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1 Introduction

Event shape variables are inclusive observables which measure simple geometric properties

of collider events. Many of the classic e+e−-collider event shapes are defined using the

thrust axis ~nT found by maximizing the thrust T =
∑

i |~nT · ~pi|/Q, where the sum runs

over all particles in an event, and Q is the center-of-mass energy. An example is the total

jet broadening BT =
∑

i |~nT × ~pi|/(2Q) which measures the momentum transverse to ~nT .

Event shapes are perturbatively calculable, but higher-order terms are enhanced by large

logarithms for two-jet configurations with small invariant masses. It is well known how to

resum these logarithms using the factorization properties of QCD amplitudes in the soft and

collinear limits. For thrust, the relevant factorization theorem was obtained in [1–4] and

the thrust distribution was resummed up to N3LL accuracy in [5, 6] using Soft-Collinear

Effective Theory (SCET) [7–9] (see [10] for a review). The factorization formula for total

broadening [11–13] is more involved because for broadening the transverse momentum and

virtuality of the soft radiation is comparable to the one of the energetic collinear particles.

The effective theory for this kinematical situation is called SCETII to distinguish it from the

one relevant for thrust called SCETI. Because of its comparable transverse momentum,

collinear radiation recoils against soft partons in SCETII. Furthermore, one encounters

rapidity logarithms which are not captured using standard RG evolution from higher to

lower virtuality. Formalisms to deal with this complication are available [11, 13–17] and

the resummation for BT has been performed at NNLL accuracy [18].

The thrust axis ~nT splits the final state into two hemispheres, which we label as “left”

and “right” and it is interesting to define separate event shapes for the partons in the two

hemispheres. The left (right) broadening is defined as the sum of the absolute values of

the transverse momenta of partons with the thrust axis ~nT in the left (right) hemisphere

bL(R) =
1

2

∑

i∈L(R)

|~p⊥
i | = 1

2

∑

i∈L(R)

|~pi × ~nT | . (1.1)
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For our effective theory analysis, it is natural to work with the dimensionful quantities bL(R),

the associated dimensionless rations will be denoted by capital letters, BL(R) = bL(R)/Q.

Three different combinations of left and right broadenings were measured experimentally.

They are the

total broadening: bT = bL + bR ,

wide broadening: bW = max(bL, bR) ,

narrow broadening: bN = min(bL, bR) .

Similarly, one can look at the invariant masses ML and MR of the jets in the two hemi-

spheres and define the total, heavy, and light jet masses, which are the equivalent of the

three quantities introduced for the broadening. Due to the left-right symmetry, the narrow

broadening can be inferred from the left broadening after subtracting the wide broadening

dσ

dbN
= 2

dσ

dbL
− dσ

dbW

∣

∣

∣

∣

∣

bL=bW=bN

. (1.2)

Below we analyze the factorization theorem for left broadening in the limit bL ≪ bR ∼ Q.

While the heavy jet mass and the wide broadening fulfill factorization theorems anal-

ogous to the ones for total broadening and thrust, it turns out that the structure of log-

arithms for the left jet mass and the left broadening are much more complicated. These

observables are non-global since they are only sensitive to radiation in the left hemisphere,

and this induces an intricate pattern of logarithms which was discovered by Dasgupta and

Salam in an analysis of the left jet mass [19]. These authors were also able to resum the

leading non-global logarithms in the large Nc limit. More recently, we have derived all-

order factorization formulas for non-global observables using SCET [20–22]. In particular,

we have analyzed the case of the left jet mass in detail in [22] and have shown that this

observable factorizes into hard functions Hm describing m hard partons in the right hemi-

sphere times soft functions Sm, which are given by Wilson lines along the hard partons.

The complicated pattern of logarithms arises because even at leading-logarithmic accuracy,

one needs to include contributions from operators with arbitrarily high multiplicity m.

