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a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos

can ubiquitously exist in a black hole system characterized by a shockwave solution near

the horizon. In this paper we propose that the butterfly velocity can be used to diag-

nose quantum phase transition (QPT) in holographic theories. We provide evidences for

this proposal with an anisotropic holographic model exhibiting metal-insulator transitions

(MIT), in which the derivatives of the butterfly velocity with respect to system parameters

characterizes quantum critical points (QCP) with local extremes in zero temperature limit.

We also point out that this proposal can be tested by experiments in the light of recent

progress on the measurement of out-of-time-order correlation function (OTOC).
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1 Introduction

Quantum phase transition (QPT) is one of the essential and difficult topic in condensed

matter theory (CMT). It usually involves strong correlation physics where traditional treat-

ments are inadequate. Holographic duality has been proved a powerful tool to study

strongly correlated system, and has provided many novel insights into strongly correlated

problems. On the other hand, quantum chaos, also as known as butterfly effect, has been

attracting unprecedented attention recently, which set up a bridge among quantum the-

ory, CMT and holographic gravity. We shall address the connection between QPT and

quantum chaos in holographic framework in this paper.

The butterfly effect states that an initially small perturbation becomes non-negligible

at later time. The out-of-time-order correlation function (OTOC) in quantum systems

can diagnose the butterfly effect by a sudden decay after the scrambling time t∗, which

generically takes the following form,

F (t, ~x) =
〈W †(t, ~x)V †(0, 0)W (t, ~x)V (0, 0)〉β
〈W (t, ~x)W (t, ~x)〉β〈V (0, 0)V (0, 0)〉β

= 1− αeλL
(
t−t∗− |~x|vB

)
+ · · · , (1.1)

where W (t, ~x) ≡ eiHtW (0, ~x)e−iHt, and 〈· · · 〉β represents the ensemble average at temper-

ature T = 1/(kBβ). vB is the butterfly velocity, λL is the Lyapunov exponent and the

scrambling time t∗ is the timescale when the commutator [W (t, ~x), V (0, 0)] grows to O(1).

Physically, F (t) describes the spread, or the scrambling of quantum information over the

degrees of freedom across the system. Very importantly, as a characteristic velocity of a

chaotic quantum system, vB sets a bound on the speed of the information propagation [1].

In holographic theories, the butterfly effect has extensively been studied in context [5–

17]. In the study of high energy scattering near horizon and information scrambling of

black holes it is found that the butterfly effect ubiquitously exists and is signaled by a
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shockwave solution near the horizon [1, 5, 6, 9, 15] (see also 2.2). Especially, a bound on

chaos has been proposed as

λL 6
2π

β
, (1.2)

and the saturation of this bound has been suggested as a criterion on whether a many-body

system has a holographic dual described by gravity theory [10]. One remarkable example

that saturates this bound is the Sachdev-Ye-Kitaev (SYK) model [10, 18]. Recently, the

butterfly velocity vB has also been conjectured as the characteristic velocity that universally

bounds the diffusion constants in incoherent metal [15–17, 19].

Since in holographic theories the bound in (1.2) is always saturated, we will focus

on the behavior of the butterfly velocity close to quantum critical points (QCP).1 The

first signal to connect the butterfly velocity and QPT comes from the fact that both the

butterfly velocity and the phase transition are controlled by IR degrees of freedom in chaotic

quantum system [1, 4]. This picture becomes more vivid in holographic scenario since IR

degrees of freedom of the dual field theory is reflected by the near horizon data, and both

vB and QPT depend solely on the near horizon data. In addition, the butterfly effect can

be induced by any operator that affects the energy of the bulk theory [1, 8, 18]. Meanwhile,

QPT is characterized by the degeneracy of ground states, which implies that the butterfly

effect should be sensitive to QPT since they involve energy fluctuations. Therefore, it is

highly possible that the butterfly effect can capture the QPT in holographic theories.

A heuristic argument about the relation between vB and QPT comes from the different

behavior of the information propagation during the transition from a many-body localiza-

tion (MBL) phase to a thermalized phase. A quantum system in MBL phase does not

satisfy the Eigenstate Thermalization Hypothesis (ETH), and the quantum information

propagates very slowly [21, 22]. In thermalized phase, however, the information propa-

gates much faster. In other words, the speed of information propagation probably works

as an indicator of a MBL phase transition. Notice that the butterfly velocity bounds the

speed of the quantum information propagation across the chaotic system, it is reasonable

to expect that the butterfly velocity may exhibit different behavior in distinct phases.

