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1 Introduction

During the last few years, two novel integrable deformations of string and superstring σ-

models have received a considerable great deal of attention due, in part, to their potential

applications to the AdS/CFT correspondence. The first kind of integrable field theory is

known under the name of the η-deformation and leads to a quantum group q-deformation

of its parent σ-model S-matrix with a real parameter q ∈ R. For σ-models on the bosonic

cosets F/G and for the Green-Schwarz (GS) superstring σ-model on the background AdS5×

S5, their respective deformations were presented in [1–3] as natural generalizations of the

Yang-Baxter type deformation of the principal chiral model originally constructed in [4].
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The second kind of integrable field theory is known as the λ-deformation1 and basically

leads to a quantum group q-deformation of its parent σ-model S-matrix [5–7] this time

with a root-of-unity parameter qN = 1, for some N ∈ Z. For the σ-models on the bosonic

cosets F/G and for the AdS5×S5 GS superstring σ-model the corresponding deformations

were introduced in [8, 9] as generalizations of the deformation of the Non-Abelian T-dual

of the principal chiral model initially constructed in [10]. In this paper we will refer to

these two kinds of deformed σ-models as η-models and λ-models. These two types of

integrable field theories does not seem to be related at first sight or to have something in

common as they have very different action functionals and properties but, remarkably, it

turns out to be that under certain circumstances they form a sigma model pair (at least

classically) under the so-called Poisson-Lie T-duality2 [11–15]. Recently, the properties of

both approaches were combined into the so-called generalized λ-deformations [16], which

is the largest family of string theory integrable deformations known to date. This larger

theory have been considered in more detail in [17].

Despite of the fact that both deformations preserve the very stringent property of in-

tegrability present in their parent σ-models, in the superstring theory context there is a

side requirement which is extremely important and that must hold if the geometry asso-

ciated to the η-model or the λ-model is to be considered as a consistent deformed string

theory background, i.e, a physical deformation. Thence of some relevance to quantum

superstring theory and to the AdS/CFT correspondence. This extra requirement is that

the background fields (metric, dilaton, RR fluxes, B-field etc) of the deformed theory must

organize themselves into a solution of an associated set of supergravity equations of mo-

tion. Unfortunately, the η-model of the AdS5 × S5 GS superstring does not surpasses this

test [18] but a milder version of it instead [21]. Fortunately, the λ-models associated to

the GS superstrings in the backgrounds AdSn × Sn, n = 2, 3, 5 do as have been recently

shown, respectively, in [19–21]. For previous treatments see [22, 23]. These results are very

encouraging and favors the λ-deformations in this respect but also raises a very interesting

question: is this result unique to the GS formalism? or does it extends to other approaches

to superstring theory as well?. After all, we know that there are also available in the liter-

ature the Ramond-Neveu-Schwarz (RNS), the hybrid and the pure spinor (PS) formalism,

just to mention the most common formulations, which can be used to suit different needs

and purposes.

Due to its inherent simplicity when compared to other approaches, in this paper we

choose the hybrid formulation [24] of superstring theoy on AdS2 × S2 to initiate the study

of this question (although the supercoset AdS3 × S3 can be treated along the same lines

too [26]). The hybrid formalism is a crossbreeding between the RNS and the GS formalisms

combining the advantages of both approaches. For instance, it uses space-time spinors

allowing the introduction of RR fields like in the GS approach but in flat space it reduces

1Or k-deformation. We will bow, however, to the more common name of λ-deformation (or λ-model)

despite of the fact that the true quantum deformation parameter depends on the WZW level k ∈ Z and

not on the Lagrangian deformation parameter λ.
2This classical equivalence might have an interesting physical interpretation if realized on the dual gauge

theory side under the light of the AdS/CFT duality.
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to a free theory like in the RNS approach, so quantization is straightforward. A covariant

quantization preserving manifest space-time supersymmetry is also possible dispensing the

use of the light-cone gauge prevalent to the GS approach. The kappa symmetry proper

of the GS superstring is replaced by a world-sheet superconformal invariance related to

a BRST symmetry that is used to remove unphysical degrees of freedom etc. Of course,

despite of its similitude with the GS formalism (on some respects) it provides a very

different approach for treating the superstring. For further details on the properties and

applications of this formalism, see for example [24–30] and references therein.

The basic goal of this paper is to explore the most direct consequences of the λ-

deformation for this simpler case keeping in mind the AdS5 × S5 supercoset for a future

work as it requires instead the use of the pure spinor formalism [31, 32], which is fairly

more complex and where, as we will see below, the introduction of the deformation is more

delicate than in the present situation. One of the goals of working out this kind of problem

is to further elucidate and understand the very structure of the λ-deformation itself from

an integrable field theory point of view by testing it on different scenarios.

The paper is organized as follows. In section 2, we introduced the λ-model for the

hybrid superstring on AdS2 × S2 and display its properties, there we disregard the com-

pactification manifold in order to keep the discussion simpler. In section 3, we pursue

Dirac’s procedure and identify the phase space constraints. In section 4, we prove the

classical integrability of the deformed hybrid formalism and show that it has the same

integrable structure than the λ-model of the Green-Schwarz formalism. In section 5, we

elaborate on the λ → 0 limit and show how the deformed theory presents a light-cone

splitting on its current algebra revealing a 2d Lorentz invariance suggesting that the the-

ory might be simpler in this limit. In section 6, we provide evidence that the conjectured

N = (2, 2) superconformal invariance of the undeformed hybrid superstring might be ex-

tended also to its λ-deformed partner. In section 7, we show that the λ-deformation is

marginal to one-loop in 1/k but exact in the deforming parameter λ, hence preserving

the one-loop conformal invariance of the original theory. In section 8 we speculate on a

possible deformation of the PS formalism and point out a subtlety of the deformation in

the current form. In section 9, we write some concluding remarks and comment on some

possible future directions of research. There are two appendices.