The non-global observables considered before are all in the SCETI category and it is

interesting to extend the results to the SCETII case. To do so, we analyze the narrow

broadening in the present paper. The relevant factorization theorem will be presented in

section 2 and we confirm it by explicit computations to NNLO in section 3. We resum the

narrow broadening to NLL in section 4, compare to experimental measurements from LEP

and derive the leading nonperturbative corrections affecting the distribution.

2 Factorization formula

In SCETII jet and soft functions are not well defined without an additional rapidity reg-

ulator. The divergences in this regulator cancel among the jet and soft functions leaving

behind rapidity logarithms. With the regulator in place, we can derive a factorization for-

mula following the same steps as we did for the light-jet mass and cone-jet cross sections.
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The key observation is that the hard partons in the unobserved right hemisphere can emit

soft partons into the left hemisphere. These emissions are described by soft Wilson lines

along the hard partons so that we end up with the factorization formula

dσ

dbL
=

∑

f=q,q̄,g

∫

dbsL

∫

dd−2p⊥L Jf (bL − bsL, p
⊥
L )

∞
∑

m=1

〈Hf
m({n}, Q)⊗ Sm({n}, bsL,−p⊥L )〉 ,

(2.1)

where the hard function H
f
m({n}, Q) describes m hard partons flying along the directions

{n} = {n1, . . . , nm} into the right hemisphere and a single energetic parton along n̄µ =

(1,−~nT ) to the left. The soft function Sm is given by Wilson lines along thesem+1 partons

and the jet function Jf describes the splitting of the left parton with flavor f into a low-mass

jet. The symbol ⊗ indicates than one has to integrate over the direction of the hard partons

and 〈. . . 〉 denotes the color trace, see [21] for details on the notation and a derivation of

the multi-Wilson-line structure from SCET. Note that none of the factorization discussion

is affected by the presence of the regulator [23] which is only applied to the phase-space

integrals but leaves the amplitudes unchanged. However, due to the regulator the product

of soft and jet functions has implicit dependence on the hard scale Q. This dependence,

called the collinear anomaly [14], will be made manifest below.

The hard function has the same operator definition as in the light jet mass case

H
f
m({n}, Q) =

1

2Q

m
∏

j=1

∫

dEj E
d−3
j

(2π)d−2
|Mf

m+1({p0, p})〉〈M
f
m+1({p0, p})|

×ΘR

({

p
})

(2π)d δ(Q− Etot) δ
(d−1)(~ptot) , (2.2)

where pµ0 = Q n̄µ/2 is the momentum of the single hard parton of flavor f ∈ {q, q̄, g} in

the left hemisphere, and the amplitudes |Mf
m+1({p0, p})〉 are standard QCD amplitudes

for the decay of a virtual photon into (m + 1) partons. The function ΘR

({

p
})

enforces

that the m partons with momenta
{

p
}

are in the right hemisphere.

The associated soft function has the form

Sm({n}, bL, p⊥L ) =
∫

Xs,reg

∑

δ

(

bL − 1

2

∑

i∈XL

|p⊥L,i|
)

δd−2(p⊥XL
− p⊥L ) (2.3)

× 〈0|S†
0(n̄)S

†
1(n1) . . .S

†
m(nm) |Xs〉〈Xs|S0(n̄)S1(n1) . . .Sm(nm) |0〉 .

The integrals over phase space are regularized using the regulator [23], whose explicit form

will be given when we compute the one-loop soft function in (3.4). This function contains

two δ-function constraints: the first one fixes the contribution to the left broadening and

the second one the total transverse momentum. The second constraint is necessary due to

recoil effects. Only the total transverse momentum in each hemisphere vanishes, so that

the soft and collinear radiations carry equal an opposite transverse momentum, see (2.1).

We therefore need to compute the soft function for a fixed transverse momentum of the

collinear radiation. The jet function Jf (bL− bsL, p
⊥
L ) is the same as the one relevant for the

total broadening and its operator definition can be found in (4) of [12].