Inspired by above considerations, we propose that the butterfly velocity can charac-

terize the QPT in generic holographic theories. We will present evidences for this proposal

with a holographic model exhibiting MIT as an example of QPT, and demonstrate that

the derivatives of the butterfly velocity with respect to system parameters do capture the

QPT by showing local extremes near QCPs. Also, we point out the prospect of testing our

proposal in laboratory.

2 The butterfly effect and the quantum phase transition

In this section we demonstrate the relation between the MIT and the butterfly effects by

numerical investigations on holographic models.

1Previously, it was demonstrated in [20] that the Lyapunov exponent λL may exhibit a peak near QCP

in the Bose-Hubbard model.
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In the context of gauge/gravity duality, holographic descriptions for the quantity in

condensed matter physics can be computed in terms of the metric and other matter fields in

the bulk. On one hand, the holographic description of MIT has been studied in [4, 23–25].

Usually, the transition is induced by relevant deformations to near horizon geometry, in

which the lattice structure plays a key role. In this paper we consider the holographic Q-

lattice model exhibiting MIT, which is presented in 2.1 (for more details, refer to [23, 24]).

On the other hand, the butterfly effect in black holes has been investigated in [1, 15, 26–28],

and the butterfly velocity can be extracted from shockwave solutions to the perturbation

equations of gravity. Since the bulk geometry we consider here is anisotropic, we present

a detailed derivation for the corresponding vB in section 2.2.

Next, we introduce the holographic Q-lattice model and the anisotropic holographic

butterfly effects. After that, we explicitly provide the numerical evidences for our proposal.

Moreover, we also study the anisotropy of the butterfly velocity and its effects on the

connection between QPT and butterfly effects.

2.1 Holographic Q-lattice model

The Lagrangian of the holographic Q-lattice model reads as [23, 24, 29],

L = R+ 6− 1

4
F 2 − |∇Φ|2 −m2|Φ|2, (2.1)

where F = dA is the field strength of the Maxwell field and Φ is the complex scalar field

simulating the Q-lattice structure. Note that we have set the AdS radius L = 1, and we

adopt the natural system of units where c, kB, h are set to 1. The equations of motion

corresponding to (2.1) read as

Rab +
gab
2

(
6−m2|Φ|2

)
− ∂(aΦ∂b)Φ

∗ − 1

8

(
4F 2

ab − gabF 2
)

= 0, (2.2)

∇a∇aΦ−m2Φ = 0, (2.3)

∇aF ab = 0. (2.4)

The ansatz for a black brane solution with lattice structure only along x direction is

presented as

ds2 =
1

z2

(
−fSdt2 +

dz2

fS
+ V̂xdx

2 + V̂ydy
2

)
,

At = µ(1− z)a, Φ = eik̃xz3−∆φ, (2.5)

where f(z) ≡ (1 − z)(1 + z + z2 − µ2z3/4) and ∆ = 3/2 ± (9/4 + m2)1/2. S, V̂x, V̂y, a

and φ are functions of the radial coordinate z only and µ corresponds to the chemical

potential of the dual field theory by setting the boundary condition a(0) = 1. Black

brane solutions are obtained by numerically solving the Einstein equations as well as other

equations of motion for matter fields. System (2.5) is invariant under scaling {z, t, x, y} →
α{z, t, x, y}, {µ, k} → {µ, k}/α, {gtt, gzz, gxx, gyy} → {gtt, gzz, gxx, gyy}/α2. We only focus

on the scaling dimensionless quantities by taking the chemical potential µ as scaling unit,
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Figure 1. MIT phase diagram at T = 0.001 [24].

which means that we are effectively working with grand ensemble description. Each solution

is specified by three dimensionless parameters, namely the temperature T̃ /µ with T̃ =

(12−µ2)S(1)/16π, lattice amplitude λ̃/µ3−∆ with λ̃ ≡ φ(0), and lattice wave number k̃/µ,

which are abbreviated as {T, λ, k} in this paper. The metric has an event horizon at z = 1

and the spacetime boundary locates at z = 0. Throughout this paper, we set m2 = −2

such that the scaling dimension of Φ is ∆ = 2. We would like to point out that for other

values of m2, qualitatively similar phenomena will be obtained. Moreover, we have also

examined the case ∆ = 1 for m2 = −2, and similar results to the case ∆ = 2 are obtained

as well.

