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1 Introduction

Little string theories (LSTs) are non-critical string theories defined in six dimensions [1–4].

They arise from 10d superstring theory in the limit that the string coupling goes to zero,

gs → 0, decoupling gravitational interactions. They exhibit several stringy properties

including T-duality that identifies a pair of circle compactified LSTs. They depend on a

scale parameter ms ∼ (α′)−1/2 which determines the tension of little strings. They can

be regarded as “affine” extensions of 6d superconformal field theories, which add an extra

background tensor multiplet coupled to the little strings [5, 6]. There are a vast number

of LSTs found from various combinations of branes and/or geometric singularities in the

decoupling limit gs → 0 [1–4, 7–10]. Broader classes of LSTs can be constructed from

F-theory wrapped on non-compact Calabi-Yau threefolds [5, 11–13].

In this work, we study two classes of N = (1, 0) LSTs engineered from type IIA/IIB

NS5-branes probing Dn≥4 singularities. The D-type ALF spaces can be mapped via chains

of string dualities to D6-O6 or NS5-ON0 brane systems [14–17] from which one can derive

the effective gauge theories. Recall that a non-gravitational (1, 0) theory can have tensor,

vector, and hypermultiplets. A tensor multiplet has the 2-form and scalar fields denoted

by Bi and Φi. A vector multiplet has the vector field denoted by Ai. Almost all the

LSTs we consider in this paper involve the same number of vector and tensor multiplets

labeled by the index i, where one combination of these tensor multiplets is a non-dynamical

background field. The VEV of the background scalar determines the mass scale of theories,

i.e., 〈Φb〉 ∼ m2
s ∼ (α′)−1. Particularlly in the tensor branch, where all dynamical scalars
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also obtain generic non-zero VEVs, the LST allows an effective gauge theory description

whose inverse gauge couplings 1/g2
i are set by 〈Φi〉’s. The bosonic part of the effective

action for tensor and vector multiplets takes the form of

Sbos =

∫ (
1

2
aij dΦi∧?dΦj+

1

2
aijHi∧?Hj−aij Φi tr(Fi∧?Fi)+aijBi tr(Fj∧Fj)

)
. (1.1)

Hi and Fi are the 3-form and 2-form field strengths defined as

Hi = dBi + tr
(
Ai dAi − i

3(Ai [Ai, Ai])
)
, Fi = dAi − i

2 tr[Ai, Ai], (1.2)

which are invariant under the gauge transformation δAi = Dεi and δBi = −tr(εi dAi).

We regard the action as providing the field equations by varying the two-forms Bi, while

imposing the self-duality condition Hi = ?Hi on their solutions by hand. Note that N =

(1, 0) multiplets are all chiral, contributing to the 1-loop anomalies. For consistency at

quantum level, the 1-loop gauge anomaly needs be cancelled with the tree-level gauge

anomaly that arises from the last term in the action, i.e.,

δSbos = −aij
∫

tr(εi dAi) ∧ tr(Fj ∧ Fj). (1.3)

This is the Green-Schwarz anomaly cancellation mechanism [18, 19], which works when the

1-loop anomaly polynomial is in the factorized form such that I1-loop = 1
2aij tr(Fi ∧ Fi) ∧

tr(Fj ∧ Fj).
The symmetric matrix aij specifies the Dirac pairing between various 2-form charges.

The common feature of LSTs is that aij has precisely one null eigenvector ni [5, 6]. The

linear combinations of the tensor multiplet fields, Bb =
∑
niBi and Φb =

∑
niΦi, have

vanishing kinetic terms, as being non-dynamical background fields. The VEV of the non-

dynamical scalar Φb defines the mass scale of the theory, 〈Φb〉 ∼ m2
s ∼ (α′)−1, rather than

participating into the tensor branch [5]. And also, the non-dynamical 2-form Bb cannot

participate in the Green-Schwarz mechanism, so the gauge anomaly of one gauge node

must vanish by itself [5, 6].

Little strings are electric/magnetic sources of 2-form tensors Bi with tension propor-

tional to 〈Φi〉’s. The equations of motion for Bi’s are given by

dHi = d(?Hi) = tr(Fi ∧ Fi). (1.4)

The instanton solutions of the effective gauge theories supply non-zero tr(Fi∧Fi). They are

macroscopic string configurations extended over the R1,1 ⊂ R1,5 directions, whose tension

is set by the effective gauge coupling 1/g2
i ∼ 〈Φi〉. Their instanton numbers are measured

by ki = 1
8π2

∫
R4 tr(Fi ∧ Fi) ∈ Z whose integral is taken over the transverse R4 directions.

They satisfy Fi = ± ?4 Fi and Hi = ∓ ?4 dΦi for ki ≷ 0 in which upper/lower symbols are

correlated. They are little string solutions of the LSTs. We always consider the self-dual

instanton solitons (ki > 0) from here on.

Based on the effective gauge theory description, the low energy dynamics of little

strings is governed by the non-linear sigma model [20]. However, the sigma model descrip-

tion cannot be UV-complete since its target space is the instanton moduli space, involving
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small instanton singularities. For certain classes of 6d gauge theories, the ADHM construc-

tion provides a prescription for obtaining a UV-complete worldsheet gauge theory from the

non-linear sigma model [21]. It usually agrees with the string theory realization of in-

stanton solitons and underlying gauge theories. The brane realization can also cover the

particular case that little strings are E-strings, which do not carry any instanton charge,

providing the UV gauge theory descriptions [22, 23] for them. The resulting UV gauge

theory is particularly useful to compute SUSY-protected observables, such as the elliptic

genera of little strings. The brane configurations associated to our LSTs will be discussed

in sections 2 and 3, from which we derive the 6d/2d gauge theories and compute the BPS

partition functions.

We shall study the BPS spectrum of a circle compactified LST on R1,4 × S1 with an

Omega-deformation along the spatial R4 direction [24]. Omega-deformation produces the

mass gap for the R4 rotations, regulating the infrared divergence of LSTs. The BPS states

are the bound states between momentum and/or winding modes along the circle, which

generically preserve 1/4 SUSY generators. Each winding sector has a fixed winding number

along the circle, which we interpret as a number of 6d little strings. When the circle radius

is taken be large, the Hilbert space of 6d BPS states is factorized into numerous winding

sectors being decoupled from one another at low energy regime [25]. Such decoupling

occurs as the ground energy gap between distinct winding sectors is proportional to the

circle radius R, dominating the momentum excitation proportional to the inverse of the

circle radius R−1. The BPS spectrum of an individual winding sector is captured by the

elliptic genus of worldsheet UV gauge theory, describing the instanton strings of the 6d

effective gauge theory (1.1). The complete 6d BPS partition function is thus constructed

as the weighted sum over the 2d elliptic genera of little strings, multiplied with an extra

contribution from the pure momentum sector. This is the instanton partition function of

the 6d effective gauge theory (1.1) on Omega-deformed R4 × T 2 [24].

The BPS partition function provides a powerful probe to explore T-duality of LSTs.

Since it is a protected observable under the continuous deformation of the underlying

theory, it remains to be a valid expression even beyond the large radius regime. Recall that

T-duality equates a pair of circle compactified theories, whose radii of circles are related

as RA = m−2
s /RB, with an interchange of winding and momentum states. A dual pair of

LSTs are therefore expected to have the same BPS partition function. We shall establish

the T-duality relation of the BPS spectra, by comparing the BPS partition functions of

LSTs engineered from IIA/IIB NS5-branes on Dn singularities. As a byproduct, our result

also verifies the 5d/6d dualities involving Dn singularities, discussed in [26–28]. Similar

studies on T-duality of LSTs were already made in [25, 29–31] for the (2, 0) LSTs and the

(1, 0) LSTs found from NS5-branes on An singularities.

The remaining part of this paper is organized as follows. In section 2 and 3, we derive

the 6d/2d gauge theories from the brane configurations and compute the BPS partition

functions on Omega-deformed R4 × T 2. In section 4, we study T-duality relation between

the LSTs in their BPS spectra. Concluding remarks are given in section 5.
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D2 • • •

Figure 1. NS5-D6-O6 brane system at N = 2.

2 IIA NS5-branes on Dn orbifolds

2.1 Effective gauge theories

Recall that an S-duality transformation, also known as a “9-11 flip”, maps type IIA string

theory on the Dn-type ALF space to the brane construction involving n D6-branes on

top of an O6− plane [14]. If the ALF space fills out the x6, · · ·x9 directions, the D6-

branes and O6− plane are extended over the x0, · · · , x5, x9′ directions where x9′ denotes

the M-theory circle in the original background. We now introduce N NS5-branes which

span the x0, · · · , x5 directions and intersect the O6− plane. An NS5-brane meeting an O6-

plane can split into two 1
2 NS5-branes [32]. Moreover, a 1

2 NS5-brane provides a discrete

torsion of the Kalb-Ramond field, alternating O6− and O6+ planes. Four D6-branes are

simultaneously created or annihilated due to the RR charge conservation [32]. The final

brane configuration is illustrated in figure 1.

From the brane system, we derive the effective gauge theory for the LSTs engi-

neered from IIA NS5-branes probing the Dn-type ALF space. The background preserves

the 6d Lorentz symmetry SO(1, 5)012345 and the SO(3)789 global symmetry, rotating the

x7, x8, x9 directions. One can decompose SO(1, 5)012345 → SO(1, 1)01×SU(2)1L×SU(2)1R,

where SU(2)1L/1R generate self-dual/anti-self-dual rotations of the four-plane spanning

the x2, · · · , x5 directions. We denote the doublet indices of SU(2)1L, SU(2)1R, SU(2)R ∼=
SO(3)789 by α, α̇, A respectively. The 32 supercharges of ten-dimensional N = (1, 1) su-

persymmetry can be written as QαA±± and Qα̇A±±, where the first/second subscripts express

eigenvalues of Γ01 and Γ9′ respectively. The presence of NS5-, O6-, D6-branes imposes

two SUSY projectors, Γ012345 and Γ9′ , leaving QαA++ and Qα̇A−+. These surviving generators

satisfy the six-dimensional N = (1, 0) SUSY algebra that contains SU(2)R ∼= SO(3)789

as R-symmetry.

