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1 Introduction and summary

A topological phase of matter with a symmetry G is an equivalence class of gapped quantum

lattice systems with a symmetry G. One can study either ground states or Hamiltonians.

For classification purposes, it is the same [7]. In terms of ground states, the equivalence

relations are of two kinds: tensoring with a product state, eg. the ground state of a trivial

paramagnet (this adds new degrees of freedom), and local unitary transformations of the

ground state commuting with G. Topological phases of matter can be “stacked together”,

by taking tensor product of Hilbert spaces, Hamiltonians, and ground states, and taking

the G symmetry of the stack to be the diagonal one. This operation makes the set of

topological phases with a symmetry G into a commutative unital semigroup, a set with an

associative and commutative binary operation and a neutral element, but not necessarily

with an inverse for every element. A short-range-entangled (SRE) topological phase with

symmetry G is a topological phase with symmetry G which has an inverse. SRE topological

phases in d spatial dimensions with symmetry G form an abelian group.

SRE topological phases are interesting in part because they are more manageable

than general topological phases but still retain many interesting topological properties.

Fermionic SRE topological phases (FSRE phases) are particularly rich. Free FSRE phases,

ie. equivalence classes of quadratic Hamiltonians of hopping fermions, have been classified

in all spatial dimensions [1, 2]. In the interacting case, there is a fairly complete picture

of FSRE phases in dimensions 1 and 2 [3, 5, 10, 11, 17, 18] (the abelian group structure

on the set of 1d FSREs was recently studied in [12, 13]). Gu and Wen also constructed a

large class of FSRE phases in all dimensions using the “supercohomology” approach [14].

But it is clear by now that this construction does not produce all possible FSRE phases.

It was conjectured in [15] that FSRE phases can be classified using spin-cobordism1 of

the classifying space of G. This conjecture is supported by a recent mathematical result

that relates (spin) cobordisms with unitary invertible (spin) TQFT [24]. The drawback of

this approach is that the relation between TQFTs and topological phases of matter is not

well understood. In particular, given a spin-cobordism class it is not clear in general how

to construct a lattice fermionic system which belongs to the corresponding FSRE phase.

Neither is it clear which physical properties distinguish systems corresponding to different

cobordism classes.

1This is a refinement of the supercohomology proposal of [14].
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In dimensions 1 and 2 these problems have been solved, at least in the case when G

acts unitarily. For example, 1d FSRE phases are classified by a triple [3, 5]:

(ν, ρ, σ) ∈ H2(G,R/Z)×H1(G,Z2)×H0(G,Z2) (1.1)

To each such triple one can assign a concrete integrable lattice Hamiltonian as well as a

spin-cobordism class of BG [10] generalizing [20, 21]. The physical significance of each

member of the triple is understood (they describe properties of the edge modes of the

system). Similar results for 2d FSRE systems have been obtained in [10, 11].

The main goal of this paper is to extend some of these results to dimension 3. Our

approach is based on the idea of bosonization/fermionization. It is a well-known result that

every lattice fermionic system in one spatial dimension corresponds to a lattice bosonic

system with a global Z2 symmetry. This is usually explained using the Jordan-Wigner

transformation. In [10] it was argued that one can obtain fermionic systems in d spatial

dimensions starting from bosonic systems with a global (d−1)-form Z2 symmetry generated

by a fermionic quasiparticle. More precisely, the Z2 symmetry must have a particular ’t

Hooft anomaly which is trivialized when the spin structure is introduced. The fermionic

system can be recovered by gauging the Z2 symmetry, i.e. by coupling the bosonic system

to a dynamical d-form gauge field valued in Z2 as well as a simple fermionic system. In

1d and 2d every FSRE phase arises in this way from a suitable bosonic system, and it is

natural to conjecture that this is also true in higher dimensions.

In fact, we will argue that in 3d a new phenomenon occurs which makes the bosoniza-

tion approach a bit more involved. Namely, the fermion parity operator (−1)F can get

contributions from both particle and string states, and the string contribution cannot be

written in a local way. Microscopically, these strings carry a 1d FSRE phase (the Kitaev

chain [1]), which may have a fermionic ground state depending on how it is embedded

into space. We call these objects Kitaev strings. From the mathematical viewpoint, this

means that the bosonic shadow has both 2-form and 1-form global Z2 symmetries, with

a nontrivial “interaction” between them, and both need to be gauged in order to get an

FSRE phase. We propose a generalization of the Gu-Wen supercohomology which accounts

for this new phenomenon. We also write down a concrete 3d lattice bosonic model which,

when coupled to a background G gauge field, gives the bosonic shadow of a general 3d

FSRE phase. This theory is interesting in its own right as a very simple non-abelian 3+1d

topological order, analogous to the Ising anyons in 2+1d.

The organization of the paper is as follows. In sections 2 and 3 we recall topological

bosonization in one and two spatial dimensions and how it is used to classify FSRE phases.

We also interpret the classification in terms of properties of domain walls and their junctions

in a broken symmetry phase. In section 4 we describe our proposal for 3d bosonization and

propose a classification of 3d FSRE phases. In section 5 we write down a 3d bosonic model

which can serve as a bosonic shadow for 3d FSRE phases. In section 6 we briefly discuss

a new class of 3d phases which seem to be neither bosonic nor fermionic, although they

contain “fermionic strings”. In section 7 we summarize our results and discuss possible

higher-dimensional generalizations.
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We will be interested in models where the fermion number is conserved modulo 2.

Accordingly, the eigenvalues of the fermion number operator F are defined only as elements

of Z2 = Z/2Z. The eigenvalues of the fermion parity operator (−1)F are ±1. We will

freely use simplicial cochains and operations on them, including Steenrod squares. Some

properties of Steenrod squares and Stiefel-Whitney classes are recalled in appendix A.

A. K. would like to thank Greg Brumfiel, John Morgan and Anibal Medina for com-

municating to him some of their unpublished results. R. T. would like to thank Dominic

Williamson, Dave Aasen, and Ethan Lake for many enlightening discussions. This paper

was supported in part by the U.S. Department of Energy, Office of Science, Office of High

Energy Physics, under Award Number DE-SC0011632. The work of A. K. was also sup-

ported by the Simons Investigator Award. R. T. is supported by an NSF GRFP grant. A.

K. and R. T. are grateful to KITP, Santa Barbara, for hospitality during the initial stages

of this project.

2 Bosonization and FSRE phases in one spatial dimension

2.1 Bosonization in 1d

It is well-known that 1d fermionic systems can be mapped to bosonic systems with Z2

symmetry by means of the Jordan-Wigner transformation [8]. This tranformation is not

an equivalence, as it does not preserve certain physical properties. For example, it maps

the Majorana chain [5] (a discretization of the massive Majorana fermion) to the quantum

Ising chain. Depending on the values of the parameters, the latter model can have a doubly-

degenerate ground state on a circle thanks to spontaneous breaking of Z2 symmetry. On

the other hand, the ground state of the Majorana chain on a circle is always unique, since

the fermion parity cannot be spontaneously broken. It is best to think about the JW

transformation as “gauging the fermion parity”. This becomes more obvious when one

considers the bosonization transformation on a circle [9]. While the massive fermion on

a circle requires a spin structure, the corresponding bosonic system does not. On the

other hand, since it has a Z2 symmetry, it can be coupled to a Z2 gauge field. To obtain

the bosonic Hilbert space from the fermionic Hilbert space one has to “sum over spin

structures”. Conversely, the fermionic Hilbert space can be obtained from the bosonic one

by “summing over Z2 gauge fields.” The scare quotes indicate that certain topological

terms are important in these sums.

One can describe the connection between bosonic and fermionic Hilbert spaces on a

circle in complete generality. The bosonic Hilbert space has a Z2-untwisted sector and a

Z2-twisted sector, which we denote B0 and B1. Each of these can be further decomposed

into eigenspaces of the Z2 global symmetry:

B0 = B+
0 ⊕ B

−
0 , B1 = B+

1 ⊕ B
−
1 . (2.1)

On the other hand, the fermionic Hilbert space has an NS sector and a R sector, which we

denote FNS and FR, and each of them decomposes into eigenspaces of the fermion parity P :

FNS = F+
NS ⊕F

−
NS, FR = F+

R ⊕F
−
R . (2.2)

– 3 –



J
H
E
P
1
0
(
2
0
1
7
)
0
8
0

These decompositions are related as follows:2

F+
NS = B+

0 , F−NS = B−1 , F+
R = B−0 , F−R = B+

1 . (2.3)

In particular, the (−1)F = 1 component of the total fermionic Hilbert space, F+
NS ⊕ F

+
R ,

is the untwisted sector of the bosonic theory B+
0 ⊕ B

−
0 , while the (−1)F = −1 component

F−NS ⊕F
−
R , is the twisted sector of the bosonic theory B−1 ⊕ B

+
1 .

These relations can be interpreted as follows: to get the fermionic Hilbert space from

the bosonic one, one gauges the Z2 symmetry and identifies the holonomy of the Z2 gauge

field (−1)α as the fermion parity P . For each value of α ∈ Z2, one needs to project to a

particular value of the Z2-charge to select either the NS or R sector states: more precisely,

if we label the spin structures by s ∈ Z2 so that s = 0 corresponds to the NS sector and

s = 1 corresponds to the R sector, then the generator of Z2 acts in the sector with the

holonomy (−1)α with the weight (−1)s+α. Note that the weight is a (exp-)linear function

both of the spin structure and the Z2 gauge field on a circle.

As an example, consider the Majorana chain [1, 5] and the quantum Ising chain. The

quantum Ising chain has a gapped phase with an unbroken Z2 (paramagnet) and a gapped

phase with a spontaneously broken Z2 (ferromagnet). Consider the limit of an infinite

energy gap. Then in the unbroken phase the system has a unique ground state both for

the trivial and the nontrivial Z2 gauge field. On the other hand, in the broken phase, the

system has two ground states with a trivial Z2 gauge field (a Z2-even one and a Z2-odd one),

and no ground states when the Z2 gauge field is turned on because in the limit of infinite

energy gap the energy of the domain wall between the two vacua is infinite. The Majorana

chain also has two phases, depending on the sign of the parameter which corresponds to

the fermion mass in the continuum limit. For both signs of the mass, there is a unique

ground state for either choice of the spin structure on a circle. The difference is that for a

positive mass the Ramond-sector ground state has (−1)F = 1, while for a negative mass it

has (−1)F = −1. The ground state in the NS sector has (−1)F = 1 in both cases.

The JW transformation maps the positive-mass Majorana chain to the Ising chain

with a spontaneously broken Z2, while the negative-mass Majorana chain is mapped to the

Ising chain with an unbroken Z2.

Note that the Majorana chain (for either sign of the mass) is an FSRE, but the quantum

Ising chain in a phase with a spontaneously broken Z2 is not a bosonic SRE phase. Thus

bosonization and fermionization do not map SRE phases to SRE phases. This also applies

in higher dimensions, as we will see.

When considering 1d systems on a circle, it is easy to mistake a spin structure for a Z2

gauge field. The distinction between them becomes clearer when we consider systems on

a curved space-time with a nontrivial topology. It will be useful to write down a relation

between the partition functions of the fermionic theory and its bosonic “shadow” on a

2There is an ambiguity here, since we can tensor an arbitrary fermionic phase with a nontrivial fermionic

SRE phase (the negative-mass Majorana chain [1]) and thereby flip the fermion parity of the Ramond-sector

states while leaving the NS sector unaffected. This amounts to multiplying by the Arf invariant when we

sum over spin structures and reverses the correspondence between fermionic and bosonic phases. We choose

our conventions so that higher-dimensional generalizations are more straightforward.
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general Riemann surface M . The fermionic partition function depends on a spin structure

on M , while the bosonic partition function depends on a Z2 gauge field α (i.e. an element

of H1(M,Z2)).

A nice way to think about a spin structure on M is as follows [25]: every spin structure

η gives rise to a quadratic function qη : H1(M,Z2)→ Z2, such that

qη(a+ b)− qη(a)− qη(b) =

∫
M
a ∪ b. (2.4)

Conversely, every such quadratic function corresponds to a spin structure on M . One says

that qη is a quadratic refinement of the bilinear form (a, b) 7→
∫
M a∪b. Note that the set of

spin structures is not an abelian group (there is no natural way to define a group operation

on the set of quadratic refinements of a fixed bilinear form). On the other hand, the set of

equivalence classes of Z2 gauge fields is an abelian group. We note for future use that the

latter group naturally acts on the set of spin structures: for all α, α′ ∈ H1(M,Z2) we let

qη+α(α′) = qη(α
′) +

∫
M
α ∪ α′. (2.5)

Given this relation between spin structures and quadratic refinements, the relation

between the partition functions can be written as a nonlinear discrete Fourier transform:

Zf (η) =
1

2b1(M)/2

∑
α∈H1(M,Z2)

Zb(α)(−1)qη(α). (2.6)

In our example of the Ising/Majorana correspondence, Zb(α) is a delta function δ(α)

setting α = 0 in the ferromagnetic phase (because of the infinite energy of the domain

wall) and the constant 1 in the paramagnetic phase. Applying (2.6), one finds that the

fermionization of the former has a partition function independent of η (i.e. it is the trivial

phase), while the fermionization of the latter has the partition function which is the Arf

invariant of spin structure [15] (i.e. it is the Kitaev chain). This agrees with what we expect

from the microscopic JW transformation.

2.2 FSRE phases in 1d

FSREs in 1d (with arbitrary interactions) have been classified in [3, 5] using bosonization

and Matrix Product States. See also [12, 13], where the same results were obtained using

fermionic MPS. The result is that the set of FSRE phases with a unitary symmetry G

is classified3 by triples (σ, ρ, ν) of group cohomology classes (1.1). All of these param-

eters can be interpreted in terms of properties of the edge zero modes. The parameter

σ ∈ H0(G,Z2) = Z2 is the number modulo two of Majorana zero modes at each edge

of the system. For example, the negative-mass Majorana chain [1] has σ = 1 and a sin-

gle Majorana zero mode at every edge. The parameter ρ ∈ H1(G,Z2) tells us whether

a particular element g ∈ G commutes (ρ(g) = 0) or anti-commutes (ρ(g) = 1) with the

3For simplicity, we are assuming that the total symmetry is G times fermion parity, rather than an

extension of G by fermion parity. The generalization to nontrivial extensions is straightforward.
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fermion parity (−1)F when acting on the edge zero modes. The parameter ν ∈ H2(G,R/Z)

controls the projective nature of the action of G on the edge zero modes. If any one of

these parameters is non-vanishing, the system must have nontrivial edge zero modes, and

therefore the ground state on an interval is degenerate in the large-volume limit.

It is instructive, although somewhat nontrivial, to interpret these parameters without

appealing to the edge zero modes [13]. It is helpful to introduce a nontrivial spacetime

geometry and a fixed background G gauge field. Let us imagine that the IR limit of

the system is described by a unitary continuum 2d quantum field theory, then we can

Wick-rotate it and place it on an arbitrary Riemann surface Σ, perhaps with a nonempty

boundary ∂Σ. For a fermionic system, this requires choosing a spin structure on Σ, which

also induces a spin structure on each boundary circle in ∂Σ. There are two spin structures

on a circle: periodic (Ramond) and anti-periodic (Neveu-Schwarz). They are also known

as non-bounding and bounding spin structures, respectively, since the NS spin structure

on a circle can be obtained by restricting the unique spin structure on a disk, while the

Ramond spin structure cannot be so obtained. Since we are dealing with an FSRE phase,

the ground state on a circle is non-degenerate for either choice of the spin structure, and

one can show that in the NS sector it is always parity-even [27]. The parameter σ tells us

whether the ground state in the Ramond sector is bosonic (σ = 0) or fermionic (σ = 1).