– 3 –
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To perform the resummation it is best to Laplace transform bL and Fourier transform

the transverse momentum p⊥L . Using rotation invariance around the thrust axis, the depen-

dence on the broadening and the transverse momentum then translates into two variables

τL and zL [12] and in Laplace-Fourier space the factorization formula has the simple form

dσ

dτL
=

∑

f=q,q̄,g

∫ ∞

0
dzL J f (τL, zL)

∞
∑

m=1

〈

H
f
m({n}, Q)⊗ Sm({n}, τL, zL)

〉

. (2.4)

The all-order form of the rapidity divergences was derived in the study of the total broad-

ening in [12]. The divergences in the soft functions must cancel against the divergences

of the jet function, leaving behind rapidity logarithms. Because these logarithms are fully

determined by the divergences of the jet function, the collinear anomaly for narrow broad-

ening must be the same form as the one of the total broadening. Extracting the anomaly

logarithms, the fully factorized form of the cross section is given by

dσ

dτL
=

∑

f=q,q̄,g

∫ ∞

0
dzL(Q

2τ2L)
−F f

B
(τL,zL,µ)

zL
(1 + z2L)

3/2

∞
∑

m=1

〈

H
f
m({n}, Q)⊗W

f
m({n}, τL, zL)

〉

,

(2.5)

where the refactorized functions W
f
m are independent of Q and are defined by the product

of the jet and soft functions

J f (τL, zL, µ)Sm({n}, τL, zL, µ) = (Q2τ2L)
−F f

B
(τL,zL,µ)

zL
(1 + z2L)

3/2
W

f
m(τL, zL, µ) . (2.6)

We have extracted the LO jet function so that W
f
m = 1+O(αs). The anomaly exponent

for the quark case F q
B is the one encountered in the total broadening which was computed

to two loops in [18]. The one for the gluon channel is related to it by Casimir scaling

F g
B = CA/CF F q

B up to three-loop accuracy.

While the rapidity divergences must cancel in (2.4), this does not guarantee that all the

functions W
f
m are finite. In principle, there could be divergences in these functions which

only vanish after integrating over angles and combining different multiplicities. However,

in our explicit one and two-loop computations in the next section we find that the functions

W
f
m are finite.

3 Ingredients of the factorization theorem and collinear anomaly

It is interesting to compute the ingredients of the factorization formula perturbatively to

explicitly verify the above structure. Fortunately, many of the ingredients are already

known. The hard functions are the same as the ones for the light-jet-mass case [22] and

were given in section 4 of this paper. The jet function Jq is the same as the one for

the total broadening calculated at one-loop order in [18] using the analytical phase-space

regulator [23] to regularize the rapidity divergences. We write

J f (τ, z) = J (0)
f (τ, z)

[

1 +
αs

4π
J (1)

f (τ, z)
]

, (3.1)

– 4 –
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where the tree-level result is given by

J (0)
q (τ, z) = J (0)

g (τ, z) =
4ǫ Γ(2− 2ǫ)

Γ2(1− ǫ)

z1−2ǫ

(1 + z2)3/2−ǫ
, (3.2)

and the divergent part of the one loop result for the quark case reads

J (1)
q (τ, z) = CF (µ

2τ̄2)ǫ(νQτ̄2)α
{

− 4

α

(

1

ǫ
+ 2 ln z+

)

+
4

ǫ2
+

3

ǫ

}

. (3.3)

The dimensional regulator is introduced as d = 4 − 2ǫ and α regularizes the rapidity

divergence. The full one-loop quark jet function can be found in [18]. We do not need

the expression for the one-loop gluon jet function because the associated hard function is

suppressed by αs.