The gauge symmetry comes from 2N stacks of D6-branes on top of O6-planes. As

each stack of O6- and D6-branes is a finite segment ending on 1
2 NS5-branes, the brane

configuration engineers a six-dimensional circular quiver gauge theory with 2N nodes.

There are two types of gauge nodes. First, n D6-branes plus an O6− plane induce an

SO(2n) gauge symmetry. Second, (n−4) D6-branes plus an O6+ plane induce an Sp(n−4)

gauge symmetry. The total gauge group is therefore an alternating product of SO(2n) and

Sp(n− 4) having 2N nodes. We label the SO(2n) nodes by odd integers and the Sp(n− 4)

nodes by even integers.
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Sp (n-4)

Sp (n-4)

SO (2n)

SO (2n)

(a) 6d

sym

SO (2n)Sp (n-4)

SO (2n)

anti

Sp (n-4)

Sp (k3)

Sp (k1)

O(k4)

O(k2)

anti
sym

(b) 2d

Figure 2. Quiver diagrams for 6d/2d gauge theories on D6/D2-branes at N = 2.

Open strings connecting various D6-branes have massless excitation modes, corre-

sponding to field contents in the circular quiver gauge theory. Each gauge node contains

an adjoint vector multiplet. Its bosonic action, coupled to 2N tensor multiplets, takes the

form of (1.1) with

aij =


+4 if i = j = (odd)

+1 if i = j = (even)

−1 if i = j ± 1

0 otherwise

for N > 1, aij =

(
+4 −2

−2 +1

)
for N = 1. (2.1)

where i, j ∈ Z (mod 2N). Each adjacent pair of gauge nodes is connected by a bifun-

damental half-hypermultiplet. A half-hypermultiplet is a hypermultiplet in a pseudo-real

representation, whose number of fields is halved by the reality condition. Note that a

half-hypermultiplet is always massless since a mass term is incompatible with the reality

condition. The quiver diagram for the effective gauge theory is given in figure 2a, in which

a solid line represents a half-hypermultiplet. The 6d gauge anomaly is cancelled by the

Green-Schwarz mechanism [18, 19].

Little string configurations are introduced in the brane system as an array of 2N D2-

brane stacks, occupying the x0, x1, x9′ directions. Each stack is a finite segment along the

x9′ direction connecting an adjacent pair of 1
2 NS5-branes. For example, the i-th D2-brane

stack realizes instanton strings in the i-th gauge node, which are also fractional little strings

charged under the i-th tensor multiplet. Every distinct configuration of little strings can

be labeled by (k1, k2, · · · , k2N ) where ki denotes the number of full/half D2-branes for

odd/even i respectively.

For the minimal case of n = 4, no D6-branes are placed on top of the O6+ planes.

The Sp-type gauge symmetries as well as the bifundamental hypermultiplets become null.

However, there still exist the same 2N tensor multiplets and little strings which are realized
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by D2-brane segments on top of O6± planes. The brane set-up realizes a circular chain

of E-string theory on O6+ and SO(8) gauge theory on O6−, where SO(8) × SO(8) ⊂ E8

global symmetry of E-string theory is being gauged [26, 33, 34].

The two-dimensional gauge theory supported on the D2-branes provides the effec-

tive description for an individual winding sector in the LSTs. It inherits the SU(2)1L ×
SU(2)1R × SU(2)R global symmetry from the underlying 6d theory. It preserves the 4

supercharges Qα̇A−+, surviving after imposing an additional SUSY projector Γ01 obtained

from D2-branes. Note that Qα̇A−+ satisfies 2d N = (0, 4) SUSY algebra which incorporates

the SO(4) ∼= SU(2)1R × SU(2)R as R-symmetry. It also captures the 6d gauge symmetry

as flavor symmetry.

Each stack of D2-branes supports a symplectic or an orthogonal gauge symmetry,

depending on the type of orientifold plane. More precisely, k full/half D2-branes on an

O6−/O6+ plane support an Sp(k)/O(k) gauge symmetry. The worldsheet gauge theory

of (k1, k2, · · · , k2N ) little strings is therefore an orthosymplectic circular quiver theory,

whose gauge group is given by Sp(k1) × O(k2) × · · · × Sp(k2N−1) × O(k2N ). The field

contents of the gauge theory are determined from massless modes of open strings ending

on D2-branes. We summarize them as N = (0, 4) supermultiplets in table 1. The quiver

diagram for the worldsheet gauge theory is also presented in figure 2b, where N = (0, 4)

hyper, twisted hyper, Fermi multiplets are denoted by black solid, blue solid, pink dashed

lines. Although the theory is chiral, the field contents precisely cancel the gauge anomaly.

The two-dimensional gauge anomaly is proportional to
∑

ψDR[ψ] where ψ labels all chiral

fermions and R[ψ] are their gauge representations. The index DR is defined as Tr(T aRT
b
R) =

DRδ
ab. In our cases,

Sp(ki) node : −4(2ki+2)+4(2ki−2)+4n−2(2n−8)+2(ki+1+ki−1)−2(ki+1+ki−1) = 0

O(ki) node : −4(2ki−2)+4(2ki+2)+2(2n−8)−4n+4(ki+1+ki−1)−4(ki+1+ki−1) = 0

(2.2)

showing that our N = (0, 4) gauge theory is anomaly-free. This formula also holds

for n = 4.

2.2 BPS partition functions on R4 × T 2

The 6d effective gauge theories are useful to study the BPS spectra of the LSTs on R4×T 2.

For fixed N ≥ 1 and n ≥ 4, the partition function is defined as the following trace over the

6d Hilbert space:

In,N = TrH6d

(−1)F qHL q̄HR tJ1R+JRuJ1L
2N∏
i=1

nkii

ri∏
`i=1

(wi,`i)
Fi,`i

 . (2.3)

where HL,R = 1
2(H ± P ) are the left/right-moving momenta along the torus T 2. Using

6d N = (1, 0) SUSY generators, QαA++ and Qα̇A−+, the right-moving Hamiltonian can be

written as HR ∼ {Q,Q†} where Q ≡ Q1̇2
−+ and Q† ≡ −Q2̇1

−+. J1L, J1R, JR are the Cartan

generators for SU(2)1L, SU(2)1R, SU(2)R symmetries. ki is an instanton charge of the i-th

– 6 –
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Sp-type node (odd i):

Type Field Representation

vector (Aµ, λ
α̇A
− ) adj of Sp(ki)

hyper (aαα̇, ψ
αA
+ ) anti of Sp(ki)

hyper (qα̇, ψ
A
+) bif of Sp(ki)× SO(2n)

Fermi (χ−)1, (χ−)2 bif of Sp(ki)× Sp(n− 4)

twisted hyper (ϕα̇, µ
A
+) bif of Sp(ki)×O(ki+1)

Fermi (µα−)1, (µ
α
−)2 bif of Sp(ki)×O(ki+1)

O-type node (even i):

Type Field Representation

vector (Aµ, λ
α̇A
− ) adj of O(ki)

hyper (aαα̇, ψ
αA
+ ) sym of O(ki)

hyper (qα̇, ψ
A
−) bif of O(ki)× Sp(n− 4)

Fermi (χ1), (χ2) bif of O(ki)× SO(2n)

twisted hyper (ϕα̇, µ
A
+) bif of O(ki)× Sp(ki+1)

Fermi (µα−)1, (µ
α
−)2 bif of O(ki)× Sp(ki+1)

Table 1. Field contents of 2d gauge theories on D2-branes. The index i is taken modulo 2N .

gauge node, which counts the number of the i-th fractional little strings. Fi,`i=1,··· ,ri are

the Cartan generators of i-th gauge group of rank ri. We introduce a fugacity variable for

each combination of the Cartan generators that commutes with Q and Q†. Besides ki and

Fi,`i=1,··· ,ri for i = 1, · · · , 2N , there exist two more commuting combinations: J1R + JR,

J1L. The fugacity variables are also written in terms of the chemical potentials as follows.

q = e2πiτ , q̄ = e2πiτ̄ , t = e2πiε+ , u = e2πiε− , wi,`i = e2πiαi,`i . (2.4)

where τ is the complex parameter of the torus T 2. The background chemical potentials

ε1 = ε++ε−
2 and ε2 = ε+−ε−

2 are introduced to deform the 4-plane to the Omega-deformed

R4. They are IR regulators which generate an effective mass gap for the R4 rotations. The

6d gauge holonomies αi,`i fractionalize the circle momenta.

The 6d partition function In,N counts the BPS states annihilated by Q and Q†. These

BPS states carry the left-moving momenta HL and/or the winding number ki. When one

takes the large radius limit for the spatial circle S1 that little strings are wrapping on,

the Hilbert space of 6d BPS states is divided into individual winding sectors decoupled

from each other at low energy. In such limit, each sector with a fixed winding number

(k1, · · · , k2N ) acquires the ground state energy bigger than the energy scale of the momenta,

so the energy gap between different winding sectors also gets bigger. Each winding sector

– 7 –
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with a definite winding number (k1, · · · , k2N ) is described by the 2d SUSY gauge theory

induced from the array of (k1, · · · , k2N ) D2-branes. The elliptic genus Ik1,··· ,k2Nn,N of the 2d

gauge theory therefore captures the BPS spectrum for that particular winding sector. The

full 6d BPS partition function can be written as the sum over the 2d elliptic genera for

individual winding sectors, weighted by the string fugacities ni conjugate to the winding

numbers ki,

In,N = I0
n,N ·

1 +

∞∑
k1,··· ,k2N=1

nk11 · · · nk2N2N · I
k1,··· ,k2N
n,N

 , (2.5)

with an overall multiplication by the BPS partition function I0
n,N for the pure momen-

tum sector.

