implies that SU(2) is indeed the double

cover of SO(3). Applying (A.5) to the SU(2) group element (A.4), one finds

F [g(θ,ϕ)] =

× × sin θ cosϕ

× × sin θ sinϕ

× × cos θ


where the crossed entries are irrelevant for our purposes: the last column is enough to

prove that F [g(θ,ϕ)] maps the North pole of S2 on the point with polar coordinates (θ, ϕ).

The section (A.4) can be used to pullback the Maurer-Cartan form (2.9) from SU(2)

to the sphere, which results in an SU(2) gauge field

g−1
(θ,ϕ)dg(θ,ϕ) =

i

2

(
(1− cos θ)dϕ e−iϕ(sin θ dϕ+ idθ)

eiϕ(sin θ dϕ− idθ) −(1− cos θ)dϕ

)
that can be rewritten as the following linear combination of sigma matrices:

g−1
(θ,ϕ)dg(θ,ϕ) =

i

2

[
(cosϕ sin θ dϕ+sinϕdθ)σ1+(sinϕ sin θ dϕ−cosϕdθ)σ2+(1−cos θ)dϕσ3

]
.

We can now evaluate the Berry connection (2.11) associated with the states U [g(θ,ϕ)]|j〉
and pulled back on the sphere:(
Aj
)

(θ,ϕ)
= 〈j|iu[g−1

(θ,ϕ)dg(θ,ϕ)]|j〉 = 〈j|iu
[ i

2
(1−cos θ)dϕσ3 +(· · · )σ1 +(· · · )σ2

]
|j〉. (A.6)

Here the coefficients multiplying σ1 and σ2 are unimportant: using eq. (A.2) we can rewrite

the operator iu[· · · ] as a linear combination of Ŝj ’s; since the expectation values of Ŝ1 and

Ŝ2 vanish, only the term proportional to σ3 survives and we find the Berry connection(
Aj
)

(θ,ϕ)
= −〈j|Ŝ3|j〉(1− cos θ)dϕ = −j(1− cos θ)dϕ (A.7)

which is smooth everywhere except at the South pole. Up to an overall factor this is the

potential of the standard volume form on the unit sphere: the Berry curvature is

Fj = dAj = −j sin θ dθ ∧ dϕ. (A.8)

It follows that the Berry phase picked up by the states U [g(θ,ϕ)]|j〉 along a closed path on

the unit sphere is the signed area of the region enclosed by the path, multiplied by −j:

Bj [γ]
(2.6)
=

∮
γ
Aj =

∫
Σ
dAj

(A.8)
= −j × area(Σ), (A.9)

where Σ is any oriented surface on S2 such that ∂Σ = γ.
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Some comments are in order regarding this standard result. First, the choice of

section (A.4) is not unique since we can multiply it from the right by any rotation h(θ,ϕ)

around the vertical axis (i.e. a (θ, ϕ)-dependent exponential of σ3). The corresponding

Berry connection then differs from (A.7) by a U(1) gauge transformation but the associ-

ated Berry curvature (A.8), and hence the Berry phase (A.9), are unchanged. Our second

remark concerns the orbit method. In accordance with the general results mentioned in

section 2.3, the parameter space S2 = SU(2)/S1 can be interpreted as the coadjoint orbit

of the coherent state |j〉. Then the Berry curvature (A.8) coincides with the orbit’s sym-

plectic form and the Berry phase (A.9) can be seen as a symplectic flux. Finally, note that

for any closed path γ on S2 there exist two surfaces with boundary γ; at first sight this

leads to an ambiguity in the value of (A.9) since the difference between the two results is

∆Bj = j × area(S2) = 4πj. (A.10)

In practice, Berry phases are only observable insofar that they appear in an exponential

eiB, so the ambiguity (A.10) is invisible as long as j is an integer or a half-integer. Thus we

recover standard spin quantization from the requirement that group-theoretic Berry phases

be well-defined. From the point of view of geometric quantization, this is the condition

that the Kirillov-Kostant symplectic form on SU(2)/S1 be integral.

B Thomas precession in AdS3

Here we apply the considerations of section 2 to SL(2,R). Up to topological details the lat-

ter is half of the isometry group of AdS3, so its irreducible unitary representations describe

particles in AdS3. Since the Hamiltonian of a particle depends on its reference frame, one

may investigate the Berry phases that appear when this frame changes adiabatically in a

cyclic way; these phases are synonymous with Thomas precession [18, 19] and provide a

finite-dimensional analogue of the Virasoro Berry phases of section 4.

