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1 Introduction

Parton shower algorithms describing QCD and QED multiple radiation have been a central

ingredient of simulation programs for particle physics experiments at the energy frontier [1].

After their inception about three decades ago, where the focus was on QCD radiation in

the final state [2], efficient algorithms for initial state radiation were developed [3], which

amount to evolution back in “time” from the hard scattering to the incoming beam hadrons.

The study of quantum interference effects in successive emissions led to the notion of QCD

coherence in parton evolution [4, 5], and angular ordering was identified as a convenient

scheme that incorporates such effects [6–8]. As an alternative scheme, the color dipole

model [9, 10] includes QCD coherence in a natural way. Matrix-element corrections have

been investigated as a source of coherence [11, 12].

After about a decade of work on matching [13–18] and merging [19–30] algorithms, the

necessity of increased control over the parton shower for a more seamless combination with

fixed-order calculations at higher orders triggered a resurgence of interest in improving

parton-shower algorithms themselves. As a consequence, new parton showers [31–38], have

been constructed that are based on ordering subsequent emissions in transverse momenta,

and there were also new constructions with improved and generalized angular ordering

parameters [39]. The possibility of including next-to-leading order corrections into parton

showers was explored over three decades ago [40–43], and it was revisited recently in a

different framework [44, 45]. Next-to-leading order corrections to a single final-state gluon

emission off a qq̄ dipole have been presented in [44] as a first higher-order extension of
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the antenna shower formalism. How this approach maps onto NLO DGLAP evolution was

briefly addressed in [45], which furthermore introduced final-state double-gluon radiation

into this formalism. In addition to this, NLO splitting functions have been recomputed

using a novel regularization scheme [46, 47], with the aim to improve parton-shower simu-

lations. The dependence of NLO matching terms on the parton-shower evolution variable

has also been investigated [48].

This publication is dedicated to the construction of a parton shower that implements

the next-to-leading order (NLO) DGLAP equations up to momentum conserving effects.

We employ the non-flavor changing NLO splitting functions in the MS scheme in their

integrated form [49–54], and we include the flavor-changing NLO splitting kernels fully

differentially using the method presented in [55]. We identify the contribution to the NLO

splitting functions which is already included in the leading-order (LO) realization of the

parton-shower, and correspondingly subtract it from the NLO splitting function. This

term is given by the two-loop cusp anomalous dimension, which is usually included at

LO using the CMW scheme [56]. After its subtraction, the remaining splitting function

is purely collinear, and no double-counting arises upon implementing it as a higher-order

correction to the existing splitting kernels of the parton shower. However, the NLO parts

of the splitting functions are negative in large parts of the phase space which presents

a technical challenge. We overcome this problem through the weighting algorithm first

proposed in [57, 58]. Our approach can be considered as a first step towards a fully next-

to-leading order accurate parton shower and acts as a baseline for further development.

Future projects will need to address the leading-color approximation and the simulation

of soft emissions beyond the leading order. The Monte-Carlo techniques developed here

are expected to become useful in this context as well. A clear phenomenological benefit of

the present implementation is that consistency between the parton shower and NLO PDF

evolution is achieved for the very first time.

The outline of this paper is as follows. Section 2 introduces the parton-shower for-

malism at leading order and establishes the connection to the DGLAP equation in order

to identify the correct treatment of the final-state Sudakov factor. Section 3 outlines the

specific implementation in the Dire parton showers [38]. First results and applications are

presented in section 4. Section 5 contains our conclusions.

2 Extension of the parton-shower formalism

In this section we will highlight the correspondence between the parton shower formalism

and the analytic structure of the DGLAP evolution equations [59–61], on which the parton

shower is based. We will thereby focus on the refinements needed in order to realize

NLO accurate parton evolution. This includes the implementation of the complete set

of splitting kernels at O(α2
s), a subset of which are the flavor-changing kernels discussed

in [55]. Another significant change concerns the implementation of symmetry factors. In

the computation of the NLO splitting functions [49–54], it is assumed that a certain final-

state parton is identified, while the parton shower treats all particles democratically. If

the full set of splitting functions — both at leading and at next-to-leading order — is

– 2 –



J
H
E
P
1
0
(
2
0
1
7
)
0
9
3

implemented naively, the emission probability will thus be overestimated. At leading-order

the problem can be solved by adding simple symmetry factors. At next-to-leading order

the solution will be different, as the splitting functions include contributions from three-

particle final states that have been integrated out. We will show in the following how this

problem can be approached [55].

