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Holographic duality is a correspondence relating a quantum field theory on a given space-

time, referred to as the bulk, to one on its boundary, possibly in different ranges of cou-

plings. The conjectured duality between a theory of closed strings in the n-dimensional

anti-de Sitter space as the bulk and a conformal field theory on the boundary is an exam-

ple of holographic duality [1–3]. It relates observables in the bulk anti-de Sitter space at

weak coupling to correlation functions of a strongly coupled theory on the boundary and

vice versa. The symmetries of a dual pair thus related ensure that both theories have the

same number of degrees of freedom, although the scheme of organizing them into fields

are rather different in the two theories. While the duality is expected to work both ways

as an equivalence relation, in practice, obtaining the theory in a given bulk from a given

theory on the boundary appears to be more difficult. This is known as the problem of

bulk-reconstruction.

Within the scope of scalar field theories both in the bulk and on the boundary, to which

we restrict ourselves in this note, a bulk-reconstruction procedure has been invented [4–17].

While the normalizable modes of the bulk scalar fields are identified with operators of the

conformal field theory on the boundary, the latter produce bulk fields via an integral kernel,

called the smearing function.

In this note we relate the bulk reconstruction problem to integral geometry. A scalar

field on the boundary is taken to be the Gel’fand-Graev-Radon transform of a scalar field in

the anti-de Sitter space [18]. This is a generalization of the Radon transform on Euclidean

spaces to Lobachevskian spaces. Integral geometry studies the problem of determination

of a function on a manifold from the integral of the function on a family of submanifolds.

For the anti-de Sitter space, realized through a quadratic form in the Euclidean space of

one higher dimension, a suitable choice of the submanifolds is obtained via the null cone.

The boundary is obtained as a limiting submanifold of the family. We show that if the

Gel’fand-Graev-Radon transform of a function possesses certain scaling properties on the

null cone, then it can be used to write the function in the anti-de Sitter space from its

integral on the boundary. Distributions or fields can be treated similarly.

The invertible Gel’fand-Graev-Radon transform induces a transform between scalar

field actions in the bulk and on the boundary, namely, the two actions, while expressed

in terms of different fields, are numerically equal. We obtain the induced action on the

boundary corresponding to a self-interacting scalar field theory in the n-dimensional bulk,

in particular, a φk-theory. The construction guarantees that the theory on the bound-

ary is conformal. Writing the corresponding generating functionals then leads to relating

correlation functions of the two theories.

Let us start by recalling some aspects of the Gel’fand-Graev-Radon (GGR) transform.

The most studied arena for Radon transform is manifolds of constant curvature. Distribu-

tions on Grassmannian submanifolds of different codimensions are obtained through the

Radon transform, which can then be inverted [19]. One example of such submanifolds is

the set of geodesics [20]. We shall restrict to another one-dimensional submanifold, the set

of lines through the origin. We begin with a discussion of some features of it to be used
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Figure 1. Null cone and AdSn
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Figure 2. Null cone and Sn−1.

here. LetM denote the n-dimensional Lobachevskian space or the Euclidean anti-de Sitter

space. In this note n > 1. In the coordinates {Xa|a = 0, · · · , n} of the (n+ 1)-dimensional

affine space Rn+1 with metric ηab = diag(−1, 1, · · · , 1), M is defined as the hypersurface

ηabX
aXb = −L2, (1)

where L is a real number. An equivalent description of M is as the set of straight lines

passing through the origin of Rn+1 within the region

ηabX
aXb < 0. (2)

The isomorphism between these two stems from the fact that each of these lines intersects

the hypersurface (1) at a single point. This is depicted in figure 1 for n = 2. We shall also

consider the n-dimensional positive null cone C +
n defined as the set of null vectors ξa in

Rn+1, that is,

ηabξ
aξb = 0, ξ0 > 0, (3)

also shown in figure 1. For a point X inM and a point ξ in C +
n , let us consider the family

of hypersurfaces Sn−1(p), given by

Σ := ηabX
aξb + p = 0, (4)

where p is a real parameter and Xa and ξa satisfy (1) and (3), respectively. For a fixed

non-zero p this is called a horosphere [18]. The only solution for X when p vanishes is

Xa = ξa, points on the cone. Looked upon as a subspace of the cone, this is depicted in

figure 2. Every line on the cone passing through the apex intersects Sn−1 only once. The

hypersurface Sn−1 can alternatively viewed as a subspace of M. Using the isomorphism

of M with the lines through the origin, these two descriptions coincide as X0 −→ ∞.