One can also couple the system to a flat G gauge field and consider the ground states on

a circle with a holonomy g ∈ G (and an arbitrary spin structure). For any g ∈ G there is a

unique ground state (again by the SRE assumption). The parameter ρ(g) tells us whether it

is bosonic a fermionic for the NS spin structure (for the Ramond spin structure, the fermion

parity of the ground state is shifted by σ). When the symmetry G is broken, turning on a

holonomy g around the circle leads to a particle-like domain wall; the paremeter ρ(g) tells

us whether it is bosonic or fermionic.

Finally, the parameter ν describes the “S-matrix” of the domain walls obtained when

the symmetry G is spontaneously broken. To be more precise, let us assume that ρ = σ = 0.

Then all domain walls are bosonic, and since the theory is trivial away from the domain

walls, one should be able to compute the partition function by summing over possible

domain-wall worldlines. The parameter ν(g1, g2) is a phase attached to a junction of

domain walls labeled by g1 and g2.

Together, these parameters define a 2-dimensional spin cobordism class of BG via the

Atiyah-Hirzebruch spectral sequence.

3 Bosonization and FSRE phases in two spatial dimensions

3.1 Bosonization in 2d

Recently, it has been shown that a 2+1d lattice fermionic system can be obtained from

a 2+1d bosonic system (its bosonic “shadow”) with an anomalous Z2 1-form symmetry.

Let us remind what this means [28]. A parameter of a global 1-form Z2 symmetry is a

Z2 gauge field, i.e. a 1-cocycle (Cech or simplicial) with values in Z2, defined up to a Z2

gauge transformation (i.e. up to adding an exact 1-cocycle). This symmetry is assumed to

preserve the action, but cannot be gauged. That is, one cannot promote the parameter λ

– 6 –
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to a general Z2-valued 1-cochain even at the expense of introducing a 2-form gauge field

B (i.e. a 2-cocycle with values in Z2 which transforms as B → B + δλ) while maintaining

gauge invariance. The anomaly of a bosonic shadow has a very specific form: the partition

function Zb(B) on a closed oriented 3-manifold Y transforms under B → B+δλ by a factor

(−1)
∫
Y (λ∪B+B∪λ+λ∪δλ). (3.1)

It was shown in [10, 11] that one can obtain the fermionic partition function by performing

a nonlinear discrete Fourier transform:

Zf (ζ) ∼
∑

[B]∈H2(Y,Z2)

Zb(B)(−1)Qζ(B) (3.2)

Here we use an observation [10] that to every spin structure ζ on a triangulated closed

oriented 3-manifold Y one can associate a quadratic function Qζ : Z2(Y,Z2) → Z2 which

under B → B + δλ transforms as

Qζ(B + δλ) = Qζ(B) +

∫
Y

(λ ∪B +B ∪ λ+ λ ∪ δλ) (3.3)

The construction and properties of the function Qζ are discussed in appendix C. Thanks

to (3.3), the summand in (3.2) is a well-defined function on H2(Y,Z2).

Unlike in 2d, the definition of the quadratic function Qζ depends on additional choices:

a branching structure on the triangulation. The bilinear form on Z2(Y,Z2) corresponding

to the quadratic function Qζ is independent of ζ but depends on these extra choices:

Qζ(B +B′)−Qζ(B)−Qζ(B′) =

∫
Y
B ∪1 B

′, (3.4)

where ∪1 is a certain bilinear operation C2(Y,Z2)× C2(Y,Z2)→ C3(Y,Z2) introduced by

Steenrod [36] (see appendix A). One can show that spin structures on Y are in one-to-one

correspondence with quadratic refinements of this bilinear form which transform according

to (3.3), see appendix C and [37].

The equation (3.2) says that the fermionic theory is obtained from the bosonic one

by gauging the Z2 1-form symmetry. The factor (−1)Qζ(B) is needed to cancel the gauge

anomaly. It is instructive to see how the gauging works on the Hamiltonian level. Consider

a space-time of the form Y = M × R, where M is a closed Riemann surface. There are

two sectors in the gauged bosonic theory distinguished by the flux of the 2-form gauge field

B through M . The untwisted sector
∫
M B = 0 is identified with the (−1)F = 1 sector

of the fermionic Hilbert space, while the twisted sector
∫
M B = 1 is identified with the

(−1)F = −1 sector of the fermionic Hilbert space. The gauge 1-form Z2 symmetry acts

in each sector by unitary operators Uλ, λ ∈ C1(M,Z2). By fixing a gauge, we can assume

that λ is closed, so that each sector is acted upon by Z1(M,Z2). This action is projective

because of the ’t Hooft anomaly. The corresponding 2-cocycle is computed following a

standard procedure, see appendix B and [11]. We get

UλUλ′ = (−1)
∫
M λ∪λ′Uλ+λ′ . (3.5)

– 7 –
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In particular U2
λ = 1. As in the 1d case, the sector corresponding to a particular spin struc-

ture η on M is obtained by decomposing the Hilbert space into eigenspaces of Uλ, namely

Uλ|Ψ, η〉 = (−1)qη(λ)|Ψ, η〉

This is consistent with (3.5) thanks to (2.4).4

3.2 FSRE phases in 2d

Let us now recall the classification of 2d FSRE phases proposed in [11]. They are labeled

by triples

(ν, ρ, σ) ∈ C2(BG,R/Z)× Z2(BG,Z2)× Z1(BG,Z2), (3.6)

which satisfy the equations

δν =
1

2
ρ ∪ ρ, δρ = 0, δσ = 0. (3.7)

The first two of these are the Gu-Wen equations which describe supercohomology phases.

The bosonic shadow of all these FSRE phases can be taken to be the toric code equivari-

antized with respect to G [11]. In particular, the homomorphism σ : G→ Z2 tells us which

elements of G exchange the e and m excitations of the toric code. The ground states of

the toric code can be described by a topological action

1

2

∫
Y
bda (3.8)

and a global 1-form Z2 symmetry which acts by a 7→ a+ λ, b 7→ b+ λ, λ ∈ Z1(Y,Z2). One

can check that this 1-form symmetry has the right ’t Hooft anomaly.

One can interpret the data (ν, ρ, σ) in physical terms. As stated above, a nonzero σ(g)

means that the element g acts as particle-vortex symmetry of the toric code. This implies

that an insertion of a flux g of the background gauge field carries a Majorana zero mode (or

more precisely, an odd number of Majorana zero modes). In the symmetry-broken phase,

this insertion becomes an endpoint of a domain wall, and thus the corresponding domain

wall carries a negative-mass Majorana chain. In what follows we will call a 1d defect with

this property a Kitaev string. Let us denote by Dg the domain wall corresponding to the

group element g. Note that since fusing Dg and Dh produces Dgh, and the number of

Majorana zero modes must be preserved modulo 2, we must have

σ(gh) = σ(g) + σ(h), (3.9)

i.e. σ is a homomorphism.

The parameter ρ(g, h) ∈ Z2(G,Z2) is most easily interpreted if σ = 0. Then the

endpoint of each domain wall carries no fermionic zero modes, and one might as well

assume that the endpoint has fermion parity zero. But when considering networks of

domain walls, we might need to assign fermion parity ρ(g, h) ∈ Z2 to each triple junction,

4Alternatively, one can say that the cocycle in (3.5) can be trivialized by defining Ũλ = (−1)qη(λ)Uλ and

requiring physical states to be invariant under Ũλ for all λ ∈ Z1(M,Z2).
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where Dg,Dh, and Dh−1g−1 meet. Requiring that the fermion number of the network does

not change under Pachner moves, one gets a constraint saying that ρ(g, h) is a 2-cocycle

(with values in Z2). Equivalently, one may consider the surface of a tetrahedron, and

regard each edge as a domain wall. Since this network can be consistently continued into

the interior of the tetrahedron, the fermion parity of the network must vanish. This again

gives the condition δρ = 0.

Note also that since every domain wall has two ends, we can shift the fermion parity of

the endpoint of Dg by f(g) ∈ Z2 without changing the net fermion parity of the network.

This shifts ρ(g, h) by a coboundary:

ρ(g, h) 7→ ρ(g, h) + f(g) + f(h) + f(gh). (3.10)

Thus only the cohomology class of ρ has a physical meaning.

When σ(g) is non-vanishing, the situation is not very different. The key point is that

at the junction of three domain walls we have an even number of Majorana zero modes,

thanks to the condition (3.9). They act irreducibly on a fermionic Fock space, and one can

imagine turning on a local interaction at the junction that lifts the degeneracy and makes

one of these states the ground state. The fermion parity of this ground state is ρ(g, h).

The same arguments as above show that ρ(g, h) is a 2-cocycle defined up to a coboundary.

The parameter ν(g, h, k) ∈ R/Z has the same meaning as in the bosonic case, i.e. it

describes the amplitude assigned to a point-like junction of four domain wall worldsheets

in space-time. To derive a constraint on it, one needs to consider a 3-sphere triangulated

into a union of four tetrahedra, pass to the dual cell complex and insert a domain wall

along every 2-face of this cell complex. On the one hand, the amplitude muct be trivial,

because such a configuration of domain walls can be created out of a trivial one. On the

other hand, one can evaluate it taking into account the fermionic statistics of the triple

domain wall junctions [11]. The resulting constraint is the Gu-Wen equation

δν =
1

2
ρ ∪ ρ. (3.11)

When the parameter σ is nontrivial, some domain walls are Kitaev strings and con-

sequently carry fermion number when wrapping cycles with Ramond spin structure. Note

that a homologically trivial Kitaev string automatically carries zero fermion number, be-

cause the spin structure induced on it by the spin structure in the ambient space is of the

NS type. Therefore the contribution of the Kitaev strings to the fermion number is nonlo-

cal and depends on the homology class of the string network. To determine its form, note

first that the homology class of the Kitaev strings is the Poicare-dual of σ(A) ∈ H1(M,Z2),

where A is the G gauge field on M . Assuming that the fermion number depends only on

the homology class of the string, we may assume that the Kitaev string wraps a closed

curve γ on M whose homology class is dual to σ(A). Then the spin structure induced on

γ is Ramond precisely if qη(σ(A)) = 1. Therefore we can identify qη(σ(A)) with the con-

tribution of Kitaev strings to the fermion number F . Note that it is nonlocal, as expected,

and conserved. This explains why we could ignore it when identifying the fermion number
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with a local expresson
∫
M B: in 2d FSRE phases, the particle and strings contrubutions

to the fermion number are separately conserved.

As in the 1+1D case, these triples define spin cobordism classes of BG via the Atiyah-

Hirzebruch spectral sequence. There is a certain equivalence relation on the triples as well,

ensuring that the set of equivalence classes is isomorphic to the three-dimensional spin-

cobordism of BG. This relation shifts ρ and σ by coboundaries and shifts ν as follows:

ν 7→ ν + δh+
1

2
(f ∪ δf + f ∪ ρ+ ρ ∪ f), h ∈ C2(BG,R/Z), f ∈ C1(BG,Z2). (3.12)

It is shown in [37] that equivalence classes of such triples are in 1-1 correspondence with

three-dimensional spin-cobordism classes of BG.

3.3 The string-net ground state

In this section we discuss ground states of a simple lattice model which is a bosonic shadow

of the trivial 2d FSRE phase following [11]. This is a warm-up for a similar discussion of 3d

FSRE phases in later sections. We need a bosonic TQFT which has a 1-form Z2 symmetry

with the correct anomaly. A bosonic TQFT can be constructed from a spherical fusion

category C. Its objects can be thought of as boundary line defects for a particular boundary

condition. Bulk line defects are described by objects in a modular tensor category Z(C),
the Drinfeld center of C. A generator of a 1-form Z2 symmetry is a bulk line defect and

thus corresponds to an object ψ ∈ Z(C) with a fusion rule ψ ◦ ψ ' 1. Such an object

has topological spin θψ which satisfies θ4
ψ = 1. It measures the anomaly of the 1-form Z2

symmetry. Since we want the anomaly to be of order 2, the topological spin must be −1,

i.e. ψ must be a fermion.

The simplest 2+1d TQFT with these properties is the Z2 gauge theory, also known as

the toric code. The corresponding category C is the category of Z2 graded vector spaces

and has two irreducible objects: 1 and F , with the fusion rule F ◦ F ' 1. One can think

of the boundary line defect F as the result of fusing ψ with the boundary. The toric code

has two more irreducible line defects, e and m, such that e ◦m ' ψ, and e ◦ e ' m ◦m ' 1.

The objects e and m are bosons (θe = θm = 1) and thus correspond to non-anomalous Z2

symmetries, but since they are muutually nonlocal, their bound state ψ is a fermion.

Let the spatial slice be a closed oriented 2d manifold M with a chosen triangulation.

The toric code has |H1(M,Z2)| linearly independent ground states on M . The string-

net construction describes these ground states as particular linear combinations of states

|γ〉, where γ ∈ Z1(M,Z2). A 1-cocycle on a triangulated surface can be thought of more

geometrically as a 1-cycle on a dual cell complex, i.e. a collection of closed curves, a “string

net”. The string-net Hamiltonian is a commuting projector Hamiltonian whose ground

states have the property that the coefficient C(γ) of the state |γ〉 is invariant under local

rearrangements of the string-net which do not change its homology class, or dually, the

cohomology class [γ] ∈ H1(M,Z2). Thus a general ground state is∑
γ∈Z1(M,Z2)

C([γ])|γ〉. (3.13)
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There are several natural bases in the space of ground states associated to various

1-form Z2 symmetries of the toric code. The most obvious basis

|Ψ, [β]〉 =
∑

[γ]=[β]

|γ〉, [β] ∈ H1(M,Z2) (3.14)

can be characterized by the property that |Ψ, [β]〉 is a simultaneous eigenvector of the

1-form symmetry transformations

|γ〉 7→ (−1)
∫
M α∪γ |γ〉, α ∈ Z1(M,Z2). (3.15)

The 1-form symmetry which acts by

|γ〉 7→ |γ + α〉, α ∈ Z1(M,Z2) (3.16)

has simultaneous eigenvectors of the form

|Ψ′, [β]〉 =
∑
γ

(−1)
∫
M β∪γ |γ〉. (3.17)

These two 1-form symmetries are non-anomalous and correspond to e and m bulk

line defects.

The “diagonal” 1-form symmetry which acts by

|γ〉 7→ (−1)
∫
M α∪γ |γ + α〉, α ∈ Z1(M,Z2) (3.18)

corresponds to the bulk line defect ψ. Its simultaneous eigenvectors are labeled by spin

structures η:

|Ψ′′, η〉 =
∑
γ

(−1)qη(γ)|γ〉. (3.19)

The anomalous 1-form symmetry (3.18) acts on these states as follows:

α : |Ψ′′, η〉 7→ (−1)qη(α)|Ψ′′, η〉. (3.20)

Upon gauging the 1-form Z2 symmetry, the state |Ψ′′, η〉 gives rise to the unique ground

state of the fermionic TQFT on the spin manifold (M,η). In order to get a nontrivial

FSRE with symmetry G, one has to couple the toric code to a background G gauge field.

As explained in [11], this leads to the most general 2d FSRE with parameters (ν, ρ, σ).

4 Bosonization and FSRE phases in three spatial dimensions

4.1 Bosonization in 3d

It was mentioned in [10] that one should be able to construct fermionic phases in 3d from

bosonic phases with an anomalous global 2-form Z2 symmetry. The anomaly is again quite

special: it trivializes when a spin structure is specified.