2 The λ-model of the hybrid superstring on AdS2 × S2

Start by introducing some basic information.3 Consider the Lie superalgebra f = psu(1, 1|2)

and its Z4 decomposition induced by the automorphism Φ

Φ(f(m)) = imf(m), f =
⊕3

i=0
f(i), [f(m), f(n)] ⊂ f(m+n)mod 4, (2.1)

where m,n = 0, 1, 2, 3. From this decomposition we associate the usual twisted loop

superagebra

f̂ =
⊕

n∈Z

(⊕3

i=0
f(i) ⊗ z4n+i

)
=

⊕
n∈Z

f̂(n). (2.2)

3The 2d notation used in this paper is: x± = t ± x, ∂± = 1

2
(∂0 ± ∂1), ηµν = diag(1,−1) and ǫ01 = 1.

We also have that a± = 1

2
(a0 ± a1).
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The action functional for the λ-models is given by the general expression

Sλ = SF/F (F , Aµ)−
k

π

∫

Σ
d2x 〈A+(Ω− 1)A−〉 , k ∈ Z, (2.3)

where 〈∗, ∗〉 = Str(∗, ∗) is the supertrace in some faithful representation of f, Σ = R× S1

is the world-sheet manifold with the topology of a closed string (a cylinder) and

Ω = P (0) + λ−3P (1) + λ−2P (2) + λ−1P (3), λ−2 = 1 + κ2/k (2.4)

is the omega projector that defines the λ-deformed hybrid superstring. It is worth high-

lighting the difference with the Ω projector of the λ-deformed GS superstring [9]

Ω = P (0) + λ−1P (1) + λ−2P (2) + λP (3). (2.5)

The main difference is that while the former introduce a kinetic term for the current

components along fermionic coset directions, the latter forbids such a term and this crucial

difference has important consequences for the symmetry structure of both theories and also

for their quantization. More on this below.

Above, we have that

SF/F (F , Aµ) = SWZW (F)−
k

π

∫

Σ
d2x

〈
A+∂−FF−1−A−F

−1∂+F−A+FA−F
−1+A+A−

〉
,

(2.6)

where SWZW (F) is the usual WZW model action. Note that the gauge field A± ∈ f takes

values on the whole Lie superalgebra. The action (2.3) is universal and each λ-model is

characterized simply by the choice of a particular Ω projector. It is important to notice

that the action is only gauge invariant with respect to the bosonic gauge group G with Lie

algebra f(0) = u(1) × u(1), hence only the components A
(0)
± are genuine gauge fields, the

other components A
(i)
± , i = 1, 2, 3 play the role of auxiliary spectators fields. However, for

simplicity we will refer to the whole A± as the gauge field.

In the sigma model limit, which is defined by expanding the group-like Lagrange mul-

tiplier near the identity F =1 + κ2ν/k + . . . with k → ∞ and κ2 fixed, we find that

Ω = 1 +
κ2

k
θ + . . . , θ = P (2) +

3

2
P (1) +

1

2
P (3). (2.7)

In this limit, the deformed action reduces to the action of the hybrid superstring written

in the first order (or non-Abelian Buscher) form

Shybrid = −
κ2

π

∫

Σ
d2x 〈A+θA− + νF+−〉+ . . . , (2.8)

where the ellipsis denote sub-leading terms of order 1/k. After using the equations of motion

for the Lagrange multiplier field ν and by fixing the gauge A± = J± = f−1∂±f, we recover

the usual AdS2 × S2 hybrid superstring action functional4 [24]

Shybrid = −
κ2

π

∫

Σ
d2x

〈
(J+ − J

(0)
+ )(J− − J

(0)
− )−

1

2
(J

(1)
+ J

(3)
− − J

(3)
+ J

(1)
− )

〉
. (2.9)

4Notice the presence of a kinetic term along fermionic coset directions which otherwise is absent in the

GS formalism.
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Alternatively, the gauge field equations of motion are given by

A+ =
(
ΩT −DT

)−1
F−1∂+F , A− = − (Ω−D)−1 ∂−FF−1, D = AdF . (2.10)

After putting them back into the action (2.3), a deformation of the Non Abelian T-dual of

the hybrid action (2.9) is produced Seff = S′
hybrid + SWZ + Sdil, with

S′
hybrid = −

k

2π
(λ−4−1)

∫

Σ
d2x

〈
(Ĵ+−Ĵ

(0)
+ )(Ĵ−−Ĵ

(0)
− )+(Ĵ+∂−FF−1−∂+FF−1Ĵ−)

〉
(2.11)

and where we have introduced the hatted currents

Ĵ± = (ΩT −DT )−1F−1∂±F . (2.12)

A dilaton field is also generated in this process because the action functional is quadratic

in the fields Aµ. However, its explicit form is not required for the present level of analysis

but its general Ω-dependent form can be found in [9]. The combination of the B-fields

coming from the integration and the WZ term are such that the equations of motion are

preserved. In [19, 20], an explicit construction of the background fields in the Green-

Schwarz formulation for the supercosets AdS2 × S2 and AdS3 × S3 is presented, there

the dilaton receives contributions from the fermionic directions of the auxiliary fields after

integration.

