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1 Introduction

The development of new computational techniques to obtain more accurate theoretical

predictions at colliders has been strongly pushed forward by the high precision experimen-

tal data obtained from the LHC. In the framework of perturbative quantum field theory

(and perturbative QCD in particular), the presence of infrared (IR) and ultraviolet (UV)

divergences constitutes the main difficulty that must be overcome to obtain physical re-

sults. Renormalisation has been proven to deal successfully with the UV structure of these

theories [1], and the cancellation of IR singularities is guaranteed by general theorems [2, 3]

for physical observables that sum over all the possible degenerate IR configurations. This

requires taking into account both loop scattering amplitudes and real processes with the

emission of additional external particles; the sum of all contributions leads to IR-safe ob-

servables. On the other hand, UV divergences are removed by suitable counter-terms,

whose divergent structure depends only on the specific theory under consideration.
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In order to make these divergences manifest explicitly, the standard approach relies

in the introduction of a convenient regularisation method. Nowadays, the standard choice

in gauge theories is dimensional-regularisation (DREG) [4–7] because it preserves gauge

invariance. Within DREG, the space-time is analytically continued from d = 4 to d = 4−2ε

dimensions; both UV and IR divergences appear as ε-poles. Using ε as a regulator, it is

possible to compute the loop and the phase-space integrals for the virtual and real-radiation

amplitudes, respectively. Thus, the poles of the virtual corrections are cancelled with those

present in the real-radiation contributions (due to soft/collinear configurations) and those

included in the UV counter-terms. The usual procedure in this framework is to regularise

each contribution separately, integrate the expressions and, finally, cancel the ε poles and

take the limit ε→ 0.

Besides the renormalisation and the regularisation method, the fact that real and

virtual contributions have the same IR-divergent behaviour is the underlying basis of the

subtraction methods [8–11]. The general idea of subtraction is the introduction of counter-

terms which mimic the local IR behaviour of the real components and that can easily

be integrated analytically. In this way, the integrated form is combined with the virtual

component whilst the unintegrated counter-term cancels the IR poles originated from the

phase-space integration of the real-radiation part. The subtraction paradigm has evolved

to different versions from the FKS-subtraction [8, 9], and dipole-subtraction [10, 11], to

antenna-subtraction [12], qT -subtraction [14, 15] and other recent variations [16–22]. The

treatment of massive particles has also been considered specifically [23–27]. However, all

these approaches treat separately real and virtual corrections, since the final-state phase-

space of the different contributions involves different numbers of particles. The construction

of IR counter-terms is inherent to the subtraction approach, and it constitutes the main

restriction for an efficient application to multi-leg multi-loop processes.

With the purpose of obtaining a fully-local cancellation of IR singularities without

building IR-counter-terms, we apply the loop-tree duality (LTD) theorem [28–31] to han-

dle the virtual corrections. This theorem asserts that loop integrals are expressible as the

sum of dual integrals, which are built starting from tree-level like objects and replacing

the loop measure with an extended phase-space measure. The main advantage of LTD is

that by introducing additional physical on-shell particles, dual integrals and real-radiation

contributions exhibit a similar structure. Moreover, the loop threshold and IR singulari-

ties are always restricted to a compact region of the loop three-momentum space [32, 33].

These two properties of LTD allow a natural integrand-level combination of virtual and

real corrections. The method has been recently developed for processes involving mass-

less particles in refs. [36–40]. The key point in this framework is the establishment of a

momentum mapping to generate the real-radiation kinematics from the Born and the loop

momenta. In this way, we guarantee not only a simultaneous cancellation of IR singularities

without the necessity of introducing IR subtractions but also a fully-local four-dimensional

implementation.

Before describing the content of this article, we would like to highlight that many

other attempts have been previously developed to obtain four-dimensional representations

of higher-order corrections to physical observables. In refs. [41–44] it was proposed to cancel
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the singularities through the application of a momentum smearing to relate real and virtual

kinematics. In this way, both real and virtual terms could be combined at the integrand

level, thus achieving a local cancellation of singularities. Other alternative methods consist

in rewriting the standard IR/UV subtraction counter-terms in a local form, as discussed

in refs. [45, 46], or modifying the structure of the propagators and the Feynman rules [47–

49] to regularise the singularities at integrand level. LTD has also been used recently to

deal with integral representations of virtual and real subtraction terms [13], including the

description of initial-state singularities that are grouped together and then are integrated

numerically.

The main purpose of this article is to extend the LTD four-dimensional unsubtraction

method presented in refs. [36–40] to deal with massive particles. From the kinematical

point of view, the mass of the particles slightly modifies the momentum mapping used

to perform the real-virtual combination and this changes the IR-divergent structure. The

major difference comes from the treatment of the self-energy corrections, since they must

fulfill non-trivial constraints both in the IR and UV regions. Moreover, quasi-collinear

configurations are mapped in such a way that logarithmic contributions are cancelled at

the integrand level and the massless limit is smooth. In any case, the dual representations

involve dealing with higher-order poles in LTD [30, 31]. We restrict the discussion of the

treatment of massive partons to the final state because the validity of the QCD factorization

theorems requires that the partons that initiate the hard-scattering subprocess in hadronic

collisions have to be massless [23]. The treatment of initial state radiation with massless

partons, the last necessary ingredient to have a full description of hadronic collisions in

LTD, is deferred for a forthcoming publication.

The outline of this article is the following. In section 2 we set the notation and

briefly recall some results related with the LTD theorem. After that, in section 3, we

apply LTD to study the one-loop scalar three-point function with massive particles. In

section 4, we introduce an scalar toy example and compute NLO corrections through the

application of the conventional DREG approach. After describing the real emission phase-

space partition and introducing a proper momentum mapping in section 5, we deal with the

NLO corrections of the scalar toy model within the LTD approach in section 6. We use LTD

and the momentum mapping to perform the real-virtual combination at integrand level

and define purely four-dimensional integrable expressions. In section 7, we present integral

representations for the wave function and mass renormalisation factors for heavy quarks

in the on-shell renormalisation scheme. Renormalisation is then discussed in section 8.

Afterwards, we proceed to implement this technique to deal with physical theories. In

particular, we compute the NLO QCD corrections to the decay rate A∗ → qq̄(g), with

massive quarks and A = {φ, γ, Z}. The results are presented in section 9, emphasising the

four-dimensional nature of the implementation. Finally, in section 10, the conclusions are

exposed and we discuss future implications of this work.

2 Loop-tree duality: concepts and notation

In this section, we summarise the key concepts of the LTD theorem at one-loop. So, let’s

consider a generic one-loop scalar integral for an N -particle process, as depicted in figure 1.
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Figure 1. One-loop topology with N external legs and the corresponding momenta configuration.

The external momenta are considered outgoing and the internal momentum flows counter-clockwise.

If the external momenta are labeled as pi with i ∈ {1, 2, . . . N}, then the internal virtual

momenta are given by

qi = `+ ki , ki = p1 + . . .+ pi , (2.1)

with ` the loop internal momentum and kN = 0 due to momentum conservation. The

corresponding expression for the scalar integral is

L(1)(p1, . . . , pN ) =

∫
`

N∏
i=1

GF(qi) , (2.2)

where

GF(qi) =
1

q2
i −m2

i + ı0
, (2.3)

is the scalar Feynman propagator associated to a virtual particle with mass mi and four-

momentum qi,µ = (qi,0,qi) (qi,0 is the energy and qi are the spatial components). We

recall that the +ı0 prescription is introduced to separate, in the imaginary axis, the solu-

tions arising from the on-shell condition, i.e. GF(qi)
−1 = 0. In particular, this translates

into two solutions with positive and negative imaginary components, respectively. On the

other hand, ∫
`

= −ıµ4−d
∫

dd`

(2π)d
, (2.4)

denotes the standard one-loop integration measure in d-dimensions.

According to the LTD theorem, any loop contribution to scattering amplitudes in any

relativistic, local and unitary quantum field theory can be computed through dual integrals,

which are built from single cuts of the virtual diagrams at one-loop [28]. In other words,

there exists a formal connection among loop and phase-space integrals. The cut condition

is implemented by restricting the integration measure through the introduction of

δ̃ (qi) ≡ 2π ı θ(qi,0) δ(q2
i −m2

i ) , (2.5)

which forces to integrate in the positive energy mode (qi,0 > 0) of the corresponding on-

shell hyperboloid (i.e. q2
i = m2

i ). It is worth appreciating that, in the massless limit, all
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the hyperboloids associated with the on-shell condition GF(qi)
−1 = 0 degenerate into light-

cones. Considering the one-loop scalar integral, the LTD theorem establishes that its dual

representation is given by

L(1)(p1, . . . , pN ) = −
N∑
i=1

∫
`
δ̃ (qi)

∏
j 6=i

GD(qi; qj) , (2.6)

i.e. the sum of N dual integrals, each one associated with one of the possible single-cuts.

In eq. (2.6), the dual propagators are

GD(qi; qj) =
1

q2
j −m2

j − ı0 η · kji
, (2.7)

with i, j ∈ {1, 2, . . . N}, kji = qj − qi and η an arbitrary future-like or light-like vector,

η2 ≥ 0, with positive definite energy η0 > 0.1 Since η is arbitrary, we can chose ηµ = (1,0)

to simplify the computations.