The most concise way to describe the anomaly is to write down a 5d topological action

for a 3-form Z2 gauge field C ∈ Z3(P,Z2) whose variation is a boundary term cancelling

– 11 –



J
H
E
P
1
0
(
2
0
1
7
)
0
8
0

the variation of the partition function of the anomalous theory on ∂P = X. In the present

case, this anomaly action is

S5(C) =
1

2

∫
P
C ∪1 C =

1

2

∫
P
Sq2C, (4.1)

where Sq2 : H3(P,Z2)→ H5(P,Z2) is the Steenrod square. This action is invariant under

C 7→ C + δβ, β ∈ C2(P,Z2) when P is closed. When P has a nonempty boundary X, the

action varies as follows:

S5(C + δβ)− S5(C) =
1

2

∫
X

(C ∪2 δβ + β ∪ β + β ∪1 δβ) . (4.2)

Note that the variation vanishes when δβ = 0 and X is a spin 4-manifold. This means that

the variation of S5 can be interpreted as an ’t Hooft anomaly for a 3+1d bosonic phase

which has a global 2-form Z2 symmetry on a spin 4-manifold.

As usual, the anomaly implies that the global 2-form Z2 symmetry acts projectively

on the Hilbert space of the bosonic theory associated to a compact 3-manifold Y . The

2-cocycle on Z2(Y,Z2) corresponding to this projective action is computed in appendix B

and turns out to be ∫
Y
β ∪1 β

′. (4.3)

This is a symmetric bilinear form on Z2(Y,Z2), and we know from the previous section

that its quadratic refinements correspond to spin structures on Y . Thus once we fixed a

spin structure ζ on Y , we can impose a Gauss law constraint selecting the states in the

fermionic Hilbert space for ζ:

Uβ |Ψ, ζ〉 = (−1)Qζ(β)|Ψ, ζ〉 (4.4)

We also identify the fermion parity operator (−1)F with (−1)
∫
Y C .

Note that the 2-cocycle (4.3) is not invariant under β 7→ β+ δλ, and neither is Uβ . So

the anomaly is more severe than in the 2d case.

4.2 Supercohomology phases

To obtain the supercohomology phases of Gu and Wen, we take the bosonic shadow to be

the simplest Crane-Yetter-Kauffman-Walker-Wang model [30–32]:

S(a, b) =
1

2

∫
X

(a ∪ δb+ b ∪ b+ b ∪1 δb), (4.5)

where a ∈ C1(X,Z2), b ∈ C2(X,Z2) are subject to gauge symmetries

a 7→ a+ δf, b 7→ b+ δλ, f ∈ C0(X,Z2), λ ∈ C1(X,Z2). (4.6)

The global 2-form Z2 symmetry acts by shifting b 7→ b+ β, β ∈ Z2(X,Z2). This transfor-

mation shifts the action by

1

2

∫
X
β ∪ β = 2π

1

2

∫
X
w2 ∪ [β], (4.7)
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where w2 ∈ H2(X,Z2) is the 2nd Stiefel-Whitney class. If X is a closed spin 4-manifold,

then w2 = 0 and the action is invariant for arbitrary β. Alternatively, if X is not assumed

to be spin, the action is invariant only if we impose a constraint [Sq2β] = 0.

To gauge this 2-form symmetry, we introduce a 3-form gauge field, i.e. a 3-cocycle

C ∈ Z3(X,Z2). We modify the action to

Sgauged =
1

2

∫
X

(a ∪ (δb+ C) + b ∪ b+ b ∪1 δb+ C ∪2 δb). (4.8)

The variation of Sgauged under a gauge transformation is independent of a, b and given

by (4.2). Thus the theory has the correct ’t Hooft anomaly to be a bosonic shadow of a

fermionic theory.

We can promote this theory to a G-equivariant model by replacing C 7→ C + ρ(A),

where ρ ∈ Z3(G,Z2). This does not change the anomaly of the 2-form Z2 symmetry, but

introduces an anomaly for G. To simply notation, let us denote Sq2C = C ∪1 C; then

Sq2(C + ρ(A)) = Sq2C + Sq2ρ(A) + δ(C ∪2 ρ(A)) (4.9)

The last term is exact and thus does not lead to anomaly (it can be absorbed into a contact

term 1
2

∫
X C ∪2 ρ(A) in the action). The first term gives the usual anomaly for the 2-form

symmetry, while the second term leads to an anomaly for G. This anomaly can be canceled

if and only if there exists a 4-cochain ν on G with values in R/Z such that

δν =
1

2
Sq2ρ =

1

2
ρ ∪1 ρ. (4.10)

Then we can cancel the anomaly by adding the term∫
X

(
ν(A) +

1

2
C ∪2 ρ(A)

)
(4.11)

to the 4d action. The equation (4.10) is the Gu-Wen equation for 3d supercohomology

phases.

Before gauging the 2-form Z2 symmetry, the model (4.5) has loop observables and

surface observables. The surface observable localized on a 2d submanifold Σ ⊂ X is

VΣ = exp(πi
∫

Σ b). It is invariant under the gauge symmetry (4.6). It is also charged under

the global 2-form Z2 symmetry:

VΣ 7→ VΣ exp

(
πi

∫
Σ
β

)
, β ∈ Z2(X,Z2). (4.12)

The loop observable localized on a 1d submanifold γ ⊂ X is Wγ = exp(πi
∫
γ a). It is

invariant under the gauge symmetry (4.6). When γ = ∂Σ̂ for some 2-chain Σ̂, this loop

observable generates the 2-form gauge symmetry with a parameter βΣ̂ ∈ C
2(X,Z2) which is

Poincaré dual to Σ̂. After gauging the 2-form Z2 symmetry, VΣ is not longer an observable,

because it is not gauge-invariant. The loop observable Wγ vanishes if γ is homologically

nontrivial (this follows from the fact that Wγ is charged under the global 1-form symmetry

a 7→ a + λ for λ ∈ Z1(X,Z2)), while for homologically trivial γ is a generator of a 2-form
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Figure 1. A picture of the F-junction or A3 singularity, where four zippers meet. With the x axis

along the blue-grey junction and the y axis along the green-grey junction, the planes x+ y = c cut

through this picture to give a movie of the F move as we vary c through zero.

gauge transformation and therefore is 1 when inserted into any correlator. The conclusion is

that gauging the 2-form Z2 symmetry leads to a theory without any nontrivial observables

except the partition function, which depends on the spin structure as well as the G gauge

field A. This suggests that the gauged theory is a fermionic SPT.5

Let us discuss the physical significance of the 3-cochain ρ ∈ Z3(BG,Z2). In a fixed

gauge of A at a particular instant of time, we see a network of G domain walls. We

will denote by Dg the codimension-1 domain wall labeled by g ∈ G. The SPT ground

state should be invariant under the reconnection of the domain wall network. There are

several kinds of defects in different dimensions corresponding to different degrees of group

cocycles. For example, there is a string-like “zipper” Zg,h where the domain walls Dg, Dh,

and D(gh)−1 meet. There is also a particle-like fusion junction Jg,h,k where four zippers meet

we call the F-junction or A3 singularity. This is because if we choose a foliation of space

by planes transverse to the F-junction, as we scan across we see a movie of the “F move”

or associator where one would apply the F symbol in tensor category theory. These are

particle-like objects, and ρ(g, h, k) can be thought of as a way of assigning fermion parity

to F-junctions: some are fermionic, some are bosonic.6 We will see this interpretation

is natural from the Atiyah-Hirzebruch spectral sequence later. It is exactly analogous to

the 2+1D situation where the analogous 2-cocycle ρ(g, h) defines the fermion parity of the

triple junction of domain walls.

The fact that ρ is a 3-cocycle follows from the conservation of fermion number (mod 2),

if we assume that the fermion number is the sum of fermion numbers of the F-junctions.

Indeed, consider a 4-simplex T whose boundary ∂T consists of five 3-simplices and is

homeomorphic to a 3-sphere. The dual of this triangulation of ∂T contains 10 zippers

(dual to 2-simplices of ∂T ) meeting at four F-junctions (dual to 3-simplices of ∂T ). If

the dual of every 1-simplex of ∂T is a domain wall labeled with an element of G, then

the F-junctions are labeled by three elements of G and have fermion parity determined by

ρ. On the other hand, since ∂T is a boundary of a 4-simplex, the net fermion number of

this configuration of domain walls must vanish mod 2. This is equivalent to the condition

5To establish this, one also needs to prove that the partition function is nonzero on any spin 4-manifold.
6We assume here that a zipper does not carry a nontrivial 1d FSRE phase, and thus its endpoints do

not have Majorana zero modes. We will discuss zippers with Majorana zero modes later.
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δρ = 0. Alternatively, we can require the fermion parity of a network of domain walls to

remain unchanged under 3d Pachner moves. This leads to the same condition on ρ.

Since every zipper has two ends, we can flip the fermion parity of each end without

changing the fermion number of the whole network. But this changes the 3-cocycle ρ. If

the fermion parity of the endpoint of Zg,h is shifted by f(g, h) ∈ Z2, it is easy to see that

the fermion numbers of the F-junctions change according to

ρ 7→ ρ+ δf. (4.13)

The class [ρ] ∈ H3(BG,Z2) is unchanged.

4.3 The ground states of the CYKWW model

The ground-states of the model (4.5) can be constructed by categorifying the string-net

approach [30]. Roughly speaking, instead of a spherical fusion category, one needs to

take a spherical semi-simple monoidal 2-category. Unfortunately, there is no generally

accepted definition of this object, and consequently there is no completely general method

of constructing 4d TQFTs. But there is a well-understood special case, the CYKWW

model [30–32], and the model (4.5) belongs to this class. The input of the CYKWW

construction is a braided fusion category C whose objects represent boundary defect lines

for a particular boundary condition. In the present case, the bulk TQFT has a 2-form Z2-

symmetry, so we expect that there is an invertible line defect on the boundary which we

denote ψ and which satisfies ψ ◦ψ ' 1. It is a fermion and therefore must have topological

spin −1. This encodes the fact that the 2-form symmetry has a nontrivial anomaly. If we

assume that there are no other irreducible objects in the braided fusion category, then C
is equivalent to the category of super-vector spaces.

Let Y be a closed oriented 3-manifold with a triangulation. The CYKWW construction

describes the ground states of the model (4.5) as linear combinations of states |B〉, where

B ∈ Z2(X,Z2). In the Poincare-dual picture, B is a network of ψ line defects. A 1-form

gauge transformation B 7→ B + δλ corresponds to a local rearrangement of the string

network. A general state has the form

|Ψ〉 =
∑
B

CB|B〉. (4.14)

The string-net Hamiltonian is a commuting projector Hamiltonian whose ground states are

distinguished by the way their components transform under a re-arrangement of the string

network. Namely, under B 7→ B + δλ, λ ∈ C1(Y,Z2), one must have

CB+δλ = (−1)
∫
Y λdλ+δλ∪1BCB. (4.15)

The explanation for this rule is the following. The category of supervector spaces occurs

as a subcategory of the category of bulk line defects for the toric code. Specifically, the

line defect ψ can be identified with the ψ of the toric code. Each configuration of ψ lines

in Y can be viewed as a network of ψ lines in the toric code, or equivalently as the toric

code coupled to a 2-form Z2 gauge field B. This gauge field is associated to the anomalous
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1-form Z2 symmetry of the toric code whose generator is ψ. Rearranging the ψ lines is

equivalent to 1-form gauge transformations B 7→ B + δλ. The rules of the 3d string-net

construction tell us that the coefficients CB transform in the same way as the partition

function of the toric code, i.e. (3.1). This gives (4.15).

The transformation rule (4.15) makes it clear that the number of linearly independent

ground states is given by |H2(Y,Z2)|. A natural basis in the space of ground states is

labeled by spin structures on Y . Namely, given a spin structure ζ, we let

|Ψ, ζ〉 =
∑
B

(−1)Qζ(B)|B〉 (4.16)

After we gauge the 2-form Z2 symmetry, |Ψ, ζ〉 gives rise to a unique ground state of the

3d FSRE on the spin manifold (Y, ζ).

One can argue that the ground-state is at most unique after gauging the 2-form sym-

metry more simply, using only the string-net picture of the ground-state. Coupling to a

background 3-form gauge field C ∈ Z3(Y,Z2) allows strings to end at certain points (they

are dual to those 3-simplices on which C does not vanish). Since the number of endpoints

must be even, the corresponding homology 0-cycle must be trivial, hence C must be exact.

Summing over all (exact) values of C means that strings can end anywhere. Furthermore,

a 2-form gauge transformation supported at a 2-simplex f creates a pair of string endpoints

at the 3-simplices sharing f . Thus 2-form gauge symmetry relates all possible arrangements

of string endpoints. In particular, by creating pairs of string endpoints, one can reduce any

configuration of strings to the trivial one (no strings). Hence the ground state is at most

unique on any closed 3-manifold (orientability is clearly irrelevant here). In particular,

there are no nontrivial observables.

4.4 More general 3d FSRE phases

The supercohomology phases do not exhaust all possible 3d FSRE phases. There are several

ways to see this. For example, one may ask if a zipper Zg,h (a junction of three domain

walls Dg, Dh, and D(gh)−1) may carry the nontrivial 1d FSRE, i.e. the Kitaev string. The

endpoint of such a zipper would have an odd number of Majorana zero modes. Such a

phase would be characterized by a new parameter σ(g, h) ∈ Z2 which tells us whether Zg,h
carries the Kitaev string or not. This parameter must be a 2-cocycle. Indeed, consistency

requires an even number of Majorana zero modes at each A3 singularity, which is equivalent

to the 2-cocycle condition on σ.

There is an ambiguity in the definition of σ(g, h). The zipper is a place where three

domain walls meet. We can attach to the boundary of the domain wall Dg a closed Kitaev

string; this does not affect any observables, like degeneracies and fermion parities (because

the boundary of every domain wall is closed and can be contracted to a point), but it shifts

the 2-cocycle σ(g, h) by a coboundary.7

7One may ask if the boundary of a domain wall can have gapless modes with a nonzero chiral central

charge. This would lead to a new parameter τ(g) ∈ Z which is easily seen to be a homomorphism from G

to Z. Since we assumed that G is finite, this parameter vanishes. But this is an interesting possibility if G

is infinite and should lead to a new class of fermionic SPT phases.
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When σ is nonvanishing, the constraint on the 3-cochain ρ is modified. To see how

this comes about, let us try to guess the contibution FK of Kitaev strings to the fermion

number. It is clear that such a contribution can be present whenever [σ(A)] ∈ H2(Y,Z2) is

nonzero, because this means that there are Kitaev strings wrapping noncontractible loops

on Y . In fact, [σ(A)] is the Poincare-dual of the homology class of the Kitaev strings. FK
must depend linearly on the spin structure on Y . Indeed, shifting the spin structure ζ by

a 1-cocycle α should shift by one the fermion number of a Kitaev string wrapping a curve

γ if and only if
∫
γ α = 1 (since this is when the spin structure induced on γ by the ambient

spin structure ζ is flipped by the shift ζ 7→ ζ + α).8 Hence we expect

FK(ζ + α) = FK(ζ) +

∫
Y
α ∪ σ(A). (4.17)

The quadratic function Qζ(B) depends on ζ as expected, provided we identify B = σ(A).

Therefore one must have

FK(ζ) = Qζ(σ(A)) + F 0
K , (4.18)

where F 0
K is independent of the spin structure. Since the fermion number of Kitaev strings

wrapped around nontrivial cycles of Y necessarily depends on η, F 0
K can be interpreted

as the contribution of homologically trivial Kitaev strings. F 0
K is not necessarily trivial,

since two homologically trivial closed curves can form a nontrivial link in a 3-manifold

Y . However, by shrinking the link to a microscopic scale, F 0
K can be reinterpreted as the

particle contribution to the fermion parity and absorbed into
∫
Y ρ(A).