By defining the deformed dual currents

I
(0)
± = A

(0)
± , I

(1)
+ = λ−1/2A

(1)
+ , I

(1)
− = λ−3/2A

(1)
− ,

I
(2)
± = λ−1A

(2)
± , I

(3)
+ = λ−3/2A

(3)
+ , I

(3)
− = λ−1/2A

(3)
− , (2.13)

where the A± are given by (2.10), the equations of motion of the action (2.3), for generic

values of λ, becomes exactly those of the hybrid superstring

∂+I
(0)
− − ∂−I

(0)
+ + [I

(0)
+ , I

(0)
− ] + [I

(1)
+ , I

(3)
− ] + [I

(2)
+ , I

(2)
− ] + [I

(3)
+ , I

(1)
− ] = 0,

D
(0)
+ I

(3)
− + [I

(1)
+ , I

(2)
− ] + [I

(2)
+ , I

(1)
− ] = 0,

D
(0)
− I

(1)
+ − [I

(2)
+ , I

(3)
− ]− [I

(3)
+ , I

(2)
− ] = 0,

D
(0)
+ I

(2)
− + [I

(1)
+ , I

(1)
− ] = 0,

D
(0)
− I

(2)
+ − [I

(3)
+ , I

(3)
− ] = 0,

D
(0)
+ I

(1)
− = 0,

D
(0)
− I

(3)
+ = 0,

(2.14)

where D
(0)
± (∗) = ∂±(∗) + [I

(0)
± , ∗] is a covariant derivative. The last two equations states

that I
(1)
− and I

(3)
+ are covariantly chiral. The whole set of equations (2.14) can be condensed

into a Lax pair representation given by

L+(z) = I
(0)
+ +zI

(1)
+ +z2I

(2)
+ +z3I

(3)
+ , L−(z) = I

(0)
− +z−3I

(1)
− +z−2I

(2)
− +z−1I

(3)
− , (2.15)
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which is valued in the twisted Lie superalgebra (2.2). Under the action of the Z4 grading

automorphism (2.1), the Lax pair satisfy

Φ(L±(z)) = L±(iz). (2.16)

There are also two currents defined by

J+ = −
k

2π

(
F−1∂+F + F−1A+F−A−

)
, J− =

k

2π

(
∂−FF−1−FA−F

−1+A+

)
(2.17)

that obey the algebra of two mutually commuting Kac-Moody superalgebras5

{
1

J±(x),
2

J±(y)} =
1

2
[C12,

1
J±(x)−

2
J±(y)]δxy∓

k

2π
C12δ

′
xy, {

1
J±(x),

2
J∓(y)} = 0 (2.18)

no matter what Ω is. They are universal to all λ-models. On-shell, in the sense that the

equations (2.10) are used, they reduce to

J+ = −
k

2π

(
ΩTA+ −A−

)
, J− = −

k

2π
(ΩA− −A+) . (2.19)

By defining the special values z± = λ∓1/2 of the spectral parameter, we find that

L+(z+) = ΩTA+, L−(z+) = A−, L+(z−) = A+, L−(z−) = ΩA−. (2.20)

Then, the spatial component of the Lax pair, which is defined by L1 = L+ − L−, imply

the interesting relation between the Lax operator and the Kac-Moody currents

L1(z+) = −
2π

k
J+, L1(z−) =

2π

k
J−. (2.21)

From this we see that (set L1 = L to avoid clutter) the Kac-Moody algebra6 can be

written as

{
1

L (z±),
2

L (z±)} = −[s12(z±),
1

L (z±)−
2

L (z±)]δxy − 2s12(z±)δ
′
xy, s12(z±) = ±

π

k
C12.

(2.22)

One of the goals below is to find operators r/s such that the Maillet bracket is obeyed

{
1

L (x, z),
2

L (y, w)}=[r12,
1

L (x, z) +
2

L (y, w)]δxy − [s12,
1

L (x, z)−
2

L (y, w)]δxy − 2s12δ
′
xy,

(2.23)

and that reduces to (2.22) at the special points z±.

After integrating out the gauge fields, the effective λ-model action is invariant under

the parity-like transformation defined by

Π(F ,Ω, k) = (F−1,Ω−1,−k), (2.24)

5We use ηAB = 〈TA, TB〉, C12 = ηABTA ⊗ TB and denote δxy = δ(x− y), δ′xy = ∂xδ(x− y). See also the

appendix A for the tensor index convention.
6After imposing the gauge field equations of motion, the Kac-Moody algebra for the currents (2.19) is

the same of (2.18). This is a consequence of the protection mechanism [8].
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whose effect on the on-shell Kac-Moody currents is to swap them

ΠJ± = J∓. (2.25)

This last result follows from the identities

ΠA+ = ΩTA+. ΠA− = ΩA−. (2.26)

The action of Π as given in (2.24) is an important symmetry common to all known λ-

models (just change the Ω right above in each case). For instance, it can be exploited to

constraint the very form of the λ-beta functions [33, 34].

The action also has a couple of global Poisson-Lie symmetries with conserved

charges [35]

m(z±) = P exp

[
±

2π

k

∫

S1

dxJ±(x)

]
(2.27)

associated to the global right/left actions δRF = FǫR and δLF = ǫLF of the group

F , respectively. These charges are alternatively extracted by evaluating the monodromy

matrix

m(z) = P exp

[
−

∫

S1

dxL (x, z)

]
(2.28)

at the special points z = z± and using (2.21). However, these two symmetries are not

independent because they obey the relation Πm(z±) = m(z∓) and play a very important

role at the quantum level when putting them in the lattice [35] indicating the presence of

a quantum group symmetry.