The only new ingredient are the soft functions Sm. At the one-loop order, they are

given by sums of dipole factors

Sm = δ(bL)δ
d−2(p⊥L )1− g2s µ̃

2ǫ

∫

[dk]
( ν

k+

)α
[

m
∑

i=1

(T0 · Ti + Ti · T0)
n̄ · ni

n̄ · k ni · k

+
m
∑

i,j=1

Ti · Tj
ni · nj

ni · k nj · k



 δd−2(k⊥ − p⊥L )δ

(

bL − |k⊥|
2

)

θ(k+ − k−) , (3.4)

where [dk] = ddk δ+(k2)/(2π)d−1 denotes the phase-space integration. The scale µ̃2 =

µ2eγE/(4π) and the light-cone components are k+ = k · n and k− = k · n̄. The factor

(k+)−α regularizes the rapidity divergences which can only arise in the terms in the first

line involving the left Wilson line with color structure T0 along the n̄-direction. Let us now

focus on these terms, which involve the integral

Ii = g2s µ̃
2ǫ

∫

[dk]
( ν

k+

)α n̄ · ni

n̄ · k k · ni
δd−2(k⊥ − p⊥L )δ

(

bL − |k⊥|
2

)

θ(k+ − k−) , (3.5)

To evaluate it, we introduce light-cone coordinates along the n and n̄ directions and rewrite

k · ni =
1

2
k+n−

i +
1

2
k−n+

i + k⊥ · n⊥
i , (3.6)

with n+
i n

−
i = −(n⊥

i )
2 = n2

iT ≥ 0. We then change to light-cone coordinates and integrate

over k⊥ and k− to eliminate the two δ-functions, which leads to

Ii = g2s µ̃
2ǫ n−

i

(2π)d−1

1

p2L
δ
(

bL − pL
2

)

∫ ∞

pL

dk+
( ν

k+

)α 1

k+n−
i + n+

i p
2
L/k

+ + δi
, (3.7)

with δi = 2p⊥L ·n⊥
i = −2pLn

T
i cosφi, where φi is the angle between p⊥L and n⊥

i . Introducing

a new variable z = pL/k
+, the remaining integral takes the form

p1−α
L να

∫ 1

0
dz

z−1+α

z2n+
i pL + zδi + n−

i pL
(3.8)

– 5 –
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and its rapidity divergence can be extracted using the relation

z−1+α =
1

α
δ(z) +

[

1

z

]

+

+O(α) . (3.9)

Integrating over z and combining the result with the color structure, we obtain

Sm = δ(bL)δ
d−2(p⊥L )1+

αs

4π

m
∑

i=1

(T0 · Ti + Ti · T0)
2(µ2eγE )ǫ

π1−ǫ

να

p2+α
L

δ
(

bL − pL
2

)

×
[

1

α
+

1

2
lnωi +

[π

2
− φi − arccos (

√
ωi sinφi)

]

cotφi

]

+ (“Ti · Tj terms”) , (3.10)

where ωi = n−
i /(n

−
i + n+

i − 2nT
i cosφi). Using color conservation

∑m
i=0 Ti = 0, the 1/α

pole terms simplify to

Sm = δ(bL)δ
d−2(p⊥L )1− αs

4π

4(µ2eγE )ǫ

π1−ǫ

να

p2+α
L

δ
(

bL − pL
2

)

[

C0

α
1+ · · ·

]

, (3.11)

where C0 1 = T
2
0 is the quadratic Casimir of the relevant representation, C0 = CF and

C0 = CA for quarks and gluons, respectively.

Both the terms in the first and second line of (3.4) involve a UV divergence, which

becomes visible after performing the Laplace and Fourier transformations. For the 1/α

pole term, this leads to

Sm = 1+
αs

4π
(µτ̄L)

2ǫ(ντ̄L)
α

[

4C0

α

(

1

ǫ
+ 2 ln z+

)

1+ · · ·
]

. (3.12)

We see that the one-loop 1/α pole is the same for all the functions and cancels between jet

and soft function, as required by the consistency of the factorization theorem.

Using the known results from the global broadening variables, we can analyze the

divergences also at NNLO in the cross section. Since we find that the rapidity divergences

cancel out before integration over zL in (2.4), it is convenient to analyze the integrand.