2.1 Unconstrained evolution with identified final-states

The DGLAP equations are schematically identical for initial and final state. However,

their implementation in parton-shower programs differs between the two, owing to the

fact that Monte-Carlo simulations are typically performed for inclusive final states. The

inclusive evolution equations for the fragmentation functions Da(x,Q2) for parton of type

a to fragment into a hadron read

dxDa(x, t)

d ln t
=
∑
b=q,g

∫ 1

0
dτ

∫ 1

0
dz

αs

2π

[
zPab(z)

]
+
τDb(τ, t) δ(x− τz) , (2.1)

where the Pab are the unregularized DGLAP evolution kernels, and the plus prescription

is defined to enforce the momentum and flavor sum rules:

[
zPab(z)

]
+

= lim
ε→0

[
zPab(z) Θ(1− z− ε)− δab

∑
c∈{q,g}

Θ(z − 1 + ε)

ε

∫ 1−ε

0
dζ ζ Pac(ζ)

]
. (2.2)

For finite ε, the endpoint subtraction in eq. (2.2) can be interpreted as the approximate

virtual plus unresolved real corrections, which are included in the parton shower because

the Monte-Carlo algorithm naturally implements a unitarity constraint [62]. The precise

value of ε in this case depends on the infrared cutoff on the evolution variable, and is

determined by local four-momentum conservation in the parton branching process. For

0 < ε� 1, eq. (2.1) changes to

1

Da(x, t)

dDa(x, t)

d ln t
= −

∑
c=q,g

∫ 1−ε

0
dζ ζ

αs

2π
Pac(ζ) +

∑
b=q,g

∫ 1−ε

x

dz

z

αs

2π
Pab(z)

Db(x/z, t)

Da(x, t)
.

(2.3)

Using the Sudakov form factor

∆a(t0, t) = exp

{
−
∫ t

t0

dt̄

t̄

∑
c=q,g

∫ 1−ε

0
dζ ζ

αs

2π
Pac(ζ)

}
(2.4)

the generating function for splittings of parton a is defined as

Da(x, t, µ2) = Da(x, t)∆a(t, µ2) . (2.5)

Equation (2.3) can now be written in the simple form

d lnDa(x, t, µ2)

d ln t
=
∑
b=q,g

∫ 1−ε

x

dz

z

αs

2π
Pab(z)

Db(x/z, t)

Da(x, t)
. (2.6)
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The generalization to an n-parton state, ~a = {a1, . . . , an}, with jets and incoming hadrons

resolved at scale t can be made in terms of parton distribution functions (PDFs) f , and

fragmenting jet functions, G [63, 64]. If we define the generating function for this state as

F~a(~x, t, µ2), we can formulate its evolution equation in terms of a sum of the right hand

side of eq. (2.6), where each term in the sum corresponds to a resolved jet in the final state

or a hadron in the initial state. This equation can be solved using Markovian Monte-Carlo

techniques in the form of a parton shower [1]. In most cases, however, parton showers

implement final-state branchings in unconstrained evolution, which means that final-state

hadrons are not resolved. We can use eq. (2.3) (which also applies to G [63, 64]), to write

the corresponding differential decay probability for such an evolution as

d

d ln t
ln

( F~a(~x, t, µ2)∏
j∈FS Gaj (xj , t)

)
=
∑
i∈IS

∑
b=q,g

∫ 1−ε

xi

dz

z

αs

2π
Pbai(z)

fb(xi/z, t)

fai(xi, t)

+
∑
j∈FS

∑
b=q,g

∫ 1−ε

0
dz z

αs

2π
Pajb(z) .

(2.7)

As highlighted in [62], it is necessary to use the Sudakov factor, eq. (2.4), in final-state

parton showers beyond the leading order. At the leading order, the factor ζ in eq. (2.4)

simply replaces the commonly used symmetry factor for g → g splitting and it also accounts

for the proper counting of the number of active flavors. However, at the next-to-leading

order it becomes an identifier for the parton that undergoes evolution, which is essential in

order to obtain the correct anomalous dimensions upon integration of the NLO DGLAP

evolution kernels. We will thus define the final-state Sudakov factor in our implementation

according to eq. (2.4).