Hence the boundary of M falls on the cone C +
n . For a point ξ on the cone C +

n , the GGR

transform of a smooth function f with bounded support on M is given by the integral

hp(ξ) =

∫
M
f(X)δ

(
ηabX

aξb + p
)
dnX, (5)
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where dnX = dX1dX2···dXn

X0 is the volume element on M induced by (1). The inverse

transform, when exists, yields a function at a point inM from a function on the light cone as

f(X) = cn

∫
C +
n

hp(ξ)

|ηabXaξb + p|n
dnξ, (6)

where cn is a constant, depending on the dimension n and dnξ denotes the volume element

on the null cone C +
n induced by (3), namely,

dnξ =
1

ξn
dξ0 · · · dξn−1. (7)

Consistency of (5) and (6) requires

cn

∫
C +
n

δ
(
ηabX

aξb + p
)

|ηabY aξb + p|n
dnξ = δM(X − Y ), (8)

where δM(X − Y ) denotes the delta function on M. The constant cn is determined from

the normalization of the delta function as

cn = 2Lα2 sin nπ
2

(2
√
π)n−1

Γ(n)

Γ(n+1
2 )

, (9)

where we have introduced a dimension-less constant α = p/L. Computation of the constant

is relegated to the end.

The GGR transform (5) of a function and its inverse (6) pertain to M and the null

cone. In order to relate it to the bulk reconstruction we need to first specify the boundary

of M and relate it to the null cone. Let us consider an affine chart on M,

X0 =
zL

2

(
1 +

1 + x2

z2

)
, X i =

xiL

z
, Xn =

zL

2

(
1− 1− x2

z2

)
, (10)

x2 =

n−1∑
i=1

(xi)2, −∞ < xi <∞, 0 6 z <∞; i = 1, · · · , n− 1. (11)

These solve (1). The metric g on M is then given by

ds2 =
L2

z2

(
dz2 +

n−1∑
i=1

(dxi)2

)
, (12)

the resulting volume element being

dnX =
√
gdzdn−1x =

Ln

zn
dzdn−1x. (13)

In this chart the boundary Bn−1 that we shall be concerned about is located at z = 0,

which in turn leads to X0 −→∞. The null cone C +
n is a metric cone R+×ξ0 Sn−1 over an

(n− 1)-dimensional sphere Sn−1 with chart

ξi =
2x̃i

1 + x̃2
ξ0, ξn = −1− x̃2

1 + x̃2
ξ0 (14)

x̃2 =

n−1∑
i=1

(x̃i)2, −∞ < xi <∞, 0 6 ξ0 <∞; i = 1, · · · , n− 1. (15)

– 3 –
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These solve (3). In this chart the volume element (7) takes the form

dnξ =
2n−1(ξ0)n−2

(1 + x̃2)n−1 dξ
0 dn−1x̃ . (16)

Substituting (10) and (14) in (4) we obtain the equation for Sn−1(p) in terms of the affine

coordinates as (
z2 +

∑
(xi − x̃i)2

)
ξ0L = zp

(
1 +

∑
(x̃i)2

)
. (17)

In the limit ξ0 −→ ∞ and z −→ 0, this leads to xi −→ x̃i, describing the boundary. Let

us note that vanishing of p results in cn = 0, by (9), consistent with the fact that there

is no “bulk” in this limit. In the following, we shall consider integration on the cone, as

in (6). For such purposes, it is important to observe that the sphere at the base of the

cone admits smooth deformation to the hypersurface given by a constant value of ξ0 and

so does the boundary Bn−1 too.