Explicitly, we define the combination Cf through

J (0)
f Cf (τL, zL) = J f (τL, zL)

∞
∑

m=1

〈

H
f
m({n}, Q)⊗ Sm({n}, τL, zL)

〉

, (3.13)

factoring out the leading order jet function for convenience. We write the perturbative

expansion of the ingredients of Cf in the bare coupling constant α0 as

H
f
m =

∞
∑

n=m−1

(α0

4π

)n
H

f,(n)
m , Sm = 1+

∞
∑

n=1

(α0

4π

)n
S

(n)
m ,

J f = J (0)
f

[

1 +
∞
∑

n=1

(α0

4π

)n
J (n)

f

]

, (3.14)

– 6 –
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Substituting the above expanded expressions into (3.13), we obtain the one- and two-loop

coefficients as

C
(1)
f =

2
∑

m=1

H
f,(1)
m ⊗ 1+H

f,(0)
1 ⊗

[

J (1)
f · 1+ S

(1)
1

]

,

C
(2)
f =

3
∑

m=1

H
f,(2)
m ⊗ 1+H

f,(1)
1 ⊗

[

J (1)
f · 1+ S

(1)
1

]

+H
f,(1)
2 ⊗

[

J (1)
f · 1+ S

(1)
2

]

+H
f,(0)
1 ⊗

[

J (2)
f · 1+ J (1)

f · S(1)
1 + S

(2)
1

]

. (3.15)

We have split the results into several terms. The first one at each order is the purely hard

contribution which is free of rapidity divergences. The remaining terms include rapidity

divergences which cancel out in each square bracket. Specifically, for the two-loop S1

only double radiation inside the left hemisphere contributes to the α poles, which can be

immediately extracted from wide-broadening soft function computation in [18]. Therefore

one can easily verify that both of [J (1)
q · 1 + S

(1)
1 ] and [J (2)

q · 1 + J (1)
q · S(1)

1 + S
(2)
1 ] are

rapidity divergence free (note that only f = q contributes in these combinations at NNLO).

The 1/α divergence of the one-loop S2 in (3.12) does not depend on the directions of the

hard partons described by the hard function. Therefore the rapidity divergences in the

[J (1)
f · 1 + S

(1)
2 ] term also cancel before the angular convolution. So we conclude that

up to NNLO all rapidity divergences cancel out within our factorization formula and that

the associated rapidity logarithms indeed have the required structure. We also see that

the cancellation of the divergences takes place already before the angular convolutions are

performed, at least to NNLO.

As a final check, let us verify that our formula (2.1) reproduces the NLO fixed-order

result for the left broadening. At NLO the wide-broadening hemisphere always includes two

partons, while there is only a single parton in the narrow broadening hemisphere. Therefore

the narrow broadening vanishes at O(αs) and we should find that the left broadening at

NLO is half of the wide broadening. For the NLO result we only need one-loop S1 which

is related to the left-right-broadening soft function S in [18] by

〈S1({n}, bL, p⊥L )〉 =
∫

d bR

∫

dd−2p⊥R S(bL, bR, p⊥L , p⊥R) , (3.16)

where we have set n1 = n which the hard function H
q
1 will enforce due to momentum

conservation. The integral over the right hemisphere simply sets the right-side contribution

to zero because this part becomes scaleless. Using the results in [18] we obtain

〈S1({n}, τL, zL)〉 = 1 +
αsCF

4π
(µ2τ̄2L)

ǫ(ντ̄L)
α

[

4

α

(

1

ǫ
+ 2 ln zL+

)

− 2

ǫ2
+ 8Li2

(

−zL−
zL+

)

+ 4 ln2 zL+ +
5π2

6

]

. (3.17)

Combining all bare one-loop ingredients we reproduce the correct left-broadening distribu-

tion
BL

σ0

dσ

dBL
=

αs

4π
CF (−8 lnBL − 6) , (3.18)

– 7 –
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which is exactly half of the result for wide broadening. After these consistency checks, we

now turn to resummation.