Assuming that there are only single powers of the Feynman propagators, the dual

representation in eq. (2.6) is straightforwardly valid for loop scattering amplitudes. The

single-cuts do not affect numerators, therefore, the dual representation of scattering am-

plitudes is obtained by simply adding all possible dual single-cuts of the original loop

diagram, and replacing the uncut Feynman propagators by dual propagators. If there are

higher-powers of the propagators, however, we should apply the extended version of the

LTD theorem [31] by using the Cauchy’s residue theorem with the well-known formula for

poles of order n, i.e.

Res
(
A, q(+)

i,0

)
=

1

(n− 1)!

∂n−1

∂n−1 qi,0

(
A(qi,0)

(
qi,0 − q(+)

i,0

)n)∣∣∣∣
qi,0=q

(+)
i,0

, (2.8)

where q
(+)
i,0 =

√
q2
i +m2

i − ı0 is the positive energy solution of the corresponding on-shell

dispersion relation. In that case, the explicit form of the scattering amplitude is relevant

because the numerator is affected by the derivative.

3 Massive scalar three-point function within LTD

We present in this section the first analytical application of LTD with massive particles.

In particular, we consider the scalar three-point function with one massless internal state

and the remaining internal and outgoing particles with mass equal to M . The final-state

on-shell momenta are labeled as p1 and p2, with p2
1 = M2 = p2

2, and the incoming one is

p3 = p1 + p2 ≡ p12, by momentum conservation, with virtuality p2
3 = s12. We consider

s12 > 0, i.e. we work in the time-like (TL) kinematical region. The internal momenta are

q1 = ` + p1, q2 = ` + p12 and q3 = `, where ` is the loop momentum (see figure 3). When

the internal lines are set on-shell, the momentum q1 is massless, whilst the other two are

1The importance of the modified prescription is deeply explored in ref. [28], where the authors emphasise

its equivalence with the Feynman-Tree theorem (FTT) [50, 51].
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massive and fulfill q2
2 = M2 = q2

3. This is the master scalar configuration for the calculation

of the QCD corrections to the physical case A∗ → qq̄(g) with massive quarks that will be

studied in section 9. We define

m =
2M
√
s12

, β =
√

1−m2, (3.1)

as the normalised mass and velocity, respectively. The well-know result of this massive

scalar three-point function is given by [52, 53]

L
(1)
m>0(p1,p2,−p3) =

∫
`

3∏
i=1

GF(qi) = − cΓ

s12β

[
log(XS)

(
−1

ε
− log(XS)

2
+2log

(
1−X2

S

)
+log

(
m2

4

))
+Li2

(
X2
S

)
+2Li2(1−XS)−π

2

6

]
+O(ε),

(3.2)

with

XS = −xS − ı0 Sgn(s12) , xS =
1− β
1 + β

, (3.3)

and cΓ the one-loop volume factor

cΓ =
Γ(1 + ε) Γ2(1− ε)
(4π)2−ε Γ(1− 2ε)

. (3.4)

Applying LTD, the dual representation of the scalar integral in eq. (3.2) consists of three

contributions

L
(1)
m>0(p1, p2,−p3) =

3∑
i=1

Ii , (3.5)

with

I1 = −
∫
`

δ̃ (q1)

(2q1 · p2 − ı0) (−2q1 · p1 + ı0)
,

I2 = −
∫
`

δ̃ (q2)

(2M2 − 2q2 · p2 + ı0) (s12 − 2q2 · p12 + ı0)
,

I3 = −
∫
`

δ̃ (q3)

(2M2 + 2q3 · p1 − ı0) (s12 + 2q3 · p12 − ı0)
. (3.6)

The corresponding on-shell hyperboloids are shown in figure 2 (left). Due to the rotational

symmetry, it is enough to show the (`0, `z) plane. As discussed in ref. [32], the intersection of

on-shell hyperboloids is associated with multiple internal states becoming simultaneously

on-shell. In this case, the forward on-shell hyperboloids of GF(q1) and GF(q2), and the

backward one of GF(q3) intersect in a single point: this leads to a soft singularity. The

other intersection takes place between the forward on-shell hyperboloid of GF(q2) with the

backward of GF(q3), which manifests as a threshold singularity in I2. Notice that there

– 6 –
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Figure 2. On-shell hyperboloids of the massive three-point function in the loop coordinates `µ =√
s12/2 (ξ0, ξx, ξy, ξz) in two dimensions (left plot); forward and backward on-shell hyperboloids

are represented by solid and dashed lines, respectively. The intersection of on-shell hyperboloids

leads to soft and threshold singularities in the loop three-momentum space (right plot), collinear

singularities are regulated by the mass.

are not collinear singularities, because the mass prevent that the on-shell hyperboloids

degenerate into light-cones. In that situation, there would be extended forward-backward

intersections in the (`0, `z) plane leading to collinear poles, as described in the massless

case studied in refs. [36, 39].

Now, we shall explicitly compute these dual integrals. We choose first a proper ref-

erence frame to simplify the analytic expressions. Hence, we work in the centre-of-mass

frame of p1 and p2, and parametrise the involved momenta as

pµ1 =

√
s12

2
(1,0⊥, β) , pµ2 =

√
s12

2
(1,0⊥,−β) . (3.7)

In order to describe the internal on-shell momenta, we must take into account that q1

corresponds to a massless state (q2
1 = 0), whilst q2 and q3 are associated with massive

virtual particles (q2
2 = M2 = q2

3). For this reason, we write

qµ1 =

√
s12

2
ξ1,0

(
1, 2

√
v1(1− v1) e1,⊥, 1− 2v1

)
,

qµi =

√
s12

2

(
ξi,0, 2 ξi

√
vi(1− vi) ei,⊥, ξi (1− 2vi)

)
, ξi,0 =

√
m2 + ξ2

i , i = {2, 3} ,

(3.8)

where ξ1,0, ξ2, ξ3 ∈ [0,∞) and vi ∈ [0, 1] are the integration variables describing the modulus

of the three-momentum and polar angle of the loop momenta, respectively. With these

variables, the LTD transforms the loop integration measure into∫
`
δ̃ (qi) = s12

∫ ∞
0

ξ2
i

ξi,0
d[ξi]

∫ 1

0
d[vi] , (3.9)
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with

d[ξi] =
(4π)ε−2

Γ(1− ε)

(
s12

µ2

)−ε
ξ−2ε
i dξi , d[vi] = (vi(1− vi))−ε dvi , (3.10)

for the massive case (i = 2, 3), whilst it reduces to∫
`
δ̃ (q1) = s12

∫ ∞
0

ξ1,0 d[ξ1,0]

∫ 1

0
d[v1] , (3.11)

for a massless state (i = 1). Notice that ξ1,0 = ξ1 since q1 is massless. The integration of

the loop momentum in the transverse plane, which is described by the unit vectors ei,⊥ is

trivial. The scalar products of internal with external momenta are given by

4qi · p1/s12 = ξi,0 − β ξi(1− 2vi) ,

4qi · p2/s12 = ξi,0 + β ξi(1− 2vi) , (3.12)

which reduce to 2q1 · p1/s12 = ξ1,0v1 and 2q1 · p2/s12 = ξ1,0(1− v1) for a massless on-shell

state. Using these variables, the dual integrals in eq. (3.6) are rewritten as

I1 =
4

s12

∫
ξ−1

1,0 d[ξ1,0] d[v1]

1− (1− 2v1)2β2
,

I2 =
2

s12

∫
ξ2

2 d[ξ2] d[v2]

ξ2,0 (1− ξ2,0 + ı0) (ξ2,0 + β ξ2 (1− 2v2)−m2)
,

I3 = − 2

s12

∫
ξ2

3 d[ξ3] d[v3]

ξ3,0 (1 + ξ3,0) (ξ3,0 − β ξ3(1− 2v3) +m2)
. (3.13)

Notice that I2 contains a threshold singularity at
√
m2 + ξ2

2 = 1, i.e. ξ2 = β ≤ 1. These

integrals can be calculated analytically to all orders in ε in the massless limit [36]. In this

limit, they read

I1(m = 0) = 0 ,

I2(m = 0) = c̃Γ
µ2ε

ε2
s−1−ε

12 eı2πε ,

I3(m = 0) = c̃Γ
µ2ε

ε2
s−1−ε

12 , (3.14)

with c̃Γ = cΓ/ cos(πε) the phase-space volume factor. As expected, the sum of the three

dual integrals in eq. (3.14) agrees with the well-known massless scalar three-point function.

The massive case is a bit more cumbersome because of the dependence on m. Again,

I1 vanishes because the energy integral factorises and it lacks of any characteristic scale.