2.1 From Noether to Poisson-Lie symmetry

One of the main properties of the deformation is that it promotes the global Noether

symmetry of the parent σ-model associated to the left action of the group F to a global

Poisson-Lie group symmetry in the λ-model7 [41]. The actions (2.9) and (2.3) have the

same Lax pair structure but for the former in (2.15) we replace I± by the left-invariant

currents J± = f−1∂±f . Then, both theories have the same associated linear system,8

namely

(∂± + L±(z))Ψ(z) = 0, (2.29)

where Ψ(z) is the so-called wave function. This last equation in combination with (2.10)

imply that, on-shell, we have the relations9

f = Ψ(1)−1, F = Ψ(λ1/2)Ψ(λ−1/2)−1. (2.30)

Then, the constant right action of the group F on the wave-function Ψ(z) can be lifted to

the left action of F on f that leads to the well-known Noether symmetry of the σ-model

7For a detailed study of this type of symmetry in the case of the η-models, see [37].
8For simplicity we drop the x = (t, x) dependence on the quantities, if needed.
9This relation is used in [40] to construct the deformed giant magnon solutions of the AdS5 × S5 GS

superstring in the lambda background.
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generated by the charge QL, i.e. we have that the variation δXf = Xf , X ∈ f can be

written in the usual Abelian moment form

δXf(x) =
〈
X, {QL, f(x)}

〉
. (2.31)

However, this action is hidden in the dual field F as can be seen from (2.30) but it can be

shown [41] that the infinitesimal right action δΨ(λ±1/2) = Ψ(λ±1/2)X, X ∈ f directly on

the wave-function can be written instead in the non-Abelian moment form

δXΨ(±)(x) = ±
〈 2
X,

2
W−1{

2
W,

1
Ψ(±)(x)}

〉
2
, (2.32)

where we have denoted Ψ(λ±1/2) = Ψ(±). This shows that the global left action of F in the

σ-model becomes a Poisson-Lie symmetry in the λ-model generated by the non-Abelian

Hamiltonian W, which turns out to be the (right) monodromy matrix. It is important

to stress that this kind of symmetry only holds on-shell and that it cannot be lifted off-

shell to be a symmetry of the action functional in the usual Noether theorem sense. It

is also important to notice that this situation is exactly the same for the hybrid and the

Green-Schwarz formalisms and apply as well for the charges (2.27) extracted from the (left)

monodromy matrix (2.28). Hence, the λ-deformation naturally introduces a q-deformation

on the hybrid formalism.

3 Dirac’s procedure: the constraints

In order to construct (2.23) we first need to identify which constraints are first class and

which constraints are second class, then we need to use Dirac’s procedure. However, we will

only focus in identifying them not paying attention to the specific values of the Lagrange

multipliers fixed by stability of the constraints and so on.

For the purpose of applying the Dirac procedure, we will need the Kac-Moody current

algebra written above in (2.18) plus the basic Poisson brackets

{
PA
± (x), AB

∓(y)
}
=

1

2
ηABδxy, ∂0ϕ(x) =

∫
dy {ϕ(x), H(y)} , (3.1)

where P∓ is the momentum field conjugate to the gauge field A±.

Step I. Find the primary constraints and construct the total Hamiltonian. The primary

constraints are given by

P+ ≈ 0, P− ≈ 0 (3.2)

and the total Hamiltonian density is

HT = HC − 2 〈u+P− + u−P+〉 , (3.3)

where u± are arbitrary Lagrange multipliers and

HC = −
k

π

〈(π
k

)2 (
J 2

+ + J 2
−

)
−
2π

k
(A+J− +A−J+)+

1

2

(
A2

+ +A2
−

)
−A+ΩA−

〉
(3.4)

is the canonical Hamiltonian.

– 8 –
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Step II. Find the secondary constraints using HT , i.e., all relations that are u±-

independent. There are only two secondary constraints, they are

C+ = J+ +
k

2π

(
ΩTA+ −A−

)
≈ 0, C− = J− +

k

2π
(ΩA− −A+) ≈ 0 (3.5)

and are completely equivalent to the A± equations of motion written above in (2.10).

The symmetric stress tensor of the action (2.3) is found (after re-installation of the

world-sheet metric) by the variation of the action with respect to the 2d metric. It has the

following non-zero components

T±± = −
k

4π

〈
(F−1D±F)2 + 2A±(Ω− 1)A±

〉
, (3.6)

where D±(∗) = ∂±(∗)+ [A±, ∗] is a covariant derivative. After using the definitions (2.17),

we can show that (set C0 = C+ + C−, C1 = C+ − C−)

T++ + T−− = HC − 〈A0C0〉 , (3.7)

where

T±± = −
k

π

〈(π
k

)2
J 2

± ±
π

k
J±A1 +

1

4
A2

1 +
1

2
A±(Ω− 1)A±

〉
. (3.8)

Alternatively, we get the relation

HC = T++ + T−− + 〈A0C0〉 , (3.9)

where

T++ = −

〈
π

k
C2
+ − C+(Ω

T − 1)A+ +
k

4π
A+(ΩΩ

T − 1)A+

〉
,

T−− = −

〈
π

k
C2
− − C−(Ω− 1)A− +

k

4π
A−(Ω

TΩ− 1)A−

〉
,

(3.10)

which expresses the canonical Hamiltonian HC in terms of constraints only. Of course, on

the constraint surface we have that

T±± ≈ −
k

4π
(λ−4 − 1)

〈
A

(2)
± A

(2)
± + 2A

(1)
± A

(3)
±

〉
, (3.11)

where the A′
±s are now determined by the conditions C± ≈ 0 in terms of the other

fields (2.10). The Virasoro constraints (more specifically T±± ≈ 0) are secondary con-

straints which appear as the stability conditions to the primary constraints given by the

momentum conjugates to the 2d world-sheet metric components.10 Notice that using the

equations of motion (2.14) we can confirm that the stress-tensor components are indeed

chiral for any value of λ

∂∓T±± = 0 → T±± = T±±(x
±). (3.12)

10In the hybrid superstring the Virasoro constraints are not imposed in the same way as they are imposed

on the GS approach. Instead, they are implemented through a BRST operator.

– 9 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
1

By introducing the extended Hamiltonian

HE = HC − 2 〈u+P− + u−P+ + µ+C− + µ−C+〉 (3.13)

and by forcing the stability conditions ∂0C± ≈ 0, we determine all the Lagrange multipli-

ers u′±s but u
(0)
± , which are linked to the bosonic gauge symmetry present in the hybrid

theory and generated by the constraint C
(0)
0 belonging to the grade zero part f(0) of the

superalgebra f. Now we have identified the full set of constraints and multipliers and hence

the algorithm stops. The last step deals with the information we have found.