We conclude that the total fermion parity is given by

F = Qζ(σ(A)) +

∫
Y
ρ(A). (4.19)

An important property of Qζ(σ(A)) is that it is not invariant under replacing the 2-

cocycle σ(A) with a cohomologous one. In the language of Kitaev strings, this means that

FK changes when Kitaev strings are deformed and reconnected. For example, when we have

two linked but homologically trivial loops of Kitaev strings, we can try deforming them

until they are neither linked nor knotted. After this deformation each loop contributes zero

to the fermion parity. This does not result in a paradox because during the deformation

process Kitaev strings must intersect and/or self-intersect. This can leave behind particles

with nonzero fermion parity so that the overall fermion parity is conserved. In other words,

when σ 7→ σ + δλ, ρ must transform as well:

ρ 7→ ρ+ λ ∪ δλ+ δλ ∪1 σ (4.20)

so that the total fermion parity is gauge-invariant.

It follows that the junction parity ρ(A) is not conserved (the conservation law δρ = 0

is not invariant under (4.20)) but instead satisfies the twisted conservation law

δρ = σ ∪ σ. (4.21)

8See [20] for a description of how the spin structure (discretized as a Kastelyn orientation + dimer

covering) is implemented microscopically on the Kitaev string.
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The physical meaning of this equation can be explained as follows. Worldlines of fermionic

paricles can be identified with the dual of the 3-cocycle ρ. The failure of ρ to be closed

means that the worldlines of fermionic particles need not be closed. Eq. (4.21) means that

the endpoints of these worldlines must lie at special points of the worldsheets of Kitaev

strings. Put differently, this equation means that fermions can be created out of Kitaev

strings. More precisely, as explained above, fermions can be created when we unlink loops

of Kitaev strings.

We can also deduce (4.21) assuming the relation between 3d FSRE phases and spin-

cobordism. The Atiyah-Hirzebruch spectral sequence converging to the spin-cobordism of

BG indicates that there should be three parameters: ν ∈ C4(BG,R/Z), ρ ∈ C3(BG,Z2)

and σ ∈ C2(BG,Z2). These parameters must satisfy constraints which at linearized level

are simply δν = δρ = δσ = 0, but have corrections which are encoded in the differentials of

the spectral sequence. The spectral sequence immediately implies that the constraint on σ

is not modified by the differentials, i.e. δσ = 0, in agreement with the physical argument

above, but that other constraints are modified. The 1st differential in the spectral sequence

is known to be the Steenrod square Sq2, suggesting that the equation for ρ is modified

to (4.21).

The equation δν = 0 is modified at leading order as well, to the Gu-Wen equation

δν = 1
2Sq

2ρ = 1
2ρ ∪1 ρ, but it must receive higher-order modifications as well, in order to

be consistent with (4.21). It is shown in appendix F that there is an essentially unique

modification of the Gu-Wen equation consistent with (4.21). We thus propose that 3d

FSRE phases are classified by solutions of the equations

δν = S̃q2
±(ρ, σ) =

1

2
ρ ∪1 ρ+

1

2
ρ ∪2 σ

2 ± 1

4
σ̂ ∪ δσ̂

2
+

1

2
x(σ), (4.22)

δρ = σ ∪ σ, (4.23)

δσ = 0. (4.24)

Here σ̂ ∈ C2(BG,Z) is an integral lift of σ, and x(σ) ∈ C5(BG,Z2) is given by

x(σ)(012345) = σ(023)σ(245)σ(012)σ(235) (4.25)

Some comment is required regarding the ± ambiguity in the 1st equation in (4.22).

We claim that this sign is unimportant, because there is a 1-1 correspondence between

solutions of the equations with the + and − signs. To see this, note that flipping the sign

changes the r.h.s. of the equation by 1
2σ∪Sq

1σ. Now let us shift ρ by Sq1σ, so that overall

the r.h.s. changes by 1
2Sq

2Sq1σ+ 1
2σ∪Sq

1σ. It is shown in appendix D that for any σ this

expression is an exact element of C5(BG,R/Z) and thus can be absorbed into ν. Thus

flipping the sign can be absorbed into a change of ν and ρ.

There are also several nontrivial identifications on the set of solutions of (4.22). The

abelian group structure is also highly nontrivial, since the equations appear nonlinear [38].

Suffice it to say that the space of solutions has an obvious subgroup corresponding to

solutions of the form (ν, 0, 0), where ν ∈ Z4(BG,R/Z). This subgroup consists of bosonic
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SRE phases. Taking a quotient by this subgroup leads to a more manageable object (the

group of 3d FSRE phases modulo bosonic SRE phases) which consists of equivalence classes

of pairs (ρ, σ) satisfying δρ = σ ∪ σ, δσ = 0. The equivalence relation arises from a gauge

symmetry

σ 7→ σ+ δλ, ρ 7→ ρ+ δβ + λ∪ δλ+ δλ∪1 σ, λ ∈ C1(BG,Z2), β ∈ C2(BG,Z2). (4.26)

The abelian group structure on these equivalence classes is easily guessed:

(ρ, σ) + (ρ′, σ′) = (ρ+ ρ′ + σ ∪1 σ
′, σ + σ′). (4.27)

Indeed, since

(σ + σ′) ∪ (σ + σ′) = σ ∪+σ′ ∪ σ′ + δ(σ ∪1 σ
′), (4.28)

the r.h.s. of eq. (4.27) satisfies the equation (4.21) provided the l.h.s. does. It is straight-

forward to verify the group axioms. We expect, e.g. by comparison with 2d phases, that

the full group structure of FSRE phases is a nonsplit extension of this quotient group by

the group of bosonic phases.

4.5 Bosonization of 3d FSRE phases and 3-group symmetry

Let us interpret the above proposal for the classification of 3d FSRE phases in terms of

their bosonic shadows. It was argued in [10, 11] that one can construct a 3d fermionic

system from a 3d bosonic system with a global Z2 2-form symmetry provided this 2-form

symmetry has a suitable ’t Hooft anomaly. A natural generalization of this construction is

to combine it with gauging some other symmetries of the bosonic system. Now, suppose

the symmetry of the bosonic system is not simply a product of the 2-form Z2 symmetry and

other symmetries, but a more general structure. Specifically, since the general 3d FSRE

phases are supposed to contain both a condensate of fermionic particles and a condensate

of Kitaev strings, we are led to consider bosonic shadows with both a 2-form Z2 symmetry

and a 1-form Z2 symmetry. Particles will be associated with generators of the 2-form

symmetry, while strings will be associated with generators of the 1-form symmetry.

In general, when a field theory has 0-form, 1-form and 2-form symmetries, the whole

symmetry structure is described by a 3-group. A general 3-group is quite a complicated

object, but it simplifies when we ignore 0-form symmetries. In that case, the 3-group

is characterized by its 1-form symmetry group G1, its 2-form symmetry group G2, and

a Postnikov class taking values in H4(BG1, G2). In the present case G1 = G2 = Z2,

and H4(BZ2,Z2) = Z2, so there is only one nontrivial possibility for the Postnikov class.

If the Postnikov class vanishes, the 3-group is simply a product of 1-form and 2-form

symmetries. If it is nontrivial, the 2-form gauge field B is still closed, while the 3-form

gauge field C satisfies

δC = B ∪B. (4.29)

Note the similarity with eq. (4.21).

The modified Bianchi identity (4.29) gives rise to a modified group law for global

symmetry transformations. To derive the group law, we assume that 2-form symmetry
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transformations leave B invariant and shift C:

B 7→ B, C 7→ C + δβ, β ∈ C2(X,Z2), (4.30)

while 1-form symmetry transformations shift B:

B 7→ B + δλ, λ ∈ C1(X,Z2). (4.31)

Then (4.29) requires C to transform as follows under 1-form gauge symmetry:

C 7→ C + λ ∪ δλ+ δλ ∪1 B. (4.32)

Now consider the effect of two 1-form symmetry transformations with parameters λ and

λ′ on the configuration B = 0, C = 0. We get

B = δ(λ+ λ′), C = λ′δλ′ + λδλ+ δλ′ ∪1 δλ. (4.33)

The first equation shows that this is equivalent to a 3-group symmetry transformation

with a 1-form symmetry transformation λ + λ′ and an undetermined 2-form symmetry

transformation with a parameter β(λ, λ′). The second equation then implies that

β(λ, λ′) = λ ∪ λ′. (4.34)

Specializing to closed β and λ, we conclude that the group law for global 3-group symmetry

transformations is

(β, λ) + (β′, λ′) = (β + β′ + λ ∪ λ′, λ+ λ′), β ∈ Z2(X,Z2), λ ∈ Z1(X,Z2). (4.35)

Consider now coupling the bosonic theory to a G gauge field A by letting C = ρ(A)

and B = σ(A) for some ρ ∈ C3(BG,Z2) and σ ∈ C2(BG,Z2). Since B must be closed, σ

must be a 2-cocycle. Since C satisfies (4.29), we must subject ρ to (4.21). To get the 3d

FSRE, we gauge the 3-group symmetry, while keeping A fixed. To ensure gauge-invariance

with respect to G gauge transformations, we need to impose further constraints on the

data ρ and σ, like the first equation in (4.22).

Thus our proposal for 3d bosonization can be formulated as follows: every fermionic

theory has a bosonic shadow with a global 3-group symmetry as above (we will denote this

3-group E) and an ’t Hooft anomaly S̃q±(C,B) (see appendix F for the definition of the

latter). In particular, we propose that every 3d FSRE can be constructed in this way. This

construction is more general than that proposed in [10]. To see this, note that the 2-form

Z2 symmetry is a proper subgroup of the 3-group symmetry, so we are free to gauge it first

and get a 3d fermionic phase as in [10]. But this fermionic phase is not an FSRE yet: it

has nontrivial observables charged under the global 1-form Z2 symmetry (this symmetry

is what remains of the 3-group symmetry after we gauge the 2-form symmetry). To get an

FSRE we must also gauge this 1-form symmetry. The order of the steps in this two-step

procedure cannot be reversed, since the 1-form symmetry is not a subgroup of the 3-group

symmetry, and cannot be gauged without gauging the whole 3-group.
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The description of the 3-group gauging as a two-step process makes it intuitively clear

that the resulting phase is a fermionic phase, since the spin structure is introduced already

at the first step. But it is not clear that a further geometric structure is not needed at

the second step. The question boils down to computing possible anomalies for a 1-form Z2

symmetry in a fermionic theory, taking into account that the 2-form gauge field B satisfies

the constraint Sq2[B] = 0. It is shown in the appendix that no anomaly is possible,

and thus the 3-group symmetry with the above anomaly can always be gauged on a spin

4-manifold.

5 Bosonic shadows of 3d FSRE phases

5.1 2-Ising theory

The goal of this section is to construct a 3+1d TQFT which is a 3+1d analogue of the

Ising TQFT in 2+1d, and has global 3-group symmetry E. Physically we imagine a gapped

superconductor with fermionic charges and vortex lines which terminate at Majorana zero

modes on the boundary. Since the Ising category describes the behavior of Majorana zero

modes, it will also describe the behavior of these charges and vortex strings.

This TQFT is nonabelian, so we will need an algebraic approach to construct it. This

approach is a 4d analog of the Turaev-Viro construction and takes a monoidal 2-category as

an input [33]. From the physical viewpoint, this monoidal 2-category describes boundary

defects for a particular topological boundary condition.

Since the 4d TQFT has both 2-form and 1-form Z2 symmetries, it contains a

codimension-3 defect (the generator of the 2-form Z2 symmetry) and a codimension-2

defect (the generator of the 1-form Z2 symmetry). Let us denote by ψ the fusion of the

codimension-3 defect with the boundary. It is a line defect on the boundary, or equivalently

a line defect on the “transparent” surface defect. Algebraically, the ‘transparent” defect is

the identity object E of the monoidal 2-category, and thus ψ ∈ Hom(E,E). The fusion of

the codimension-2 defect with the boundary gives us another object which we denote O.

We have the fusion algebra

O ⊗O ' E. (5.1)

We postulate that there are no further indecomposable defects on the boundary of the 4d

TQFT, and thus every object in the monoidal 2-category is a direct sum of several copies of

E and O. This is a natural assumption since gauging both 2-form and 1-form symmetries

(i.e. proliferating the bulk defects which generate them) should lead to a theory with no

nontrivial observables, i.e. a fermionic SRE phase. It should be stressed that before gauging

there are bulk defects other than the E-symmetry generators which are charged under the

E symmetry, but gauging removes them.

Next we need to describe morphism categories. Hom(E,E) is a braided fusion category,

and by assumption it is generated by ψ and the identity object 1. The Z2 fusion rule

ψ ◦ ψ ' 1 means that Hom(E,E) is equivalent to the category of Z2-graded vector spaces

as a fusion category. There are two braided structures on it: one corresponds to the usual

tensor product, and the other one to the supertensor product. They correspond to two
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possible anomalies for the 3-form symmetry: the trivial one and the one with the anomaly

action
∫
Sq2C. We need the latter option, so that Hom(E,E) is equivalent to the category

of supervector space as a braided fusion category. Since O must be its own dual, we can

also compute Hom(O,O):

Hom(O,O) ' Hom(O ⊗O,E) ' Hom(E,E) = 〈1, ψ〉. (5.2)

Finally, we need to describe the categories Hom(E,O) and Hom(O,E). We postulate

that both Hom(O,E) and Hom(E,O) are non-empty and each of them has a single irre-

ducible object which we denote σ. This means that the surface defect O can terminate

on the boundary. Nevertheless, O is not equivalent to E, because σ is not invertible. We

postulate the simplest non-invertible fusion rule:

σ ◦ σ = 1⊕ ψ. (5.3)

We also necessarily have

σ ◦ ψ ' σ, ψ ◦ σ ' σ, (5.4)

because ψ is invertible.

To complete the construction of the monoidal 2-category we need to specify all the

associator morphisms and the pentagonator 2-morphisms [33]. This is facilitated by the

fact that the monoidal 2-category we are constructing has a very special form: its data

are equivalent to those of a Z2-crossed braided category [34]. This is a Z2-graded fusion

category C = C0 + C1 with a compatible Z2-action and additional data which generalizes

braiding and reduces to it when the Z2-action is trivial. In our case, C0 = Hom(E,E), and

C1 = Hom(E,O), and the Z2 action is trivial. Thus C is an Ising braided fusion category

(and therefore is a braided Z2-crossed category). All possible braided fusion structures on

an Ising category are known, and it turns out there are eight inequivalent ones, naturally

labeled by a complex number κ such that κ8 = −1. Strictly speaking, the 4d TQFT we are

constructing might depend on κ. This is not very important for what follows, since all our

arguments only use properties of Ising categories which are κ-independent. Physically, κ

encodes how many Majorana zero modes exist at the hypothetical end of a Kitaev string,

mod 16.

To any braided Z2-crossed category one can associate a 4d TQFT using a generalization

of the CYKWW construction [35]. We will call the 4d TQFT obtained by taking the braided

Ising category as an input for this construction a 2-Ising model. We will show that the

3-group symmetry generated by O and ψ is isomorphic to E and has the correct anomaly

to be a bosonic shadow. We propose that the bosonic shadows of all 3d FSREs can be

obtained by taking the 2-Ising model and coupling it to a background G gauge field while

keeping the anomalies intact. Below we provide some evidence for this.