The occurrence of MIT in this model has been discussed in [23] and an explicit phase

diagram over (λ, k) plane (figure 1) has been presented in [24], where the temperature

is fixed at T ∼ 10−3, but further decreasing the temperature will not induce significant

modifications to the phase diagram. From figure 1 it is seen that increasing λ at certain

value of k will drive the system from metallic phase into insulating phase, which is consistent

with the interpretation of λ as the lattice strength.

At finite but extremely low temperature, we distinguish the metallic phase and the

insulating phase by the different temperature dependence of DC conductivity. Specifically,

the metallic phase is defined by ∂TσDC(T ) < 0 while insulating phase ∂TσDC(T ) > 0,

therefore the surface ∂TσDC(T ) = 0 separating the insulating phase and the metallic phase

is the critical surface. This criterion has also been widely adopted in holographic litera-

ture [24, 25, 30].

The expressions of DC conductivity σDC along x-direction for model 2.1 can be calcu-

lated from

σDC =

√ V̂y

V̂x
+
µ2a2

√
V̂xV̂y

k2φ2

∣∣∣∣∣∣
z=1

, (2.6)

which are determined by the horizon data [24, 25, 29]. Alternatively, one may compute the

σDC as the zero frequency limit of the optical conductivity limω→0 σ(ω) by introducing the
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following consistent time-dependent perturbation,

δAx = ax(z)e−iωt, δgtx = htx(z)e−iωt, δΦ = ieikxz3−∆ϕ(z)e−iωt. (2.7)

After numerically solving the perturbation equation of motions on a numerical background

solution to (2.1), the optical conductivity can be obtained as

σ(ω) =
∂zax(z)

iωax(z)

∣∣∣∣
z=0

. (2.8)

2.2 The anisotropic butterfly velocity

In this section we demonstrate the derivation of butterfly velocity vB in anisotropic back-

ground, which can be extracted from the shockwave solution near the horizon [1, 15, 26, 27].

For this purpose, it is more convenient to work in r-coordinate with r ≡ r0/z, where r0

is the location of horizon. The generic spatially anisotropic metric of a 4-dimensional

spacetime can be written as

ds2 = −U(r)dt2 +
dr2

U(r)
+ Vx(r)dx2 + Vy(r)dy

2. (2.9)

In Kruskal coordinate (2.9) is written as

ds2 = U(uv)dudv + Vx(uv)dx2 + Vy(uv)dy2, (2.10)

where uv = −eU ′(r0)r∗(r), u/v = −e−U ′(r0)t, with r∗ being the tortoise coordinate defined

by dr∗ = dr/U(r). In addition, U(uv) = 4U(r)
uvU ′(r0)2

, Vx,y(uv) = Vx,y(r). Note that, in this

coordinate the horizon is at u = v = 0.

The shockwave geometry is induced by a freely falling particle on the AdS boundary

at ti in the past and at x = y = 0. This particle is exponentially accelerated in Kruskal

coordinate and generates the following energy distribution at u = 0,

δTuu ∼ E0e
2π
β
tiδ(u)δ(x, y), (2.11)

where E0 is the initial asymptotic energy of the particle. After the scrambling time t∗ ∼
β logN2 an initially small perturbation becomes significant and back-react to the geometry

by a shockwave localized at the horizon [31],

ds2 = Vx(uv)dx2 + Vy(uv)dy2 + U(uv)dudv

− U(uv)δ(u)h(x, y)du2.
(2.12)

By a convenient redefinition ỹ ≡ y
√

Vx(0)
Vy(0) the resultant Einstein equation can be written

as a Poisson equation,(
∂2
x + ∂2

ỹ −m2
)
h(x, ỹ) ∼ 16πGNVx(0)

U(0)
E0e

2π
β
tiδ(x, ỹ), (2.13)

with m2 given by

m2 =
4

U(uv)

(
V ′x(uv) +

Vx(uv)V ′ỹ(uv)

Vỹ(uv)

)∣∣∣∣∣
u=0

. (2.14)
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At long distance |~x| ≡
√
x2 + ỹ2 > m−1, the solution reads as

h(x, ỹ) ∼ E0e
2π
β

(ti−t∗)−m|~x|

|~x|1/2
. (2.15)

From (2.15) we read off the Lyapunov exponent λL and the butterfly velocity vB,

λL =
2π

β
, vB =

2π

βm
. (2.16)

The Lyapunov exponent saturates the chaos bound as expected. Rewriting m in coordi-

nates (r, t, x, ỹ) we find

vB =

√
πTVỹ(r0)