Let us assume that the previous considerations hold good for quantum fields. Let φ̃(x̃)

be a conformal field of dimension ∆ on Bn−1, whose coordinates are taken to be x̃. Then,

φ̃(λx̃) = λ−∆φ̃(x̃), (18)

where λ = λ(x̃) is any function on Bn−1. Let us assume that the function (5) is given by

the conformal field as [21]

hp(ξ) = hp(ξ
0, · · · , ξn−1)

def
= φ̃

(
2x̃1

1 + x̃2
ξ0,

2x̃2

1 + x̃2
ξ0, · · · , 2x̃n−1

1 + x̃2
ξ0

)
=

(
2ξ0

1 + x̃2

)−∆

φ̃(x̃),

(19)

where we have used (14) at the second step. Inserting this and (16) in (6) we obtain

φ(z, x) = φ0(n,∆)

∫
K(z, x|x̃)φ̃(x̃) dn−1x̃ , (20)

with

K(z, x|x̃) =

(
z2 +

∑
(xi − x̃i)2

z

)∆+1−n
, (21)

where we denoted the field in M as f(X) = φ(z, x). The constant φ0(n,∆) is given by

φ0(n,∆) =
2n−1−∆cn
α1+∆Ln

∫ ∞
0

ζn−2−∆

|1− ζ|n
dζ, (22)

where we have defined

ζ =

(
ξ0

zα

)
z2 + (x− x̃)2

1 + x̃2
. (23)

The integral in ζ can be evaluated using the formula∫ ∞
0

xa

(1− x)n
dx =

Γ(a+ 1)Γ(1− n)

Γ(a− n+ 2)
, (24)
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which, in turn, can be obtained by writing the denominator of the integrand as a Barnes’

integral. This yields

φ0(n,∆) =
2n−∆−1cn
α∆+1Ln

π

sinnπ

Γ(∆ + 1)

Γ(n)Γ(∆ + 2− n)
(1 + (−1)n). (25)

Both the expression for φ0 and the formula (24) are singular, as written, since n is an

integer and n > 1. In order to obtain the normalized GGR transform these are to be

evaluated in a regularized manner. Using the formula Γ(z)Γ(1 − z) = π/ sinπz, plugging

in the value of cn from (9) and further using the regularized expression

(1 + (−1)n)
sin nπ

2

sinnπ
= einπ/2 (26)

we finally obtain φ0(n,∆) = Φ0(n,∆)/Ln−1, with

Φ0(n,∆) =
einπ/2

(2α)∆−1π(n−3)/2

Γ(∆ + 1)

Γ(∆− n+ 2)Γ(n+1
2 )

. (27)

Using this expression in (20) gives the formula for bulk reconstruction of a conformal field

of scaling dimension ∆ from the boundary of an anti-de Sitter space of dimension n [6].

The expression (26) requires qualification. The inversion of the Radon transform is a well-

known ill-posed problem. It involves computing integrals with prescribed regularization to

determine the constant cn [18]. In the present case, the assumption of conformality, (19)

brings in factors which conspire to cancel the singularities, yielding the non-singular ex-

pression (26).

The bulk field φ expressed as the inverse transform (20) when operated on by the

Laplacian �M on M obeys the equation

�Mφ(z, x) =
1
√
g
∂µ (
√
ggµν∂νφ) =

∆(∆− n+ 1)

L2
φ(z, x), (28)

implying that the scalar field φ is massive, with mass m given by

m2 = ∆(∆− n+ 1)/L2. (29)

Now that we have obtained the bulk reconstruction formula as a transform which is

invertible, we can use it to induce actions from the bulk to the boundary and vice versa.