The pure momentum sector is described by the perturbative 6d gauge theory, decou-

pled from non-perturbative winding modes at low energy. The partition function I0
n,N for

the pure momentum sector collects the contribution from each (1, 0) supermultiplet in a

multiplicative way. It takes the form of a plethystic exponential,

I0
n,N = PE

[
f0
n,N (q, t, u, wi,`i)

]
≡ exp

(∑∞
p=1

1
p · f0

n,N (q, t, u, wi,`i)
)
, (2.6)

where the single-particle index f0
n,N is the single letter partition function [35], defined as a

trace over the operators and their derivatives saturating the BPS condition modulo those

operators which become zero by the equations of motion. It can also be obtained from the

equivariant index theorem [24, 36]. The letter index

Trletters

[
(−1)F qHL q̄HR tJ1R+JRuJ1L

∏2N
i=1

∏ri
`i=1(wi,`i)

Fi,`i

]
, (2.7)

is a product between the R4 derivative factor coming from translation modes on the Ω-

deformed R4

t2

(1− tu)2(1− tu−1)2
=

1

sin2 (πε1) · sin2 (πε2)
, (2.8)

and the following factors associated to respective N = (1, 0) multiplets:

tensor : (3,1,1)+⊕ (1,1,1)+⊕(2,1,2)−→ (u+u−1)(u+u−1−t−t−1)
(∑∞

n=−∞ q
n
)+

vector : (2,2,1)+⊕ (1,2,2)−→ (t+t−1)(u+u−1−t−t−1)
(
χR (wi,`i)

∑∞
n=−∞ q

n
)+

hyper : 2(1,1,2)+⊕2(2,1,1)−→ 2(t+t−1−u−u−1)
(
χR (wi,`i)

∑∞
n=−∞ q

n
)+
. (2.9)

The triples (r1L, r1R, rR) denote the SU(2)1L, SU(2)1R, SU(2)R representations of compo-

nent fields. The ± subscript denotes if a component field is bosonic or fermionic. χR is

the irreducible character for a gauge representation R of a given supermultiplet. The +

superscript in the parenthesis indicates that all non-BPS states carrying non-positive mo-

mentum must be discarded. In our cases, a vector multiplet is in the adjoint representation
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of SO(2n) or Sp(n− 4), for which the parenthesis becomes

SO(2n) :

[∑n
`i<`j

(
wi,`i
wi,`j

+wi,`iwi,`j+
q

wi,`iwi,`j
+
qwi,`j
wi,`i

)
+nq

]
· 1

1−q (2.10)

Sp(n−4) :

[∑n−4
`i<`j

(
wi,`i
wi,`j

+wi,`iwi,`j+
q

wi,`iwi,`j
+
qwi,`j
wi,`i

)
+
∑n−4

`i=1

(
w2
i,`i

+
q2

w2
i,`i

)
+(n−4)q

]
× 1

1−q .

A half-hypermultiplet is in the bifundamental representation of SO(2n) × Sp(n − 4) or

Sp(n− 4)× SO(2n) which satisfies the pseudo-reality condition. The parenthesis becomes

SO(2n)× Sp(n− 4) : 1
2

[∑n
`i=1

(
wi,`i + q

wi,`i

)
·∑n−4

`i+1=1

(
wi+1,`i+1

+ q
wi+1,`i+1

)]
· 1

1−q

Sp(n− 4)× SO(2n) : 1
2

[∑n−4
`i=1

(
wi,`i + q

wi,`i

)
·∑n

`i+1=1

(
wi+1,`i+1 + q

wi+1,`i+1

)]
· 1

1−q .

(2.11)

One obtains the final expression of f0
n,N by adding up all products of (2.8) and (2.9). (2.6)

gives I0
n,N .

We now turn to an individual sector with fixed winding numbers (k1, · · · , k2N ). It is

described by the two-dimensional gauge theory on the array of D2-branes introduced in

section 2.1. Thus the BPS partition function Ik1,··· ,k2Nn,N for the (k1, · · · , k2N ) winding sector

is also given by the 2d elliptic genus of the D2-brane gauge theory. We follow [37, 38]

for computing the elliptic genera of two-dimensional gauge theories via path integral lo-

calization. The path integral of a gauge theory can be evaluated in the weak coupling

regime by performing Gaussian integrations around saddle points. The saddle points are

parametrized by the gauge holonomies A0 + τA1 on T 2, classified by eigenvalues of all

commuting pairs of gauge group elements. For Sp(k) gauge group,

A0 + τA1 = diag (±φ1,±φ2, · · · ,±φk) where φi ∈ C/(Z + τZ). (2.12)

O(k) group allows discrete holonomies. All disconnected holonomy sectors are classified

as follows.

O(1) : {0, 1
2 ,

1+τ
2 , τ

2} (2.13)

O(2) : {diag(±φ1), diag(0, τ2 ), diag(1
2 ,

1+τ
2 ), diag(0, 1

2), diag( τ2 ,
1+τ

2 ), diag(0, 1+τ
2 ),

diag(1
2 ,
τ
2 )}

O(2p+1) : {diag(±φ1, · · · ,±φp,0), diag(±φ1, · · · ,±φp−1,
1
2 ,

1+τ
2 , τ2 ), diag(±φ1, · · · ,±φp, τ2 ),

diag(±φ1, · · · ,±φp−1,
1
2 ,

1+τ
2 ,0), diag(±φ1, · · · ,±φp, 1

2),

diag(±φ1, · · · ,±φp−1,
τ
2 ,

1+τ
2 ,0),diag(±φ1, · · · ,±φp, 1+τ

2 ),

diag(±φ1, · · · ,±φp−1,0,
τ
2 ,

1
2)} for p≥ 1

O(2p) : {diag(±φ1, · · · ,±φp), diag(±φ1, · · · ,±φp−2,0,
1
2 ,

1+τ
2 , τ2 ),

diag(±φ1, · · · ,±φp−1,0,
τ
2 ),diag(±φ1, · · · ,±φp−1,

1
2 ,

1+τ
2 ),

diag(±φ1, · · · ,±φp−1,0,
1
2), diag(±φ1, · · · ,±φp−1,

τ
2 ,

1+τ
2 ),

diag(±φ1, · · · ,±φp−1,0,
1+τ

2 ), diag(±φ1, · · · ,±φp−1,
τ
2 ,

1
2)} for p≥ 2
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where φi ∈ C/(Z + τZ). We obtain the one-loop determinant Z1-loop as the result of

Gaussian integrals over massive fluctuations around a saddle point. Z1-loop is obtained as

the product of the one-loop determinants over various N = (0, 4) supermultiplets, which

can be written as

Zvector =

r∏
i=1

2πη θ1(2ε+) dφi
∏

ρ∈root

θ1(ρ · φ) θ1(ρ · φ+ 2ε+)

η2
, (2.14)

ZFermi =
∏

ρ∈repg

∏
κ∈repf

θ1(ρ · φ+ κ · z)

η
(2.15)

Zhyper =
∏

ρ∈repg

∏
κ∈repf

η

θ1(+ε+ + ρ · φ+ κ · z)
, (2.16)

Ztwisted hyper =
∏

ρ∈repg

∏
κ∈repf

η

θ1(−ε+ + ρ · φ+ κ · z)
. (2.17)

ρ is the eigenvalue for the Cartan generator of the gauge symmetry in the representation

repg. κ collectively denotes the eigenvalues for the Cartan generators of SU(2)1L global

symmetry and (SO(2n)× Sp(n− 4))N flavor symmetry in the representation repf . Their

conjugate chemical potentials, i.e., ε− and αi,`i , are collectively denoted as z. Note that

the 1-loop determinants of real scalars and fermions involve square roots of θ’s. As they are

always paired, we rearranged them as
√
θ1(x+ y)θ1(−x− y) ∼ θ1(x+ y) in (2.14)–(2.17).

After multiplying these factors, we integrate over the zero modes which are the eigenvalues

φi of the gauge holonomies. It is the contour integral which can be done by summing

all Jeffrey-Kirwan residues, as explained in [37, 38]. We then sum over all disconnected

holonomy backgrounds, divided by the Weyl group order
∏2N
i=1 |Wi|.

Ik1,··· ,k2Nn,N =
∑

holonomy

1

(2πi)
∑2N
i=1 ri

1∏2N
i=1 |Wi|

∮
Z1−loop (2.18)

|Wi| is the order of Weyl group for the i-th gauge node in a given holonomy background.

|WSp(k)| = 2kk!, |WO(2p+1)1 | = 2p+1p!, |WO(2p+1)3 | = 2p+2(p− 1)! (2.19)

|WO(2p)0 | = 2pp!, |WO(2p)2 | = 2p+1(p− 1)!, |WO(2p)4 | = 2p+2(p− 2)!

The subscript ι in O(k)ι denotes the number of discrete holonomies in the background.

Finally, one can obtain the full 6d BPS partition function In,N from I0
n,N and Ik1,··· ,k2Nn,N

using (2.5).

Result: 1 NS5-brane on Dn singularity

Let us specifically consider the LSTs obtained from 1 NS5-brane probing Dn singularity.

There are two types of fractional little strings, realized in the brane set-up as k1 full D2-

branes and k2 half D2-branes. We study the BPS partition functions of specific winding

sectors, up to k1 ≤ 1 and k2 ≤ 2 that corresponds to a fully wound D2-brane.
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(k1, k2) = (0, 0). The BPS spectrum of the pure momentum sector is captured by the

perturbative partition function of the 6d effective gauge theory. Using (2.6)–(2.11), I0
n,1 is

written as

PE

[
− (1+t2)

(1−tu±) ·
{ n∑
a<b

(
w1,a

w1,b
+w1,aw1,b+

q

w1,aw1,b
+
qw1,b

w1,a

)
+nq

}
· 1

1−q (2.20)

− (1+t2)

(1−tu±) ·
{n−4∑
a<b

(
w2,a

w2,b
+w2,aw2,b+

q

w2,aw2,b
+
qw2,b

w2,a

)
+

n−4∑
a=1

(
w2

2,a+
q2

w2
2,a

)
+(n−4)q

}
· 1

1−q

− 2 t(u+u−1)

(1−tu±) ·
q

1−q+
2 t

(1−tu±) ·
{ n∑
a=1

(
w1,a+

q

w1,a

)
·
n−4∑
b=1

(
w2,b+

q

w2,b

)}
· 1

1−q

]
,

where we used the ± notation: (1− xy±) ≡ (1− xy)(1− xy−1).