2.2 Splitting functions

The crucial ingredient of NLO DGLAP evolution are the O(α2
s) corrections to the evolu-

tion kernels. These corrections depend on the scheme in which PDFs and fragmentation

functions are renormalized. We will work in the MS scheme, which allows us to use the

results of [49]. Technical challenges in the implementation of the splitting functions in the

parton shower include the overlap with the CMW scheme for setting the renormalization

scale commonly used in leading-order parton showers [56] as well as the fact that the evolu-

tion kernels are negative in large parts of the accessible phase space. We will discuss these

problems in a general context in the following and give more details on the implementation

in the Dire parton showers in section 3.

At O(αs), the unregularized DGLAP splitting functions are

P (0)
qq (z) = CF

[
1 + z2

1− z

]
, P (0)

gq (z) = TR

[
1− 2z(1− z)

]
,

P (0)
gg (z) = 2CA

[
z

1− z +
1− z
z

+ z(1− z)

]
.

(2.8)
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At O(α2
s), the quark splitting functions are typically written in terms of singlet (S) and

non-singlet (V) components as

P (1)
qq (z)=pV (1)

qq (z)+pS(1)
qq (z) , P

(1)
qq̄ (z)=p

V (1)
qq̄ (z)+pS(1)

qq (z) , P
(1)
qq′ (z)=P

(1)
qq̄′ (z)=pS(1)

qq (z) .

(2.9)

In the timelike case, their components are

pS(1)
qq (z)=CFTF

[
(1+x)log2x−

(
8

3
z2+9z+5

)
logz+

56

9
z2+4z−8− 20

9z

]
, (2.10)

pV (1)
qq (z)=p(0)

qq (z)

[(
β0 logz+Γ(2)

)
+2CF logz

(
log

1−z
z

+
3

4

)
+
CA

2
log2z

]
− 4

3
CFTF (1−z)

−C2
F

[(
7

2
+

3

2
z

)
logz− 1

2
(1+z)log2z+5(1−z)

]
+CFCA

[
(1+z)logz+

20

3
(1−z)

]
.

The flavor-changing splitting kernels, P
(1)
qq′ and P

(1)
qq̄ first appear at O(α2

s). They are

new channels contributing to the real-emission corrections to P
(0)
qq . In order to account

for their more involved flavor structure, we must simulate them fully differentially in the

1 → 3 phase space. To this end, we use the method presented in [55]. All other splitting

functions have an analogous 1→ 2 topology and are implemented using this topology.

Several new structures appear in the next-to-leading order splitting functions, which

require a modification of the branching algorithm used at the leading-order. Firstly, the

NLO splitting functions may exhibit new types of apparent singularities, like the term

−20/9CFTF /z contributing to p
S(1)
qq . Such terms are regulated by the symmetry factor in

eq. (2.4), which highlights again that without the correct definition of the Sudakov factor

one cannot construct a meaningful Monte-Carlo implementation, as the resulting integrals

would have unphysical divergences.

In addition, p
V (1)
qq and P

(1)
gg include the two-loop cusp anomalous dimension, given

by [56]

Γ(2) =

(
67

18
− π2

6

)
CA −

10

9
TF . (2.11)

This term is routinely included in standard parton-shower Monte Carlo simulation, typi-

cally through a redefinition of the scale at which the strong coupling is evaluated [56]. It

must therefore be subtracted from p
V (1)
qq and P

(1)
gg before these splitting functions can be

included. After the subtraction, no soft enhanced terms remain, and the result is a purely

collinear splitting function. This is important to avoid double counting of singular limits

in the parton shower [8]. Furthermore, p
V (1)
qq and P

(1)
gg also contain a term originating from

the renormalization of the strong coupling constant, which is given by the leading-order

splitting function times β0 log z, where

β0 =
11

6
CA −

2

3
TF . (2.12)

The leading contribution from this term upon integration over z is generated in combination

with the soft factor 2/(1−z) of the leading-order splitting function, and gives a contribution

−β0π
2/3 to the collinear anomalous dimension.
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3 Implementation in the Dire parton shower

Our numerical simulations are based on the Dire parton shower, presented in [38]. This

section first presents a brief overview of the model as implemented at leading order, before

moving to the modifications needed for an implementation of the next-to-leading order

contributions.