Step III. Separate the first and second class constraints. There is only one primary first

class constraint and it is given by P
(0)
0 . To find the secondary first class ones we must find a

way to get rid of the gauge field. The obvious combinations with the less number of gauge

field components are

C = C+ +ΩTC− = J+ +ΩTJ− +
k

2π

(
ΩTΩ− 1

)
A−,

C = ΩC+ + C− = ΩJ+ + J− +
k

2π

(
ΩΩT − 1

)
A+.

(3.14)

From this we realize that along the supercoset directions f(1), f(2) and f(3) all the constraints

are second class mimicking the ordinary sigma model on bosonic cosets [8]. This is to be

contrasted with the GS formulation in which along the fermionic directions f(1) and f(3)

there is a mixture of first class and second class constraints, the first class constraint being

associated to the kappa symmetry [41].

Then, we have found the following constraint splitting:

First class constraints:

P
(0)
0 , C

(0)
0 = J

(0)
+ + J

(0)
− . (3.15)

Second class constraints:

P
(0)
1 and C

(0)
− ,

(P
(1)
+ , P

(2)
+ , P

(3)
+ ) and (C(1), C(2), C(3)),

(P
(1)
− , P

(2)
− , P

(3)
− ) and (C

(1)
, C

(2)
, C

(3)
).

(3.16)

By virtue of the protection mechanism [8], we can set all second class constraints

strongly to zero and continue using the super Kac-Moody algebra (2.18) at no harm.

Then, we are now able to use (in the strong sense) the phase space relations

A
(0)
1 =

2π

k
J

(0)
− ,

A
(1)
± = α(λ∓1J

(1)
± + λ2J

(1)
∓ ),

A
(2)
± = α(J

(2)
± + λ2J

(2)
∓ ),

A
(3)
± = α(λ±1J

(3)
± + λ2J

(3)
∓ ),

(3.17)
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where we have defined

α = −
2π

k

1

(z4+ − z4−)
. (3.18)

The Poisson algebra generated by the currents (2.13), i.e. the current algebra, is found

by means of (3.17) and the Kac-Moody algebra structure of the theory. Their algebra is

written at extend in the appendix A.

4 Integrability: the Maillet r/s bracket

In order to construct the Maillet bracket (2.23), we first impose strongly all the second class

constraints (3.17) on the spatial component of the Lax connection L1 defined by (2.15)

and second we extend it outside the constraint surface by adding to it the only first class

constraint left behind (3.15). Then, the Hamiltonian or extended Lax operator

L ′(z) = L (z) + ρ(z)C
(0)
0 , (4.1)

is entirely expressed in terms of the components of the Kac-Moody currents J±. The

function ρ(z) is completely arbitrary but it must be such that L ′(z) obeys (2.16). However,

it can be fixed by requiring that the relations

L ′(z+) = −
2π

k
J+, L ′(z−) =

2π

k
J− (4.2)

are still valid outside the constraint surface. This last requirement imply that

ρ(z) = α(z4 − z4−). (4.3)

Hence, we find the extended or Hamiltonian Lax operator

L ′(z) = α(z4 − z4−)

{
J

(0)
+ +

z3+
z3

J
(1)
+ +

z2+
z2

J
(2)
+ +

z+
z

J
(3)
+

}

+ α(z4 − z4+)

{
J

(0)
− +

z3−
z3

J
(1)
− +

z2−
z2

J
(2)
− +

z−
z

J
(3)
−

}
.

(4.4)

Of course, by construction it satisfies the property

Φ(L ′(z)) = L ′(iz). (4.5)

Notice that if we extend the action of the omega projector (2.4) Ω to the whole complex

plane by defining

Ω(z) = P (0) + z−3P (1) + z−2P (2) + z−1P (3), (4.6)

where obviously Ω = Ω(λ), and use the identities Ω(z)Ω(w) = Ω(w)Ω(z) = Ω(zw), we can

write quite compactly

L ′(z) = f−(z)Ω (z/z+)J+ + f+(z)Ω (z/z−)J−, f±(z) = α(z4 − z4±). (4.7)
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We can profit from this notation and write the Maillet bracket in terms of (z, λ)-dependent

projectors acting on the Kac-Moody superalgebras

{
1

L ′(x, z),
2

L ′(y, w)} = f−(z)f−(w)
1
Ω (z/z+)

2
Ω (w/z+) {

1
J+(x),

2
J+(y)}

+ f+(z)f+(w)
1
Ω (z/z−)

2
Ω (w/z−) {

1
J−(x),

2
J−(y)},

(4.8)

which clearly satisfy the condition (2.22) at the special points z±. We can also write (2.15)

in the compact form

L+(z) = ΩT (z−/z)A+, L−(z) = Ω (z/z+)A−. (4.9)

To recover the Lax operator L1 on the constraint surface with the pair L± given by (2.15),

we simply replace in (4.7) the on-shell values of the Kac-Moody currents J± as given

in (2.19).

From the central terms of the Kac-Moody algebras we can immediately isolate the

symmetric part of the AKS R-matrix, namely,

s12(z, w)=
k

4π

[
f−(z)f−(w)

1
Ω (z/z+)

2
Ω (w/z+)− f+(z)f+(w)

1
Ω (z/z−)

2
Ω (w/z−)

]
C12. (4.10)

There is a special value of the deformation parameter where s12 simplifies

lim
λ→0

s12(z, w) = −
π

k
C

(00)
12 . (4.11)

This means that in this limit the non-ultralocality of the theory is contained (or tamed

or alleviated) within the grade zero part of the superalgebra and that it is not affected

by the coset directions. This same result also holds for the GS formalism11 [41] and the

purely bosonic theories [35] and is a version of the Faddeev-Reshetikhin ultralocalization

mechanism [36] but now applied to this particular model.