(k1, k2) = (0, 1) and (0, 2). These winding sectors correspond to multiple E-strings

(for n = 4) or Sp(n − 4) instanton strings (for n > 4). Their elliptic genera are written

in [22, 23, 39–42]. For k2 = 1,

I0,1
n,1 = − η−6

2θ1(ε+ ± ε−)

4∑
m=1

( ∏n
a=1 θm(±α1,a)∏n−4

b=1 θm(ε+ ± α2,b)

)
(2.21)

where the abbreviated notation θm(x± y) ≡ θm(x+ y)θm(x− y) is used. For k2 = 2,

I0,2
n,1 =+

η−12

θ1(ε+±ε−)

[
4∑

m=1

( ∏n
a=1 θm(±α1,a− ε++ε−

2
)2

4θ1(2ε++2ε−)θ1(−2ε−)
∏n−4
b=1 θm(±ε+±α2,b− ε++ε−

2
)
+(ε−→−ε−)

)

+
n−4∑
c=1

( ∏n
a=1 θ1(ε++α2,c±α1,a)

2

2θ1(ε+±ε−±2(α2,c−ε+))θ1(2ε+−2α2,c)θ1(2α2,c)
∏n−4
b 6=c θ1(2ε+−α2,c±α2,b)θ1(α2,c±α2,b)

+(α2,c→−α2,c)

)
+

∑
(m,p,r)∈S

θm(0)θm(2ε+)
∏n
a=1 θp(±α1,a)θr(±α1,a)

4θ1(ε+±ε−)θm(ε+±ε−)
∏n−4
b=1 θp(ε+±α2,b)θr(ε+±α2,b)

]

for S = {(2, 1, 2), (3, 1, 3), (4, 1, 4), (2, 3, 4), (3, 4, 2), (4, 2, 3)}.

(k1, k2) = (1, 0). This sector corresponds to an SO(2n) instanton string. The elliptic

genus is [43]

I1,0
n,1 =

n∑
a=1

[
η12θ1(2ε++2α1,q)θ1(4ε++2α1,q)

∏n−4
b=1 θ1(±α2,b±(ε++α1,a))

2θ1(ε+±ε−)
∏n
c 6=a θ1(2ε++α1,a±α1,c)θ1(−α1,a±α1,c)

+(α1,a→−α1,a)

]
(2.22)

(k1, k2) = (1, 1). This winding sector is described by the two-dimensional O(1)× Sp(1)

gauge theory. Its elliptic genus is given as the one-dimensional contour integral

−
∮
dφ

η9 θ1(2ε+)θ1(±2φ)θ1(2ε+±2φ)
∏n−4
b=1 θ1(±φ±α2,b)

4θ1(ε+±ε−)2
∏n
a=1 θ1(ε+±φ±α1,a)

4∑
m=1

∏n
a=1 θm(±α1,a)∏n−4

b=1 θm(ε+±α2,b)

θm(+ε−±φ)2

θm(−ε+±φ)2 .
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The Jeffrey-Kirwan residues are obtained from the simple poles at

• φ = −ε+ ± α1,a for a = 1, · · · , n

• φ = +ε+ + vp for p = 1, · · · 4

where (v1, v2, v3, v4) = (0, 1
2 ,

1+τ
2 , τ2 ). Collecting them all, one obtains

I1,1
n,1 =

4∑
m=1

n∑
a=1

(
sm ·η6 θ1(2α1,a+2ε+)θ1(2α1,a+4ε+)θm(ε−±(α1,a+ε+))2

4θ1(ε+±ε−)2θm(α1,a+2ε+)2

×
n−4∏
b=1

θ1(±α2,b±(α1,a+ε+))

θm(ε+±α2,b)

n∏
c 6=a

θm(±α1,c)

θ1(α1,a±α1,c)θ1(α1,a±α1,c+2ε+)
+(α1,a→−α1,a)

)

−
4∑

m=1

(
η6θ1(2ε+)θ1(4ε+)

∏n−4
b=1 θm(±α2,b+ε+)2

2
∏n
a=1 θm(±α1,a+2ε+)

)
(2.23)

where the sign factor sm is defined as s1 = −1, s2,3,4 = 1.

(k1, k2) = (2, 1). This winding sector is described by the two-dimensional O(2)× Sp(1)

gauge theory which allows 7 disconnected gauge holonomies. Six of them involve O(2)

discrete holonomies, contributing to the elliptic genus by the following one-dimensional

contour integrals.∮
dφ

(
η3θ1(2ε+)θ1(±2φ)θ1(2ε+ ± 2φ)

∏n−4
b=1 θ1(±φ± α2,b)

8 θ1(ε+ ± ε−)3
∏n
a=1 θ1(ε+ ± φ± α1,a)

(2.24)

× θr(0)θr(2ε+)
∏n
a=1 θm(±α1,a)θp(±α1,a)

θr(ε+ ± ε−)
∏n−4
b=1 θm(ε+ ± α2,b)θp(ε+ ± α2,b)

θm(+ε− ± φ)2θp(+ε− ± φ)2

θm(−ε+ ± φ)2θp(−ε+ ± φ)2

)
where (m, p, r) takes a value in {(2, 1, 2), (3, 1, 3), (4, 1, 4), (2, 3, 4), (3, 4, 2), (4, 2, 3)} for each

holonomy sector. The Jeffrey-Kirwan residues are obtained from the simple poles at

• φ = −ε+ ± α1,a for a = 1, · · · , n

• φ = +ε+ + vm

• φ = +ε+ + vp

Summing these Jeffrey-Kirwan residues over all discrete holonomy sectors, one obtains

I2,1,d
n,1 =

∑
(m,p,r)∈S

[
θr(ε+±ε−)θ1(2ε+)θ1(4ε+)
4θ1(ε+±ε−)θr(0)θr(2ε+)

( n∏
a=1

θm(±α1,a)

θp(2ε+±α1,a)

n−4∏
b=1

θp(ε+±α2,b)

θm(ε+±α2,b)
+(m↔ p)

)

−
n∑
a=1

(
smsp θr(0)θr(2ε+)θ1(4ε+−2α1,a)θ1(2ε+−2α1,a)θm(ε+±ε−−α1,a)

2θp(ε+±ε−−α1,a)
2

8θ1(ε+±ε−)3θr(ε+±ε−)θm(2ε+−α1,a)2θp(2ε+−α1,a)2

×
n∏
c 6=a

θm(±α1,c)θp(±α1,c)

θ1(α1,a±α1,c)θ1(2ε+−α1,a±α1,c)

n−4∏
b=1

θ1(ε+±α2,b−α1,a)
2

θa(ε+±α2,b)θb(ε+±α2,b)
+(α1,a→−α1,a)

)]
(2.25)
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The remaining sector contribute to the elliptic genus by the two-dimensional contour inte-

gral ∮
dφ1dφ2

(
η3 θ1(2ε+)

2θ1(ε+ ± ε−)

θ1(+ε− ± φ1 ± φ2)

θ1(−ε+ ± φ1 ± φ2)

)2

(2.26)

× θ1(±2φ1)θ1(2ε+ ± 2φ1)
∏n−4
b=1 θ1(±φ1 ± α2,b)∏n

a=1 θ1(ε+ ± α1,a ± φ1)

×
∏n
a=1 θ1(±α1,a ± φ2)

θ1(ε+ ± ε− ± 2φ2)
∏n−4
b=1 θ1(ε+ ± α2,b ± φ2)

whose Jeffrey-Kirwan residues come from the following list of poles.

• (φ1, φ2) = (−ε+ ± α1,a, −ε+ ± α2,b) for a = 1, · · · , n and b = 1, · · · , (n− 4)

• (φ1, φ2) = (2ε+ +α2,`, −ε+−α2,`) and (2ε+−α2,`, −ε+ +α2,`) for ` = 1, · · · , (n−4)

• (φ1, φ2) = (−ε+ ± α1,i, − ε+±ε−
2 + vp) for i = 1, · · · , n and p = 1, · · · , 4

• (φ1, φ2) = (3ε+−ε−
2 +vp, − ε+−ε−

2 −vp) and (3ε++ε−
2 +vp, − ε++ε−

2 −vp) for p = 1, · · · , 4

We add up all Jeffrey-Kirwan residues, which can be written as

I2,1,c
n,1 = +

n∑
a=1

n−4∑
b=1

(
θ1(ε−±(2ε+−α1,a−α2,b))

2θ1(ε−±(α1,a−α2,b))
2θ1(ε+−α1,a−α2,b)

2

4θ1(ε+±ε−)2θ1(−3ε++α1,a+α2,b)2θ1(−ε+±ε−+2α2,b)θ1(3ε+±ε−−2α2,b)

×θ1(2ε+−2α1,a)θ1(4ε+−2α1,a)

θ1(2α2,b)θ1(2ε+−2α2,b)

n−4∏
d 6=b

θ1(α2,d±(ε+−α1,a))
2

θ1(α2,b±α2,d)θ1(±α2,d−α2,b+2ε+)

×
n∏
c 6=a

θ1(±α1,c−α2,b+ε+)
2

θ1(α1,a±α1,c)θ1(−α1,a±α1,c+2ε+)
+(α1,a→−α1,a)+(α2,b→−α2,b)

+(α1,a→−α1,a, α2,b→−α2,b)

)
+

n−4∑
b=1

(
θ1(ε−±(3ε++2α2,b))

∏n
a=1 θ1(ε++α2,b±α1,a)

2

4η3θ1(ε+±ε−)θ1(2ε++2α2,b)2θ1(4ε++2α2,b)θ1(2α2,b)θ1(ε+±ε−±2(ε++α2,b))

× 1∏n−4
d 6=b θ1(2ε+±α2,d+α2,b)θ1(±α2,d−α2,b)

·
(
∂

∂x

θ1(x−2ε+)
2θ1(x−2α2,b−2ε+)

2

θ1(2x−2ε+)

×θ1(2x−2α2,b−5ε+±ε+)θ1(2x−ε+±ε−)θ1(2x−3ε+−2α2,b±ε−)∏n
a=1 θ1(x−2ε+±ε+±α1,a−α2,b)

)∣∣∣∣
x=0

+(α2,b→−α2,b)

)
−

n∑
a=1

4∑
p=1

(
θ1(4ε+−2α1,a)θ1(2ε+−2α1,a)

8θ1(ε+±ε−)2θ1(2ε++2ε−)θ1(2ε−)

θp(
ε++3ε−

2
±(ε+−α1,a))