3.1 Parton-shower model at leading order

The evolution and splitting parameters κ and zj used in Dire for splittings of a combined

parton ij to partons i and j in the presence of a spectator k are given by

κ2
j,ik =

4 (pipj) (pjpk)

Q4
and zj =

2 pjpk
Q2

. (3.1)

In this context, Q2 plays the role of the maximally attainable momentum squared, which

is defined as Q2
FF = 2(pi + pj)pk + 2pipj for final-state splittings with final-state spectator,

Q2
FI = Q2

IF = 2(pi+pj)pk for final(initial)-state splittings with initial(final)-state spectator,

and Q2
II = 2pipk for initial-state splittings with initial-state spectator. The splitting func-

tions for initial-state branchings are given by the modified DGLAP splitting functions [38]

P (0)
qq (z,κ2)=2CF

[
1−z

(1−z)2+κ2
− 1+z

2

]
, P (0)

qg (z,κ2)=2CF

[
z

z2+κ2
− 2−z

2

]
P (0)
gg (z,κ2)=2CA

[
1−z

(1−z)2+κ2
+

z

z2+κ2
−2+z(1−z)

]
, P (0)

gq (z,κ2)=TR
[
z2+(1−z)2

]
.

(3.2)

where z = 1− zj . It is interesting to note that the dimensionless quantity κ2 plays the role

of the IR regulator in the very same fashion as the principal value regulator δ2 introduced in

eq. (3.13) of [49]. In our algorithm, κ has a physical interpretation, as the scaled transverse

momentum in the soft limit. As such, it also sets the renormalization and factorization

scale through µ2
R/F = κ2Q2. For final-state branchings, the matching to the differential

cross section in the soft limit requires the replacement

P (0)
gg → P s(0)

gg (1− zj , κ2
j,ik) + P s(0)

gg (1− zi, κ2
i,jk) , (3.3)

where the j-soft part of the splitting function is given by

P s(0)
gg (z, κ2) = 2CA

[
1− z

(1− z)2 + κ2
− 1 +

z(1− z)

2

]
. (3.4)

In a similar fashion we have

P (0)
qg → P (0)

qg (1− zj , κ2
i,jk) . (3.5)

The two terms in eq. (3.3) correspond to different color flows in the parton shower. For the

first term partons i and k are considered radiators and j is the soft gluon insertion, while

for the second term partons j and k are the radiators and i is the soft gluon insertion.

Therefore, in the first term gluon j is color-connected to the spectator parton, while in the

– 6 –
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second term gluon i is color-connected to the spectator. The two contributions are evolved

using the two different variables κ2
j,ik and κ2

i,jk. Following standard practice to improve the

logarithmic accuracy of the parton shower, the soft enhanced term of the splitting functions,

eqs. (3.2), is rescaled by 1 + αs(t)/(2π) Γ(2) [56]. We do not absorb this rescaling into a

redefinition of the strong coupling, as this would generate higher-logarithmic contributions

stemming from the interaction with the purely collinear parts of the splitting functions.

3.2 Extension to the next-to-leading order

We now describe the extensions of the Dire parton shower that are necessary to construct

a simulation which describes the DGLAP evolution of parton distributions and fragmenta-

tion functions at next-to leading order precision. As an important construction paradigm,

we consider contributions at different orders in the strong coupling as separate evolution

kernels, and we restrict ourselves to the inclusive radiation pattern where possible. The

latter implies that in general we do not attempt to simulate the emission of an unordered

pair of partons according to the triple collinear splitting functions. The notable exception

to this is the treatment of flavor-changing splitting functions, where the implementation

of a 1 → 2 rather than a 1 → 3 transition is not possible due to local flavor conservation.

The generation of these contributions is described in detail in [55].1 The main remaining

complication in the implementation of the integrated NLO splitting functions arises from

the fact that they assume negative values in large regions of phase space, hence we poten-

tially need to generate branchings based on negative “probabilities”. To this end we use

the method developed in [14, 57, 58].

We start by formally replacing the leading-order splitting functions of eq. (3.2) with

the combined leading-order plus next-to-leading order evolution kernels.2

Pab(z, κ
2) = P

(0)
ab (z, κ2) +

αs

2π
P

(1)
ab (z, κ2) . (3.6)

As described in section 2, the soft enhanced part of P
(1)
qq and P

(1)
gg matches the term

αs/(2π)Γ(2) 2Ca/(1 − z), at leading order, which is included in the implementation of the

leading-order parton shower by rescaling the soft enhanced part of the splitting functions.