An explicit calculation reveals that

s12(z, w) = s0C
(00)
12 + s1C

(13)
12 + s2C

(22)
12 + s3C

(31)
12 , (4.12)

where

s0(z, w) = −
α

2

[
z4 + w4 − (z4+ + z4−)

]
,

s1(z, w) =
α

2

1

z3w

[
1− z4w4

]
,

s2(z, w) =
α

2

1

z2w2

[
1− z4w4

]
,

s3(z, w) =
α

2

1

zw3

[
1− z4w4

]
.

(4.13)

We can write this compactly as

s12(z, w) = −
1

z4 − w4

∑3
j=0{z

jw4−jC
(j,4−j)
12 ϕ−1

λ (w)− z4−jwjC
(4−j,j)
12 ϕ−1

λ (z)}, (4.14)

11See also [46] for the first attempt to alleviate the non-ultralocality of the GS superstring.
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where

ϕ−1
λ (z) = −2α

[
ϕ−1
σ (z) + ǫ2(λ)

]
, (4.15)

is the deformed twisting function and

ϕ−1
σ (z) =

1

4
(z2 − z−2)2, ǫ2(λ) = −

1

4
(z2+ − z2−)

2. (4.16)

The first term above is the well-known σ-model twisting function, the second term imple-

ments the deformation and is responsible for displacing the poles of ϕσ(z) along the real

axis. Note that the special values z± introduced above are two of the displaced poles of

the original sigma model twisting function.

Now, using the symmetric part s12 as an input in the Maillet bracket, we can solve for

the antisymmetric part of the R-matrix

r12(z, w) =
1

z4 − w4

∑3
j=0{z

jw4−jC
(j,4−j)
12 ϕ−1

λ (w) + z4−jwjC
(4−j,j)
12 ϕ−1

λ (z)}, (4.17)

showing that the deformed hybrid formulation of the superstring is still integrable as it can

be put in Maillet’s form. The use of the projectors in showing this is quite powerful. All

these results fit perfectly within the analysis presented in [41].

4.1 Relation to the λ-model of the GS superstring

To show the equivalence of the deformed hybrid (H) and Green-Schwarz (GS) superstrings

at the level of the Maillet brackets, we need to show that for the GS case the extended

Lax operator takes exactly the same form as in the hybrid formulation (4.7) with the same

projector operator Ω!. This could come as a surprise but we will show this is indeed the

case. A similar situation was realized in [45] for the un-deformed traditional sigma models.

For the sake of comparison, we write the projectors associated to both formulations

ΩH(z) = P (0) + z−3P (1) + z−2P (2) + z−1P (3), (4.18)

ΩGS(z) = P (0) + z−1P (1) + z−2P (2) + zP (3). (4.19)

To show the equivalence we will work in reverse instead. Suppose that (4.4) or (4.7) is

given and that we consider the special form for the super Kac-Moody currents

J ′
± =∓

k

4π

[
(1− z4±)Π

(0) + 2A(0)
]
±

k

4π

z±
2

[
2(1− z4∓)Π

(1) − (3 + z4∓)A
(1)

]

+
k

4π

[
(z2+ − z2−)Π

(2) ∓ (z2+ + z2−)A
(2)

]
∓

k

4π

z∓
2

[
2(1−z4±)Π

(3) + (3+z4±)A
(2)

](4.20)

in term of a new set of conjugate fields (A,Π). Then, we get that

L ′
GS(z) =A(0) +

1

4
(3z + z−3)A(1) +

1

2
(z2 + z−2)A(2) +

1

4
(3z−1 + z3)A(3)

+
1

2
(1− z4)Π(0) +

1

2
(z−3 − z)Π(1) +

1

2
(z−2 − z2)Π(2) +

1

2
(z−1 − z3)Π(3),

(4.21)

which is nothing but the Hamiltonian GS Lax operator that takes into account the extension

by the fermionic constraints proper of the GS formalism [45, 46]. This shows that both
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formulations has the same extended Lax operator and the same set of r/s matrices. This

is because in the GS case the arbitrary functions multiplying the fermionic constraints are

arbitrary and can be fixed by demanding equivalence to the hybrid formalism [45]. This

means that as phase spaces the hybrid formulation and the Green-Schwarz formulation of

the AdS2×S2 superstring are the same. The only difference being their dynamics and the

local symmetries (defined through the Ω-dependence of the constraints in (3.14)) involved.

Indeed, notice that the particular combination of projectors

(ΩΩT )H − 1 = (λ−4 − 1)(P (1) + P (2) + P (3)), (ΩΩT )GS − 1 = (λ−4 − 1)P (2), (4.22)

change dramatically the Dirac analysis of the phase space constraints. In the former case

it is conjectured [24] the existence of a quantum N = (2, 2) world-sheet superconformal

symmetry that replaces the kappa symmetry12 (2+2 to be exact) present in the latter

case, both gauge symmetries being used to remove un-physical degrees of freedom from

the spectrum. However, it is important to realize that not even the classical part of

this superconformal symmetry (corresponding to a W-algebra) is manifest in the action

fuctional, as can be seen from the Dirac analysis. Below we will show how to construct

explicitly the classical generator for this hidden symmetry.