2

θp(
3ε++ε−

2
±(ε+−α1,a))2

n−4∏
d 6=b

θ1(ε+−α1,a±α2,d)
2

θp(
ε++ε−

2
±ε+±α2,d)

×θ1(ε+−α1,a±α2,b)
2θp(α1,a± ε++ε−

2
)2

θp(
ε++ε−

2
±ε+±α2,b)

n∏
c 6=a

θp(α1,c± ε++ε−
2

)2

θ1(α1,a±α1,c)θ1(2ε+−α1,a±α1,c)

+(α1,a→−α1,a)+(ε−→−ε−)+(α1,a→−α1,a, ε−→−ε−)

)
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+

4∑
p=1

(
θ1(2ε+)

∏n
a=1 θp(

ε++ε−
2

±α1,a)
2

8η3 θ1(ε++ε−)2θ1(ε+−ε−)θ1(2ε−)θ1(3ε++ε−)
∏n−4
b=1 θp(

ε++ε−
2

±ε+±α2,b)

×
(
∂

∂x

θ1(2x+ε+±ε−)θ1(2x+4ε+±ε++ε−)θ1(2x+2ε++2ε−)
∏n−4
b=1 θp(x+

3ε++ε−
2

±α2,b)∏n
a=1 θp(x+

3ε++ε−
2

±ε+±α1,a)

)∣∣∣∣
x=0

+(ε−→−ε−)

)
(2.27)

The final expression of I2,1,c
n,1 can be reached by taking the derivative over x, then set x

to be zero. Those derivatives appear in the residues of the second and fourth poles which

are double poles. The full elliptic genus is given as the sum of (2.25) and (2.27), i.e.,

I2,1
n,1 = I2,1,c

n,1 + I2,1,d
n,1 .

3 IIB NS5-branes at Dn orbifolds

3.1 Effective gauge theories

We start with N IIB NS5-branes which lie along the x0, · · · , x5 directions, probing the

Dn ALF space in the transverse x6, · · · , x9 directions. S-duality transformation maps the

NS5-branes to D5-branes. Under T-duality transformation along the ALF circle, the D5-

branes become D6-branes wrapping on the dual circle (say x9′′). The x9′′ direction is a

finite segment S1/Z2 that contains an ON− plane at each endpoint and n NS5-branes

in the middle [17]. The fully wrapped D6-branes can be separated into various D6-brane

segments ending on NS5-branes. One can obtain a weakly coupled string theory background

by bringing an NS5-brane near an ON− plane. Such chargeless combination is called an

ON0 plane, a perturbative string orbifold that D-branes can end on [15–17]. We illustrate

the brane configuration in figure 3, translating N D6-branes into 2N half D6-branes stuck

on the orbifolds.

An effective gauge theory description of the LSTs can be derived from the brane system.

The brane configuration preserves the 6d Lorentz symmetry SO(1, 5)012345 and the SO(3)789

global symmetry, rotating the x7, x8, x9′′ directions. We decompose SO(1, 5)012345 →
SO(1, 1)01 × SU(2)1L × SU(2)1R and denote by α, α̇, A the doublet indices of SU(2)1L,

SU(2)1R, SU(2)R ∼= SO(3)789. The SUSY projectors imposed by NS5-branes and D6-

branes are Γ012345 and Γ9′′ . As explained in section 2.1, QαA++ and Qα̇A−+ are the surviving

superchanges, where the first/second subscripts denote the eigenvalues of Γ01 and Γ9′′ .

They are the generators of six-dimensional N = (1, 0) supersymmetry. The SU(2)R global

symmetry also participates into the (1, 0) SUSY algebra as R-symmetry.

The six-dimensional gauge symmetry comes from (n−1) stacks of D6-brane segments.

It is known that a stack of 2N half D-branes ending on an ON0 plane can be described by

U(N) × U(N) Yang-Mills theory without bifundamental matters [15–17]. In our system,

the leftmost and rightmost stack of D6-branes engineer four distinct U(N) gauge nodes.

Any other D6-brane stack engineers a U(2N) gauge node. We label four U(N) nodes by

i = 1, · · · , 4 and all other U(2N) nodes by i = 5, · · · , n+ 1. The total gauge symmetry is

therefore given by (U(N))2 × (U(2N))n−3 × (U(N))2 group.
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ON0

2N 1/2 D6

NS5 NS5 ON0

2N 1/2 D6 2N 1/2 D6

x9

0 1 2 3 4 5 6 7 8 9

D6 • • • • • • •
NS5-ON0 • • • • • •

D2 • • •

Figure 3. NS5-ON0-D6 brane system at n = 4.

SU (2N)

SU (N)

SU (N)

SU (N)

SU (N)

SU (2N)

(a) 6d

adj
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Figure 4. Quiver diagrams for 6d/2d gauge theories on D6/D2-branes at n = 5.

The field contents are induced from open strings connecting various D6-branes. Each

gauge node contains an adjoint vector multiplet. The bosonic Lagrangian of the vector

multiplets coupled to (n + 1) tensor multiplets takes the form of (1.1), whose aij is given

by the affine D̂n Cartan matrix

aij =


+2 if i = j

−1 if {(i, j), (j, i)} ∩ {(1, 5), (2, 5), (3, n+ 1), (4, n+ 1)} 6= ∅
−1 if {(i, j), (j, i)} ∩ {(a, b) : b = a+ 1 and 5 ≤ a ≤ n} 6= ∅
0 otherwise

(3.1)

for 1 ≤ i, j ≤ (n + 1). Every pair of i-th and j-th gauge nodes, such that aij = −1,

is connected by a massless hypermultiplet in a bifundamental representation. The quiver

diagram for the effective gauge theory is therefore given by the affine D̂n-type Dynkin

diagram, depicted in figure 4a. Our brane system realizes the Douglas-Moore construction

for the Dn-type singularity [44].

The Green-Schwarz mechanism cancels the non-Abelian gauge anomalies, since the

1-loop anomaly polynomial is factorized into I1-loop = 1
2 aij tr(Fi∧Fi)∧ tr(Fj ∧Fj) [18, 19].

However, the Abelian gauge symmetries also become anomalous at one-loop, i.e.,

δS = −εi
∫

(trFi) ∧ (trFi) ∧ (trFi), (3.2)

due to those hypermultiplets charged under (n + 1) U(1) factors. This can be cancelled

through the theta term
∫
θi (trFi) ∧ (trFi) ∧ (trFi) where θi are periodic scalars induced
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from NS5-branes. They change under the U(1)n+1 gauge transformation by δθi = εi. Their

kinetic terms are written as ∫
d6x (∂µθ

i − trAiµ)2, (3.3)

so that the Abelian gauge fields are massive and become non-dynamical at low energy. All

U(N) and U(2N) gauge symmetries in the effective field theory must be treated as SU(N)

and SU(2N).

Every distinct arrangement of little strings can be labeled by (n + 1) integers,

(k1, k2, · · · , kn+1), which correspond to the instanton charges in all gauge nodes. It is

realized in the brane system as (n+ 1) stacks of half D2-brane segments which occupy the

x0, x1, x9′′ directions. The integer ki denotes the number of D2-branes in the i-th stack.

From the array of D2-branes, one can derive the two-dimensional gauge theory which de-

scribes an individual winding sector of the LSTs. It inherits the SU(2)1L×SU(2)1R×SU(2)R
global symmetry from the 6d theory. Introduction of the D2-branes imposes an extra SUSY

projector Γ01 which leaves 4 supercharges Qα̇A−+ unbroken. They generate 2d N = (0, 4)

supersymmetry which has SO(4) = SU(2)1R × SU(2)R as R-symmetry. As a stack of ki
D2-branes engineers a U(ki) gauge symmetry, the total gauge group is

∏n+1
i=1 U(ki). The

two-dimensional gauge theory is the affine D̂n quiver gauge theory, which contains various

field contents induced from open strings ending on D2-branes. We summarize them as

N = (0, 4) supermultiplets in table 2. The Dynkin label di is defined by d1≤i≤4 = 1 and

di>4 = 2. We call the i-th and j-th gauge nodes are connected if aij = aji = −1. See also

figure 4b for the quiver diagram description.

This theory is free of gauge anomaly, since there are the same number of left-moving

and right-moving fermions in any gauge representation. The 6d gauge symmetry also ap-

pears as the flavor symmetry of the 2d gauge theory. It is the (U(N))2 × (U(2N))n−3 ×
(U(N))2 symmetry at the classical level, but one must take into account the mixed anoma-

lies with the gauge symmetry. Let us denote the Abelian generators of the U(1) ⊂ U(ki)

gauge symmetry and the U(1) ⊂ U(djN) flavor symmetry by Gi and Fj . Their 2d mixed

anomalies are given by

Tr(γ3GiFi) = diN, Tr(γ3GiFj) = −djN/2, (3.4)

for each gauge node i and its connected node j. Seeking for the anomaly-free U(1) flavor

symmetries, there exists the only U(1) combination which has no mixed anomalies, being

generated by
∑n+1

i=1 Fi. However, it can be absorbed into the U(1) ⊂ ∏n+1
i=1 U(ki) gauge

symmetry generated by
∑n+1

i=1 Gi. This implies that the flavor symmetry of the 2d gauge

theory must be treated as (SU(N))2 × (SU(2N))n−3 × (SU(N))2 at quantum level, just as

in the underlying 6d effective gauge theories.

3.2 BPS partition functions on R4 × T 2

The BPS specta of the LSTs on Omega-deformed R4 × T 2 can be studied from the affine

D̂n quiver gauge theory. We define the SUSY partition function as the trace over the 6d
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For each gauge node i:

Type Field Representation

vector (Aµ, λ
α̇A
− ) adj of U(ki)

hyper (aαα̇, ψ
αA
+ ) adj of U(ki)

hyper (qα̇, ψ
A
+) bif of U(ki)×U(diN)

For each connected pair (i, j) of gauge nodes:

Type Field Representation

Fermi (χ−)1 bif of U(ki)×U(djN)

Fermi (χ−)2 bif of U(kj)×U(diN)

twisted hyper (ϕα̇, µ
A
+) bif of U(ki)×U(kj)

Fermi (µα−)1, (µ
α
−)2 bif of U(ki)×U(kj)

Table 2. Field contents of 2d gauge theories on D2-branes.