Actually, I1 is singular both in the IR and UV. However, the sum of the three dual integrals

and the equivalent original Feynman integral contain only soft divergences. The other two

dual integrals can be integrated in the angular variable analytically, thus keeping the exact

ε-dependence. This leads to

I2 =
2Γ2(1− ε)
s12 Γ(2− 2ε)

∫
d[ξ2]

ξ2
2 2F1

(
1, 1− ε; 2− 2ε; 2β ξ2 (ξ2,0 + β ξ2 −m2)−1

)
ξ2,0 (1− ξ2,0 + ı0) (ξ2,0 + β ξ2 −m2)

,

I3 = − 2Γ2(1− ε)
s12 Γ(2− 2ε)

∫
d[ξ3]

ξ2
3 2F1

(
1, 1− ε; 2− 2ε;−2β ξ3 (ξ3,0 − β ξ3 +m2)−1

)
ξ3,0 (1 + ξ3,0) (ξ3,0 − β ξ3 +m2)

. (3.15)
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However, an expansion in ε is necessary to integrate in the modulus of the loop three-

momentum, which leads to a final result that includes corrections up to O(ε0). Besides

that, the two dual integrals eq. (3.15) are singular only in the UV. Therefore, we introduce

the following expansion

Ii =

∫
d[ξi]

ξi,0
gi(ξi) =

∫
d[ξi]

ξi,0
gUV +

∫
d[ξi]

ξi,0
(gi(ξi)− gUV)

∣∣∣∣
ε=0

, (3.16)

with gUV = limξi→∞ gi(ξi). The first term in the r.h.s. of eq. (3.16) gives the same result

for both dual integrals, i.e.∫
d[ξi]

ξi,0
gUV = − cΓ

s12

x−εs (1 + xs)
1+2ε Γ(1− 2ε)

2ε(1− 2ε)Γ2(1− ε) 2F1(1, 1− ε; 2− 2ε, 1− xs) , i = {2, 3} .

(3.17)

For the second term, which is regular in the UV, we perform the change of variable

ξi =
m

2

(
z − 1

z

)
, (3.18)

with z ∈ [1,∞). The total result for the real part of the two dual integrals, up to O(ε),

reads

Re(I2) =
cΓ

2βs12

(
s12

µ2

)−ε[
log(xS)

(
1

ε
− 1

2
log(xS)− 2log(β)

)
− 2Li2(xS)− 5π2

3

]
+O(ε),

I3 =
cΓ

2βs12

(
s12

µ2

)−ε[
log(xS)

(
1

ε
− 1

2
log(xS)− 2log(β)

)
− 2Li2(xS) +

π2

3

]
+O(ε) .

(3.19)

The dual integral I3 is purely real, while the dual integral I2 generates an imaginary

component due to the intersection of the forward on-shell hyperboloid of GF(q2) with the

backward on-shell hyperboloid of GF(q3). Its imaginary part can be calculated to all orders

in ε from

ı Im(I2) =
1

2

∫
`
GD(q2; q1) δ̃ (q2) δ̃ (−q3)

= −ıπ 2

s12

∫
δ (1− ξ2,0) ξ2

2 d[ξ2] d[v2]

ξ2,0 (ξ2,0 + β ξ2 (1− 2v2)−m2)
= ı

c̃Γ

β s12

(
β2 s12

µ2

)−ε
sin(2πε)

2ε2
,

(3.20)

which is the expected result obtained through the application of the Cutkosky’s rule. The

sum of these contributions in eq. (3.19) and eq. (3.20) agrees with the original Feynman

integral in eq. (3.2).

4 Massive scalar decay rate in DREG

In order to establish a physical parallelism and understand the subtraction of IR singulari-

ties, we work in a simplified toy scalar model with a massive scalar particle φ which couples

– 9 –
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Figure 3. Kinematic configuration of the NLO corrections to the decay process φ → φ + φ. The

one-loop contribution is proportional to the scalar three-point function, with a virtual massless

ψ inside the loop (left). The real contribution is due to the interference terms originated by the

emission of an on-shell massless particle ψ (right). In this case, the momentum configuration is

given by p3 → p′1 + p′2 + p′r.

to a massless one, ψ. In concrete, we consider the decay process φ(p3) → φ(p1) + φ(p2),

with p2
1 = M2 = p2

2 (on-shell massive external particles) and p2
3 = s12 (off-shell incoming

particle). The Born-level decay rate is given by

Γ(0) =
g2

2
√
s12

∫
dΦ1→2 , (4.1)

where g is the coupling and s12 > 4M2 to guarantee the physical feasibility of the process.

To compute the corresponding NLO correction, we need to add virtual (i.e. one-loop) and

real (i.e. extra-radiation) contributions. We will assume the presence of only one massless

particle inside the loop, as well as the emission of a massless real particle in the extra-

radiation contribution. The corresponding NLO diagrams are exhibited in figure 3.2

Let’s start with the virtual part, which we assume proportional to the scalar three-point

function, i.e.

Γ
(1)
V =

1

2
√
s12

∫
dΦ1→2 2 Re 〈M(0)|M(1)〉 = −Γ(0) 2 g2 s12 Re L

(1)
m>0(p1, p2,−p3) . (4.2)

Since s12 > 0, the virtual decay rate is given from eq. (3.19) as a function of xS

Γ
(1)
V = Γ(0) cΓ4g2

β

(
s12

µ2

)−ε[
log(xS)

(
− 1

2ε
+

1

4
log(xS) + log(β)

)
+ Li2(xS) +

π2

3

]
+O(ε) .

(4.3)

In order to calculate the totally inclusive decay rate, we have to consider the real emission

process. In this particular toy-example the cancellation of IR-singularities is achieved by

including only the interference terms originated in the process φ(p3)→ φ(p′1)+φ(p′2)+ψ(p′r),

as depicted schematically in figure 3. Explicitly,

Γ
(1)
R =

1

2
√
s12

∫
dΦ1→32Re〈M(0)

2r |M
(0)
1r 〉 =

g4

2
√
s12

∫
dΦ1→3

2 s12
(2p′1 · p′r)(2p′2 · p′r)

= Γ(0)2g2
(4π)ε−2

Γ(1− ε)

(
s12
µ2

)−ε
β−1+2ε

∫
θ(hp)h

−ε
p

dy′1rdy
′
2r

y′1ry
′
2r

,

(4.4)

2This decay rate does not correspond to any physical theory, since the full set of Feynman diagrams

has not be taken into account. However, for illustrative purposes, it is enough to restrict the following

discussion to virtual and real contributions with a similar topology [36, 39].
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where we used the definition of the massive three-body phase space in eq. (A.2) and

y′ir = 2 p′i · p′r/s12. To compute this integral, we apply the change of variables suggested

in appendix A, which allows to factorise the energy and the angular dependence of the

integrand. By using eq. (A.4), we obtain

Γ
(1)
R = Γ(0) 2g2 (4π)ε−2

Γ(1− ε)

(
s12

µ2

)−ε
β−1+2ε (1 + xS)6ε

×
∫ x−1

S

xS

dz
z−1+2ε(1 + z)2ε

(z − xS)3ε(1− xS z)3ε

∫ 1

0
dww−1−2ε(1− w)−ε. (4.5)

The integration in w can be trivially performed, and it leads to the appearance of an ε-pole.

The integral in z is finite if xS > 0 (i.e. in the massive case), thus we expand the integrand

in ε before the integration. The resulting expression is

Γ
(1)
R = Γ(0) cΓ 4 g2

β

(
s12

µ2

)−ε [
log (xS)

(
1

2ε
− 1

4
log (xS) + log (1 + xS) + log

(
1− x2

S

))
+ Li2 (xS) + Li2

(
x2
S

)
− π2

3

]
+ O(ε) . (4.6)

Putting together the virtual and real contributions from eq. (4.3) and eq. (4.6), we get

Γ(1) = Γ(0) 4 a

β

[
log (xS)

(
log (1− xS) + log

(
1− x2

S

))
+ 2 Li2 (xS) + Li2

(
x2
S

)]
+O(ε) ,

(4.7)

with a = g2/(4π)2. The purpose of the following discussion will be the derivation of a

purely four-dimensional representation of this result, through the local cancellation of all

the IR divergences present in both real and virtual contributions. It is crucial to emphasise

that this cancellation of IR singularities at integrand level is achieved by a suitable mapping

of momenta.

5 Phase-space partition and real-virtual mapping with massive particles

The first ingredient that we need to introduce is a complete partition of the real phase-

space [36, 39], in such a way that each individual region of that partition contains a single

soft, collinear or quasi-collinear configuration. The quasi-collinear configurations are those

in which a massless particle becomes collinear with a massive one [23]. In that case the mass

acts as an IR-regulator and the collinear ε-poles that appear in DREG in the massless case

are transformed into finite logarithmic terms in the mass. These logarithmic contributions

are cancelled in the total cross-section but the massless and the ε → 0 limits do not

commute for the virtual and real corrections separately. Thus, we split the real phase-

space by defining the domains

Ri = {y′ir < min(y′jk)} ,
∑
Ri = 1 . (5.1)

For instance, Ri selects configurations with p′i ‖ p′r or close to collinear, excluding the

remaining ones. In particular, this partition reduces to

θ(y′2r − y′1r) + θ(y′1r − y′2r) = 1 , (5.2)
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for the simplest 1 → 3 scenario. The definition of the phase-space partition in eq. (5.1) is

the same that we would use in the massless case [39]; the only difference is that now some

of the external momenta are massive. That partition, together with the well-motivated

mapping of momenta that will be presented in the following, ensures a smooth massless

limit, therefore an integrand level cancellation of the logarithmic dependences in the mass

arising from the quasi-collinear configurations of the virtual and real corrections, and thus

a more stable numerical implementation of the method.

Then, we shall define a proper momentum mapping in each region to match the singular

behaviour of the real and the dual integrands. In order to properly combine real and virtual

contributions at integrand level, we need to generate the N + 1 on-shell kinematics by

making use of the N -parton Born-level process and the on-shell loop momenta. One of the

main difficulties in constructing a momentum mapping with massive particles is that the

on-shell conditions lead to quadratic equations in the mapping parameters. However, it is

very well-known that massive vectors can be expressed in terms of two massless momenta.