For example, using the metric (12), the action of a free scalar field in M is

S(φ) =

∫
dn−1xdz

√
g
[
gµν∂µφ(z, x)∂νφ(z, x) +m2φ2(z, x)

]
. (30)

Plugging in (20) with (27) in this action we obtain the action on the boundary. From the

first term of the (30), we obtain

S̃(φ̃) = S(φ) =
Φ2

0(∆ + 1− n)2

Ln

∫
P(x̃, x̃′)φ̃(x̃)φ̃(x̃′)dn−1x̃dn−1x̃′, (31)

– 5 –
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where P involves integrations over z and xi, i = 1, · · · , n − 1. Let us emphasize that the

two actions S and S̃ live on different spaces and contain different fields, but are numerically

equal. This is a consequence of the fact that the holographic relation between the fields

φ and φ̃ has been expressed as an invertible transform. The integration over z can be

evaluated using, say, Mathematica, to obtain it in the form of a sum of terms like

P(x̃, x̃′) ∼
∫
|x− x̃|r|x− x̃′|sG

(
|x− x̃|2

|x− x̃′|2

)
dn−1x, (32)

with r + s = 2∆ − 3n + 3 and some function G. Exact expressions are given in the

end. Hence, using (18), under the scaling x̃ −→ λx̃ accompanied by a change of variables

x −→ λx, P scales as P(x̃, x̃′) ∼ |x̃ − x̃′|2(1+∆−n), and the action S̃ remains invariant.

Consequently, the action S̃ on the boundary can be written as

S̃ =
P0

Ln

∫
φ̃(x̃)φ̃(x̃′)

|x̃− x̃′|2(n−∆−1)
dn−1x̃dn−1x̃′, (33)

where P0 depends on the mass.

Let us now consider a self-interacting scalar field in the bulk and derive relations

between the correlation functions of the bulk and the boundary theories. Adding a potential

V (φ) to the bulk action (30) we consider

SI(φ) = S(φ) + Sint(φ), (34)

where Sint(φ) =
∫
dzdn−1xV (φ). The generating functional of the interacting theory,

ZI =

∫
Dφ eSI(φ), (35)

can be expressed in terms of that of the non-interacting theory plus a source term. Intro-

ducing a source J in the bulk we write

S(φ, J) = S(φ) +

∫
√
gJ(z, x)φ(z, x)dzdn−1x. (36)

Then

ZI = e
Sint

(
1√
g
δ
δJ

)
Z[J ]

∣∣∣∣
J=0

, (37)

where

Z[J ] =

∫
Dφ eS(φ,J). (38)

Correlation functions are computed as moments by differentiating Z[J ] with respect to the

source. Using (31) and the transform (20) we rewrite the source term in S(φ, J) in terms

of φ̃ to obtain

S̃(φ̃, J̃) = S̃(φ̃) +

∫
J̃(x̃)φ̃(x̃)dn−1x̃, (39)

where we have defined

J̃(x̃) =
Φ0(n,∆)

Ln−1

∫
√
g K(z, x|x̃)J(z, x)dz dn−1x. (40)

– 6 –
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Derivatives with respect to the sources are related by

δ

δJ ′(z, x)

def
=

1
√
g

δ

δJ(z, x)
=

Φ0(n,∆)

Ln−1

∫
dn−1x̃ K(z, x|x̃)

(
δ

δJ̃(x̃)

)
. (41)

Equality of the actions S and S̃ then implies that the correlation functions computed in

the bulk and in the boundary theories, respectively as normalized J-moments of Z[J ] and

J̃-moments of Z̃, with the latter defined as

Z̃[J̃ ] =

∫
Dφ̃ eS̃(φ̃,J̃), (42)

are equal.

Let us illustrate this with an example by considering the interaction potential

V (φ) = λφ(z, x)k, for a fixed positive integer k. The `-th loop contribution to the two-

point function is

〈φ(z1, x1)φ(z2, x2)〉` =
λ`

` !