5.1.1 State sum

In this section we describe the state sum for the 2-Ising model. The state sum is a sum

over colorings of a triangulation of X with a fixed branching structure. A coloring is an
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assignment of (simple) objects to edges, (simple) morphisms to triangles, and (simple) 2-

morhisms to tetrahedra. The weight of each coloring is a product over the 15j symbol in

each 4-simplex. The partition function on X is a sum of weights over all colorings. Let us

spell out what this means for 2-Ising. This should be compared with definition 3.1 of [35]

with G = Z2 and C as the braided Ising category with Z2 grading where 1 and ψ are even

(∈ C0) and σ is odd (∈ C1).

• Edges 01 are labeled by a Z2 element ε1(01). In Poincaré-dual language, an E or O

3D worldvolume intersects this edge transversally depending on whether ε1(01) = 0

or 1, respectively.

• To a triangle 012, we assign a (simple) morphism in the fusion space (a category)

Hom(ε1(01) ⊗ ε1(12), ε1(02)) where we have used ε1(ij) as shorthand for the object

E or O labeling edge ij. In particular, we have either a single O, in which case the

only morphism in the fusion space is σ; or an even number of O’s, in which case the

morphism may be either 1 or ψ. In Poincaré-dual language, the morphism describes

a string whose 2D worldsheet meets that triangle.

• At a tetrahedron, it is useful to imagine the dual picture, shown in figure 1, where

six sheets are meeting, with a 1, ψ, or σ on each of four fusion junctions which meet

at a point in the center. At this point, we need to have something gluing together

the fusion junctions. The rules for this is precisely the same as in the usual Ising

category. That is, we can forget the sheets and just think of this as a junction of 1,

ψ, and σ lines. Choosing a resolution of the 4-valent vertex into two 3-valent vertices

defines a basis for this fusion space. In Poincaré dual langauge, the 2-morphism is a

particle whose worldsheet meets the tetrahedron.

• The coloring around a 4-simplex is a collection of O-sheets and ψ and σ lines around

its boundary, a 3-sphere. The branching structure defines a framing of this 3-sphere

and we can use the rules of the Ising category [6] to evaluate it to a number. This

defines the “15j” symbol of [31] and is the weight of the coloring in the state sum.

See figure 2.

5.1.2 E symmetry

It is useful to encode the state sum as a sum over cochains. We define the following cochains

in spacetime X:

• ε1 ∈ C1(X,Z2) is Poincaré dual to the O worldvolume and was already defined above.

• It follows from the fusion rules that dε1 is Poincaré dual to the σ worldsheet.

• ε2 ∈ C2(X,Z2) is Poincaré dual to the ψ worldsheet.

• It follows from the rules of the Ising category that

dε2 = ε1 ∪ dε1. (5.5)
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Figure 2. This image, essentially a reproduction of figure 16 from [35], represents the boundary of

the 4-simplex, considered as a triangulation of the 3-sphere. We have flattened the image onto the

page using a framing induced from the branching structure, which gives us a labeling of vertices 0

through 4. This picture is actually Poincaré dual in the 3-sphere to that 4-simplex, with (most)

edges here representing triangles of the vertex-ordered 4-simplex. This is so the graph depicts the

labeling of triangles in X by line objects. Representing triangles, these edges are labeled by triples

of vertices, and there are 5 choose 3 of those. There are some extra edges where we have resolved 4-

way intersections to make the graph trivalent. These are labeled by tetrads of vertices and coincide

with the 5 choose 4 tetrahedra of the dual 4-simplex. The state sum gives us a labeling of these

edges by 1, ψ, and σ, and the rules of the Ising braided fusion category of [6] gives us a way to

evaluate this picture to a number. This defines the 15j symbol.

This last point deserves some elaboration. We can imagine each configuration in the state

sum on X as a movie of fluctuating σ and ψ lines and O surfaces which evolve according

to the local moves of the usual Ising category, except for the O surfaces making the σ

worldsheet always a boundary and inducing the into-the-page framings for the evaluation

of the Ising R and F matrices.

On the boundary of a 4-ball in X we see a snapshot of the action. In this snapshot, we

may have two σ lines in a Hopf-link formation with O surfaces defining the into-the-page

framing as shown in figure 3. According to the rules of the Ising category (see e.g. [6]), this

configuration can only be filled into the 4-ball if those σ lines have a ψ connecting them.

For this rule to be insured by the local dynamics of the 2-Ising Hamiltonian, the term

which creates small discs of O surface must create ψ lines along the intersections of O

surfaces. There are also terms which create small loops of ψ line, but these cannot move

the endpoints of the ψ lines, which will be where the O surface intersects the σ line. From

this follows the equation (5.5). We stress that we need not impose it as a constraint
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Figure 3. A configuration of two σ anyons (black circles) in a Hopf link formation. The σ’s are

the boundary of the O surface (orange discs). Where the σ’s intersect the orange disc (red stars),

we have a ψ anyon (wavy black curve) being born.

by hand. Configurations of defects which do not solve this equation will have vanishing

contribution to the state sum.

The equation (5.5) implies that the 2-Ising model carries an action of the symmetry

3-group E. To see this, note that the global 2-form symmetry acts by ε2 7→ ε2 + β,

β ∈ Z2(Y,Z2) while leaving ε1 unchanged, where Y is a spatial 3-manifold. The 1-form Z2

symmetry shifts ε1 7→ ε1 + α, α ∈ Z1(Y,Z2), and to be consistent with (5.5) one must also

transform ε2: ε2 7→ ε2 + α ∪ ε1. A general symmetry transformation is parameterized by a

pair (α, β) ∈ Z1(Y,Z2)× Z2(X,Z2) and acts as follows:

ε1 7→ ε1 + α, ε2 7→ ε2 + α ∪ ε1 + β. (5.6)

Performing two consecutive transformation we get the group law eq. (4.35):

(β1, α1) + (β2, α2) = (β1 + β2 + α1 ∪ α2, α1 + α2). (5.7)

Thus the 2-Ising model is acted upon by the 3-group E. As explained in section 4.5, with

the proper anomaly such a symmetry is “fermionic” in that we can gauge it by introducing

a spin structure.

5.2 Fermion number

The relation (5.5) has other interesting consequences. To evaluate the right hand side on

a tetrahedron, we need to order the vertices 0, 1, 2, 3 and compute

(ε1 ∪ δε1)(0123) = ε1(01)(ε1(12) + ε1(23)− ε(13)). (5.8)

This quantity depends on the choice of ordering, which we take to be defined by a branching

structure on X. One way to understand this is that∫
ε1 ∪ δε1 mod 2 (5.9)

computes the mod 2 self-linking number of the σ curves with respect to the framing defined

by the O surfaces. That is, it equals the mod 2 linking number of the σ curve and the

curve obtained from σ by displacing it a small distance into the piece of O surface that

bounds it. The integral of ε1δε1 is counting crossings between these two curves, and of

course where the crossings are depends on the local framing of space.
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Figure 4. A configuration of two σ anyons (black circles) in a Hopf link formation given by the

boundary of a twice-twisted ribbon of O surface (orange skeleton). With this configuration of the

O surface, the self-linking of each component is even, so there is no need for a ψ line connecting

them. This contrasts with the into-the-page framed Hopf link we drew above, where the framing

induced by the O surface has odd self-linking in each component (measured by ε1 ∪ δε1), so the two

components are fermionic and there must be a ψ line connecting them.

The ψ lines are line defects in the 4d theory whose endpoints represent the fundamental

fermion. The equation (5.5) then says that the total fermion number of the state is the

self-linking of the σ loops framed by O. The configurations which appear in the 2-Ising

state sum all have even net fermion number, but the number of points where the ψ lines

are attached depends crucially on the framing. For example, we can create a Hopf link of

σ loops without any ψ lines by having an O surface which is a twice-twisted ribbon. See

figure 4.9 This is a new ingredient for topological order in 3+1D. Quasiparticles can only

be the boundary of string operators in one way, but 2-Ising illustrates how the statistics of

a quasistring depends on how it is framed by its bounding surface operator.

When we gauge the E symmetry, the O-surfaces become equivalent to the trivial surface

defect, and the σ loops lose their framings. Their density is measured by a Z2 2-form B

which is Poincaré dual to the σ-loops (its integral over a surface counts the number of σ

strings piercing it). In order for the fermion number FK(B) of the loops to be well-defined,

one needs some geometric input that stands in for the framing of the σ loops. From what

we have discussed so far, FK(B) has to satisfy

FK(δε1) =

∫
ε1 ∪ δε1 mod 2, (5.10)

which is a special case of eq. (4.20) replacing λ by ε1. It is possible to achieve this by

framing all of space since this frames all curves so that their mod 2 self-linking numbers

are well-defined, but this is not very physical and too restrictive for our goals. As discussed

in section 4.4, we can define such an FK given a spin structure on spacetime. This is very

physical, since we wish to describe fermionic systems by gauging the E symmetry. We

conclude that the fermion number of the σ loops will depends on the spin structure ζ. Let

us write the string fermion number FK,ζ .

We can infer the dependence of FK,ζ on the spin structure ζ by thinking about the

spin structure induced by a framing. As discussed in [26], one can think of a spin structure

9This diagram is not subject to the rules of the Ising category S-matrix because the framing of σ induced

by the O surface does not extend to any framing of S3. All of the Ising category numbers are computed

in 2-Ising by choosing the O surfaces so that they induce into-the-page framings and then computing the

wavefunction overlap with the empty picture.
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in 3d as a mod 2 invariant of any framed curve which increments by 1 when the framing of

the curve is twisted. It also flips by
∫
α mod 2 when the spin structure ζ is shifted by a

Z2 1-cocycle α to ζ+α. Thus, changing the spin structure is equivalent to twisting certain

framings. This also changes the mod 2 self-linking by the same amount, so we find that

the fermion number is linear in the spin structure:

FK,ζ+α(B) = FK,ζ(B) +

∫
α ∪B mod 2. (5.11)

As discussed in appendix C, this requirement essentially fixes FK,ζ(B) to be the func-

tion Qζ(B).

Gauging the E symmetry also frees the fundamental fermion, the endpoint of the ψ

lines, turning the 3-coboundary δε2 into a 3-cochain C. It follows from eq. (5.5) that

δC = B ∪B. (5.12)

This reflects the non-trivial Postnikov class of the 3-group E.

One can argue that gauging the E-symmetry of the 2-Ising model gives a theory with

only trivial observables using the same approach as for the CYKWW model. First consider

the 2-Ising model on a closed oriented 3-manifold Y times time. Its wave-function can be

represented as a sum over configurations of ψ-lines and O-surfaces. The O-surfaces can

have boundaries, while ψ-lines can terminate only at special points on O-surfaces (namely,

points where a boundary component of an O-surface intersects another O-surface, as in

figure 3). Since the boundary σ of an O-surface is not an invertible defect, one cannot

argue that all O-surfaces can be deformed away. Similarly, homologically nontrivial ψ-loops

cannot be deformed away. But when we gauge the E-symmetry, we introduce an invertible

boundary for O-surfaces, and also allow endpoints for ψ-lines which can be “pair-created”

from vacuum. The gauged E-symmetry allows us to move O-surfaces, ψ-lines and their

boundaries in an arbitrary way and implies that the value of the wave-function on any

configuration of O-surfaces and ψ-lines is determined by its value on the trivial (empty)

configuration. Thus after gauging the ground-state on any Y is at most unique, and there

are no nontrivial observables.

5.3 G-crossed 2-Ising

Now we want to enlarge 2-Ising to a theory with a global G symmetry. We do this by extend-

ing G, considered as a monoidal 2-category with trivial morphisms, by 2-Ising. The data

for this will consist of a group 2-cochain σ ∈ C2(G,Z2), a group 3-cochain ρ ∈ C3(G,Z2),

and a group 4-cochain ν ∈ C4(G,U(1)), satisfying some conditions we presently derive.

Physically, the presence of a global symmetry G means that for every g ∈ G there is a

codimension-1 invertible defect. Their fusion obeys the group law of G. If the symmetry is

unbroken on the boundary, each such defect gives rise to an invertible surface defect on the

boundary which we denote Eg. Fusing each of them with O (the generator of the 1-form

symmetry), we get another surface defect Og. Obviously, Og ' O1 ⊗ Eg. Although the

fusion of bulk domain walls obeys the group law of G, the fusion of Eg and Og is governed

by the group law of an extension of G by Z2. This happens because the termination of a
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bulk defect is not canonically defined, so for a given g one can always swap Eg and Og. If

σ(g1, g2) ∈ Z2 is a 2-cocycle describing this extension, then the fusion rule is

Eg1 ⊗ Eg2 ' Eg1g2 ⊗Oσ(g1,g2). (5.13)

Associativity of the fusion algebra is equivalent to

δσ = 0. (5.14)

Geometrically, this means the following: a zipper Z(g, h) is part of the boundary of

O surfaces if and only if σ(g, h) = 1. Thus, in the gauge where σ-lines are absent, we

must have

δε1 = σ(A), (5.15)

where A ∈ Z1(X,G) represents the configurations of G labels on objects on edges in the

state sum. In the bulk, where an O surface cannot terminate, we postulate that (5.15)

holds without any restrictions.

Next we interpret the 3-cochain ρ ∈ C3(G,Z2). Whenever this 3-cochain is nonzero,

the A3 singularities where four zippers meet are sources of ψ lines. Thus the 2-cochain ε2
representing ψ-lines must satisfy

δε2 = ρ(A) + ε1 ∪ δε1. (5.16)

The second term is required to ensure that the constraint is invariant under the action of

the E symmetry (5.6).

Now let us integrate (5.16) over Y , assuming that Y = ∂X. Taking into account

that all cochains in (5.16) are restrictions of cochains on X and using the Stockes theorem

and (5.15), we get ∫
X
δρ(A) =

∫
X
σ(A) ∪ σ(A). (5.17)

Since A and X are arbitrary, we must have

δρ = σ ∪ σ. (5.18)

With the constraints in eqs. (5.14) and (5.18), the pair (σ, ρ) describes precisely a map

BG→ BE, where BE is the classifying space for the 3-group E. Thus a G-crossed 2-Ising

model is an equivariantization of the 2-Ising model.

One more constraint on ρ and σ should follow from the topological invariance of the G-

crossed 2-Ising model. In principle, it can be obtained by evaluating the partition function

on a boundary of a 5-ball and requiring it to be 1 for an arbitrary gauge field A on the

5-ball and arbitrary ε1 and ε2 satisfying all the constraints. For a trivial gauge field A, this

is ensured by the properties of the 2-Ising 15j symbol. Instead of performing this rather

formidable computation for general A, we can take a short-cut and require the symmetry

G to be non-anomalous. Since we embedded G into E by letting C = ρ(A) and B = σ(A),

this means that the cocycle

S̃q2
±(ρ, σ) ∈ C5(G,R/Z), (5.19)
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must be exact. Here the choice of the sign in S̃q2
± depends on the braiding structure of the

Ising category we use, but it is not really physical, since we may redefine ρ 7→ ρ+ Sq1σ to

swap the signs. Thus there must exist a 4-cochain ν ∈ C4(G,R/Z) such that

δν = S̃q2
±(ρ, σ). (5.20)

See appendix F for more detail on this constraint and an explicit formula for S̃q2
±. We

propose that the general 3d FSRE with symmetry G can be obtained by gauging the 3-

group symmetry E of the G-crossed 2-Ising model. Changing which braiding structure we

use permutes how these FSRE phases are associated to the data (σ, ρ, ν).

Before moving on, we summarize the G-crossed state sum for the 2-Ising model, com-

pare definitions 3.1 and 3.2 of [35].10

• Edges 01 are labeled with elements A(01) of the group G as well as elements ε1(01) ∈
Z2. The G elements are required to satisfy a cocycle condition on triangles 012:

A(01)A(12) = A(02), while the cochain ε1 labels is unconstrained.