Then, we can exploit this property to simplify the mapping equations. For the case of a

pair of particles of the same mass, the corresponding massive momenta can be written as

pµ1 = β+p̂
µ
1 + β−p̂

µ
2 , pµ2 = β−p̂

µ
1 + β+p̂

µ
2 , (5.3)

with p̂2
1 = p̂2

2 = 0 and β± = (1± β)/2. Moreover, the massless momenta fulfil the following

useful identities

2 p̂1 · p̂2 = s12 , p̂µ1 + p̂µ2 = pµ1 + pµ2 . (5.4)

In their centre-of-mass frame, these massless momenta are simply given by

p̂µ1 =

√
s12

2
(1,0⊥, 1) , p̂µ2 =

√
s12

2
(1,0⊥,−1) . (5.5)

Going back to the toy example in section 4, let’s start with the first region where

R1 = 1 (i.e. y′1r < y′2r). Motivated by the factorisation properties of QCD in the quasi-

collinear limit and the momentum decomposition in eq. (5.3), we propose the following

mapping with q2
1 = 0

p′µr = qµ1 ,

p′µ1 = (1− α1) p̂µ1 + (1− γ1) p̂µ2 − q
µ
1 ,

p′µ2 = α1 p̂
µ
1 + γ1 p̂

µ
2 , (5.6)

which fulfils the momentum conservation constraint by construction. As in the massless

case, the momentum p′2 acts as the spectator of the splitting process and is used to balance

momentum conservation. The emitters have momenta p1 and p′1, and have the same mass.

Although restricted to three final-state particles, the momentum mapping in eq. (5.6) can

easily be generalised to the multipartonic case, with p′k = pk for k 6= 1, 2, r. The parameters

α1 and γ1 are determined from the two on-shell conditions

(p′1)2 = (1− α1)(1− γ1) s12 − 2q1 · ((1− α1) p̂1 + (1− γ1) p̂2) = M2 ,

(p′2)2 = α1 γ1 s12 = M2, (5.7)
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whose explicit solutions are

α1 =
1− ξ1,0 −

√
(1− ξ1,0)2 −m2(1− ξ1,0 + v1(1− v1) ξ2

1,0)

2 (1− v1 ξ1,0)
,

γ1 =
1− ξ1,0 +

√
(1− ξ1,0)2 −m2(1− ξ1,0 + v1(1− v1) ξ2

1,0)

2 (1− (1− v1) ξ1,0)
, (5.8)

whilst (p′r)
2 = 0 by construction, since q2

1 = 0. Due to the fact that we are dealing with

quadratic equations, there are two sets of solutions. The solution in eq. (5.8) is compatible

with the soft limit; it recovers the Born-level kinematics when ξ1,0 → 0. In that limit,

(α1, γ1) → (β−, β+) and therefore (p′1, p
′
2) → (p1, p2). Also, it properly reduces to the

massless parametrisation defined in refs. [36, 39], i.e. if m→ 0, we have

α1 → 0 , γ1 →
1− ξ1,0

1− (1− v1)ξ1,0
. (5.9)

Using these definitions, the kinematical invariants y′ij become

y′1r =
ξ1,0

1− (1− v1) ξ1,0
(v1 + α1 (1− 2v1)) ,

y′2r =
ξ1,0

1− (1− v1) ξ1,0
((1− v1)(1− ξ1,0)− α1 (1− 2v1)) ,

y′12 = 1− ξ1,0 −
m2

2
, (5.10)

which fullfil y′12+y′1r+y
′
2r = 1−m2/2. Again, we recover easily the massless expressions [36,

39] with α1 = 0. In order to improve the presentation of the results, it is also convenient

to express the mass in terms of α1,

m2 =
4α1 (1− ξ1,0 − α1 (1− v1 ξ1,0))

1− (1− v1) ξ1,0
. (5.11)

Then, we compute the associated Jacobian in the physically allowed region (i.e. those points

belonging to the domain R1), which is given by

J1(ξ1,0, v1) =
ξ1,0 (1− ξ1,0 − α1 (2− ξ1,0))2

(1− (1− v1) ξ1,0)2(1− ξ1,0 − 2α1 (1− v1 ξ1,0))
, (5.12)

with dy′1r dy
′
2r = J1(ξ1,0, v1) dξ1,0 dv1. Notice that this expression is apparently free of

square roots, since the mass dependence was rewritten in terms of α1, as suggested in

eq. (5.11).

On the other hand, we have to express R1 in terms of the dual variables. If we use the

mapping given in eq. (5.6), we obtain

R1(ξ1,0, v1) = θ(1− 2v1) θ

(
1− 2v1

1− v1

(
1−

1−
√

1− 4m2 v1(1− v1)

2v1

)
− ξ1,0

)
, (5.13)
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Figure 4. The dual integration regions in the loop three-momentum space, with ξ⊥ =
√
ξ2x + ξ2y .

which is the characteristic function associated to the domain R1. In figure 4, we show this

domain in the loop three-momentum space. The massless limit agrees with the expected

result. Moreover, the three-body phase-space limits defined by the condition hp = 0 are

simply determined by v1 = 0.

In the complementary region, where R2 = 1 (i.e. y′2r < y′1r) with q2
2 = M2, the mapping

is defined by3

p′µr = (1− γ2) p̂µ1 + (1− α2) p̂µ2 − q
µ
2 ,

p′µ1 = γ2 p̂
µ
1 + α2 p̂

µ
2 ,

p′µ2 = qµ2 , (5.14)

where

(p′1)2 = α2 γ2 s12 = M2 ,

(p′r)
2 = M2 + (1− α2) (1− γ2) s12 − 2q2 · ((1− γ2) p̂1 + (1− α2) p̂2) = 0, (5.15)

are the associated on-shell conditions. In this case, the condition (p′2)2 = M2 is fulfilled by

construction. Solving the system and selecting the physical solution, we get

α2 =
1− ξ2,0 +m2/2−

√
(1− ξ2,0)2 −m2 v2(1− v2) ξ2

2

2− (1− 2v2) ξ2 − ξ2,0
,

γ2 =
1− ξ2,0 +m2/2 +

√
(1− ξ2,0)2 −m2 v2(1− v2) ξ2

2

2 + (1− 2v2) ξ2 − ξ2,0
. (5.16)

In order to check the consistency of this solution, we consider the massless limit, obtaining

α2 → 0 , γ2 →
1− ξ2

1− v2 ξ2
, (5.17)

3We have exchanged the role of the radiated particle and the emitter to keep p′2 massive.
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which implies that the parametrisation reduces to the expected one. On the other hand,

the two-body invariants are given by

y′1r = 1− ξ2,0 ,

y′2r =
ξ2,0 + (1− 2 v2) (1− 2α2) ξ2 −m2

2 + (1− 2 v2) ξ2 − ξ2,0
,

y′12 = ξ2,0 −
m2

2
− y′2r , (5.18)

and, since this mapping will be used in the region of the real phase-space defined by R2,

we rewrite the associated characteristic function as

R2(ξ2, v2) = θ

(
β2

((
1 +

√
(1− v2) (1−m2 v2)

)2
−m2 v2

2

)−1/2

− ξ2

)
. (5.19)

The corresponding domain in the loop three-momentum space is also shown in figure 4.

The associated Jacobian is given by

J2(ξ2, v2) =
4ξ2

2

(
1− ξ2,0 +m2/2− α2 (2− ξ2,0)

)2
ξ2,0 (2 + (1− 2v2) ξ2 − ξ2,0)2 (1− ξ2,0 +m2/2− α2 (2− (1− 2v2) ξ2 − ξ2,0))

,

(5.20)

with dy′1r dy
′
2r = J2(ξ2, v2) dξ2 dv2, and we made use of the identity

m2 =
4α2 (2(1− ξ2,0)− α2(2− (1− 2v2) ξ2 − ξ2,0))

2 + (1− 2v2) ξ2 − ξ2,0 − 4α2
, (5.21)

to simplify the expressions.

5.1 General momentum mapping

The momentum mappings previously presented can easily be extended to the most general

multipartonic case in which the emitter and the spectator have different masses: p2
i = m2

i

and p2
j = m2

j , respectively. The decomposition of their momenta in terms of two massless

momenta (p̂2
i = p̂2

j = 0) is given by

pµi = β+ p̂
µ
i + β− p̂

µ
j ,

pµj = (1− β+) p̂µi + (1− β−) p̂µj , (5.22)

with

β± =
sij +m2

i −m2
j ± λ(sij ,m

2
i ,m

2
j )

2sij
, (5.23)

where λ(sij ,m
2
i ,m

2
j ) =

√
(sij − (mi −mj)2)(sij − (mi +mj)2) is the usual Kallén func-

tion. The massless momenta fulfil the useful condition p̂i + p̂j = pi + pj . The mapping
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with the momenta of the real process is formally equal to the mapping already considered

in eq. (5.6), i.e.

p′µr = qµi ,

p′µi = (1− αi) p̂µi + (1− γi) p̂µj − q
µ
i ,

p′µj = αi p̂
µ
i + γi p̂

µ
j ,

p′µk = pµk , k 6= i, j, r . (5.24)

It leads to the on-shell conditions

(p′i)
2 = (1− αi)(1− γi) sij − 2qi · ((1− αi) p̂i + (1− γi) p̂j) +m2

r = (m′i)
2 ,

(p′j)
2 = αi γi sij = m2

j . (5.25)

In eq. (5.25), we have imposed that the spectator and the radiated particle have the same

flavour (and, thus, the same mass) in the virtual and real processes; p2
j = (p′j)

2 = m2
j and

q2
i = (p′r)

2 = m2
r , respectively. The emitter, however, might change flavour, (p′i)

2 = (m′i)
2 6=

m2
i . This situation occurs, for instance, when a gluon splits into a massive quark-antiquark

pair. The solution to eq. (5.25) for the parameters of the mapping reads

αi =
(pij − qi)2 +m2

j − (m′i)
2 − Λij

2(sij − 2qi · p̂i)
,

γi =
(pij − qi)2 +m2

j − (m′i)
2 + Λij

2(sij − 2qi · p̂j)
, (5.26)

with

Λij =

√
((pij − qi)2 +m2

j − (m′i)
2)2 −

4m2
j

sij
(sij − 2qi · p̂i)(sij − 2qi · p̂j) . (5.27)

The momentum mapping in eq. (5.24) has an smooth limit whenever any of the involved

particles becomes massless; in particular, if the spectator is a massless particle, then αi = 0.