5 Deformed Poisson brackets and the λ → 0 limit

The fact that the Poisson brackets of the Lax operator can be put in the Maillet r/s form,

means that we can write in a compact way the Poisson bracket for functions on L in terms

of the usual R bracket associated to the twisted loop Lie superalgebra f̂. Namely,

{F,G}(L ′) = (L ′, [dF, dG]R)ϕλ
+ ω(R(dF ), dG)ϕλ

+ ω(dF,R(dG))ϕλ
, (5.1)

where R = ±(Π≥0 −Π<0) is the usual AKS R-matrix,

(X,Y )ϕλ
=

∫

S1

dx

∮

0

dz

2πiz
ϕλ(z) 〈X(x, z), Y (x, z)〉 , (5.2)

ω(X,Y )ϕλ
=

∫

S1

dx

∮

0

dz

2πiz
ϕλ(z) 〈X(x, z), ∂1Y (x, z)〉 (5.3)

are the twisted inner product and co-cycle, respectively, and13

L ′
1(z) = I

(0)
1 + zI

(1)
+ + z2I

(2)
+ + z3I

(3)
+ − z−3I

(1)
− − z−2I

(2)
− − z−1I

(3)
− + ρ(z)C

(0)
0 (5.4)

is the extended Lax operator written this time in terms of the dual currents. Above, Π≥0

and Π<0 are projectors along positive/negative powers of z acting on quantities valued in

the loop superalgebra f̂.

12At classical level, after gauge fixing the kappa symmetry there is a global fermionic symmetry leftover,

which in the λ → 0 can be identified with an exotic global 2d (N,N) extended supersymmetry. The N

being the rank of the kappa symmetry that was gauge fixed [47–51].
13As a curiosity, note that L ′

1(z) = RL ′
0(z).
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The functions on L ′ and their associated differentials are defined by the usual relations

F (L ′) = (F,L ′)ϕλ
, lim

t→0

d

dt
F (L ′+tX) = (dF,X)ϕλ

. (5.5)

For the current components I±, we use F (L ′) = (F,L ′)ϕλ
with

F (x, z) = ϕ−1
λ (z)[(1 + z4−z

−4)µ(0) + z−1µ(3) + z−2µ(2) + z−3µ(1)]

− ϕ−1
λ (z)[z3ν(3) + z2ν(2) + zν(1)]

(5.6)

and similarly for the constraint, we use F (L ′) = (F,L ′)ϕλ
with

F (x, z) =
1

α
ϕ−1
λ (z)z−4η(0). (5.7)

Above, µ, ν, η : S1 → f̂ are test functions that we remove at the end of calculations. By

obvious linearity, it follows that the differentials are simply found by setting F → dF. For

the positive part, i.e, positive powers of z, we have
∫

S1

dx
〈
η(0), C

(0)
0

〉
→

1

α
ϕ−1
λ (z)z−4η(0),

∫

S1

dx
〈
µ(0), I

(0)
1

〉
→ ϕ−1

λ (z)(1 + z4−z
−4)µ(0),

∫

S1

dx
〈
µ(3), I

(1)
+

〉
→ ϕ−1

λ (z)z−1µ(3),

∫

S1

dx
〈
µ(2), I

(2)
+

〉
→ ϕ−1

λ (z)z−2µ(2),

∫

S1

dx
〈
µ(1), I

(3)
+

〉
→ ϕ−1

λ (z)z−3µ(1).

(5.8)

For the negative part, i.e, negative powers of z, we get
∫

S1

dx
〈
ν(3), I

(1)
−

〉
→ −ϕ−1

λ (z)z3ν(3),

∫

S1

dx
〈
ν(2), I

(2)
−

〉
→ −ϕ−1

λ (z)z2ν(2),

∫

S1

dx
〈
ν(1), I

(3)
−

〉
→ −ϕ−1

λ (z)zν(1).

(5.9)

Now it is a turn to compute the deformed current algebra for the λ-model of the hybrid

superstring. It is written in appendix A below, after using the r/s approach we find perfect

agreement with the more direct and pedestrian computation that follows from the relations

that are consequence of (3.17) and the Kac-moody algebra structure of the theory.

In the λ → 0 limit a dramatic simplification of the current algebra occurs. The only

non-zero brackets being (those involving the constraint remain the same)

{

1

I
(0)
1 (x),

2

I
(0)
1 (y)} =−

2π

k
([C

(00)
12 ,

2

I
(0)
1 (y)]δxy − C

(00)
12 δ′xy),

{

1

I
(0)
1 (x),

2

I
(i)
− (y)} =−

2π

k
[C

(00)
12 ,

2

I
(i)
− (y)]δxy, i = 1, 2, 3

(5.10)
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for the brackets involving the grade zero current and

{

1

I
(1)
+ (x),

2

I
(1)
+ (y)} =

2π

k
[C

(13)
12 ,

2

I
(2)
+ (y)]δxy,

{

1

I
(1)
+ (x),

2

I
(2)
+ (y)} =

2π

k
[C

(13)
12 ,

2

I
(3)
+ (y)]δxy,

{

1

I
(2)
− (x),

2

I
(3)
− (y)} =

2π

k
[C

(22)
12 ,

2

I
(1)
− (y)]δxy,

{

1

I
(3)
− (x),

2

I
(3)
− (y)} =

2π

k
[C

(31)
12 ,

2

I
(2)
− (y)]δxy

(5.11)

for the currents along the coset directions. Notice that, very remarkably, the ± light-

cone sectors along the coset directions completely decouple in the sense that the current

components I± do not mix, manifesting 2d relativistic invariance in this limit. The theory

has the same mild non-ultralocality as in the Green-Schwarz case but this time there is

no Poisson Casimir and the usual connection to the Pohlmeyer reduction, their associated

generalized sine-Gordon models and its mKdV-type integrable hierarchy typical of the GS

superstring [41, 49–55] is absent for this case, showing that the λ-deformation is along a

different direction in the space of Poisson structures. It would be very interesting to further

explore the hybrid formalism in the λ → 0 limit, in particular it seems to be it might have

simpler OPE’s and vertex operators as they depend on the symplectic structure of the

theory, which drastically simplifies in this limit. Indeed, the fact that in this limit the ±

sectors decouple (at least classically) suggest that (anti)-chiral objects do not mix either

raising the interesting possibility of computing exact OPE’s even in a curved background.