Let us first recall some useful facts about SL(2,R), the group of real 2×2 matrices with

unit determinant (see e.g. [87, section 2.2] or [35, section 5.3.4] for details). Its Lie algebra

sl(2,R) consists of real, traceless 2 × 2 matrices and is generated by the basis elements

t0 =
1

2

(
0 1

−1 0

)
=
i

2
σ2, t1 =

1

2

(
0 1

1 0

)
=

1

2
σ1, t2 =

1

2

(
1 0

0 −1

)
=

1

2
σ3. (B.1)

Their Lie brackets are [tµ, tν ] = εµν
ρ tρ with ε012 = 1, all indices being raised and low-

ered with the three-dimensional Minkowski metric ηµν = diag(−1,+1,+1). Every sl(2,R)

matrix can be written as a real linear combination X = Xµtµ. Furthermore the sl(2,R)

algebra admits a non-degenerate invariant bilinear form

(X,Y ) ≡ 2 Tr(XY ) = 2XµY ν Tr(tµtν) = ηµνX
µY ν .

This implies that the set of sl(2,R) matrices of the form fXf−1, where X = Xµtµ ∈ sl(2,R)

is fixed and f runs over SL(2,R), coincides with the orbit of the three-dimensional ‘energy-

momentum vector’ (X0, X1, X2) under Lorentz transformations. For instance, the adjoint
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orbit of X = t0 is a two-dimensional hyperbolic plane

H2 =
{√

1 + p2 + q2 t0 + p t1 + q t2

∣∣∣(p, q) ∈ R2
}
, (B.2)

which is diffeomorphic to SL(2,R)/S1 since the stabilizer of t0 is the U(1) group of rota-

tions. This correspondence between SL(2,R) and Lorentz transformations is due to the

isomorphism SL(2,R)/Z2 ≡ PSL(2,R) ∼= SO(2, 1)↑, which says that SL(2,R) is the double

cover of the connected Lorentz group in three dimensions. Following again the conventions

of [87], this isomorphism is obtained by noting that the adjoint action of SL(2,R) on its Lie

algebra coincides with the vector representation of the Lorentz group in three dimensions.

More precisely, for any matrix f ∈ SL(2,R) and any X = Xµtµ ∈ sl(2,R) (with basis

elements tµ given by (B.1)), one can define a 3× 3 matrix F [f ] by

f Xµtµ f
−1 = F [f ]µνX

νtµ .

This corresponds to a map

F : SL(2,R)→ SO(2, 1)↑ :

(
a b

c d

)
7→ F

[(
a b

c d

)]

whose explicit form turns out to be

F

[(
a b

c d

)]
=


1
2(a2 + b2 + c2 + d2) 1

2(a2 − b2 + c2 − d2) −ab− cd
1
2(a2 + b2 − c2 − d2) 1

2(a2 − b2 − c2 + d2) −ab+ cd

−ac− bd bd− ac ad+ bc

 . (B.3)

One can show (see e.g. [87]) that F is a surjective homomorphism whose kernel consists

of the identity matrix and its opposite, which implies that SL(2,R) is indeed the double

cover of SO(2, 1)↑.

In any unitary representation U of SL(2,R), the operators u[tµ] representing the gen-

erators (B.1) are anti-Hermitian. It is customary to define the operators

L0 ≡ −iu[t0], L1 ≡ iu[t1] + u[t2], L−1 ≡ iu[t1]− u[t2] (B.4)

which satisfy L†m = L−m and whose commutators are [Lm, Ln] = (m− n)Lm+n for m,n =

−1, 0, 1. Then a highest weight representation of sl(2,R) is built by demanding that its

Hilbert space H admit a highest weight state |h〉 such that

L0|h〉 = h|h〉, L1|h〉 = 0 (B.5)

and generating the rest of H with descendant states (L−1)n|h〉, where n ≥ 0.17 Assuming

〈h|h〉 = 1, the representation is unitary if and only if h ≥ 0 (and trivial if h = 0). The

corresponding (generally projective) group representation U is known as a discrete series

representation of SL(2,R).

17As usual the terminology is backwards: |h〉 is actually a lowest-weight state in the representation.
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Now consider one such representation U with highest weight h. What one normally

calls ‘the Hamiltonian’ is the operator L0, which generates time translations in a suitable

reference frame. But this choice is arbitrary: one may just as well move to a different frame

by a transformation f ∈ SL(2,R) and declare that the Hamiltonian is U [f ]L0 U [f ]−1. As

in section 2.2 this defines a family of Hamiltonians labelled by f , and one can study the

resulting Berry phases. Let us focus on the highest weight state |h〉; it is an eigenvector of

the ‘standard’ Hamiltonian L0 and its stabilizer is the U(1) group of rotations, but generic

SL(2,R) transformations act on it non-trivially: the set of inequivalent states that can be

reached from |h〉 is a manifold H2 ∼= SL(2,R)/S1. In terms of the global coordinates (p, q)

in (B.2), any transformation f that maps the tip of the hyperboloid on a point (p, q) also

maps |h〉 on a new state U [f ]|h〉 which has definite energy h with respect to the ‘non-

standard’ Hamiltonian U [f ]L0 U [f ]−1. Our goal is to find the Berry phase picked up by

these states as they undergo a family of boosts that trace a closed path on the hyperbolic

plane (B.2). (Such phases were studied e.g. in [89–91] and their classical version has been

observed in several experiments [92, 93].)