6 Massive scalar decay rate from four-dimensional unsubstraction

In this section we illustrate the method of LTD four-dimensional unsubstraction [36, 39]

with the massive toy example presented in section 4. All the necessary ingredients have

been presented in the previous sections. We combine at integrand level the dual loop

contributions (section 3) with the real-radiation terms (section 4) with the help of the

momentum mappings defined in section 5. Since the sum of all the contributions is UV

and IR finite, the final result is free of ε-poles. We would like to emphasise that, in a generic

situation, this assertion is not enough to guarantee the integrability of the expressions in

four-dimensions. However, by virtue of the momentum mappings and the unification of

the dual coordinates, LTD leads naturally to a local cancellation of divergences and the

limit ε→ 0 can be considered at integrand level.
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The LTD representation of the virtual decay rate in this toy example is given by

Γ
(1)
V =

1

2
√
s12

3∑
i=1

∫
dΦ1→2 2 Re 〈M(0)|M(1)(δ̃ (qi))〉 , (6.1)

with

〈M(0)|M(1)(δ̃ (qi))〉 = −g4 s12 Ii , (6.2)

where the dual integrals Ii are defined in eq. (3.13), and we take the integration measure

exactly with ε = 0. In order to ensure the cross-cancellation of spurious singularities and

get a direct ε = 0 limit we must rewrite all the on-shell momenta in terms of the same

coordinate system. This change of variables is explained in appendix B. With that change

of variables the virtual decay rate in eq. (6.1) becomes a single unconstrained integral in

the loop three-momentum.

We also consider the real contribution given by eq. (4.4). First, we split the real

three-body phase-space according to eq. (5.2), and define

Γ̃
(1)
R,i =

1

2
√
s12

∫
dΦ1→3 2 Re〈M(0)

2r |M
(0)
1r 〉Ri

(
y′ir < y′jr

)
, i, j = {1, 2} , (6.3)

that obviously fulfill

Γ
(1)
R = Γ̃

(1)
R,1 + Γ̃

(1)
R,2 . (6.4)

Second, in each region of the real phase-space we apply one of the momentum mappings

defined in eq. (5.6) and eq. (5.14), respectively. The main advantage of these mappings is

that they are optimised to deal smoothly with the massless limit in each of the two regions.

Thus, we rewrite the real contributions in terms of the loop variables and we obtain

Γ̃
(1)
R,1 = Γ(0) 2a

β

∫
dξ1,0 dv1

R1(ξ1,0, v1)J1(ξ1,0, v1) (1− ξ1,0(1− v1))2

ξ2
1,0 (v1 + α1(1− 2v1))((1− v1)(1− ξ1,0)− α1(1− 2v1))

,

(6.5)

Γ̃
(1)
R,2 = Γ(0) 2a

β

∫
dξ2 dv2

R2(ξ2, v2)J2(ξ2, v2) (2 + (1− 2v2) ξ2 − ξ2,0)

(1− ξ2,0)(ξ2,0 + (1− 2v2) (1− 2α2) ξ2 −m2)
, (6.6)

where the Jacobians of the respective transformations are given by eq. (5.12) and eq. (5.20),

and the integration domains, which are restricted by the functions Ri from eq. (5.13) and

eq. (5.19), are shown in figure 4. Again, after applying the change of variables defined in

appendix B to bring the two real contributions to a common coordinate system, we can

consistently take the limit ε = 0, directly at integrand level.

The sum of all the virtual and real contributions, eqs. (6.1), (6.5) and (6.6), is a

finite function in the ε = 0 limit because all the IR singularities are cancelled locally in

the loop three-momentum space at integrand level. The virtual contribution, however,

contains a threshold singularity at ξ2 = β. This singularity is integrable and can be

treated numerically by contour deformation [33–35]. For the toy scalar model and the

physical examples that we are considering in this article there is a simplest solution: we
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m=0

Analytical (DREG)

4D unsubtracted (LTD)

0.0 0.2 0.4 0.6 0.8

0

2

4
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8

m

a
-
1
Γ
(1
) /
Γ
(0
)

Figure 5. Total decay rate at NLO normalised to the leading order for the toy scalar example,

a−1Γ(1)/Γ(0), as a function of the dimensionless mass parameter m. The horizontal dashed line

represents the massless limit, the solid line corresponds to the analytic result obtained through

DREG, and the dots are obtained numerically through LTD unsubtraction.

can compactify the high-energy region with ξ > β into the unit sphere by using a change

of variables. Explicitly, since the integrand is a function of the modulus of the three-

momentum and the polar angle, then

∫ ∞
0

dξ g(ξ, v) = β

∫ 1

0
dx
[
g(β x, v) + x−2 g(β x−1, v)

]
, (6.7)

where the threshold singularity has been mapped into to the upper end-point, namely

x = 1. This approach is very efficient for the numerical implementation.

Finally, we numerically integrate simultaneously the virtual and real corrections from

eqs. (6.1), (6.5) and (6.6) with the help of eq. (6.7) to obtain the total decay rate at NLO,

Γ(1), as a function of the dimensionless mass parameter m. The result is shown in figure 5,

and it is compared with the DREG analytic expression given by eq. (4.7). The agreement

is excellent and quite stable numerically. Computing all the points of the plot in figure 5

takes a few minutes in a standard laptop (2.3 GHz quad-core processor). Moreover, the

massless transition is very smooth because the momentum mappings are optimised to deal

with the quasi-collinear configurations. In other words, the massless limit can directly be

taken at the integrand level. This is another interesting advantage of the LTD approach.

7 Unintregrated wave function and mass renormalisation for heavy

quarks

In order to consider physical processes with heavy quarks we should also take into ac-

count self-energy corrections. The well-known expressions of the wave function and mass
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renormalisation constants, in the Feynman gauge with on-shell renormalisation conditions,

∆Z2 =
αS

4π
CF

(
− 1

εUV
− 2

εIR
+ 3 log

(
M2

µ2

)
− 4

)
,

∆ZOS
M =

αS

4π
CF

(
− 3

εUV
+ 3 log

(
M2

µ2

)
− 4

)
, (7.1)

are not suitable, in particular, for the implementation of a local subtraction of the IR

singularities. We shall provide unintegrated expressions. The case of massless quarks has

been studied in detail in ref. [39]. In eq. (7.1), we explicitly identify the origin of the ε-poles,

and the IR singularities of the wave function should cancel the IR singularities arising from

the squared amplitudes of the real processes with radiated gluons off quarks.

We consider the process in which there are two on-shell massive fermions with momenta

p1 (quark) and p2 (antiquark). The explicit one-loop self-energies are given by

−ıΣ(/p1
) = ı g2

SCF

∫
`

∏
i=1,3

GF(qi)

 γµ (−/q3
+M) γν dµν(q1) , (7.2)

−ıΣ(−/p2
) = ı g2

SCF

∫
`

∏
i=1,2

GF(qi)

 γµ(−/q2
+M) γν dµν(q1) . (7.3)

In these expressions, we keep the same internal momenta qi that were used to define the

vertex corrections in section 3 (see also figure 8 in appendix C). This will allow us to reuse

the same momentum mappings already defined to treat the vertex corrections. Because

of the symmetry /p1
↔ −/p2

, the unintegrated expression for the antiquark self-energy

corrections can be deduced from those of the quark. Thus, we consider in the next only

the quark self-energy. In the Feynman gauge

Σ(/p1
) = g2

SCF

∫
`

∏
i=1,3

GF(qi)

 ((d− 2) /q3
+ dM) . (7.4)

Working in the on-shell renormalisation scheme (OS), the renormalised self-energy

fulfills

ΣR(/p1
= M) = 0 ,

dΣR(/p1
)

d/p1

∣∣∣∣∣
/p1=M

= 0 , (7.5)

from where the wave function and mass renormalisation corrections are given by

∆Z2 =
∂

∂/p1

Σ(/p1
)

∣∣∣∣∣
/p1=M

, ∆ZOS
M = − 1

M
Σ(/p1

= M) . (7.6)

Explicitly, from eq. (7.4) we obtain

∆Z2(p1) = −g2
SCF

∫
`
GF(q1)GF(q3)

(
(d− 2)

q1 · p2

p1 · p2
+ 4M2

(
1− q1 · p2

p1 · p2

)
GF(q3)

)
,

(7.7)

∆ZOS
M (p1) = −g2

SCF

∫
`
GF(q1)GF(q3)