• At a triangle, if σ(A(01), A(12)) + ε1(01) + ε1(12) + ε1(02) = 1 mod 2, we have a σ

label, otherwise we may choose 1 or ψ.

• At a tetrahedron, in the dual picture, we get some 4-valent junction of 1, ψ, and σ

lines. If ρ(A(01), A(12), A(23)) = 1, we add an extra ψ line coming out of the domain

wall junction (see figure 2). We resolve the 4-valent vertex into two 3-valent vertices

and choose a basis vector in each fusion space.

• Around a 4-simplex we have a collection of 1, ψ, and σ lines on a framed 3-sphere

(see figure 2). We evaluate the braided Ising category invariant of this diagram and

multiply it by ν(A(01), A(12), A(23), A(34)) to define the G-crossed 15j symbol.

5.4 Super-cohomology phases from G-crossed 2-Ising

When σ = 0, the sector of the G-crossed 2-Ising containing O surfaces and σ-lines decouples,

and we can restrict our attention to the networks with ε1 = 0. The remaining constraints

simplify to

δε2 = ρ(A). (5.21)

Thus for a fixed network of G domain walls, we sum over all networks of ψ lines satisfying

the following condition: each A3 singularity Jg,h,k with ρ(g, h, k) = 1 is a source for a

ψ-line, and ψ-lines cannot end anywhere else.

Let us study the 15j symbol of this 2-category. This is the quantity we will multiply

4-simplex-by-4-simplex along a triangulation of X to obtain the partition function of the

G-crossed 2-Ising theory. As we see from figure 5, the 15j symbol is the exponential of

α̂4 = ν +
1

2
ε2 ∪1 ρ+

1

2
ε2 ∪ ε2. (5.22)

10Shawn Cui’s G should be taking to be the extension of our G by Z2 classified by σ.
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Figure 5. We revisit the 15j symbol in the presence of C with non-zero ρ but σ = 0. The tetrahedra

where ρ 6= 0 have a non-conservation of ψ lines, indicated by red curves coming out of the resolved 4-

way junctions (A3 singularities) dual to the tetrahedra. The ψ lines go and join “the condensate”,

represented by a red ball which may absorb any number of ψ lines. In evaluating the diagram

according to the rules of the Ising category, we get contributions from crossings. The red with black

give a sign contribution of −1 to power ε2(034)ρ(0123) + ε2(014)ρ(1234) = (ε2 ∪1 ρ)(01234). The

black with black crossing gives a contribution of −1 to power ε2(012)ε2(234) = (ε2 ∪ ε2)(01234).

This is analogous to Eq (3.12) in [11]. Evaluating the partition function on the boundary

of a 5-ball should give 1, which is equivalent to the condition δα̂4 = 0. Since δε2 = ρ(A),

this is equivalent to the Gu-Wen equation

δν =
1

2
ρ ∪1 ρ. (5.23)

Now we can write the partition function in a fixed G background A ∈ Z1(X,G) as (up

to positive multiplicative factors)

Z(X,A) '
∑

ε2∈C2(X,Z2)|δε2=ρ(A)

exp 2πi

∫
X

(
ν(A) +

1

2
ε2 ∪1 ρ(A) +

1

2
ε2 ∪ ε2

)
. (5.24)

Consider now coupling this theory to a background 3-form gauge field C ∈ Z3(X,Z2).

This is achieved by replacing the constraint (5.21) with

δε2 = ρ(A) + C. (5.25)

This ensures symmetry under the 2-form Z2 gauge symmetry ε2 7→ ε2 + β, C 7→ C + δβ,

where β ∈ C2(X,Z2). Thus we must merely replace ρ(A) with ρ(A) + C. The partition
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function is thus

Z(X,A,C) '
∑

ε2∈C2(X,Z2)
δε2=C+ρ(A)

exp 2πi

∫
X

(
ν(A) +

1

2
ε2 ∪1 C +

1

2
ε2 ∪1 ρ(A) +

1

2
ε2 ∪ ε2

)
. (5.26)

Now consider the effect of the gauge transformation C 7→ C + δβ. Making a change of

variables ε2 7→ ε2 + β, we find after some work:

Z(X,A,C + δβ) = Z(X,A,C) exp 2πi

∫
X

(
1

2
(C + ρ(A)) ∪2 δβ +

1

2
β ∪ β +

1

2
β ∪1 δβ

)
.

(5.27)

Observe the appearance of the first descendant of Sq2C (see appendix B) evaluated at the

value of the 3-form gauge field C + ρ(A). This is almost the expected transformation law

for the partition function, except that we expect C, not C + ρ(A). This is easily fixed by

multiplying the partition function Z(X,A,C) by an additional factor

exp 2πi

∫
X
ρ(A) ∪2 C. (5.28)

This is a non-minimal contact-term coupling between C and A ensuring that the model has

the proper anomaly for the 2-form symmetry to be a bosonic shadow of a fermionic phase.

In fact, it also shows that the full E symmetry of this theory has the S̃q2
±(C,B) symmetry,

since by our results in appendix F, this is determined once one knows the anomaly for the

C part only, though we cannot decide whether to take the + or − extension. We leave the

explicit construction of state sums for more general 3d FSREs to future work.

6 Fermionic string phases

As discussed in appendix F, the two possible anomalies for a bosonic shadow of a fermionic

theory are S̃q2
±(C,B) which differ by

1

2

∫
P
B ∪ Sq1B, B ∈ Z2(P,Z2). (6.1)

In this section we would like to investigate the physics of this term alone. That is, we

consider a bosonic theory with a 1-form Z2 symmetry and an anomaly given by (6.1).

Since the 3-form gauge field C does not enter the anomaly, it is irrelevant whether the 2-

form Z2 symmetry is present or not. If it is present, one can gauge it without introducing

the spin structure (since the 2-form Z2 symmetry is nonanomalous now) and reduce to the

case when it is absent.

Since the anomaly (F.8) is trivialized by the spin structure, and (6.1) is twice (F.8),

this means that the latter anomaly is also trivialized by the spin structure. To see this

more directly, we use the following identities in H5(P,U(1)), where P is any closed oriented

5-manifold (see appendix D):

1

2
B ∪ Sq1B =

1

2
Sq2Sq1B =

1

2
[w2(P )] ∪ Sq1B. (6.2)
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For a closed spin 5-manifold P , [w2(P )] = 0, so the anomaly is trivial. But there are no

fermionic particles, because the 2-form symmetry, even if present, is not anomalous, and

gauging it merely leads to a condensation of bosons (the worldlines of the C-field). It seems

that we have a violation of the spin =⇒ statistics relation unless one considers also string

statistics on the right hand side.

In fact, it appears possible to fermionize the theory with something less restrictive

than a spin structure: a w3-structure [19]. Just like a spin structure can be thought of as a

trivialization of w2, a w3-structure on an oriented n-manifold Z is a 2-cocycle Γ ∈ C2(Z,Z2)

such that δΓ = w3, defined up to exact 2-cocycles. Clearly, any two w3 structures differ by

an element of H2(Z,Z2), so the set of w3 structures can be identified with H2(Z,Z2), but

not canonically. To see the relevance of w3-structures, we note that w3 = Sq1w2, hence

[w2] ∪ Sq1B = [w3] ∪B. (6.3)

Hence the anomaly is trivial on a closed orientable 5-manifold P satisfying [w3(P )] = 0.

On a 5-manifold with a boundary X, we need a trivialization Γ of w3(X) to define a

counterterm
∫
X Γ ∪B which cancels the anomaly.

A model which depends on a w3-structure but does not have fermions evades the

contradiction with the spin-statistics relation. But it does not correspond to a normal

bosonic phase either. In the remainder of this section we make a few remarks about such

unusual phases.

First, although not every closed oriented 4-manifold is spin (a counter-example being

CP2), every closed oriented 4-manifold admits a w3 structure. This can be easily shown

using w3 = Sq1w2 and properties of Steenrod squares.

Second, gauging a 1-form Z2-symmetry means proliferating strings. Their worldsheets

are Poincaré-dual to B ∈ Z2(X,Z2). The anomalous nature of the 1-form symmetry means

that these strings need a w3-structure for their definition. Such strings were discussed

recently in a somewhat different context by one of us [19] and were dubbed fermionic

strings. Their normal bundle is framed, and the wavefunction is multiplied by −1 when

the framing is twisted by one unit. Thus phases requiring w3 structure may be called

fermionic string phases.

A simple way to construct a fermionic string phase is to start with a bosonic model

with a 2-form Z2 symmetry and anomaly (4.1) and set C = Sq1B. This means that we

are embedding the 1-form Z2 symmetry into the 2-form Z2 symmetry group and then

gauge the 1-form symmetry. The resulting theory clearly has no Z2-grading on its Hilbert

space, because
∫
Y Sq

1B vanishes for any oriented 3-manifold Y . This means that in general

fermionic string phases do not have a conserved Z2-valued charge analogous to (−1)F . It

also illustrates that ordinary fermionic phases do not really come in two types corresponding

to the ± in S̃q2
± because we can flip the sign by a redefinition of the symmetry operators

corresponding to the shift C 7→ C + Sq1B.

A further insight is obtained by noticing that while the homology 2-cycle dual to B

represents the string worldsheet Σ, the homology 1-cycle dual to Sq1B can be thought of

as the 1-cycle on Σ which is dual (in the 2d sense) to the 1st Stiefel-Whitney class of the

normal bundle of Σ. Note that while the 4-manifold X is assumed to be oriented, Σ need
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not be orientable. Since we may think of C as Sq1B, we conclude that fermionic string

phases have fermion worldlines confined to fermionic string worldsheets.

Finally, let us give a couple of examples of bosonic shadows of fermionic string phases.

First, as remarked above we can take a shadow of any standard fermionic phase (with a 2-

form Z2 symmetry only) and embed the 1-form Z2 symmetry into the 2-form Z2 symmetry.

For example, we can take the model (4.5) and consider a global 1-form Z2 symmetry which

acts as follows:

a 7→ a, b 7→ b+ λ ∪ λ, λ ∈ Z1(X,Z2). (6.4)

It is easy to see that the action is invariant for any closed oriented X and any λ.

Another way to obtain a shadow of a fermionic string phase is to start with a model

with both a 1-form and a 2-form Z2 symmetries and a mixed anomaly

1

2

∫
P
C ∪B (6.5)

and then set C = Sq1B. That is, we embed the 1-form Z2 symmetry into a product of

1-form and 2-form Z2 symmetries in a nonstandard way. As a simple example, consider

the Z2 gauge theory in 3+1d with an action

1

2

∫
X
b ∪ δa, b ∈ C2(X,Z2), a ∈ C1(X,Z2). (6.6)

One can get the desired anomaly (6.1) by considering the following action of a global 1-form

Z2 symmetry:

a 7→ a+ λ, b 7→ b+ λ ∪ λ, λ ∈ Z1(X,Z2). (6.7)

Gauging this symmetry means proliferating the strings and the particles of the Z2 gauge

theory, but with particles confined to the string worldsheets in a particular way. Since the

particles are not local with respect to the strings, one is forced to choose a w3-structure on

X to make the result well-defined.

7 Concluding remarks

We have argued that every 3d fermionic model has a bosonic shadow which has a certain

3-group symmetry E with an anomaly. Further, we argued that 3d FSREs with a finite

unitary symmetry G are classified by triples (ν, ρ, σ) satisfying certain rather complicated

equations generalizing the Gu-Wen supercohomology. We proposed that bosonic shadows

of all such models are G-equivariant versions of a certain 4d TQFT which we called the

2-Ising model. If σ ∈ H2(G,Z2) vanishes, we can replace this 4d TQFT with the simplest

Crane-Yetter-Walker-Wang model and recover the supercohomology phases.

Gauging the anomalous 3-group symmetry E is achieved by proliferating fermionic

particles and Kitaev strings. It would be interesting to construct explicitly the resulting

lattice model.

Our proposed classification of 3d FSRE phases can be made concrete once we pick a

particular symmetry group G. Let us give a few examples. If G = Zn with n odd, both
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ρ and σ vanish, and 3d FSRE phases are classified by the same data as bosonic FSRE

phases. If G = Zn with n even, we only get Gu-Wen supercohomology phases, because the

parameter σ vanishes. Indeed, while H2(Zn,Z2) ' Z2 if n is even, the generator of this

Z2 does not square to zero (in fact, it generates a polyominal ring inside H•(Zn,Z2) [40]).

Hence the equation δρ = σ ∪ σ has solutions only if [σ] = 0. Similarly, if G is a product of

several copies of Z2, we only get supercohomology phases, since the cohomology ring of G

with Z2 coefficients is a polynomial ring [40], and any element of H2(G,Z2) which squares

to zero must be trivial.

The simplest example where there are phases which are not supercohomology phases

is G = Z4 × Z2. H•(G,Z2) is generated by two elements x, y of degree 1 and an element

w of degree 2. The only relation is x2 = 0. Thus H2(G,Z2) has a unique nontrivial

nilpotent element xy. If we set σ = xy, we get 3d FSRE phases where the zipper Z(g4, g2),

where g4 and g2 is a Kitaev string, while all other zippers are “trivial”. Overall, for

G = Z4 × Z2 we get four supercohomology phases (including the trivial phase), and four

non-supercohomology phases. To be precise, we also have to check that the final obstruction

S̃q2
±(ρ, σ) is zero in H5(Z4 × Z2,U(1)). We show this in appendix G.

We also found a new class of phases which are neither bosonic, nor fermionic, in that

they have “fermionic strings” but no fermionic particles. Their partition function depends

on a w3-structure on the 4-manifold. It would be very interesting to explore the physics of

these new phases.

Our discussion was not as systematic as that of [11] because we lack an algebraic

description of completely general unitary 4d TQFT. In particular, while we outlined the

structure of various monoidal 2-categories relevant to us, we did not describe all the data

which enter into a definition of these objects. We hope to return to this issue in the future.

Our results suggest that bosonization in higher dimensions will get progressively more

complicated as the dimension increases. This complexity reflects the topological complexity

of the spin-bordism spectrum. For example, in four spatial dimensions presumably one

would have to deal with a symmetry 4-group which involves 3-form, 2-form and 1-form

symmetries. Bosonic shadows of Gu-Wen supercohomology phases would be quite special

since they only possess 3-form symmetries.

A Steenrod squares and Stiefel-Whitney classes

We review here some definitions and results from [36] and [39].

In this paper we mostly work with simplicial cochains of a triangulated manifold X

with values in Z2. We assume a local order on vertices of the triangulation. There is a

coboundary operation δ : Cp(X,Z2)→ Cp+1(X,Z2) satisfying δ2 = 0. As usual, a cochain

annihilated by δ is called a cocycle, and the space of p-cocycles is denoted Zp(X,Z2). The

cohomology class of a cocycle a is denoted [a].

There is a well-known product operation

a ∪ b ∈ Cp+q(X,Z2), a ∈ Cp(X,Z2), b ∈ Cq(X,Z2). (A.1)
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It is bilinear and associative and satisfies the Leibniz rule

δ(a ∪ b) = δa ∪ b+ a ∪ δb. (A.2)

The cup product is not (super)commutative on the level of chains, rather one has

a ∪ b+ b ∪ a = a ∪1 δb+ δa ∪1 b+ δ(a ∪1 b), (A.3)

where the new product ∪1 has degree −1:

a ∪1 b ∈ Cp+q−1(X,Z2), a ∈ Cp(X,Z2), b ∈ Cq(X,Z2). (A.4)

Note that the cup product is commutative on the level of cohomology classes, i.e. [a]∪ [b] =

[b] ∪ [a].