V ′x(r0)Vỹ(r0) + Vx(r0)V ′ỹ(r0)
. (2.17)

When recovered to (x, y) coordinate system, the butterfly velocity vB is anisotropic. Specif-

ically, in direction with polar angle θ,

vB(θ) = vB

√
sec2(θ)Vx (r0)

Vx (r0) + tan2(θ)Vy (r0)
. (2.18)

2.3 Evidences from holographic theories

In this subsection we explicitly study the relation between the QPT and the butterfly

velocity in Q-lattice model. We approach the QPT by studying the phase transitions in

zero temperature limit. Therefore, our main task is to investigate the butterfly velocity

on background solutions specified by (λ, k), which correspond to lattice strength and wave

number, respectively. For simplicity, we focus on λ = 2 and study the behavior of the but-

terfly velocity along x-direction, i.e., vB over k in low temperature region.2 The anisotropy

of the butterfly velocity will be addressed in the next subsection.

First, we plot vB v.s. k at low temperatures in figure 2. It is seen that vB becomes

larger when the system transits from insulating phase to metallic phase. In particular, vB

in insulating phases is always several orders of magnitude smaller than that in metallic

phases. Therefore, it can be expected that the critical points can be captured by local

extremes of derivatives of vB with respect to k. We confirm this expectation in the left

plot of figure 3. It is obvious that the location of the local maxima of ∂kvB is always close

to critical points.3

Moreover, we demonstrate the phenomenon that local extremes of ∂kvB captures QPT

is robust in zero temperature limit. Specifically, we show ∆k, denoting the difference

between the locations of the critical point and local maxima of ∂kvB, as the function of

the temperature in the right plot of figure 3, and find that ∆k continuously decreases with

temperature. Therefore we arrive at the conclusion that in Q-lattice model 2.1 the local

extreme of ∂kvB can be used to characterize the QPT in zero temperature limit.

2Very similar phenomena can be obtained when varying λ with fixed k.
3Singular behaviors happen at the quantum critical points at absolute zero temperature. In this paper,

we investigate the quantum critical phenomena by working at ultra low temperature, which is still finite. Our

system is regular at any finite temperature, and hence the vB is smooth function of system parameter λ, k.

– 6 –
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Figure 2. vB v.s. k at different low temperatures T = 10−4, 10−5, 10−9, 10−11 respectively. In each

plot the dotted line in red represents the location of QCP, separating the insulating phase (left side)

and metallic phase (right side).
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k

1
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5
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7
∂kvB(10-7)

λ=2, T=10-11
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0.010

0.015

Δk

Figure 3. The left plot is ∂kvB v.s. k at T = 10−11, in which the red vertical line represents the

position of the critical point while the blue line denotes the position of the local maximum of ∂kvB.

The right plot is for the temperature dependence of ∆k.

Inspired by the fact that in zero temperature limit vB tends to vanish for both metallic

phases and insulating phases, we intend to understand the above phenomena by studying

the scaling of vB with temperature vB ∼ Tα in both metallic and insulating phases. Figure 4

demonstrates Tv′B/vB as a function of T , which captures the exponent α in different phases.

One finds α = 1/2 for metallic phases in low temperature region. This originates from

the fact that metallic phases in Q-lattice model 2.1 always correspond to the well-known

AdS2 × R2 IR geometry, on which vB ∼ T 1/2 can be deduced [16]. While for insulating

phases, Tv′B/vB tends to converge to a fixed value close to 1 down to ultra low temperature

T = 10−11, which implies that the insulating phases for model 2.1 may correspond to

a single IR geometry different from AdS2 × R2.4 Therefore we conclude that vB scaling

4However, we would like to point out that the exact IR fixed point of Q-lattice model is unknown so

far [23].
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Figure 4. Tv′B/vB v.s. T for different phases (k = 0.500, 0.805 corresponds to metallic phases and

k = 1.31, 1.50 corresponds to insulating phases). The purple dashed line points to Tv′B/vB = 0.5.

distinctly with temperature in metallic phases and insulating phases, are responsible for

the rapid change of vB observed in figure 2, as well as the local extremes of ∂kvB near

QCPs observed in figure 3.