We therefore subtract this contribution from the NLO splitting kernel and define

P
(1)
ab (z, κ2)→ P

(1)
ab (z)− δab

2Ca

1− z Γ(2) . (3.7)

In addition, we include in the soft enhanced part of the leading-order splitting function the

three-loop coefficient Γ(3), computed in [65]3

P
(0)
ab (z, κ2)→ P

(0)
ab (z, κ2) + δab 2Ca

1− z
(1− z)2 + κ2

αs

2π

[
Γ(2) +

αs

2π
Γ(3)

]
. (3.8)

1The contribution from triple collinear splitting functions of type q → q′ and q → q̄ to the overall NLO

corrections is numerically small. A more detailed discussion can be found in [55].
2For a complete list of the NLO splitting functions see appendix A. Note that we do not require the

knowledge of p
V (1)
qq̄ in our approach, because flavor-changing splittings are generated fully differentially in

the 1→ 3 phase space.
3The normalization differs by factor four between our notation and that of [65].
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For final-state gluon evolution this requires the independent modification of both terms in

eq. (3.3).

Scale variations can be performed in the Dire showers by using a method simi-

lar to [66]. When varying the argument of the strong coupling, i.e. replacing αs(t) →
αs(c t) f(c, t), with c a constant, the appropriate counterterm at O(α2

s), which multiplies

the leading-order splitting functions, P
(0)
ab , reads4

f(c, t) =

nth+1∏
i=0

[
1− αs

2π
β0(t̄)L

]
, where L = log

ti
ti−1

, t̄ =
ti + ti+1

2
. (3.9)

We use the multiplicative threshold matching described in [66], as the additive matching

generates artificially large deviations in the case of two-loop and three-loop running of the

coupling. The product in eq. (3.9) runs over the number nth of parton mass thresholds in the

interval (t, c·t) with t0 = t, tnth+1 = c·t and ti are the encompassed parton mass thresholds.

If c < 1, the ordering is reversed to recover the correct sign. β0(t̄) is the QCD beta function

coefficient, which depends on the scale t̄ through the number of active parton flavors.

4 Dire predictions

We have implemented our new algorithms into the Dire parton showers, which implies two

entirely independent realizations within the general purpose event generation frameworks

Pythia [3, 67] and Sherpa [68, 69]. This section presents a first application of our new

algorithm to the simulation of the reactions e+e− →hadrons, pp → e+νe and pp → h.

We compare the magnitude of the next-to-leading order corrections and the size of their

uncertainties to the respective leading-order predictions. Note that we only quote the

renomalization scale uncertainties, which are the ones that can be expected to decrease

when moving from leading to next-to-leading order evolution. There are of course other

uncertainties, for example those related to the kinematics mapping and the choice of the

evolution variable in the parton shower. However, these effects arise identically both at

leading and at next-to-leading order, and they are therefore not included in the uncertainty

bands. In addition, nonperturbative effects will contribute their own uncertainty, which

is somewhat harder to quantify. However, it is expected that a reduced perturbative

uncertainty will lead to a more realistic extraction of nonperturbative model parameters,

and that the uncertianties on those parameters can therefore be reduced as well.

Figure 1 shows predictions from our new implementation compared to leading-order

results from the Dire parton shower for differential jet rates in the Durham scheme com-

pared to experimental results from the JADE and OPAL collaborations [70]. Results have

been obtained with Dire+Sherpa using the default settings of Sherpa version 2.2.3. The

perturbative region is to the right of the plots, and y ∼ 2.8·10−3 corresponds to the b-quark

mass. The simulation of nonperturbative effects dominates the predictions below ∼ 10−4.

In the perturbative region, the results are in excellent agreement with the experimental

4Note that the lowest-order DGLAP kernels, P
(0)
ab , are defined at O(αs), and we use a strict order count-

ing. The scale variations in our approach are therefore more conservative than the ones presented in [66].
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measurements. The shapes of distributions receive only minor changes compared to the

leading-order result, however, the uncertainties are greatly reduced.

Figure 2 shows a comparison for event shapes measured by the ALEPH collabora-

tion [71]. The perturbative region is to the right of the plot, except for the thrust distribu-

tion, where it is to the left. We notice some deviation in the predictions for jet broaden-

ing and for the C-parameter, which are largely unchanged compared to the leading-order

prediction. These deviations are mostly within the 2σ uncertainty of the experimental

measurements, and they occur close to the nonperturbative region, which indicates that

they may be related to hadronization effects.