The ∪1 product is not commutative either, rather one has

a ∪1 b+ b ∪1 a = a ∪2 δb+ δa ∪2 b+ δ(a ∪2 b), (A.5)

where yet another product ∪2 appears, etc. One defines an operation Sqq : Hp(X,Z2) →
Hp+q(X,Z2), p ≥ q, by the following formula on the cochain level:

Sqqa = a ∪p−q a, a ∈ Zp(X,Z2). (A.6)

Despite appearances, this operation is linear on the level of cohomology classes, i.e. Sq1[a+

b] = Sq1[a] + Sq1[b]. We note that Sq1 is a differential, i.e.

Sq1([a] ∪ [b]) = Sq1[a] ∪ [b] + [a] ∪ Sq1[b]. (A.7)

Note also that if [a] ∈ Hp(X,Z2), then Sqp[a] = [a] ∪ [a]. In particular, for any [a] ∈
H1(X,Z2) one has [a] ∪ [a] = Sq1[a].

On an n-manifold X we have Stiefel-Whitney classes wk ∈ Hk(X,Z2), k = 0, . . . , n.

The class w1 is an obstruction to orientability. If w1 vanishes, then the class w2 is an

obstruction to having a spin structure. These classes satisfy a number of relations. In

particular, w3 = Sq1w2 for all n. There also relations which depend on n. For example,

for n = 2 we have w2 = w2
1, so any orientable 2-manifold admits a spin structure.

On a closed n-manifold X we also have the Wu formula:

Sqn−p[a] = vn−p ∪ [a], [a] ∈ Hp(X,Z2), (A.8)

where vn−p ∈ Hn−p(X,Z2) is a certain polynomial in Stiefel-Whitney classes independent

of X. It is known as the Wu class. The lowest Wu classes are v1 = w1, v2 = w2
1 + w2,

v3 = w1w2.

The Wu formula has many useful consequences. For example, it implies that on any

orientable n-manifold one has Sq1[a] = 0 for any a ∈ Hn−1(X,Z2). In particular, on a Rie-

mann surface X the square of every element of H1(X,Z2) vanishes. Another consequence

is that on a spin 4-manifold X the square of every element in H2(X,Z2) vanishes.
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B Anomaly descendants

The ’t Hooft anomalies reveal themselves in how the symmetry algebra is realized projec-

tively by unitary operators on the Hilbert space. For an anomaly ω coming from group

cohomology, one can compute the so-called descendants to find the class cω of the projec-

tive action. Conversely, a system with a projective symmetry in class cω has the anomaly

ω. In this section, we discuss the descent procedure for anomalies of 1-form and 2-form

Z2 symmetries relevant for fermionization. Unfortunately the calculation of descendants

of the E symmetry anomaly is beyond the scope of this paper.

B.1 1-form Z2 symmetry in 2+1d

As a warm-up, we consider the 1-form Z2 symmetry in 2+1d with the anomaly

ω(B) =
1

2
Sq2B =

1

2
B2 ∈ H4(K(Z2, 2),U(1)). (B.1)

This cohomology class also defines an effective action for a bosonic SPT in 3+1d protected

by the 1-form Z2 symmetry. We can use it to compute the SPT ground state on a closed

oriented 3-manifold X. We consider the path integral on the cone with base X, denoted

CX. CX can be made from the cylinder X × [0, 1] by collapsing X ×{0} to a point. From

this description one sees that a 2-form gauge field on the cone B : CX → K(Z2, 2) = K is

the same thing as a homotopy from the trivial gauge field on X ×{0} to some other gauge

field on X × {1}. This is of course the same thing as a gauge transformation on X and is

parametrized by a Z2 1-cochain λ ∈ C1(X,Z2).

Computing the sum over all these λ where we remember the (ungauged) boundary

condition on X we obtain the state

|ω〉 =
∑
λ

exp

(
iπ

∫
CX

δλ ∪ δλ
)
|λ〉. (B.2)

We can rewrite this state as

|ω〉 =
∑
λ

exp

(
iπ

∫
X
λ ∪ δλ

)
|λ〉. (B.3)

This expression makes it clear that |ω〉 is short-range entangled, since it is produced from

a product state
∑

λ |λ〉 by time 2π evolution of a Hamiltonian defined by

ω1(0, λ) =
1

2
λ ∪ δλ (B.4)

This function is called the first descendant of ω(B) = B2/2. It also determines

the variation of the partition function of the 2+1d theory under the 1-form gauge

symmetry transformation.

Now we consider a global symmetry transformation λ 7→ λ + β, where β is a Z2

1-cocycle, β ∈ Z1(X,Z2). We find a variation in the exponent

ω1(0, λ+ β)− ω1(0, λ) =
1

2
β ∪ δλ =

1

2
δ(β ∪ λ) (B.5)
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which defines the second descendant

ω2(0, λ, β) =
1

2
β ∪ λ. (B.6)

This means that for closed X the SPT ground state is invariant under global 1-form sym-

metry, but when ∂X is nonempty, it is invariant only up to a boundary term:

|ω〉 7→
∑
λ

exp

(
iπ

∫
X
λ ∪ dλ+ iπ

∫
∂X

β ∪ λ
)
|λ〉. (B.7)

It also tells us whether the global 1-form symmetry acts projectively on the Hilbert space

of the 2+1d theory. That is, whether transforming by β1 + β2 is any different than trans-

forming by β1 followed by β2. This is measured by

ω2(0, 0, β1 + β2)− ω2(0, β1, β2)− ω2(0, β1, 0) =
1

2
β1 ∪ β2, (B.8)

so indeed we do have a projective symmetry action measured by a bilinear form on the

symmetry 2-group BZ2. As we have seen above, such cocycles are trivialized by quadratic

refinements of the form, which in this dimension we may obtain from a spin structure.

B.2 2-form Z2 symmetry in 3+1d

Next we consider 2-form Z2 symmetry in 3+1d with an anomaly

ω(C) =
1

2
Sq2C =

1

2
C ∪1 C ∈ H5(K(Z2, 3),U(1)). (B.9)

where [C] is the generator of H3(K(Z2, 3),U(1)) ' Z2. It can also be regarded as an

effective action of a 4+1d SPT with a 2-form Z2 symmetry. As before, on a 4-manifold X

we obtain an SPT ground state

|ω〉 =
∑

Λ

exp

(
iπ

∫
CX

δΛ ∪1 δΛ

)
|Λ〉, (B.10)

where Λ ∈ C2(X,Z2) is a Z2-valued 2-cochain parametrizing a gauge transformation of C.

We compute

δΛ ∪1 δΛ = δ(Λ ∪1 δΛ + Λ ∪ Λ) mod 2. (B.11)

So we can rewrite

|ω〉 =
∑

Λ

exp

(
2iπ

∫
X
ω1(0,Λ)

)
|Λ〉 (B.12)

using the first descendant

ω1(0,Λ) =
1

2
(Λ ∪1 δΛ + Λ ∪ Λ). (B.13)

Now we compute the transformation of this state under a global symmetry Λ 7→ Λ + β for

some Z2-valued 2-cocycle β ∈ Z2(X,Z2). We find

|ω〉 7→ exp

(
iπ

∫
X
β2

)∑
Λ

exp

(
iπ

∫
X

(Λ ∪1 δΛ + Λ ∪ Λ) + iπ

∫
∂X

β ∪1 Λ

)
|Λ〉. (B.14)
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This variation involves the boundary variation we expected from the previous calculation

but also a new ingredient: a prefactor

exp(iπ

∫
X
β ∪ β). (B.15)

This factor is not a boundary term for a general X and β. For example, when X = CP2

and β represents the unique nonzero degree-2 class, this prefactor is −1. Such a symmetry

transformation multiplies the ground state by −1. Thus we are dealing with an SPT phase

only if we restrict to those β for which [Sq2β] = [β ∪ β] = 0. Alternatively, we can restrict

X to be a spin 4-manifold.

After this is done, we can extract the second descendant which measures to what

extent the action of the global 2-form symmetry on the Hilbert space of the 3+1d theory

is projective:

ω2(0, β′, β) =
1

2
β ∪1 β

′. (B.16)

An interesting feature about this term is that it is not invariant under 2-gauge transfor-

mations β 7→ β + δλ, where λ ∈ C1(X,Z2). Indeed, it has a variation

δω2(0, β′, β) =
1

2
δλ ∪1 β

′ (B.17)

which looks like it could be exact but unfortunately is not. This means that the symmetry

action on the boundary is only defined for cocycles β ∈ Z2(∂X,Z2) and not cohomology

classes. Likewise, the bilinear form

ω2(0, 0, β1 + β2)− ω2(0, β1, β2)− ω2(0, 0, β1) =
1

2
β1 ∪1 β2 (B.18)

is only well-defined on Z2(∂X,Z2).

C The function Qζ(B)

We summarize here the definition and properties of the function

Qζ(B) : Z2(Y,Z2)→ Z2. (C.1)

Here Y is a closed oriented 3-manifold equipped with a triangulation and a branching

structure, and ζ is a spin structure on Y .

Given an oriented 3-manifold Y , there exists an oriented 4-manifold X with boundary

Y such that any B ∈ Z2(Y,Z2) extends to a 2-cocycle BX on X. In other words, the

restriction map H2(X,Z2)→ H2(Y,Z2) is surjective. Given such X, we may consider the

relative Stiefel-Whitney class w2(X,Y, ζ) ∈ H2(X,Y,Z2) which measures the obstruction to

extending ζ to a spin structure on X. Recall also that the cup product makes H•(X,Y,Z2)

into a module over the algebra H•(X,Y ), and that the fundamental homology class [X]

takes values in H4(X,Y,Z2). Thus it makes sense to consider the expression

[BX ] ∪ w2(X,Y, ζ) ∩ [X]. (C.2)
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We write it somewhat schematically as∫
X
w2 ∪BX +

∫
Y
ζ ∪B, (C.3)

to indicate that when the spin structure ζ is shifted by α ∈ Z1(Y,Z2), the quantity (C.2)

shifts by ∫
Y
α ∪B. (C.4)

In other words, the set of spin structures on Y is an affine space over the vector space

H1(Y,Z2), and the quantity (C.2) is an affine linear function on it.

The quantity (C.2) depends on the cohomology class [BX ] ∈ H2(X,Z2), but not on

the concrete representative. But it also depends on the choice of X as well as the choice

of the extension of B from Y to X. Given two such choices, (X,BX) and X ′, BX′ , the

difference between the corresponding expressions is∫
T
w2 ∪BT (C.5)

where the 4-manifold T obtained by gluing X and X ′ along Y is closed, and BT restricts

to BX on X and BX′ on X ′. But this is the same as∫
T
BT ∪BT . (C.6)

This implies that the expression

Qζ(B) =

∫
X
BX ∪BX +

∫
X
w2(X,Y, ζ) +

∫
Y
ζ ∪B (C.7)

does not depend either of the choice of extension of B from Y to X, nor on the choice of

X. On the other hand, since BX is an absolute 2-cocycle, it does depend on the choice of

B within its cohomology class in H2(Y,Z2). It is easy to see that

Qζ(B + δλ) = Qζ(B) +

∫
Y

(λ ∪ δλ+ δλ ∪1 B) . (C.8)

It is also easy to see that

Qζ+α(B) = Qζ(B) +

∫
Y
α ∪B, ∀α ∈ Z1(Y,Z2). (C.9)

Now suppose the spin structure ζ extends to X. Then w2(X,Y, ζ) vanishes, and

therefore we get

Qζ(B) =

∫
X
BX ∪BX . (C.10)

This property is used in section 4 to argue the conservation of fermion number.

Conversely, for a fixed triangulation and branching structure, the function Qζ com-

pletely determines the equivalence class of ζ. Indeed, given any two spin structures ζ and

ζ ′, the difference (Qζ − Qζ′)(B) is linear and depends only on the cohomology class of B

and thus must have the form
∫
Y α ∪ B for some α ∈ Z1(Y,Z2). On the other hand, this

difference is equal to
∫
Y (ζ−ζ ′)∪B. By Poincaré duality, Qζ(B) = Qζ′(B) for all B implies

that ζ − ζ ′ is exact, which means that ζ ∼ ζ ′.
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D ’t Hooft anomalies for a 1-form Z2 symmetry

In this section we classify possible anomalies for a 1-form Z2 symmetry in 3+1d, both

for bosonic and fermionic theories, assuming the space-time symmetry is orientable (i.e.

ignoring time-reversal symmetries, if any).

In the bosonic case, we need to compute the oriented cobordism group

Ω5
SO(K(Z2, 2),U(1)). It is the Pontryagin-dual of the oriented bordism group

ΩSO
5 (K(Z2, 2),Z). Physically, these classify possible 5d topological actions built out of

a 2-form gauge field B ∈ Z2(P,Z2), where P is a closed oriented 5-manifold. All such

topological terms will be integrals of densities made out of B and certain characteristic

classes of the tangent bundle of P , namely the Stiefel-Whitney classes and the Pontryagin

classes. Actually, since Pontryagin classes modulo 2 can be expressed through Stiefel-

Whitney classes, it is sufficient to consider the latter. An obvious approach is to con-

struct elements in H5(P,Z2) and then embed them into H5(P,U(1)) using the embedding

Z2 → U(1), keeping in mind that distinct elements of H5(P,Z2) can become identical

elements of H5(P,U(1)).

Let us write down candidate independent terms in H5(P,Z2). Orientability implies

w1(P ) = 0 and it follows Sq1x = 0 for any x ∈ H4(P,Z2) [39], so we have four candidates:

BSq1B, Sq2Sq1B, w2Sq
1B, w3B. (D.1)

The 2nd and the 3rd are actually the same thanks to the Wu formula [39]. Further, since

Sq1 satisfies the Leibniz rule w. r. to the cup product, and w3 = Sq1w2, the 4th one is the

same as the 3rd one. Thus we are left with only two independent elements of H5(P,Z2).

Now we must map these classes to H5(P,U(1)). In fact, we will find they map to the same

(nonzero) element. To see this, one needs to use the long exact sequence

. . .→ H4(K,U(1))→ H4(K,U(1))→ H5(K,Z2)→ H5(K,U(1))→ . . . (D.2)

where we have introduced the short-hand K = K(Z2, 2). The 1st map is multiplication by

2, and the 2nd map is the Bockstein homomorphism associated to the short exact sequence

Z2 → U(1)→ U(1). We are interested in the image of the Bockstein homomorphism. The

group H4(K(Z2, 2),U(1)) is isomorphic to Z4 and is generated by 1/4 times the Pontryagin

square of [B] ∈ H2(K(Z2, 2),Z2), for which a representative may be written

1

4
(B̃ ∪ B̃ + δB̃ ∪1 B̃), (D.3)

where B̃ ∈ C2(K(Z2, 2),Z) is an integral lift of B. Using the defining property of ∪1, we

find that the Bockstein of (D.3) is

1

4
B̃ ∪ δB̃ +

1

8
δB̃ ∪1 δB̃, (D.4)

which is a cocycle formula for BSq1B + Sq2Sq1B in Z5(K,Z2). By exactness, it follows

that this difference maps to zero in H5(K,U(1)).
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To verify that this exhausts all possible topological actions, one can use the Atiyah-

Hirzebruch spectral sequence computing oriented bordism groups starting from the homol-

ogy groups Hp(K,Ω
SO
q (?)). The integral homology groups of K = K(Z2, 2) are known,

and the nonzero ones up to degree 5 are

H0(K) = Z, H2(K) = Z2, H4(K) = Z4, H5(K) = Z2. (D.5)

The first term defines a purely gravitational anomaly w2w3 which splits off from the

anomaly group. Then the spectral sequence implies that the map ΩSO
5 (K)→ H5(K)⊕w2w3

is an isomorphism. Hence the group of gauge anomalies Ω̃5
SO(K,U(1)) = Z2, and the non-

trivial anomaly action can be written as

1

2

∫
P
BSq1B =

1

2

∫
P
Sq2Sq1B =

1

2

∫
P
w2Sq

1B. (D.6)

In the fermionic case, we need to compute Ω5
Spin(K,U(1)). Note that since w2(P ) = 0

for a closed orientable spin manifold P , the bosonic action (D.6) becomes trivial for such

P . That is, the image of the map Ω5
SO(K,U(1)) → Ω5

Spin(K,U(1)) is trivial. However,

there can also be elements of Ω5
Spin(K,U(1)) which do not come from Ω5

SO(K,U(1)). These

topological terms use the spin structure in a key way and won’t be just integrals of char-

acteristic classes. Looking at the Atiyah-Hirzebruch spectral sequence, we see that the

only such element arises from the E2 term H4(K,Z2). This cohomology group is Z2 and

is generated by [B ∪ B] = [Sq2B]. The corresponding spin-topological action is evaluated

as follows: we take the homology class in H1(P,Z2) which is Poincaré-dual to [B ∪B] and

pick a closed 1d submanifold γ which realizes it. Then we restrict the spin structure of P

to γ and evaluate the corresponding holonomy. Thus Ω5
Spin(K,U(1)) = Z2.