δ2

δJ ′(z1, x1)δJ ′(z2, x2)

∏̀
i=1

∫
dz′id

n−1yi
δk

δJ ′(z′i, yi)
k
Z[J ]

∣∣∣∣∣
J=0

. (43)

Using Z̃[J̃ ] in place of Z[J ] and (41), we obtain

〈φ(z1, x1)φ(z2, x2)〉` =
λ`Φk`+2

0

L(k`+2)(n−1)

∫
dn−1x̃1d

n−1x̃2

∏̀
i=1

k∏
j=1

dz′id
n−1yid

n−1ỹ(i,j) (44)

K(z1, x1|x̃1)K(z2, x2|x̃2)K(z′i, yi|ỹ(i,j))

〈
φ̃(x̃1)φ̃(x̃2)

∏̀
ı=1

k∏
=1

φ̃(ỹ(ı,))

〉
,

where

〈φ̃(x̃1)φ̃(x̃2) · · · φ̃(x̃m)〉 =

m∏
i=1

δ

δJ̃(x̃i)
Z̃[J̃ ]

∣∣∣∣∣
J̃=0

(45)

denotes the m-point function of the boundary theory. This feature generalizes. Generally,

the `-th loop contribution to the p-point function in the bulk is determined by the (k`+p)-

point function of the boundary theory.

To conclude, we have obtained the HKLL bulk reconstruction formula as the Gel’fand-

Graev-Radon transform on the n-dimensional Euclidean anti-de Sitter space for n > 1.

This is achieved with the assumption (19) that the transform on the positive light cone

is given by a conformal field on the boundary. This allows us to relate the scalar field

actions in the bulk and that at the boundary. While expressed in terms of the transformed

fields the actions are numerically equal. We use this to write the generating functionals in

the two theories, incorporating interactions in the bulk. It is then showed that for a φk

interaction term in the bulk the p-point correlation function at the `-th loop is related to

the (p+ k`)-point correlation function in the boundary, in keeping with holography.

Integral geometry has been discussed earlier in the context of AdS-CFT duality. In one

approach the CFT was associated to a Fourier transform [22], which in turn was related

– 7 –
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to the Gel’fand-Graev technique. In another approach [23] OPE blocks on the kinematic

space defined by the configuration space of two points on AdS3, was considered. The

kinematic space, having double the dimension, is looked upon as the space of geodesics

in the bulk ending on the pair of points at the boundary. Geodesic Radon transform was

then used to interpret the OPE blocks in the bulk as “geodesic operators”, relating the

correlators in terms of the length of geodesics in the bulk. The approach we have taken

in here is a more direct one. We consider the boundary of AdSn and identify it on the

positive light cone. Then, an inverse Radon transform, in conjunction with the assumption

of conformality on the light cone (19) is used to obtain the bulk fields. The assumption of

conformality on C +
n restricts the space of distributions on the boundary, which otherwise

may be taken to be the Schwartz space. Indeed, it is because of this assumption that the

otherwise ill-defined normalization constant cn is multiplied with an extra term to make

the coefficient of the transform finite, as in (26). We believe that this computation will be

useful in understanding the structure of the bulk reconstruction procedure.

Computation of cn in (9). In order to compute the constant cn it is convenient to first

write (8) after integrating on X as

I =

∫
M

∫
C +
n

δ
(
ηabX

aξb + p
)

|ηabY aξb + p|n
dnξdnX. (46)

We shall not perform the integration over X, but keeping it in the integral is useful to keep

track of factors occurring in change of variables. Interpreting the integral as

I =

∫
M

 ∫
C +
n ∩Sn−1

1

|ηabY aξb + p|n
dnξ

 dnX, (47)

we perform the integration over ξ by restricting dξ0dn−1x̃ to Sn−1 as dn−1x̃/ ∂Σ
∂ξ0 , with ξ0

evaluated in terms of x̃ from (17). Moreover, we substitute the affine coordinates (10) for

X and Y as (z, x) and (w, x′), respectively along with (13) in the integral. We first define

new variables as

z = wτ, x = wx̂, x′ = wx̂′, x̃ = ŵ̃x. (48)

Then with a further change of variables

x̂ = ̂̃x+ y, x̂− x̂′ = r, (49)

we rewrite the integral as

I =
2n−1

Lα2

∫
(τ2 + y2)

|τ2 + y2 − τ(1 + (y − r)2)|n
dτ

τ
dn−1rdn−1y. (50)