In figure 3, we illustrate the effect of NLO kernels on differential jet resolutions in

Drell-Yan lepton-pair production as well as on Higgs-boson production in gluon fusion. In

both cases, the impact of varying the renormalization scale in the parton shower is greatly

reduced upon inclusion of NLO corrections, and shape-changes of O(10%) can be observed.

It is interesting to note that these shape changes have the opposite effect in Drell-Yan lepton

pair and Higgs boson production. This effect could not have been obtained by changing

the argument of αs at leading order only, as in eq. (3.9).

Figure 4 confronts Dire with Drell-Yan transverse momentum spectra measured by

ATLAS [72]. We limit the comparison to the soft and semi-hard region of transverse

momenta, pT < 30 GeV. Parton shower predictions are insufficient in the hard region,

and the shower is usually supplemented with fixed-order calculations through matching or

merging in order to improve upon this deficiency. Note that no tuning of Dire+Pythia

has been performed, neither in the default version nor for the present publication. Our

results have been obtained with Pythia 8.226, using the NNPDF 3.0 (NLO) PDF set [73],

αs(MZ) = 0.118 throughout the simulation. The ISR/FSR shower cut-off has been set

to 3 GeV2, and a primordial transverse momentum of k⊥ = 2 GeV was used. All other

parameters are given by the default tune of Pythia 8 [74]. NLO corrections improve the

agreement with data particularly in the region where resummation has a large impact.

5 Summary

In this paper we have presented an extension of the parton shower formalism to include,

for the first time, the DGLAP evolution at next-to-leading order precision for both ini-

tial and final state radiation. The new terms are of order α2
S , and they fall into three

categories: soft terms ∝ 1/(1−z) which are multiplied by the two-loop cusp anomalous di-

mension, and which are routinely included in parton shower simulations through a suitable

rescaling of the argument of the strong coupling. In addition there are genuine, non-trivial

higher-order terms which modify already existing leading order terms. Although they are

negative over a wide region of phase space we can include them as separate terms through

existing reweighting techniques. Finally, there are new structures which correspond to

flavor-changing transitions of the type q → q′ or q → q̄ and which originate in genuine

1→ 3 transitions. The algorithm for their simulation is detailed in a separate publication.

Including all these terms corresponds to adding the process-independent collinear enhanced

NLO corrections present in standard DGLAP evolution into the parton shower. The over-
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Figure 1. Results for leading and next-to-leading order DGLAP evolution in comparison to LEP

data from [70].

all effect of this increased precision is twofold. While for e−e+ annihilations to hadrons

the central values of distributions experience only marginal shifts, the situation is differ-

ent for distributions at hadron colliders. This is exemplified by the transverse momentum

distribution of Z-bosons produced at tree-level in qq̄ annihilation and the differential jet

rates in Z and Higgs boson production through gluon fusion, respectively, which experience

some shifts of up to about 10% relative to corresponding leading order distributions. In

both cases, the uncertainty from variations of the renormalization scale by factors of two is

significantly reduced when going from leading to next-to-leading order precision. For the

first time, we are able to quote a realistic renormalization scale uncertainty as we only add

renormalization counterterms which appear at the perturbative order to which we control

the expansion of the splitting functions.

While the work presented here represents a significant improvement over existing par-

ton showers, it includes only parts of the higher-order corrections. We did not improve upon

the leading color approximation typically used in the parton shower. Ways to include such

corrections have been discussed in [75]. Furthermore, we did not include the effect of higher-

order soft terms, i.e. the effect of multiple unordered soft emissions. We expect these terms

to have only limited impact on inclusive observables such as standard event shapes or the

transverse momentum of singlet particles produced at hadron colliders. They will mostly

contribute to the further stabilization of perturbative predictions for these observables.
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Figure 2. Results for leading and next-to-leading order DGLAP evolution in comparison to LEP

data from [71].