(
(d− 2)

q1 · p2

p1 · p2
+ 2

)
. (7.8)
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It is worth to stress that the expression of the wave function renormalisation constant in

eq. (7.7) tends smoothly in the massless limit to the corresponding expression given in

ref. [39]. It is also relevant to notice that the term proportional to M2(GF(q3))2 leads to

soft divergences when q1 gets on-shell. They are expected to cancel the soft divergences

of the squared amplitudes of the real corrections. The dual representation of the mass

renormalisation constant is straightforward from the LTD theorem. The term M2(GF(q3))2

in eq. (7.7), however, introduces double poles that need to be treated specifically [31]. The

final dual representations for both renormalisation factors are

∆Z2(p1) = g2
SCF

∫
`

 δ̃(q1)

−2q1·p1

(
(d−2)

q1·p2

p1·p2
− 4M2

2q1·p1

(
1− q1·p2

p1·p2

))
+

δ̃(q3)

2M2+2q3·p1

×

(d−2)

(
1+

q3·p2

p1·p2

)
+

4M2

p1·p2

− q3·p2

2
(
q

(+)
3,0

)2 +

(
q

(+)
3,0 +p1,0

)
q3·p2

q
(+)
3,0 (2M2+2q3·p1)



,

∆ZOS
M (p1) = g2

SCF

∫
`

[
δ̃(q1)

−2q1·p1

(
(d−2)

q1·p2

p1·p2
+2

)
+

δ̃(q3)

2M2+2q3·p1

(
(d−2)

q3·p2

p1·p2
+d

)]
, (7.9)

or in term of dual variables defined in section 3

∆Z2(p1) = g2
SCF

[ ∫
2 d[ξ1,0] d[v1]

1− β(1− 2v1)

(
− (d− 2)

ξ1,0 (1 + β(1− 2v1))

1 + β2

+
2m2

1− β(1− 2v1)

(
1

ξ1,0
− 1 + β(1− 2v1)

1 + β2

))
+

∫
2ξ2

3 d[ξ3] d[v3]

ξ3,0 (ξ3,0 − β ξ3(1− 2v3) +m2)

(
(d− 2)

(
1 +

ξ3,0 + β ξ3 (1− 2v3)

1 + β2

)
+

2m2

(1 + β2) ξ3,0

(
β ξ3 (1− 2v3)

ξ3,0
+

(1 + ξ3,0)(ξ3,0 + β ξ3 (1− 2v3))

ξ3,0 − β ξ3(1− 2v3) +m2

))]
,

∆ZOS
M (p1) = g2

SCF

[
−
∫

2 d[ξ1,0] d[v1]

1− β(1− 2v1)

(
(d− 2)

ξ1,0 (1 + β(1− 2v1))

1 + β2
+ 2

)
+

∫
2 ξ2

3 d[ξ3] d[v3]

ξ3,0(ξ3,0 − β ξ3 (1− 2v3) +m2)

(
(d− 2)

ξ3,0 + β ξ3 (1− 2v3)

1 + β2
+ d

)]
.

(7.10)

8 UV renormalisation

We shall now remove the UV divergences of the renormalisation constants by defining

suitable integrand level UV counter-terms. These UV counter-terms are obtained by ex-

panding eqs. (7.7) and (7.8) around the UV propagator GF(qUV) = 1/(q2
UV − µ2

UV + i0),

where qUV = `+ kUV with kUV arbitrary [36, 39, 45]. The simplest choice is kUV = 0. We
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obtain

∆ZUV
2 (p1) = −(d− 2) g2

SCF

∫
`
(GF(qUV))2

(
1 +

qUV · p2

p1 · p2

)
×
(
1−GF(qUV)(2 qUV · p1 + µ2

UV)
)
,

∆ZOS,UV
M (p1) = −g2

SCF

∫
`
(GF(qUV))2

(
d+ (d− 2)

qUV · p2

p1 · p2

)
×
(
1−GF(qUV)(2qUV · p1 + 2d−1µ2

UV)
)
, (8.1)

whose integrated form is

∆ZUV
2 = −S̃ε

αS

4π
CF

(
µ2

UV

µ2

)−ε
1− ε2

ε
,

∆ZOS,UV
M = −S̃ε

αS

4π
CF

(
µ2

UV

µ2

)−ε
3

ε
. (8.2)

The sub-leading terms in eq. (8.1), which are proportional to µ2
UV, have been adjusted in

such a way that only the UV poles in eq. (7.1) are subtracted at O(ε0). Therefore

∆ZIR
2 = ∆Z2 −∆ZUV

2 , ∆ZOS,IR
M = ∆ZOS

M −∆ZOS,UV
M , (8.3)

only contain IR singularities, including the finite terms which are scheme dependent.

The dual representation of eq. (8.1) requires to evaluate the residue of poles of second

and third order [31, 36, 39] located at q
(+)
UV,0 =

√
q2

UV + µ2
UV − ı0. We obtain

∆ZUV
2 = −(d− 2) g2

SCF

∫
`

δ̃ (qUV)

2
(
q

(+)
UV,0

)2

(1− qUV · p2

p1 · p2

)

×

1−
3(2qUV · p1 − µ2

UV)

4
(
q

(+)
UV,0

)2

− p1,0 p2,0

2p1 · p2

 ,

∆ZOS,UV
M = −g2

SCF

∫
`

δ̃ (qUV)

2
(
q

(+)
UV,0

)2

(d− (d− 2)
qUV · p2

p1 · p2

)

×

1−
3(2qUV · p1 − 2d−1µ2

UV)

4
(
q

(+)
UV,0

)2

− (d− 2)
p1,0 p2,0

2p1 · p2

 . (8.4)

Then, we use the parametrisation

qµUV =

√
s12

2

(
ξUV,0, 2 ξUV

√
vUV(1− vUV) eUV,⊥, ξUV (1− 2vUV)

)
,

ξUV,0 =
√
m2

UV + ξ2
UV , (8.5)
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with mUV = 2µUV/
√
s12, and the UV counter-term get the form

∆ZUV
2 = −(d− 2) g2

SCF

∫
d[ξUV] d[vUV]

2ξ2
UV

ξ3
UV,0

[(
1 +

β ξUV (1− 2vUV)

2(1 + β2)

)

×

(
1−

3
(
2β ξUV (1− 2vUV)−m2

UV

)
4 ξ2

UV,0

)
− 1

2(1 + β2)

]
,

∆ZOS,UV
M = −g2

SCF

∫
d[ξUV] d[vUV]

2ξ2
UV

ξ3
UV,0

[(
d+ (d− 2)

β ξUV (1− 2vUV)

2(1 + β2)

)

×

(
1−

3
(
2β ξUV (1− 2vUV)− 2d−1m2

UV

)
4 ξ2

UV,0

)
− d− 2

2(1 + β2)

]
. (8.6)

Similarly, we should subtract the UV singularities of the qq̄A interaction vertex, with

A = {φ, γ, Z} for the explicit examples that we will consider later. As for the self-energy

contributions, the UV counter-term is obtained by expanding the vertex corrections around

the UV propagator GF(qUV) = 1/(q2
UV − µ2

UV + i0). In the Feynman gauge, the generic

expression of the vertex UV counter-term reads

Γ
(1)
A,UV = g2

SCF

∫
`
(GF(qUV))3

[
γν /qUV

Γ
(0)
A /qUV

γν − dA,UV µ
2
UV Γ

(0)
A

]
, (8.7)

where the tree-level vertices Γ
(0)
A are given in eq. (C.1) of appendix C. The µ2

UV term is

sub-leading and the coefficient dUV is adjusted to subtract only the UV pole. Performing

the explicit calculation, we find that in the MS scheme these coefficients are

dφ,UV = d+ 4 , dγ,UV = dZ,UV = d . (8.8)

Notice that this choice of the sub-leading contributions differs from dγ,UV = 4 proposed in

ref. [45]. The difference is, however, of O(ε). The integration of the vertex UV counter-term

leads to the result

Γ
(1)
A,UV = S̃ε

αS

4π
CF Γ

(0)
A

(
µ2

UV

µ2

)−ε
cA,UV

ε
, (8.9)

with

cφ,UV = 4 , cγ,UV = cZ,UV = 1 , (8.10)

that translates into

〈M(0)
A |M

(1)
A,UV〉 = S̃ε

αS

4π
CF |M(0)

A |
2

(
µ2

UV

µ2

)−ε
cA,UV

ε
. (8.11)

The dual representation of eq. (8.7) is (see ref. [39])

Γ
(1)
A,UV = g2

SCF

∫
`

δ̃ (qUV)

8
(
q

(+)
UV,0

)2

γν γ0 Γ
(0)
A γ0 γν

− 3(
q

(+)
UV,0

)2

[
γν (γ · qUV) Γ

(0)
A (γ · qUV) γν − dA,UV µ

2
UV Γ

(0)
A

] . (8.12)
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After an explicit calculation, we obtain for the vertex UV counter-terms

〈M(0)
φ |M

(1)
φ,UV〉 = g2

SCF |M(0)
φ |

2

∫
d[ξUV] d[vUV]

2 ξ2
UV

ξ3
UV,0

(
7− 2ε−

3ξ2
UV

ξ2
UV,0

)
,

〈M(0)
γ |M

(1)
γ,UV〉 = g2

SCF

∫
d[ξUV] d[vUV]

[
2 (e eq)

2CA
1− ε

f(ξUV, vUV)

+|M(0)
γ |2

ξ2
UV

ξ3
UV,0

(
7− 4ε−

3ξ2
UV

ξ2
UV,0

(1 + 4vUV(1− vUV))

)]
,

〈M(0)
Z |M

(1)
Z,UV〉 = g2

SCF

∫
d[ξUV] d[vUV]

[
2 g2

V,q CA

1− ε
f(ξUV, vUV)

+|M(0)
Z |

2 ξ2
UV

ξ3
UV,0

(
7− 4ε−

3ξ2
UV

ξ2
UV,0

(1 + 4vUV(1− vUV))

)]
, (8.13)

where the function

f(ξUV, vUV) = 24M2 ξ4
UV

ξ5
UV,0

(
ε(1− 2vUV)2 + 6vUV(1− vUV)− 1

)
, (8.14)

integrates to zero and does not contribute to the renormalisation of the vertex. However,

this additional term is necessary to achieve a local cancellation of the UV behaviour.