The above understanding is also applicable for some other holographic MIT model. To

this end, we demonstrate another holographic model [29], in which MIT is also achieved

when varying the system parameters in the region −1/3 < γ 6 −1/12, where γ is the

parameter of the action. Like model 2.1, we obtain vB ∼ T 1/2 in metallic phases again,

due to the AdS2 × R2 IR geometry. While for insulating phases we find α = 2γ2+7γ+21
2γ2+4γ+18

,

which reduces to 85
76 < α 6 1471

1273 in terms of the range of γ. Therefore, the QPT of model

in [29] can also be characterized by derivatives of vB with respect to system parameters.

2.4 Anisotropy of the butterfly velocity in quantum critical region

In previous subsection we disclose the connection between QPT and the butterfly velocity

along x-direction for simplicity. Here we study the anisotropy of the butterfly velocity vB(θ)

in quantum critical region. Since the period of vB(θ) is π and vB(π/2− θ) = vB(π/2 + θ)

(see eq. (2.18)), we shall only focus on the angle range θ ∈ [0, π/2] in what follows.

First, we demonstrate vB(θ) v.s. θ at T = 10−11, λ = 2 in figure 5, from which

one can see that vB(θ) monotonically increases. In other word, vB along the latticed

x-direction (θ = 0) is always smaller that along y-direction (θ = π/2). Therefore, the

lattice suppresses the butterfly velocity. This phenomenon originates from the fact that

in Q-lattice model Vx(1) > Vy(1), which has been verified in our numerics, consequently

vB(θ) = vB[cos2(θ) + sin2(θ)Vy(1)/Vx(1)]−1/2 (see (2.18)) monotonically decreases with θ.

Next, we show vB(θ) v.s. k at λ = 2 and vB(θ) v.s. λ at k = 1.169 in figure 6. We can

see that when θ is small, vB(θ) monotonically increases with k and vB(θ) monotonically

decreases with λ. However, while θ is relatively large the monotonicity changes.
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Figure 5. vB(θ) v.s. θ at λ = 2, T = 10−11 with k specified by the plot legend.
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Figure 6. Left plot: vB(θ) at λ = 2, T = 10−11. Right Plot: vB(θ) at k = 1.169, T = 10−11. Four

curves in each plot corresponds to different angle θ specified by the plot legend.

At last, we point out that the vB(θ) can diagnose the QPT in any direction. As we can

see from figure 7 that ∂kvB(θ) reaches local maximums near the QCP in any direction. This

phenomenon reflects the fact that the different IR fixed point leads to distinct behavior

of vB(θ).

3 Discussion

In model 2.1 we have demonstrated that the derivatives of vB(θ) with respect to system

parameters diagnoses the QCP with local extremes in zero temperature limit. The un-

derlying reason is that IR fixed points of the metallic phases and insulating phases are

distinct. A direct connection between derivatives of vB with respect to system parameters

and another criterion, ∂TσDC, may be disclosed by analytical analysis. As an extension we

believe that the scenario of vB characterizing QPT is applicable to other holographic mod-

els with MIT (for instance the isotropic lattice model, the lattice with helical symmetry

or massive gravity), and also to those exhibiting other sorts of QPT. Of course in these
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Figure 7. ∂kvB(θ) at different angles specified by the plot legends where the red vertical line

represents the position of the critical point.

circumstances, other than local extremes of ∂kvB originating from the distinct vB scaling

with temperature in different phases, the characterizing style of vB can be more diverse.

Although our evidences come from holographic theories that always saturate the chaos

bound, our proposal may also apply for chaotic quantum system that does not saturate

the bound. A direct argument is that IR dependence of vB and QPT does not require a

holographic theory.

More importantly, our proposal can be tested by experiments in light of recent progress

on the measurement of OTOC. Experimentally, the butterfly velocity vB, and its relation

to QPT, can be studied by measuring the OTOC of a QPT system. Recently, new proto-

cols and methods, that are versatile to simulate diverse many-body systems and achievable

with state-of-the-art technology, have been proposed to measure the OTOC [14, 32]. Fur-

thermore, experimental measurements of the OTOC have also been implemented [33, 34].

All these progresses provide test beds for our proposal.

Our work has offered an information-theoretic diagnose of the QPT. The distinct be-

havior of information propagation in a quantum many-body system may signalize different

phases. This phenomenon indicates that the information-theoretic property of a chaotic

many-body system can work as a novel tool to study QPT. It can be expected that more

insights into QPT will be gained from the quantum information theory.
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[30] M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and

Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003]

[INSPIRE].

[31] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

[32] N.Y. Yao et al., Interferometric Approach to Probing Fast Scrambling, arXiv:1607.01801

[INSPIRE].
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