However, we appreciate that they will certainly impact on non-global observables such as

out-of-cone radiation which in turn renders their inclusion an important task for the future.
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A Next-to-leading order splitting functions

The components of the unregularized space-like quark splitting functions in eq. (2.9) are

given by

pV (1)
qq (z)=p(0)

qq (z)

[(
β0 logz+Γ(2)

)
−2CF logz

(
log(1−z)+

3

4

)
+
CA

2
log2z

]
− 4

3
CFTF (1−z)

−C2
F

[(
3

2
+

7

2
z

)
logz+

1

2
(1+z)log2z+5(1−z)

]
+CFCA

[
(1+z)logz+

20

3
(1−z)

]
,

(A.1)
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Figure 3. Predictions for leading and next-to-leading order DGLAP evolution for the differential

kT -jet resolution parameters in pp → e+e− + X (LHC
√
s = 7 TeV) and pp → h + X (LHC√

s = 8 TeV).

pS(1)
qq (z)=CFTF

[
−(1+z)log2z+

(
8

3
z2+5z+1

)
logz− 56

9
z2+6z−2+

20

9z

]
. (A.2)

p(1)
qg (z)=p(0)

qg (z)

[
2β0 log(1−z)−TF

(
4

3
z+

20

9

)
−CF

(
3log(1−z)+log2(1−z)

)]
(A.3)

+C2
F

[
− 5

2
− 7z

2
+

(
2+

7z

2

)
logz−

(
1− z

2

)
log2z−2z log(1−z)

]
+CFCA

[
28

9
+

65z

18
+

44z2

9
−
(

12+5z+
8z2

3

)
logz+(4+z)log2z+2z log(1−z)

+S2(z)p̂(0)
qg (−z)+

(
1

2
−2logz log(1−z)+

1

2
log2z+log2(1−z)−π

2

6

)
p̂(0)
qg (z)

]
.

We use the auxiliary function S2 defined in [76]

S2(z) = −2 Li2

(
1

1 + z

)
+

1

2
log2 z − log2(1− z) +

π2

6
. (A.4)
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Figure 4. Results for leading and next-to-leading order DGLAP evolution in comparison to ATLAS

data from [72].

The unregularized gluon splitting functions at NLO are given by

p(1)
gq (z)=CFTF

[
p(0)
gq (z)

(
2log2

(
1−z
z

)
−4log

(
1−z
z

)
− 2π2

3
+10

)
(A.5)

+4−9z−(1−4z)logz−(1−2z)log2z+4log(1−z)

]
+CAS2(z)p(0)

gq (−z)

+CATF

[
p(0)
gq (z)

(
−log2z+

44

3
logz−2log2(1−z)+4log(1−z)+

π2

3
− 218

9

)
+

182

9
+

14z

9
+

40

9z
+

(
136z

3
− 38

3

)
logz−4log(1−z)−(2+8z)log2z

]
.

p(1)
gg (z)=p(0)

gg (z)

[
Γ(2)+CA

(
−2logz log(1−z)+

1

2
log2z

)]
+CAS2(z)p(0)

gg (−z) (A.6)

+CFTF

[
−16+8z+

20z2

3
+

4

3z
−(6+10z)logz−(2+2z)log2z

]
+CATF

[
2−2z+

26

9

(
z2− 1

z

)
− 4

3
(1+z)logz

]
+C2

A

[
27

2
(1−z)+

67

9

(
z2− 1

z

)
−
(

25

3
− 11z

3
+

44z2

3

)
logz+4(1+z)log2z

]
.
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The components of the unregularized time-like quark splitting functions in eq. (2.9) are

given by

pV (1)
qq (z)=p(0)

qq (z)

[(
β0 logz+Γ(2)

)
+2CF logz

(
log

1−z
z

+
3

4

)
+
CA

2
log2z

]
− 4

3
CFTF (1−z)

−C2
F

[(
7

2
+

3

2
z

)
logz− 1

2
(1+z)log2z+5(1−z)

]
+CFCA

[
(1+z)logz+

20

3
(1−z)

]
,

(A.7)

pS(1)
qq (z) = CFTF

[
(1 + x) log2 x−

(
8

3
z2 + 9z + 5

)
log z +

56

9
z2 + 4z − 8− 20

9z

]
. (A.8)

p(1)
qg (z)=C2

F

[
p̂(0)
qg (z)

(
log2(1−z)+4logz log(1−z)−8S1(z)− 4

3
π2

)
(A.9)

− 1

2
+

9z

2
−
(

8− z
2

)
logz+2z log(1−z)+

(
1− z

2

)
log2z

]
+CAS2(z)p(0)

qg (−z)

+CFCA

[
62

9
− 35z

18
− 44z2

9
+

(
2+12z+

8

3
z2

)
logz−2z log(1−z)−(4+z)log2z

−p̂(0)
qg (z)

(
2logz log(1−z)+3logz+

3

2
log2z+log2(1−z)−8S1(z)− 7π2

6
− 17

18

)]
.