BPS Hilbert space [24]

In,N = TrH6d

(−1)F qHL q̄HR tJ1R+JRuJ1L
n+1∏
i=1

nkii

ki∏
`i=1

(wi,`i)
Fi,`i

 . (3.5)

Our notations for various charges and chemical potentials are already explained in sec-

tion 2.2. Here the Cartan generators Fi,`i are those of 6d U(N) and U(2N) gauge sym-

metries which become SU(N) and SU(2N) at quantum level. Their conjugate chemical

potentials are therefore subject to the traceless conditions as follows.

N∑
`i=1

αi,`i = 0 for i = 1, · · · , 4 and
2N∑
`i=1

αi,`i = 0 for i > 4. (3.6)

The partition function captures the 6d BPS states which carry the left-moving momenta

HL along the torus T 2 and the winding numbers (k1, · · · , kn+1). If we take the radius R

of the spatial circle of the torus T 2 to be large, the 6d BPS Hilbert space is factorized into

distinct winding sectors. This is because the ground state energy for a winding sector is

proportional to the circle radius R times the winding numbers, dominating the energy scale
1
R of circle momenta. And also, each sector with a fixed winding number is described by

the 2d quiver gauge theory supported on (n+1) D2-brane stacks. We denote by I
k1,··· ,kn+1

n,N

the BPS partition function of the (k1, · · · , kn+1) winding sector, which is the elliptic genus

of the 2d gauge theory on (k1, k2, · · · , kn+1) D2-brane segments. The 6d partition function

is therefore given by the weighted sum over the 2d elliptic genera, which captures the BPS

spectrum of individual winding sectors, as follows.

In,N = I0
n,N ·

1 +
∞∑

k1,··· ,kn+1=1

nk11 · · · nk2N2N · I
k1,··· ,kn+1

n,N

 (3.7)

– 17 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
5

where the 2d elliptic genera for individual winding sectors are weighted by winding number

fugacities nk11 · · · nk2N2N . The overall dressing factor I0
n,N is the BPS partition function for

the pure momentum sector, obtained from the 6d perturbative gauge theory on Omega-

deformed R4 × T 2.

The pure momentum sector is described by the 6d perturbative gauge theory decou-

pled from non-perturbative instanton modes at low energy. As explained in section 2.2,

the partition function I0
n,N can be computed from the formula (2.6) where the single par-

ticle index f0
n,N is obtained from counting the letter operators [35]. Each 6d N = (1, 0)

multiplet contributes to the single particle index by the product of (2.8) and (2.9). The

parentheses in (2.9) can be explicitly written as follows. For a vector multiplet in an adjoint

representation, they are

SU(N) :

[∑N
`i<`j

(
wi,`i
wi,`j

+
qwi,`j
wi,`i

)
+Nq

]
· 1

1−q (3.8)

SU(2N) :

[∑2N
`i<`j

(
wi,`i
wi,`j

+
qwi,`j
wi,`i

)
+ 2Nq

]
· 1

1−q .

For a hypermultiplet in a bifundamental representation of SU(2N)× SU(2N) or SU(N)×
SU(2N),

SU(2N)× SU(2N) :

[∑2N
`i=1

(
wi,`i + q

wi,`i

)
·∑2N

`j=1

(
wj,`j + q

wj,`j

)]
· 1

1−q (3.9)

SU(N)× SU(2N) :

[∑N
`j=1

(
wj,`j + q

wj,`j

)
·∑2N

`j=1

(
wj,`j + q

wj,`j

)]
· 1

1−q .

One can obtain the final expression of f0
n,N and I0

n,N by collecting all relevant factors and

using (2.6).

An individual winding sector with fixed (k1, k2, · · · , kn+1) can be described by the

two-dimensional gauge theory explained in section 3.1. Its BPS partition function is the

elliptic genus of the gauge theory, whose computation was studied in [37, 38] through SUSY

localization. We evaluate the supersymmetric path integral in the weak coupling regime.

The full path integral is reduced to Gaussian integrals around saddle points, which are

parameterized by the gauge holonomy A0 + τA1 on T 2. The U(k) gauge holonomy can be

written as

A0 + τA1 = diag (φ1, φ2, · · · , φk) where φi ∈ C/(Z + τZ). (3.10)

The Gaussian integration around a saddle point, labeled by eigenvalues of the (n + 1)

gauge holonomies, results in the one-loop determinant Z1-loop. It is the product of the

factors (2.14)–(2.17) associated to each N = (0, 4) multiplet. It can be expressed in a
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closed form as

Z1-loop =

n+1∏
i=1

[(
η3θ1(2ε+)

θ1(ε1)θ1(ε2)

)ki ki∏
p 6=q

θ1(φi,pq)θ1(2ε++φi,pq)

θ1(ε+±ε−+φi,pq)
·
ki∏
p=1

diN∏
a=1

η2

θ1(ε+±(φi,p−αi,a))

]

×
n+1∏
i 6=j

 ki∏
p=1

djN∏
a=1

θ1(Mij ·(φi,p−αj,a))
η

·
ki∏
p=1

kj∏
q=1

θ1(+ε−+Mij ·(φi,p−φj,q))
θ1(−ε++Mij ·(φi,p−φj,q))


×

n+1∏
i=1

ki∏
p=1

2πdφi,p

 (3.11)

where φi,p denotes the p-th eigenvalue of the i-th gauge holonomy. The following notations

are also used: Mij ≡ 2δij − aij and φi,ab ≡ φi,a − φi,b. We integrate over the eigenvalues

of the gauge holonomies, φi,p, parameterizing all saddle points. It is the multi-dimensional

contour integral

I
k1,··· ,kn+1

n,N =
1

(2πi)
∑n+1
i=1 ki

1∏n+1
i=1 ki!

∮
Z1−loop (3.12)

which can be done by collecting the Jeffrey-Kirwan residues explained in [37, 38]. The

division factor ki! is the Weyl group order of U(ki) gauge symmetry.

The Jeffrey-Kirwan residue operation exclusively selects those poles which are classified

by colored Young diagrams. Any of selected poles, coming from the first line of (3.11),

takes the following form.

φi,p = αi,a − ε+ − (n1 + n2)ε+ − (n1 − n2)ε−. (3.13)

These poles are classified by the (diN)-colored Young diagrams for all 1 ≤ i ≤ (n+ 1) [24].

An I-colored Young diagram consists of I numbers of Young tableaux. The equation (3.13)

indicates that the p-th box inside the i-th colored Young diagram is placed at the position

(n1, n2) of the a-th tableau. The rule is that a box can be piled at (n1, n2) only if there

exists a box at (n1 − 1, n2) or (n1, n2 − 1). We now claim that no additional pole can be

chosen from the second line of (3.11). Suppose that the values of φi,1, · · · , φi,n indicate

n boxes inside the i-th colored Young diagram. If the i-th and j-th gauge nodes are

interconnected, an eigenvalue φj,1 of the j-th gauge holonomy can be determined from the

poles of the following factors

djN∏
a=1

η

θ1(ε+ + (φj,1 − αj,a))
and

n∏
p=1

η

θ1(−ε+ + (φj,1 − φi,p))
. (3.14)

The latter one comes from the second line of (3.11). Inserting back φi,1, · · · , φi,n, this

becomes

diN∏
a=1

∏
(n1,n2)∈ya

η

θ1(φj,1 − αi,a + (n1 + n2)ε+ + (n1 − n2)ε−)
(3.15)

– 19 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
5

where ya denotes the a-th tableau in the i-th (diN)-colored Young diagram Yi. Some other

terms on the second line of (3.11) can also be written as

diN∏
a=1

θ1(φj,1−αi,a)
η

·
n∏
p=1

θ1(ε−+(φi,p−φj,1))θ1(ε−+(φj,1−φi,p))
η2

(3.16)

=

diN∏
a=1

θ1(φj,1−αi,a)
η

·
diN∏
a=1

∏
(n1,n2)∈ya

−θ1(φj,1−αi,a+(n1+n2+1)ε++(n1−n2±1)ε−)

η2

=

diN∏
a=1

[
(−1)|ya|

∏
(n1,n2)∈ỹa

θ1(φj,1−αi,a+(n1+n2+1)ε++(n1−n2±1)ε−)

η2

]

where ỹa is the extended tableau of ya that has boxes at (n1, n2), (n1 + 1, n2), (n1, n2 + 1)

for each (n1, n2) ∈ ya. Since (3.16) completely cancels out (3.15), the second line of (3.11)

cannot develop a new pole chosen by the Jeffrey-Kirwan residue operation. It implies

that every residue is associated to a distinct configuration of (n + 1) colored Young dia-

grams {Y1, · · · ,Yn+1}. Combining all Jeffrey-Kirwan residues, the BPS partition function

I
k1,··· ,kn+1

n,N can be written as [45, 46]

I
k1,··· ,kn+1

n,N =
∑
{Yi}

n+1∏
i=1

diN∏
a=1

∏
s∈ya

[
diN∏
b=1

η2

θ1(Ei,ab(s))θ1(Ei,ab(s)−2ε+)
(3.17)

×
∏
j∈Ni

djN∏
c=1

(
θ1(Ei,a(s)−αj,c)

η

∏
s′∈yc

θ1(Ei,a(s)−Ej,c(s′)+ε−)

θ1(Ei,a(s)−Ej,c(s′)−ε+)

)]
.

We used the following notations: Ni = {j | aij = −1}. Ei,ab(s) and Ei,a(s) are functions

of a box s in the a-th tableau which belongs to the i-th colored Young diagram, i.e.,

Ei,ac(s) = αi,a − αi,c − ε+(hr,a(s)− vb,c(s)− 1)− ε−(hr,a(s) + vb,c(s) + 1) (3.18)

Ei,a(s) = αi,a − (hl,a(s) + vt,a(s)− 1)ε+ − (hl,a(s)− vt,a(s))ε−.

hl,a(s) and hr,a(s) are the horizontal distances from the box s to the leftmost and rightmost

edges of ya. vt,a(s) and vt,a(s) are the vertical distances from the box s to the top and

bottom edges of ya. The 6d BPS partition function In,N of the LST can finally be obtained

from (3.7).