Note that if B satisfies the constraint [B ∪ B] = 0, then the corresponding 5d spin-

topological action is zero. Thus the fermionic anomaly is necessarily trivial for such B.

E ’t Hooft Anomalies for a 2-form Z2 symmetry

In this section we wish to discuss possible ’t Hooft anomalies for bosonic and fermion sys-

tems with 2-form Z2 symmetry. The calculations are much the same as the previous section,

except where now the classifying space K = K(Z2, 3), an Eilenberg-Maclane space with

only nonzero homotopy group π3 = Z2. For bosonic systems, the possible anomalies are

Sq2C, w2C, w2w3. (E.1)

The first two are actually equal thanks to the Wu formula, while the third does not involve

the gauge field C ∈ Z3(P,Z2) and so describes a purely gravitational anomaly. So as

before, we find that (3-)group cohomology describes all the gauge anomalies.

When we consider these terms on a closed spin 5-manifold P , they all vanish because

w2 = 0. For new anomalies we look to C ∈ H3(K,Z2) and Sq1C ∈ H4(K,Z2) in the

Atiyah-Hirzebruch spectral sequence. The first does not survive the d2 differential since

d2C = Sq2C 6= 0. The second, however, defines a topological term which measures the

holonomy of the spin structure along the curve Poincaré dual to Sq1C.

– 41 –



J
H
E
P
1
0
(
2
0
1
7
)
0
8
0

F ’t Hooft anomalies for E symmetry

We have discussed the appearance of the 3-group symmetry E, whose elements are pairs

(β, α) ∈ Z2(X,Z2)× Z1(X,Z2). The group law is not the product, but has a twist

(β1, α1) ◦ (β2, α2) = (β1 + β2 + α1 ∪ α2, α1 + α2). (F.1)

In this section we discuss possible anomalies for such a symmetry in bosonic and fermionic

systems. Like the Z2 1-form symmetry considered in the previous appendix, E has a

classifying space denoted BE with π2 = Z2, π3 = Z2 and the Postnikov class Sq2, reflecting

the twisted group law. This means that one can think of a map P → BE as a pair

(B,C) ∈ Z2(P,Z2)× C3(P,Z2) satisfying

δC = B ∪B. (F.2)

From this one sees that there is a map BE → K = K(Z2, 2) by forgetting C. This

map is a fibration with fiber L = K(Z2, 3). This fibration is very useful for computing

the cohomology of BE. For instance, to compute H5(BE,U(1)) ' H6(BE,Z), a first

approximation to the bosonic anomaly group Ω5
SO(BE,U(1)), we use the Serre spectral

sequence which starts with Ep,q2 = Hp(K,Hq(L)). The three possible terms are

1

2
[C ∪1 C] ∈ E5,0

2

1

2
[B ∪ C] ∈ E3,2

2

1

2

[
B ∪ δB̂

2

]
∈ E0,5

2 , (F.3)

where B̂ is an integral lift of B. The differential in this spectral sequence comes from

eq. (F.2). For example, the differential of the second term above is 1
2B

3, which is a non-zero

class in H6(K,U(1)), so this term does not contribute. The differentials of the third term

are all zero, but it may be a differential of something else. However, there is no candidate

in the right degree, so the third term survives to give a nontrivial class in H5(BE,U(1)).

This class is the pull-back of the generator of H5(K,U(1)) = Z2, see appendix D, and thus

evaluates to zero on the fiber L of the fibration.

The term 1
2C ∪1 C is a little complicated to deal with.11 Its differential is

1

2
B2 ∪2 B

2 +
1

2
δ
(
C ∪2 B

2
)

(F.4)

While it is nonzero, we now show that it is exact. The second term in (F.4) is obviously

exact, so it can be taken care of by replacing 1
2C ∪1 C with

1

2
C ∪1 C +

1

2
C ∪2 (B2). (F.5)

To deal with the first term in (F.4), we note that it can also be written as 1
2Sq

2(B2). Now,

the Cartan formula for Steenrod squares says that the mod-2 cohomology class of Sq2(B2)

is the same as Sq1B ∪ Sq1B. Thus there should exist a mod-2 5-cochain x(B) such that

B2 ∪2 B
2 = (B ∪1 B)2 + δx(B). (F.6)

11We are grateful to Greg Brumfiel and John Morgan for communicating to us some related results [38].
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On the other hand, we also know that Sq1B = B ∪1 B is cohomologous to the Bockstein

of B, i.e. 1
2δB̂, where B̂ is an integral lift of B. In fact, if we define B̂ as taking values 0

and 1 only, there is a cochain-level identity B ∪1 B = 1
2δB̂. Thus we can write:

1

2
(B ∪1 B)2 =

1

2

(
1

2
δB̂

)2

= ±1

4
δ

(
B̂ ∪ δB̂

2

)
. (F.7)

We conclude that the first term in (F.3) does indeed give rise to a cohomology class of BE,

and that the corresponding cochain-level expression is

S̃q2
±(C,B) =

1

2
C ∪1 C +

1

2
C ∪2 (B2)± 1

4
B̂ ∪ δB̂

2
+

1

2
x(B). (F.8)

Here x(B) is a mod-2 cochain defined by the equation F.6. An explicit simplicial expression

for it is [41]

x(B)(012345) = B(023)B(245)B(012)B(235). (F.9)

The expression (F.8) restricts to 1
2Sq

2C when one sets B = 0, i.e. it is a extension of

[1
2Sq

2C] ∈ H5(L,U(1)) to the total space BE. Note that the extension is not unique, and

that the two possible extensions differ by 1
2 [BSq1B]. Note also that

2[S̃q2
±(C,B)] =

1

2

[
B ∪ δB̂

2

]
=

1

2
[BSq1B]. (F.10)

This means that the cohomology group H5(BE,U(1)) is isomorphic to Z4, and that it is

generated by the cohomology class of eq. (F.8), for either choice of the sign. The ambiguity

in the sign is simply the ambiguity in choosing the generator of Z4. It also means that to

see if an E symmetry has anomaly S̃q2
±(C,B), we can just check that the B2Z2 subgroup

has the anomaly S̃q2C.

An explicit formula (F.8) is not that useful unless one has a powerful computer method

for showing that a given cocycle is exact.12 For example, given an explicit map from BG to

BE, one would like to know whether the pull-back of Sq2
± is exact or not. In appendix G

we indirectly show the exactness of the pull-back of Sq2
± for G = Z2 × Z4 for certain

maps BG→ BE.

The anomalies for 3+1d bosonic systems with E symmetry are actually classified

by the cobordism group Ω5
SO(BE,U(1)). There is another useful spectral sequence

for computing this, the Atiyah-Hirzebruch-Serre spectral sequence, which goes from

Hp(K2,Ω
q
SO(K3,U(1))) to Ωp+q

SO (BE,U(1)). We have shown in the above section that

the map H5(K3,U(1)) → Ω̃5
SO(K3,U(1)) is an isomorphism and it is not hard to show

that Hq(K3,U(1)) → Ωq
SO(K3,U(1)) is also an isomorphism for all q < 5. Thus, ex-

cept for the purely gravitational anomaly w2w3, all the E anomalies are classified by

H5(BE,U(1)) = Z4.

Note that the shift C 7→ C + Sq1B exchanges S̃q2
+ and S̃q2

−, so the difference between

the anomalies is not really physical, amounting to a redefinition of the symmetry operators.

Further, [S̃q2
±(Sq1B, 0)] = [1

2B
δB̂
2 ].

12To this end, Z8 coefficients suffice, so we will be iterating over functions G5 → Z8.

– 43 –



J
H
E
P
1
0
(
2
0
1
7
)
0
8
0

Now we want to consider what happens with the map Ω5
SO(BE,U(1)) →

Ω5
Spin(BE,U(1)). For this we can use naturality of the Atiyah-Hirzebruch-Serre spec-

tral sequence. We know that our nonzero classes in Ω5
SO(BE,U(1)) come from 1

2Sq
2C ∈

H5(K3,U(1)) and 1
2BSq

1B ∈ H5(K2,U(1)). Because the first is proportional to w2 and

the second to w3, these map to zero on closed spin 5-manifolds, which all have w2 = 0 and

w3 = Sq1w2 = 0. This implies that the map Ω5
SO(BE,U(1))→ Ω5

Spin(BE,U(1)) sends all

the gauge anomalies to zero (and w2w3 too, for that matter).

G Vanishing of the obstructions for G = Z2 × Z4

In this appendix we show that σ = 1
2x2y4, where x2 is a Z2 gauge field and y4 is a Z4

gauge field, can be extended to fermionic SPT data (σ, ρ, ν). Direct computation is rather

difficult, so we will show it in another way, using the fact that such triples correspond to spin

cobordism invariants via the Atiyah-Hirzebruch spectral sequence. Indeed, we will show

there is a spin cobordism invariant with σ = 1
2x2y4. The construction mirrors the decorated

domain wall constructions of [4] and its generalization: the Smith homomorphism [15, 26].

The construction begins with an arbitrary spin 4-manifold X equipped with a pair of

gauge fields x ∈ Z2 and y ∈ Z4. We consider the Poincaré dual Y ⊂ X, a 3-manifold

immersed in X representing the Z4 domain walls. We want to construct a spin structure

on Y . To see that the spin structure on X defines one on Y it suffices to consider the

obstructions w1TX and w2TX restricted to Y :

w1TX|Y = w1TY + w1NY, (G.1)

w2TX|Y = w2TY + w1TY w1NY + w2NY. (G.2)

The first line says that an orientation of X defines an orientation of TY ⊕ NY and so

w1TY = w1NY . Using this and the fact that NY is a line bundle so w2NY = 0 we can

simplify the second line to

w2TX|Y = w2TY + (w1NY )2 = w2TY + y2, (G.3)

where we have used the Poincaré duality property w1NY = y. Next we use Thom’s

theorem y2 = i∗i∗y = i∗Sq1y = 0, where i : Y → X is the inclusion map. This tells us that

w2TX|Y = w2TY and further that a spin structure on X defines a spin structure on Y .

Note that the important formula for this to work was Sq1y = 0, which implies Sq2(xy) = 0

but is stronger.

With a spin structure on the 3-manifold Y and the restriction of the Z2 gauge field

x, we can evaluate a Z8 cobordism invariant which characterizes a 2+1D phase whose Z2

domain walls carry Kitaev chains. Transversality arguments carried over from the proof of

the Smith homomorphism show that this construction defines a 4d cobordism invariant [26].

Combined with the fact that this 3-manifold was the Z4 domain wall in the 3+1D system,

we also see that the intersection of a Z4 and a Z2 domain wall carries a Kitaev chain,

i.e. σ = xy. This shows that there exist Z2 × Z4-equivariant 4d spin-cobordisms which

have σ = xy. It will be interesting in future work to investigate how our framework of

bosonization in various dimensions interact via this decorated domain wall and similar

constructions.
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H Fermion parity of the Kitaev string

In this appendix we take another look at eq. (4.21):

δρ = σ ∪ σ, (H.1)

which ties the fermion parity of the Kitaev strings, Poincaré dual in spacetime to σ(A),

and the fermion parity of the junctions, Poincaré dual in spacetime to ρ(A). The key is

to realize that proper definition of the Kitaev chain along a worldsheet Σ requires a pin−

structure on Σ. The obstruction to such a structure is

w2TΣ + (w1TΣ)2. (H.2)

This class can be described as a 2-cocycle in the following way: choose a pin− structure on

Σ patch-by-patch, and there will be certain singular points across which the pin− structure

cannot be extended. These are vortices in the spin structure, around which fermions have

periodic rather than antiperiodic boundary conditions (only the later extend to a disc).

The class w2TΣ + (w1TΣ)2 is Poincaré dual to this collection of points.

When Σ is immersed in a spin 4-manifold, this local pin− structure should be chosen to

be compatible with the ambient spin structure. Denoting X as the ambient 4D spacetime,

w2TX as a cocycle then restricts to Σ as

0 = w2TX|Σ = w2TΣ + (w1TΣ)2 + w2NΣ, (H.3)

where NΣ is the normal bundle of Σ and we have used the spin structure on X to set

w2TX = 0. Denoting i : Σ→ X the inclusion map, we can then use Thom’s theorem:

i∗(w2TΣ + (w1TΣ)2) = i∗w2NΣ = σ2, (H.4)

where we have used the Poincaré duality property w2NΣ = σ. Therefore, if σ2 6= 0, it

seems like we have no hope of defining a pin− structure on Σ and no hope therefore of

defining a Kitaev chain on that worldsheet.

We must assume then that σ2 = δχ for some χ ∈ C3(X,Z2). Equivalently, its Poincaré

dual is a union of curves with boundary at the singular points of the pin− structure on Σ.

We can make a surgery of Σ, amounting to a shift σ 7→ σ+δλ, adding to Σ a thin tube along

these curves with periodic spin structure in the small circular direction. Such small Kitaev

strings appear as fermionic particles, since if we compute Tr(−1)F in the presence of such a

string, it is equivalent to placing a periodic-periodic spin structure on the worldsheet, and

the partition function of the Kitaev chain in this spin structure is −1, corresponding to the

unique nontrivial Arf invariant on the torus [15]. Recall ρ is the particle contribution to

the fermion parity. Because χ describes the worldlines of fermion “particles”, it is a subset

of ρ. Assuming all other sorts of fermionic particles are conserved, we derive the crucial

equation (4.21) δρ = σ2.

This derivation of (4.21) only used the partition function of the Kitaev chain and

the conservation of fermionic particles. We can therefore use it to derive the Kitaev string

contribution FK to the fermion parity (recall above we went the opposite direction). Indeed,
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ρ contributes
∫
Y ρ to the fermion parity on a closed spatial slice Y . On the other hand, if

σ 7→ σ + δλ, then to preserve σ2 = δρ, we must shift (4.20):

ρ 7→ ρ+ λ ∪ δλ+ δλ ∪1 σ. (H.5)

Therefore, if the fermion parity is to be gauge-invariant, there should be another

contribution FK(σ) apart from
∫
Y ρ. Interpreting it as the contribution of Kitaev strings,

again we find again FK(σ) = Qζ(σ) up to a redefinition of ρ.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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