The UV divergences of the wave function cancel exactly the UV divergences of the

vertex corrections for photons and Z bosons, because conserved currents or partially con-

served currents, as the vector and axial ones, do not get renormalised. The corresponding

dual representations, however, do not cancel each other at integrand level. In particular,

the wave function renormalisation contains linear UV singularities that cancel upon inte-

gration. Also, the vertex UV counter-term contains terms that are proportional to the

mass and cancel upon integration. The contribution of all this spurious terms is, however,

crucial to cancel locally all the UV singularities. The coupling to scalar particles, on the

contrary, needs to be renormalised

Y 0
q µ

ε
0 = Yq µ

ε

(
1− αS

4π

3CF

ε

)
+O(α2

S) . (8.15)

9 LTD four-dimensional unsubtraction for physical processes

We have already defined all the necessary ingredients to test the four dimensional im-

plementation of NLO corrections to physical processes in the LTD framework. In par-

ticular, we will compute the NLO QCD corrections to the decay rate A∗ → qq̄(g), with

A = φ, γ, Z. The actual implementation is indeed independent of the decaying particle.

The renormalised one-loop amplitude is given by

|M(1,R)
A 〉 = |M(1)

A 〉 − |M
(1,UV)
A 〉+

1

2

(
∆ZIR

2 (p1) + ∆ZIR
2 (p2)

)
|M(0)

A 〉 , (9.1)
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where |M(1,UV)
A 〉 is the unintegrated UV counter-term of the one-loop vertex correction,

|M(1)
A 〉, and ZIR

2 (pi) are the IR components of the quark and antiquark self-energy cor-

rections. From the renormalised one-loop amplitude |M(1,R)
A 〉, which contains only IR

singularities, we construct the LTD representation of the renormalised virtual decay rate

Γ
(1,R)
V,A =

1

2
√
s12

3∑
i=1

∫
dΦ1→2 2 Re〈M(0)

A |M
(1,R)
A (δ̃ (qi))〉 . (9.2)

The corresponding dual amplitudes for the vertex corrections are given explicitly in

eqs. (C.7), (C.8) and (C.9). As for the toy scalar example presented in section 6, the

real contributions are implemented by splitting the real phase-space in two domains

Γ̃
(1)
R,A,i =

1

2
√
s12

∫
dΦ1→3 |M(0)

A→qq̄g|
2Ri

(
y′ir < y′jr

)
, i, j = {1, 2} , (9.3)

with Γ
(1)
R,A = Γ̃

(1)
R,A,1 +Γ̃

(1)
R,A,2 the real total decay rate. The real emission squared amplitudes

are given in eq. (C.5). In each of the real-phase space domain we introduce one of the

momentum mappings defined in section 5. The sum of the virtual and real corrections

in eq. (9.2) and eq. (9.3) is a single integral in the loop three-momentum. It is UV and

IR finite locally and thus can be calculated numerically with ε = 0. We follow the same

numerical implementation as for the scalar example presented in section 6, and compare

the numerical output with the analytical total decay rate, which has the form

Γ
(1)
A =

αS

4π
CF

[
Γ

(0)
A

(
F (xS) + 2(cA,UV − 1) log

(
µ2

UV

s12

))
+GA(xS)

]
+O(ε) . (9.4)

Our results, normalised to the LO decay rate Γ
(0)
A , are presented in figure 6 for a scalar and

pseudoscalar, and in figure 7 for vector bosons. The computing time is similar to that of

the toy scalar example presented in section 6; a few minutes to generate all the points. The

agreement with the analytic prediction is excellent in all the cases. Moreover, the massless

limit, i.e. xS → 0, is also well-defined and we recover the known results. This is a very

subtle point, because individual contributions in DREG are not smoothly well-defined in

that limit.

10 Conclusions and outlook

In this article, we have generalised the four-dimensional unsubtraction method [36–40]

to deal with massive particles. Based in the LTD theorem, it exploits the possibility of

expressing virtual amplitudes as phase-space integrals, and the fact that threshold and

IR singularities are always restricted to a compact region of the loop three-momentum

integration domain. This is a crucial point, because it allows to establish a momentum

mapping to generate the real-emission on-shell kinematics starting from the Born level

momenta and the loop three-momentum, in such a way that a local cancellation of both IR

and UV singularities can be achieved without introducing IR subtractions. In particular
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μUV=2 s12

μUV= s12 /2

μUV= s12

H→ q q

Analytical (DREG)

4D unsubtracted (LTD)

0.0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

m

Γ
(1
) /
Γ
(0
)

μUV=2 s12

μUV= s12 /2

μUV= s12

ϕ→ q q

Analytical (DREG)

4D unsubtracted (LTD)

0.0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

m

Γ
(1
) /
Γ
(0
)

Figure 6. Total decay rate at NLO for scalar and pseudoscalar particles into a pair of heavy

quarks as a function of the mass, normalised to the LO. In the left panel, we consider a standard

Higgs boson, whilst in the right panel we plot the decay rate for a pseudoscalar particle (cq =

1/2). The solid blue lines correspond to the usual DREG analytic result, while the red dots were

computed numerically within the LTD unsubtracted method. We also consider a renormalisation

scale variation, in the range 1/2 < µUV/
√
s12 < 2.

Analytical (DREG)

4D unsubtracted (LTD)

γ→q q

Z→u u

Z→d d

0.0 0.2 0.4 0.6 0.8

-1.4

-1.2

-1.0

-0.8

-0.6

m

Lo
g
10

(Γ
(1
) /
Γ
(0
) )

Figure 7. Total decay rate at NLO for off-shell vector particles into a pair of heavy quarks as a

function of the mass, normalised to the LO. We consider three physical cases: γ∗ → qq̄ (black),

Z∗ → uū (red, up-type quarks) and Z∗ → dd̄ (blue, down-type quarks). Solid lines corresponds to

the results within the DREG approach, whilst the dots we obtained with the LTD unsubtracted

method.
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for the massive case, we have defined a general momentum mapping that accounts properly

for the quasi-collinear configurations.

First, we started by inquiring in the computation of the scalar three-point function

with massive particles within the LTD approach. Besides recovering the previously known

results, the analysis of the integration domains of the dual contributions allowed us to

understand the origin of its singular structure. Then, we illustrated the local cancellation

of IR and quasi-collinear configurations with a toy scalar example.

The full cancellation of IR singularities requires the contributions of the self-energy

corrections. Thus, we defined unintegrated versions of the quark wave function and mass

renormalisation factors in the on-shell renormalisation (OS) scheme. Compared to the

massless case, this is a non-trivial case because the OS scheme is built at integral level

and DREG leads to very simple results after integration. In any case, the unintegrated

renormalisation constants are completely general and lead to a fully local cancellation of the

remaining IR singularities. The treatment of UV singularities was also discussed carefully,

and we constructed suitable unintegrated UV counter-terms for both self-energy and vertex

corrections, which reproduce successfully the MS conditions and also lead to a fully local

cancellation of UV singularities.

Finally, we tested the LTD four-dimensional unsubtraction to compute NLO QCD

corrections to the decay rate of scalar and vector particles into a pair of massive quarks.

The results were compared with the standard DREG expressions, and we found an impres-

sive agreement. In particular, the transition to the massless limit is smooth because the

quasi-collinear configurations of the real and virtual corrections are matched at integrand

level. With the results presented in this paper, LTD four-dimensional unsubtraction can

be applied to any multipartonic process involving heavy quarks, and other heavy particles.
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A Phase-space

The phase-space for a 1→ 2 decay with final-state particles of equal masses, p2
i = M2 with

i = 1, 2 and s12 the virtuality of the decaying particle, is given by∫
dΦ1→2 =

Γ(1− ε)β1−2ε

2(4π)1−ε Γ(2− 2ε)

(
s12

µ2

)−ε
, (A.1)

with β =
√

1−m2 and m2 = 4M2/s12. The corresponding 1 → 3 phase-space of the real

radiation correction with an additional massless particle in the final state, (p′r)
2 = 0, is

given by

dΦ1→3 =
(4π)ε−2 s12

Γ(1− ε)

(
s12

µ2

)−ε(∫
dΦ1→2

)
β−1+2ε θ(hp)h

−ε
p dy′1r dy

′
2r , (A.2)
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with

hp = (1− y′1r − y′2r) y′1r y′2r −
m2

4
(y′1r + y′2r)

2 , (A.3)

where y′ir = 2 p′i · p′r/s12. In order to integrate analytically the real radiation contribution,

it is convenient to use the change of variables suggested in ref. [54], i.e.

y′1r = g(z)w , y′2r = g(z) z w , g(z) =
(z − xS) (1− xS z)

z (1 + z) (1 + xS)2
, (A.4)

which allows to factorise the function hp in eq. (A.3) according to

hp = g(z)3 z(1 + z)w2(1− w) . (A.5)

In consequence, the phase-space limits, which are determined by the quadratic function

hp, simplify to z ∈ [xS , x
−1
S ] and w ∈ [0, 1]. The first integral in w can easily be obtained

by keeping the exact ε-dependence. The second integral in z, however, requires to expand

the result up to O(ε0) before integration.