4 T-duality in the BPS spectra

T-duality is a characteristic feature of LSTs that was found in many known examples. It

establishes an equivalence between two circle compactified LSTs, interchanging the winding

and momentum modes, when their circle radii R and R̃ are related as R̃ = α′/R. Since

IIA/IIB NS5-branes are T-dual pairs, one naturally expects that those LSTs studied in

sections 2 and 3 can also be equated via T-duality.

A sequence of string dualities realizes T-duality of the LSTs. We start with the two

brane systems that engineer the effective gauge theories studied in sections 2 and 3. Each
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(O5—+ 2 D5) — O5+

Figure 5. Duality between the generic 5-brane configurations at N = 1 and n = 5

system contains D6-branes and NS5-branes, together with D2-brane segments correspond-

ing to little strings. We apply T-duality transformation along the x1 circle that both LSTs

are wrapped on. The resulting systems are 5-brane webs. Locations of D5-branes are con-

trolled by the chemical potentials αi,a, which were previously interpreted as the 6d gauge

holonomies fractionalizing the circle momentum. Various D1- and F1-strings suspended

between 5-branes are T-dual of fractional little strings and circle momenta, respectively.

The equivalence of the two 5-brane web systems can be shown in two steps [28]. First, one

locates two D5-branes near the topmost O5− planes in the D5-O5-NS5 system. This can

be done by imposing the SO(2n) Wilson lines,

2πA1 = (0, 0, · · · , 0, 1
2 ,

1
2), (4.1)

breaking SO(2n)→ SO(2n− 4)× SO(4). Second, one takes S-duality transformation that

rotates a 5-brane web diagram by 90°. It exchanges D1- and F1-strings, and D5- and

NS5-branes, and the following two configurations [28]

(O5− + 2 D5)−O5+ ←→ (ON0 + NS5). (4.2)

More precisely, S-duality has to be performed in the singular configuration where all frac-

tional 5-branes are unsplit [28]. We move to the generic configurations afterward by sepa-

rating all fractional 5-branes. Figure 5 depicts S-duality transformation of the two 5-brane

web configurations for N = 1 and n = 5. As D1- and F1-strings correspond to winding and

momentum modes of a LST, it essentially maps the winding/momentum modes of one LST

to the momentum/winding modes of the other LST. This realizes the T-duality between

the two LSTs, obtained from N NS5-branes on the Dn ALF space.

We can probe the T-duality using the BPS partition functions computed in sections 2.2

and 3.2. Although the BPS partition functions are always computed in the large radius

regime, they are naturally expected to be valid at any circle radius. For that reason, the

BPS partition functions of dual LSTs must agree with each other, after suitably identifying

the winding/momentum fugacities on one side with the momentum/winding fugacities on

the other side. More concretely, we study if

IAn,N (q, w, n) = IBn,N (q′, w′, n′) (4.3)
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Figure 6. Kähler parameters in the generic 5-brane configurations at N = 1 and n = 4, 5

where the superscripts A/B distinguish respectively the LSTs studied in section 2 and 3.

The two sets of fugacity variables are collectively denoted as q, w, n and q′, w′, n′, related

by a fugacity map. The fugacity map can be best understood from the 5-brane webs

diagrams as identification rules for Kähler parameters. We derive the fugacity maps for

two particular configurations: 1 NS5-brane on the D4 and D5 ALF spaces. From these

results, one will be able to infer the maps for greater n-s.

1 NS5-brane on D4 singularity. Let us identify the fugacity variables in IA4,1 with

Kähler parameters in the 5-brane web diagram of figure 6a. There are 6 independent

fugacities, w1,1, · · · , w1,4, n1, n2. First, the SO(8) holonomies must be replaced by

w1,1 → w1,1, w1,2 → w1,2, w1,3 → q1/2w1,3, w1,4 → q1/2w1,4 (4.4)

due to the background Wilson line (4.1) which virtually inserts exp (πiτ(F1,3 + F1,4)) in the

BPS partition function (2.3). They measure the vertical locations of the D5-branes from

the bottom O5-plane, so that one can identify them with Kähler parameters m1, · · · ,m4, τ

as follows.

w1,1 = e2πim1 , w1,2 = e2πim2 , q1/2w1,3 = q1/2e−2πim3 , q1/2w1,4 = q1/2e−2πim4 . (4.5)

Second, the winding fugacities n1 and n2 measure the D1-string lengths suspended between

the NS5-branes. A subtle point is that n2 measures half the distance as it is conjugate to

the number of half D1-strings. These fugacities are therefore identified as

n1 = e2πi(τ ′−2a1), n2 = e2πia1 . (4.6)

For example, the contribution to IA4,1 from a fully wound D1-string is weighted with n1n
2
2 =

e2πiτ ′ .

IB4,1 involves 6 independent variables n′1, · · · , n′5, w′5,1, which we identify with the

Kähler parameters in figure 6a. First, the SU(2) holonomy w′5,1 measures the location

of an NS5-brane from the middle.

w5,1 = e2πia1 (4.7)
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Second, the winding fugacities n′1, · · · , n′5 measure the lengths of indivisible open strings,

corresponding to the positive roots of affine SO(8) Lie algebra. In terms of the Kähler

parameters m1, · · · ,m4, τ ,

n′1 = e2πi(m2+m1) , n′2 = e2πi(m2−m1) , (4.8)

n′3 = e2πi(m4+m3) , n′4 = e2πi(m4−m3) , n′5 = e2πi( τ
2
−m2−m3).

Based on (4.5)–(4.8), the unprimed variables are related to the primed variables as follows.

(w1,1, w1,2, w1,3, w1,4, n1, n2, q) =

(√
n′1
n′2
,
√
n′1n
′
2,

√
n′3
n′4
,
√
n′3n
′
4,

q′

w′25,1
, w′5,1, n

′
1n
′
2n
′
3n
′
4n
′2
5

)
(4.9)

where q = e2πiτ and q′ = e2πiτ ′ measure the vertical and horizontal periods in figure 6a.

Substituting all the unprimed variables with the primed variables, we indeed found that

IA4,1(q′, w′, n′) = IB4,1(q′, w′, n′) (4.10)

in series expansion form, up to q′1n′21 n
′2
2 n
′2
3 n
′2
4 n
′2
5 order. The series expansion result can be

written in a plethystic exponential form, i.e.,

IA/B4,1 (q′, w′, n′) ≡ PE

[
t · F4,1

(1− tu)(1− tu−1)

]
, (4.11)

where F4,1 is attached as a Mathematica file, 1NS5-D4.nb, and also partially displayed in

appendix A.

1 NS5-brane on D5 singularity. We repeat the same analysis for the n = 5 theory,

whose 5-brane web diagram is given in figure 6b. There are 8 independent fugacity variables

that appear in IA5,1. First, the SO(10) holonomies are replaced by

w1,1 → w1,1, w1,2 → w1,2, w1,3 → w1,3, w1,4 → q1/2w1,4, w1,5 → q1/2w1,5 (4.12)

due to the Wilson line (4.1) that effectively introduces exp (πiτ(F1,4 + F1,5)) in (2.3). They

are identified with Kähler parameters m1, · · · ,m5, τ as follows:

w1,1 = e2πim1 , w1,2 = e2πim2 , w1,3 = e2πim3 ,

q1/2w1,4 = q1/2e−2πim4 , q1/2w1,5 = q1/2e−2πim5 . (4.13)

Second, the Sp(1) fugacity w2,1 reflects the vertical location of the middle D5-brane from

the bottom O5+ plane. In terms of the Kähler parameters, it can be written as

w2,1 = e2πi(m3+a1−a2). (4.14)

Third, the winding fugacities n1 and n2 measure the lengths of D1-strings suspended be-

tween the NS5-branes. Being different from the n = 4 case, however, two options seem

available: one depends on a1 while the other depends on a2. We temporarily take the limit
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τ →∞ to clarify this. It was observed in [47, 48] that the length of D1-strings corresponds

to the average of horizontal distances between upper/lower pairs of asymptotic NS5-branes.

In our system, it implies that

n1 = e2πi(τ ′−2a2), n2 = e2πia2 (4.15)

which must be true also for finite τ due to the robustness of the BPS spectrum.

We turn to IB5,1 involving 8 fugacities n′1, · · · , n′6, w′5,1, w′6,1. First, the SU(2)

holonomies w′5,1 and w′6,1 measure the horizontal locations of the lower and upper NS5-

branes from the middle, respectively.

w′5,1 = e2πia1 , w′6,1 = e2πia2 (4.16)

Second, the winding fugacities n′1, · · · , n′6 are the lengths of indivisible open strings which

correspond to the positive roots of affine SO(10) Lie algebra.

n′1 = e2πi(m2+m1) , n′2 = e2πi(m2−m1) , n′3 = e2πi(m5+m4) , (4.17)

n′4 = e2πi(m5−m4) , n′5 = e2πi(m3−m2) , n′6 = e2πi( τ
2
−m3−m4).

Based on (4.13)–(4.17), the unprimed variables are related to the primed variables as fol-

lows.

(w1,1, w1,2, w1,3, w1,4, w1,5) =

(√
n′1
n′2
,
√
n′1n
′
2,
√
n′1n
′
2n
′
5,

√
n′3
n′4
,
√
n′3n
′
4

)

(w2,1, n1, n2, q) =

(√
n′1n
′
2n
′
5 · w′5,1

w′6,1
,
q′

w′26,1
, w′6,1, n

′
1n
′
2n
′
3n
′
4n
′2
5 n
′2
6

)
(4.18)

where q = e2πiτ and q′ = e2πiτ ′ correspond to the vertical and horizontal periods in

figure 6b.

Replacing all the unprimed variables with the primed variables, we again found that

IA5,1(q′, w′, n′) = IB5,1(q′, w′, n′) (4.19)

in series expansion form, up to q′1n′11 n
′1
2 n
′1
3 n
′1
4 n
′2
5 n
′2
6 order. The series expansion result can

be written in a plethystic exponential form, i.e.,

IA/B5,1 (q′, w′, n′) ≡ PE

[
t · F5,1

(1− tu)(1− tu−1)

]
, (4.20)

where the polynomial F5,1 is attached as a separate Mathematica notebook file,

1NS5-D5.nb.