Using the symmetries ofM we now set r = 0 in the integrand [18], replacing the integration

over r with the volume of the (n − 1)-dimensional sphere, Vn−1 = 2π(n−1)/2

Γ((n−1)/2) . Defining

further, y =
√
τρ, the integral finally assumes the form

I =

∫ 1

0

[
2nπ(n−1)/2Vn−1

α2LΓ((n− 1)/2)

(∫ 1

0

(1 + ρ2)ρn−2

(1− ρ2)n
dρ

)(
(1 + τ)(1 + τ2n−2)

(1− τ)n
τ−(n+1)/2

)]
dτ,

(51)

– 8 –
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Evaluating the integration over ρ it can be seen that the integrand inside the square braces

is supported at τ = 1, which corresponds to z = w. The integrand is thus a delta function,

as in (8), with strength 1/cn, with cn given by (9).

Constants appearing in the action. The kernel P(x̃, x̃′) in (31) is

P(x̃, x̃′) =

∫ (
P1(x, x̃, x̃′) +

n−1∑
i=1

(aibi)P2(x, x̃, x̃′) +m2P3(x, x̃, x̃′)

)
dn−1x, (52)

where we have defined ai = xi − x̃i and bi = xi − x̃′i. The three functions are written in

terms of the Gaussian hypergeometric function F as

P1(x, x̃, x̃′) = a−2n+2∆+2b1−n(3+n2−4n)
Γ(n−3

2 )Γ(n−2∆−1
2 )

8Γ(n−∆)
F
(
n−2∆−1

2
,n−∆; 1−n

2
; b

2

a2

)
+(a−2n+2∆+2b1−n+a2∆−2nb3−n)(4n+2∆(n−3)−n2−3)

Γ(n−3
2 )Γ(n−2∆−1

2 )
8Γ(n−∆)

F
(
n−2∆+1

2
,n−∆; 3−n

2
; b

2

a2

)
+a2∆−2nb3−n(n2+4∆2−4n∆−1)

Γ(n−3
2 )Γ(n−2∆−1

2 )
8Γ(n−∆)

F
(
n−2∆+3

2
,n−∆; 5−n

2
; b

2

a2

)
−(a−3n+2∆+1b2+a−3n+2∆+3)(3n2−2∆−2n∆−3)

Γ(−n+1
2 )Γ

(
3(n−1)

2 −∆

)
8Γ(n−∆)

F
(

3n−2∆−1
2

,n−∆;n+1
2

; b
2

a2

)
+a−3n+2∆+1b2(3+9n2+4∆2+8∆−12n∆−14n)

Γ(−n+1
2 )Γ

(
3(n−1)

2 −∆

)
8Γ(n−∆)

F
(

3n−2∆+1
2

,n−∆;n+3
2

; b
2

a2

)
−a−3n+2∆+3(n2−1)

Γ(−n+1
2 )Γ

(
3(n−1)

2 −∆

)
8Γ(n−∆)

F
(

3n−2∆−3
2

,n−∆;n−1
2

; b
2

a2

)
(53)

P2(x, x̃, x̃′) = a2∆−3n+1 Γ
(

1−n
2

)
Γ
(

3n−2∆−1
2

)
2Γ(n−∆)

F

(
3n− 2∆− 1

2
, n−∆;

n+ 1

2
;
b2

a2

)
+ a2∆−2nb1−n

Γ
(
n−2∆+1

2

)
Γ
(
n−1

2

)
2Γ(n−∆)

F

(
n− 2∆ + 1

2
, n−∆;

3− n
2

;
b2

a2

)
(54)

P3(x, x̃, x̃′) = a2∆−3n+3 Γ
(

3n−2∆−3
2

)
Γ
(

1−n
2

)
2Γ(n−∆− 1)

F

(
3n− 2∆− 3

2
, n−∆− 1;

n+ 1

2
;
b2

a2

)
+ a2∆−2n+2b1−n

Γ
(
n−2∆−1

2

)
Γ
(
n−1

2

)
2Γ(n−∆− 1)

F

(
n−2∆−1

2
, n−∆−1;

3−n
2

;
b2

a2

)
(55)

The formulas are written in the least cluttered form. The Gamma functions are to be

analytically continued depending on the values of n and ∆.
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