B Unification of coordinates

In order to avoid local mismatches in the ε-expansion close to the singular regions, it is

necessary to unify the coordinate system and express all the on-shell momenta qi in terms of

a single loop three-momentum [36]. This is a crucial point to obtain integrable expressions

directly at integrand level in four space-time dimensions. Since q3 = `, we parametrise the

on-shell momenta q1 and q2 by using the variables (ξ, v) ≡ (ξ3, v3). Notice that each qi
is set on-shell inside the corresponding dual contribution. Hence, by using the associated

dispersion relations, we work with the spatial components of the momenta and fix the

energy to fulfill the on-shell condition. From eq. (3.8), the spatial components of the loop

momenta must satisfy

q1 =

√
s12

2
ξ1,0

(
2
√
v1(1− v1) e1,⊥, 1− 2v1

)
= q3 + p1 =

√
s12

2

(
2 ξ3

√
v3(1− v3) e3,⊥, ξ3 (1− 2v3) + β

)
, (B.1)

which leads to a system of equations, whose solution is

ξ1,0 =
√

(β + ξ)2 − 4β v ξ , (B.2)

v1 =
1

2

(
1− β + (1− 2v) ξ

ξ1,0

)
. (B.3)

Similarly, we can express (ξ2, v2) in terms of (ξ, v) from q2 = q3. This leads to the trivial

replacement (ξ2, v2) → (ξ, v). It is worth appreciating that this change of reference frame

is well defined because the argument of the square root in eq. (B.2) is always positive.

In fact,

(ξ + β)2 − 4β ξ v > (ξ + β)2 − 4ξ β = (ξ − β)2 > 0 , (B.4)
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Figure 8. Momentum configuration of the NLO QCD corrections to the process A∗ → qq̄(g), under

the assumption that the decaying particle does not couple to gluons.

due to β < 1. Then, the associated Jacobian is given by

J (ξ, v) =
ξ2

(ξ + β)2 − 4vβξ
, (B.5)

whose massless limit (i.e. β → 1) agrees with the expressions found in refs. [36, 39].

C LTD amplitudes for A∗ → qq̄(g)

In this appendix, we collect the dual amplitudes and real squared amplitudes contributing

to the NLO QCD corrections to the processes A∗ → qq̄(g), with A = {φ, γ, Z}. The

tree-level vertices are given by

Γ
(0)
φ = ı Yq

(
1 + cq γ

5
)
,

Γ(0)
γ = ı e eq γ

µ ,

Γ
(0)
Z = ı γµ

(
gV,q + gA,q γ

5
)
. (C.1)

The corresponding Born squared amplitudes, averaged over the initial-state polarisa-

tions, are

|M(0)
φ→qq̄|

2 = 2 s12 Y
2
q CA

(
β2 + c2

q

)
, (C.2)

|M(0)
γ→qq̄|2 = 2 s12 (e eq)

2CA

(
1 +

m2

2(1− ε)

)
, (C.3)

|M(0)
Z→qq̄|

2 = 2 s12CA
2(1− ε)
3− 2ε

(
g2
V,q

(
1 +

m2

2(1− ε)

)
+ g2

A,q β
2

)
. (C.4)

The momentum configuration of the NLO QCD corrections is represented in figure 8.

The squared amplitudes for the real process A∗ → q(p′1) + q̄(p′2) + g(p′r), are given by

|M(0)
φ→qq̄g|

2 = 4g2
SCF

[
s−1

12 |M
(0)
φ→qq̄|

2 hp
2(y′1ry

′
2r)

2

+Y 2
q

(
1 + c2

q

)
CA(1− ε)

(
1 +

y′2r
y′1r

)]
+ (1↔ 2),

|M(0)
γ→qq̄g|2 = 4g2

SCF

[
s−1

12 |M
(0)
γ→qq̄|2

hp
2(y′1ry

′
2r)

2
+ (eeq)

2CA

(
(1− ε)y

′
2r

y′1r
− ε
)]

+ (1↔ 2),

– 28 –



J
H
E
P
1
0
(
2
0
1
6
)
1
6
2

|M(0)
Z→qq̄g|

2 = 4g2
SCF

[
s−1

12 |M
(0)
Z→qq̄|

2 hp
2(y′1ry

′
2r)

2
+ CA

2(1− ε)
3− 2ε

×
(

(g2
V,q + g2

A,q)

(
(1− ε)y

′
2r

y′1r
− ε
)

+ g2
A,q

m2

2

(
1 +

y′2r
y′1r

))]
+ (1↔ 2), (C.5)

where the function hp is defined in eq. (A.3).

The vertex corrections to the process A∗ → qq̄ are given by the dual amplitudes

〈M(0)
A |M

(1)
A (δ̃(q1))〉 = g2

SCF

∫
`
δ̃(q1)

[
−
|M(0)

A |2s12(1 + β2)

(2q1 · p1)(2q1 · p2)
+ GA(δ̃(q1))

]
,

〈M(0)
A |M

(1)
A (δ̃(q2))〉 = g2

SCF

∫
`
δ̃(q2)

[
|M(0)

A |24q2 · p1

(2M2 − 2q2 · p2)(s12 − 2q2 · p12 + ı0)
+ GA(δ̃(q2))

]
,

〈M(0)
A |M

(1)
A (δ̃(q3))〉 = g2

SCF

∫
`
δ̃(q3)

[
−

|M(0)
A |24q3 · p2

(2M2 + 2q3 · p1)(s12 + 2q3 · p12)
+ GA(δ̃(q3))

]
,

(C.6)

where |M(0)
A |2 are the Born squared amplitudes in eq. (C.4), and the process dependent

functions GA(δ̃ (qi)) for the process φ∗ → qq̄ are

Gφ(δ̃ (q1)) = 2Y 2
q CA

(
1 + β2 + 2c2

q

(
s12

2q1 · p1
− s12

2q1 · p2

))
,

Gφ(δ̃ (q2)) = 2Y 2
q CA

(
− m2 s12

2M2 − 2q2 · p2
+

2(1− (2− ε)β2) s12

s12 − 2q2 · p12 + ı0
− c2

q

2(1− ε) s12

s12 − 2q2 · p12 + ı0

)
,

Gφ(δ̃ (q3)) = 2Y 2
q CA

(
− m2 s12

2M2 + 2q3 · p1
+

2(1− (2− ε)β2) s12

s12 + 2q3 · p12
− c2

q

2(1− ε) s12

s12 + 2q3 · p12

)
.

(C.7)

For γ∗ → qq̄, they are

Gγ(δ̃ (q1)) = 2 (e eq)
2CA

((
2 +

m2

2(1− ε)

)(
s12

2q1 · p1
− s12

2q1 · p2

)
+ 2

)
,

Gγ(δ̃ (q2)) = 2 (e eq)
2CA

(
m2 s12

2(1− ε) (2M2 − 2q2 · p2)
+

2ε s12 + 4q2 · p1

s12 − 2q2 · p12 + ı0

)
,

Gγ(δ̃ (q3)) = 2 (e eq)
2CA

(
m2 s12

2(1− ε) (2M2 + 2q3 · p1)
+

2ε s12 − 4q3 · p2

s12 + 2q3 · p12

)
. (C.8)

Finally, for Z∗ → qq̄,

GZ(δ̃ (q1)) = 2CA
2(1− ε)
3− 2ε

[
g2
V,q

((
2 +

m2

2(1− ε)

)(
s12

2q1 · p1
− s12

2q1 · p2

)
+ 2

)
+g2

A,q

(
(1 + β2)

(
s12

2q1 · p1
− s12

2q1 · p2
+ 1

)
− m2

2

(
q1 · p2

q1 · p1
− q1 · p1

q1 · p2

))]
,

GZ(δ̃ (q2)) = 2CA
2(1− ε)
3− 2ε

[
g2
V,q

(
m2 s12

2(1− ε) (2M2 − 2q2 · p2)
+

2ε s12 + 4q2 · p1

s12 − 2q2 · p12 + ı0

)
+g2

A,q

(
−m

2 (2q2 · p12 + s12)

2 (2M2 − 2q2 · p2)
+

(m2 + 2ε β2) s12 + 4q2 · p1

s12 − 2q2 · p12 + ı0

)]
,
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GZ(δ̃ (q3)) = 2CA
2(1− ε)
3− 2ε

[
g2
V,q

(
m2 s12

2(1− ε) (2M2 + 2q3 · p1)
+

2ε s12 − 4q3 · p2

s12 + 2q3 · p12

)
+g2

A,q

(
−m

2 (2q3 · p12 + s12)

2 (2M2 + 2q3 · p1)
+

(m2 + 2ε β2) s12 − 4q3 · p2

s12 + 2q3 · p12

)]
. (C.9)
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