Generalizations. We state the fugacity map for general n > 5 extending the above re-

sults. The two sets of (2n−2) fugacity variables, appearing in IAn,1 and IBn,1, are respectively

denoted as

IAn,1 : n1, n2, w1,1, · · · , w1,n, w2,1, · · · , w2,n−4 (4.21)

IBn,1 : n′1, · · · , n′n+1, w
′
5,1, · · · , w′n+1,1. (4.22)

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
5

They can be identified with each other through Kähler parameters in the corresponding

5-brane web. The SO(2n) holonomies w1,1, · · · , w1,n must be replaced by

w1,n−1 → q1/2w1,n−1, w1,n → q1/2w1,n, w1,a → w1,a for all a ≤ (n− 2). (4.23)

due to the Wilson line (4.1) which induces exp (πiτ(F1,n−1 + F1,n)) in (2.3). Repeating the

same analysis, the unprimed variables can be related to the primed variables as follows.

(w1,1, w1,2, w1,n−1, w1,n) =

(√
n′1
n′2
,
√
n′1n
′
2,

√
n′3
n′4
,
√
n′3n
′
4

)

(w1,3, · · · , w1,n−2) =

(√
n′1n
′
2n
′
5, · · · ,

√
n′1n
′
2

n∏
i=5

n′i

)

(w2,1, · · · , w2,n−4) =

(√
n′1n
′
2n
′
5 · w′5,1

w′6,1
, · · · ,

√
n′1n
′
2

∏n
i=5 n

′
i · w′n,1

w′n+1,1

)

(n1, n2, q) =

(
q′

w′2n+1,1

, w′n+1,1, n
′
1n
′
2n
′
3n
′
4

n+1∏
i=5

n′2i

)
(4.24)

Replacing the unprimed variables with the primed variables or vice versa, T-duality implies

an agreement between the BPS partition functions IAn,1 and IBn,1 as explicitly confirmed in

the n = 4, 5 cases. It is also straightforward to generalize the fugacity maps for multiple

NS5-branes. The detailed analysis would involve understanding the microscopic description

of an ON0 plane.

5 Conclusion and discussions

In this work, we studied the N = (1, 0) little string theories that are engineered from

type IIA/IIB NS5-branes probing the Dn ALF space. The string dualities map the NS5-

branes and the Dn-type ALF space to the NS5-D6-O6 and NS5-ON0-D6 brane systems,

from which we derived the 6d effective gauge theories. We have an orthosympletic circular

quiver theory on one side, and an affine D̂n quiver theory on the other side. Little strings

are realized as instanton strings of the effective gauge theories. Their worldsheet dynamics

are described by the two-dimensional N = (0, 4) gauge theories, motivated from various

D2-branes introduced to the brane systems. These 6d/2d gauge theories were used to study

the BPS spectra of the little string theories on Omega-deformed R4 × T 2.

We utilized the SUSY partition functions of the little string theories to establish their

T-duality. T-duality is an equivalence between two circle compactified LSTs, interchanging

the winding and momentum modes, when their circle radii R and R̃ are related as R̃ =

α′/R. The SUSY partition functions for a T-dual pair of LSTs should agree with each

other, after imposing a fugacity map which identifies the winding/momentum fugacities on

one side with the momentum/winding fugacities on the other side. For those LSTs obtained

from an NS5-branes on Dn singularities, we found the fugacity map from the associated

5-brane web diagrams and confirmed the agreements between the SUSY partition functions

for n = 4, 5.
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By decompactifying either direction in the 5-brane web diagrams, the T-duality is

reduced to the duality between the 6d Dn conformal matter theory and the 5d affine

D̂n-type quiver gauge theory, or between the 6d Dn-type quiver gauge theory and the

5d orthosympletic circular quiver theory. This comes from the fact that our LSTs are

extensions of those two 6d N = (1, 0) SCFTs. Consequently, our SUSY partition functions

also confirmed the 5d/6d dualities studied in [26–28] as byproducts.

One interesting and challenging future direction would be to study the little string the-

ories engineered from type IIA/IIB NS5-branes on the En-type ALF spaces. The effective

gauge theories for the type IIB NS5-branes are the affine Ên gauge theories according to

the Douglas-Moore construction [44], for which most results in section 3.2 can be easily

extended. However, the effective gauge theories for those type IIA NS5-branes involve

several exceptional gauge groups, whose instanton strings have not been fully understood

yet. [49–51] are some related works on exceptional instanton strings.
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A Explicit expression for F4,1

The Laurant polynomial F4,1 is defined in (4.11) as the numerator of the single-particle

index for the LST of a single NS5-brane probing the D4 ALF space. It essentially contains

all BPS invariants. We rearrange it into

F4,1 =

∞∑
l=0

∞∑
r=0

(−1)l+rχl/2(u)χr/2(t) · gl,r (A.1)

where χs denotes an SU(2) character of spin-s representation. Up to the n′1n
′
2n
′
3n
′
4n
′2
5 order,

g0,0 =w5,1

(
n1n

2
5+8n1n2n

2
5+n2n

2
5+8n1n3n

2
5+32n1n2n3n

2
5+8n2n3n

2
5+n3n

2
5+8n1n4n

2
5

+32n1n2n4n
2
5+8n2n4n

2
5+32n1n3n4n

2
5+96n1n2n3n4n

2
5+32n2n3n4n

2
5+8n3n4n

2
5+n4n

2
5

+8n1n5+8n1n2n5+8n2n5+8n1n3n5+8n1n2n3n5+8n2n3n5+8n3n5+8n1n4n5

+8n1n2n4n5+8n2n4n5+8n1n3n4n5+8n1n2n3n4n5+8n2n3n4n5+8n3n4n5+8n4n5

+8n5+n1+n2+n3+n4

)
+qw−1

5,1

(
10n1n2n

2
5+10n1n3n

2
5+62n1n2n3n

2
5+10n2n3n

2
5

+10n1n4n
2
5+62n1n2n4n

2
5+10n2n4n

2
5+62n1n3n4n

2
5+272n1n2n3n4n

2
5+62n2n3n4n

2
5

+10n3n4n
2
5+9n1n5+18n1n2n5+9n2n5+18n1n3n5+27n1n2n3n5+18n2n3n5

+9n3n5+18n1n4n5+27n1n2n4n5+18n2n4n5+27n1n3n4n5+36n1n2n3n4n5

+27n2n3n4n5+18n3n4n5+9n4n5+n1+n2+n3+n4+8
)

(A.2)
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g1,0 = n1n2n3n4n
2
5w

2
5,1+2n1n2n3n4n

2
5+q

(
n1n

2
5+28n1n2n

2
5+n2n

2
5+28n1n3n

2
5+181n1n2n3n

2
5

+28n2n3n
2
5+n3n

2
5+28n1n4n

2
5+181n1n2n4n

2
5+28n2n4n

2
5+181n1n3n4n

2
5

+798n1n2n3n4n
2
5+181n2n3n4n

2
5+28n3n4n

2
5+n4n

2
5+10n1n5+19n1n2n5+10n2n5

+19n1n3n5+28n1n2n3n5+19n2n3n5+10n3n5+19n1n4n5+28n1n2n4n5+19n2n4n5

+28n1n3n4n5+37n1n2n3n4n5+28n2n3n4n5+19n3n4n5+10n4n5

+n5+n1+n2+n3+n4

)
+qw−2

5,1n1n2n3n4n
2
5 (A.3)

g0,1 = n1n2n3n
2
5+n1n2n4n

2
5+n1n3n4n

2
5+4n1n2n3n4n

2
5+n2n3n4n

2
5+n1n5+n1n2n5+n2n5

+n1n3n5+n1n2n3n5+n2n3n5+n3n5+n1n4n5+n1n2n4n5+n2n4n5+n1n3n4n5

+n1n2n3n4n5+n2n3n4n5+n3n4n5+n4n5+n5+n1+n2+n3+n4+w2
5,1

(
8n1n

2
5+31n1n2n

2
5

+8n2n
2
5+31n1n3n

2
5+88n1n2n3n

2
5+31n2n3n

2
5+8n3n

2
5+31n1n4n

2
5+88n1n2n4n

2
5

+31n2n4n
2
5+88n1n3n4n

2
5+222n1n2n3n4n

2
5+88n2n3n4n

2
5+31n3n4n

2
5+8n4n

2
5

+n2
5+8n1n5+8n1n2n5+8n2n5+8n1n3n5+8n1n2n3n5+8n2n3n5+8n3n5+8n1n4n5

+8n1n2n4n5+8n2n4n5+8n1n3n4n5+8n1n2n3n4n5+8n2n3n4n5+8n3n4n5+8n4n5

+8n5+1
)
+qw−2

5,1

(
n1n2n

2
5+n1n3n

2
5+4n1n2n3n

2
5+n2n3n

2
5+n1n4n

2
5+4n1n2n4n

2
5

+n2n4n
2
5+4n1n3n4n

2
5+15n1n2n3n4n

2
5+4n2n3n4n

2
5+n3n4n

2
5+n1n5+2n1n2n5+n2n5

+2n1n3n5+3n1n2n3n5+2n2n3n5+n3n5+2n1n4n5+3n1n2n4n5+2n2n4n5+3n1n3n4n5

+4n1n2n3n4n5+3n2n3n4n5+2n3n4n5+n4n5+n1+n2+n3+n4+1
)
+q
(
47n1n

2
5

+208n1n2n
2
5+47n2n

2
5+208n1n3n

2
5+696n1n2n3n

2
5+208n2n3n

2
5+47n3n

2
5+208n1n4n

2
5

+696n1n2n4n
2
5+208n2n4n

2
5+696n1n3n4n

2
5+2065n1n2n3n4n

2
5+696n2n3n4n

2
5

+208n3n4n
2
5+47n4n

2
5+n2

5+48n1n5+66n1n2n5+48n2n5+66n1n3n5+84n1n2n3n5

+66n2n3n5+48n3n5+66n1n4n5+84n1n2n4n5+66n2n4n5+84n1n3n4n5+102n1n2n3n4n5

+84n2n3n4n5+66n3n4n5+48n4n5+30n5+2n1+2n2+2n3+2n4

)
(A.4)

where all primes are dropped for simplicity. See the attached Mathematica files for more

informations.
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