4 NLL resummation

The resummation to NLL proceeds as in the light-jet-mass case discussed in [22]. The

main simplification at NLL is that we only need to include the hard function H
q
1 for a

high value of the renormalization scale µ ∼ Q since the higher-multiplicity hard functions

are suppressed by powers of αs and do not suffer from large logarithms with this scale

choice. We can then evolve the hard function H
q
1 from the high scale µh ∼ Q to a low

scale µ ∼ 1/τL to resum the logarithms and combine it with the tree-level soft and jet

functions in W
q
m = 1 and the one-loop anomaly coefficient F q

B. In this approximation, the

factorization formula (2.5) simplifies to

1

σ0

dσ

dτL
= (µτ̄L)

−ηLI(ηL)
∞
∑

m=1

〈

U
H
1m({n}, µ, µh, Q)⊗̂1

〉

, (4.1)

with ηL = CFαs(µ) ln(Q
2τ̄2L)/π . The function

I(η) =
4η

1 + η
2F1(η, 1 + η, 2 + η,−1) (4.2)

is obtained by carrying out the zL integration and the evolution matrix takes the form

U
H({n}, µ, µh, Q) = P exp

[
∫ µh

µ
d ln ν ΓH({n}, ν,Q)

]

. (4.3)

The quantity ΓH determines the RG evolution behavior of the hard functions, which are

the same as in the light-jet-mass case. In [22], we split this hard anomalous dimension into

two pieces

ΓH
lm = Γ̂lm −

[

2Γcusp(αs) ln
Q

µ
+ 2γJ(αs)

]

δlm . (4.4)

The first part Γ̂lm induces the single-logarithmic non-global structure, while the all the

double logarithms are obtained from the diagonal remainder. As a consequence, the total

evolution factor (4.3) is given by a product of a global and non-global evolution factor

∞
∑

m=1

〈

U
H
1m({n}, µ, µh, Q)⊗̂1

〉

= UH(µ, µh, Q)SNG(µ, µh) . (4.5)

Up to NLL accuracy, the global evolution factor UH is the same as the evolution fac-

tor which drives the vector-current Wilson coefficient CV (Q
2, µ) in SCET, see e.g. [24].

Explicitly, it is given by

lnUH(µ, µh, Q) = 2S(µh, µ)− 2AγJ (µh, µ)−AΓcusp
(µh, µ) ln

Q2

µ2
h

=
2CF

β2
0

[

4π

αs(µh)

(

1− 1

r
− ln r

)

+

(

γcusp1

γcusp0

− β1
β0

)

(1− r + ln r) +
β1
2β0

ln2 r

+
3β0
2

ln r − β0 ln r ln
Q2

µ2
h

]

, (4.6)
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Figure 1. The red bands show the NLL result for the narrow broadening (left) and the wide

broadening (right), compared to Delphi data (blue) [29]. The green line is the purely global part

of the narrow broadening distribution.

where r = αs(µ)/αs(µh). The non-global evolution factor is the same as in the light-jet-

mass case and we use the parametrization [19]

SNG(µ, µh) ≈ exp

(

−CACF
π2

3
u2

1 + (au)2

1 + (bu)c

)

, (4.7)

with

u =
1

β0
ln

αs(µ)

αs(µh)
, (4.8)

where the constants a = 0.85CA , b = 0.86CA, c = 1.33 were determined by fitting to

the result of a parton-shower computation in the large-Nc limit. The numerical result for

Nc = 3 was recently obtained in [25]. Numerically, the corrections to the large-Nc limit

are small as long as the exact two-loop color factor is accounted for, as is done in (4.7).

In the low energy range ln(µτ̄L) counts as O(1) and we can approximate

ηL ≈ η =
CFαs(µ)

π
ln

Q2

µ2
. (4.9)

After this, we can analytically invert the Laplace transformation and obtain

1

σ0

dσ

dbL
= UH(µ, µh, Q)SNG(µ, µh)

e−γEη

Γ(η)

1

bL

(

bL
µ

)η

I(η) . (4.10)

We find that our NLL resummation formula is basically the square-root of (43) in [12]

up to the non-global evolution factor. In order to calculate the differential distribution

one can use the above equation directly or first integrate it and then take the derivative.