We use the auxiliary function S1 defined in [76]

S1(z) = Li2(z) + log z log(1− z)− π2

6
. (A.10)

The unregularized gluon splitting functions at NLO are given by

p(1)
gq (z)=T 2

F

[
− 8

3
−p(0)

gq (z)

(
16

9
+

8

3
logz+

8

3
log(1−z)

)]
+CFTF

[
p(0)
gq (z)

(
−2log2(z(1−z))−2log

(
1−z
z

)
+16S1(z)+2π2−10

)
−2+3z−(7−8z)logz−4log(1−z)+(1−2z)log2z

]
+CAS2(z)p(0)

gq (−z)

+CATF

[
− 152

9
+

166z

9
− 40

9z
−
(

76z

3
+

4

3

)
logz+4log(1−z)+(2+8z)log2z

+p̂(0)
gq (z)

(
8logz log(1−z)−log2z− 4

3
logz+

10

3
log(1−z)

+2log2(1−z)−16S1(z)− 7π2

3
+

178

9

)]
(A.11)

p(1)
gg (z)=p(0)

gg (z)

[
2β0 logz+Γ(2)+CA logz

(
2log(1−z)− 3

2
log2z

)]
+CAS2(z)p(0)

gg (−z)

+CFTF

[
−4+12z− 164

9
z2

(
10+14z+

16z2

3
+

16

3z

)
logz+

92

9z
+2(1+z)log2z

]
+CATF

[
2−2z+

26

9

(
z2− 1

z

)
− 4

3
(1+z)logz

]
+C2

A

[
27

2
(1−z)+

67

9

(
z2− 1

z

)
+

(
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− 25

3
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logz−4(1+z)log2z
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. (A.12)
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1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].

[69] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007

[arXiv:0811.4622] [INSPIRE].

[70] JADE and OPAL collaborations, P. PfeifenSchneider et al., QCD analyses and

determinations of αs in e+e− annihilation at energies between 35 GeV and 189 GeV, Eur.

Phys. J. C 17 (2000) 19 [hep-ex/0001055] [INSPIRE].

[71] ALEPH collaboration, A. Heister et al., Studies of QCD at e+e− centre-of-mass energies

between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

[72] ATLAS collaboration, Measurement of the Z/γ∗ boson transverse momentum distribution in

pp collisions at
√
s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145

[arXiv:1406.3660] [INSPIRE].

[73] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04

(2015) 040 [arXiv:1410.8849] [INSPIRE].

[74] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys.

J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

[75] S. Plätzer and M. Sjödahl, Subleading Nc improved parton showers, JHEP 07 (2012) 042

[arXiv:1201.0260] [INSPIRE].

[76] R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part.

Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [INSPIRE].

– 18 –

https://doi.org/10.1140/epjc/s10052-013-2350-9
https://doi.org/10.1140/epjc/s10052-013-2350-9
https://arxiv.org/abs/1211.7204
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7204
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,15,438%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,46,641%22
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B126,298%22
https://arxiv.org/abs/hep-ph/0312355
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0312355
https://doi.org/10.1103/PhysRevD.81.074009
https://doi.org/10.1103/PhysRevD.81.074009
https://arxiv.org/abs/0911.4980
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4980
https://doi.org/10.1007/JHEP05(2011)035
https://arxiv.org/abs/1101.4953
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4953
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4005
https://arxiv.org/abs/1605.04692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.04692
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3012
https://doi.org/10.1088/1126-6708/2004/02/056
https://arxiv.org/abs/hep-ph/0311263
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0311263
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4622
https://doi.org/10.1007/s100520000432
https://doi.org/10.1007/s100520000432
https://arxiv.org/abs/hep-ex/0001055
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0001055
https://doi.org/10.1140/epjc/s2004-01891-4
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C35,457%22
https://doi.org/10.1007/JHEP09(2014)145
https://arxiv.org/abs/1406.3660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3660
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8849
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://arxiv.org/abs/1404.5630
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5630
https://doi.org/10.1007/JHEP07(2012)042
https://arxiv.org/abs/1201.0260
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0260
https://inspirehep.net/search?p=find+J+CMPCE,8,1

	Introduction
	Extension of the parton-shower formalism
	Unconstrained evolution with identified final-states
	Splitting functions

	Implementation in the Dire parton shower
	Parton-shower model at leading order
	Extension to the next-to-leading order

	Dire predictions
	Summary
	Next-to-leading order splitting functions