As in (A.3), to describe the states |h; p, q〉 we need to choose a family of transformations

g(p,q) ∈ SL(2,R), each mapping the tip of (B.2) on the point (p, q), such that

|h; p, q〉 = U [g(p,q)]|h〉.

One can think of this family as a section of the U(1) bundle SL(2,R)→ H2, associating a

group element g(p,q) with a point (p, q). In contrast to the SU(2) case, the bundle is now

trivial and global smooth sections exist. Writing E ≡
√

1 + p2 + q2, we take

g(p,q) =
1√
2


[
E + 1

]1/2
+ p√

p2+q2

[
E − 1

]1/2 − q√
p2+q2

[
E − 1

]1/2
− q√

p2+q2

[
E − 1

]1/2 [
E + 1

]1/2 − p√
p2+q2

[
E − 1

]1/2
 . (B.6)

Here the normalization ensures that the adjoint action of g(p,q) maps the tip of (B.2) on the

point with coordinates (p, q); indeed, applying (B.3) to the SL(2,R) group element (B.6),

one gets

F [g(p,q)] =


√

1 + p2 + q2 × ×
p × ×
q × ×

 (B.7)

where the crossed entries are irrelevant for our purposes: when acting on the tip (1, 0, 0)t

of (B.2), the boost (B.7) maps it on the point (
√

1 + p2 + q2, p, q)t as desired.

The section (B.6) can be used to pullback the Maurer-Cartan form (2.9) from SL(2,R)

to H2. The result is an SL(2,R) gauge field that can be expressed as a linear combination

g−1
(p,q)dg(p,q) = Xµtµ

with components Xµ given by

X0 =
E − 1

p2 + q2
(p dq − q dp), X1 + iX2 = idp− dq − E − 1

E

ip− q
p2 + q2

(p dp+ q dq).
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We can now evaluate the Berry connection (2.11) associated with the states U [g(p,q)]|h〉
and pulled back on the hyperbolic plane:(

Ah
)

(p,q)
= 〈h|iu[g−1

(p,q)dg(p,q)]|h〉 = 〈h|iu
[
E − 1

p2 + q2
(pdq − qdp)t0 + (· · · )t1 + (· · · )t2

]
|h〉.

This is the SL(2,R) analogue of eq. (A.6); as in the latter case the coefficients of t1 and

t2 are unimportant since they multiply linear combinations of the operators L±1 whose

expectation values vanish by virtue of (B.5). Hence only the term proportional to t0
survives and we get the Berry connection

Ah = −〈h|L0|h〉
E − 1

p2 + q2
(p dq − q dp) (B.5)

= −h
√

1 + p2 + q2 − 1

p2 + q2
(p dq − q dp)

where we used (B.4) and rewrote E in terms of p, q. Up to normalization this is the

potential of the standard Lorentz-invariant volume form on H2: the Berry curvature is

Fh = dAh = −h dp ∧ dq√
1 + p2 + q2

. (B.8)

It follows that the Berry phase picked up by the states U [g(p,q)]|h〉 along a closed path γ

in H2 is the signed area of the enclosed region, multiplied by −h:

Bh[γ] =

∮
γ
Ah =

∫
Σ
dAh = −h× area(Σ), (B.9)

where Σ is the oriented surface with finite area on H2 such that ∂Σ = γ. All these results

are directly analogous to those of the SU(2) case, and essentially the same comments

apply. In particular one can verify that the curvature (B.8), and hence the phase (B.9),

are independent of the choice of section (B.6). Furthermore these quantities have a natural

interpretation in the orbit method: the parameter space H2 = SL(2,R)/S1 is the coadjoint

orbit of the coherent state |h〉 and the Berry curvature coincides with the Kirillov-Kostant

symplectic form. Note that in contrast to SU(2) there is no ambiguity of the type (A.10)

for SL(2,R), hence no quantization condition on the weight h. (The weight does get

quantized if one insists that the representation of SL(2,R) be non-projective, but this is

due to topological, rather than symplectic, issues.)

For comparison with the Virasoro case, let us evaluate the Berry phases (B.9) asso-

ciated with circles around the tip of SL(2,R)/S1. They are most easily described with

polar coordinates (r, ϕ) such that p = r cosϕ, q = r sinϕ, in terms of which the Berry

curvature (B.8) reads

Fh = −h r dr ∧ dϕ√
1 + r2

.

A circle around the tip is a curve where r(t) = R is constant while ϕ(t) = ωt for some

angular velocity ω > 0. The time needed to perform one turn around the tip is T = 2π/ω

and the corresponding Berry phase (B.9) is

Bh(R) = −2πh
(√

1 +R2 − 1
)

= −2πh(coshλ− 1) ≡ Bh(λ),

where in the second equality we have introduced the rapidity λ ≡ argsinh(R). This repro-

duces the formula (4.14) displayed above.
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