One advantage of the latter scheme is that the resummed distribution is automatically

normalized. We denote the integrated spectrum by

R(BL) =

∫ QBL

0
dbL

1

σ0

dσ

dbL
= SNG(µ, µh) Σq(BL) , (4.11)
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where the global part is given by

Σq(BL) = UH(µ, µh, Q)
e−γEη

Γ(η + 1)

(

QBL

µ

)η

I(η) . (4.12)

As in the light-jet case, the non-global effects simply enter as a prefactor at NLL accuracy

which multiplies the quantity Σq(BL) familiar from the coherent branching formalism [26–

28]. The prefactor is absent for wide broadening, which to NLL is given by

R(BW ) = [Σq(BW )]2 . (4.13)

Using relation (1.2), we then obtain the narrow broadening, which can be compared to

LEP measurements from the Delphi [29] or OPAL [30] collaborations. In figure 1 we

show the NLL predictions, compared to the Delphi measurements. For the plots, we use

αs(MZ) = 0.1181 [31] and estimate the uncertainty by varying each of the scales µh and µ

by a factor two around their default values and taking the envelope of the scale variations.

It is clear that the distributions are affected by nonperturbative effects in the peak

region, and it turns out that the nonperturbative effects are logarithmically enhanced for

jet broadening [32, 33]. The paper [33] demonstrated that the dominant effects are non-

perturbative corrections to the anomaly coefficient and that these corrections are obtained

from the same nonperturbative matrix element A which is responsible for the nonpertur-

bative shift in the thrust distribution and other event shapes [34]. For narrow broadening,

these results imply that the leading nonperturbative effects are obtained from shifting the

distribution by

BN → BN − A
2
ln

1

BN
(4.14)

and the value extracted from the thrust distribution is A ≈ 0.3GeV [6]. Near the peak,

this would imply shifts of ∆BN ≈ 0.007 and ∆BW ≈ 0.006 in the two distributions, in

qualitative agreement with the data.

We find it remarkable that the leading nonperturbative effects in a non-global observ-

able are related to the shift in thrust. The underlying mechanism is of course that the

collinear anomaly connects the enhanced nonperturbative effects in the soft functions Sm

to the ones in the jet function, which is the same as in the global variants of broadening.

Through the anomaly, this in turn is connected to the nonperturbative effect in the much

simpler soft functions relevant in the global case.

In practice, the logarithmically enhanced nonperturbative effects might not be suf-

ficient to obtain satisfactory agreement with data, and also non-logarithmic and non-

universal shifts should be included, as well as other shape parameters. Before analyzing

this further, one should include the matching to fixed-order perturbation theory and, if

possible, increase the logarithmic accuracy of the resummation. We will not pursue these

issues further for the moment.

5 Conclusion

In this short note we have analyzed the narrow broadening, a non-global, recoil-sensitive

observable suffering from rapidity logarithms. We have obtained a factorization formula
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for this event shape which is of a similar form as the theorems for the light jet mass and the

hemisphere soft function. The main result of our analysis is that the rapidity logarithms

governed by the collinear anomaly are separate from the non-global structure since they can

be tied to the jet function. As a consequence, the non-global effects in narrow broadening

are identical to the ones for the light jet mass at NLL. We were also able to derive the leading

logarithmically enhanced nonperturbative effects in narrow broadening and relate them to

the nonperturbative shift in the thrust distribution. Taking these effects into account

leads to reasonable agreement with LEP measurements within the limited accuracy of our

calculation.

Of course, there are other recoil-sensitive non-global observable observables which can

be analyzed in our framework. An example is the jet shape introduced in [35]. This case

is slightly simpler in that the soft radiation only affects the observable indirectly, via the

jet axis. Using a recoil-free axis [36] then eliminates the effect of soft radiation and the

associated non-global structure [37]. For the narrow broadening, on the other hand, the

non-global structure will persist, even with a recoil-free axis.
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