6 The N = (2, 2) superconformal algebra

The un-deformed theory (2.9) is conjectured to posses an N = (2, 2) superconformal sym-

metry at the quantum level [24]. We will restrict here to a purely classical analysis and

argue, however, that it is reasonable to expect that this conjecture might be extended to

the λ-model as well and this is suggested by the independence of the symmetry algebra

structure on the deformation parameter λ. Recall that Poisson brackets only capture the

information of the OPE’s that corresponds to the classical results (like single contractions),

then we will only be able to reproduce the W-algebra structure of the theory. For further

details on the conjecture see [24].

Start writing the stress tensor components (3.10) in the form

T±± =
1

2α
〈K±,K±〉 , K± = I

(2)
± + I

(1)
± + I

(3)
± . (6.1)

Using the Poisson algebra written down in the appendix A, we find that on the constraint

surface (when C
(0)
0 ≈ 0) and for any λ, we get the usual Virasoro algebra

{T±±(x), T±±(y)} = ±(T ′
±±(x)δxy + 2T±±(x)δ

′
xy), (6.2)

with other brackets being zero.
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To construct the classical chiral generators a more refined analysis of the Lie super-

algebra f is required, see appendix B for details. Indeed, the current components, of say

I
(3)
+ , decompose under the action of the gauge algebra f(0) = u(1)× u(1) as follows

I
(3)
+ → {I

(3)
(++), I

(3)
(−−), I

(3)
(+−), I

(3)
(−+)}, (6.3)

where we have dropped the light-cone index + in favor of the gauge labels. This decom-

position imply that the two gauge invariant fermion bilinears defined by

G+ = cI
(3)
(++) · I

(3)
(−−), G− = cI

(3)
(+−) · I

(3)
(−+), (6.4)

with c arbitrary, satisfy the chirality condition

∂−G
± = 0 → G± = G±(x+) (6.5)

by virtue of the last equation of motion in (2.14) as the current I
(3)
+ is covariantly chiral.

Recall that the equations of motion are the same for any value of λ. A similar results is

valid for I
(1)
− .

Now we proceed to compute the classical symmetry algebra for the chiral sector (+).

Appendices A and B imply that on the constraint surface (when C
(0)
0 ≈ 0) we have the

following Poisson brackets

{T++(x), G
±(y)} = G′±(x)δxy + 2G±(x)δ′xy,

{G+(x), G−(y)} = W (x)δxy, (6.6)

{G±(x), G±(y)} = 0,

where we have set c2αl = 1 and introduced a new generator

W = I
(3)
(++) · [I

(2)
+ , I

(3)
+ ]

(1)
(−−) + I

(3)
(−−) · [I

(2)
+ , I

(3)
+ ]

(1)
(++). (6.7)

This last generator is a spin-3 current

{T++(x),W (y)} = 2W ′(x)δxy + 3W (x)δ′xy, (6.8)

and reveals a classical W-algebra structure.14 Other Poisson brackets mixing elements of

different sectors vanish identically. The important point is that this symmetry algebra is

independent of the deformation parameter λ, then it is natural to conjecture that the λ-

model has the sameN = (2, 2) superconformal symmetry of the original hybrid action (2.9).

This is because using either the dual currents I± or the original currents J±, the chiral

symmetry algebras are quite the same in form and content.

7 Conformal invariance: one-loop beta function

We quickly review the calculation of the one-loop beta function of [24] (see also [39, 59] for

the GS formalism) but combined with the simpler constant background current used in [42],

in which bosonic and fermionic fluctuations decouple making the calculation simpler. Then,

we apply the same strategy to the deformed theory.

14This last Poisson bracket matches (up to a sign) the one introduced in [38] to compute the conformal

weight ∆ of the W -current. Namely, {T (x),W (y)} = −(∆− 1)W ′(x)δxy −∆W (x)δ′xy.
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7.1 The sigma model

Consider the un-deformed hybrid action15 given by [24]

Shybrid = −
κ2

2πtN

∫

Σ
d2x 〈J+, θJ−〉N , θ = P (2) + (1 + s)P (1) + (1− s)P (3), (7.1)

where tN is the Dynkin index of the defining N -dimensional representation of the super-

algebra f. See appendix A of [42] for further details on the Lie algebraic conventions used

through this section.

The fluctuations fields to be used η ∈ f are Lie superalgebra valued and are related to

the fluctuations of the currents J±, through the basic relations

δJ± =
1

κ
D±η, f−1δf ≡

1

κ
η, and (δD±)η = [D±η, η], (7.2)

whereD± = ∂±+[J±, ∗] is a covariant derivative. By fixing the gauge η(0) = 0, associated to

the gauge symmetry of the action, and by using the following specific choice of background

field given by

f = expxµΘµ → J± = Θ±, (7.3)

where Θµ ∈ f(2) are constant fields satisfying [Θµ,Θν ] = 0, we find the operators that

govern the fluctuations η. Namely,

DB(x) = (−∂+∂− +Θ+Θ−) acting on η(2) (7.4)

for the bosonic sector and

DF (x) =

(
−∂+∂− + sΘ+Θ−

(
s− 1

2

)
Θ+∂− −

(
s+ 1

2

)
Θ−∂+

(s− 1
2)Θ−∂+ − (s+ 1

2)Θ+∂− −∂+∂− − sΘ+Θ−

)
acting on

(
η(1)

η(3)

)

(7.5)

for the fermionic sector. Notice that this is basically the content of the eq. (4.16) of [24]

after some obvious re-arrangements and identifications.

After Wick rotating and gathering all logarithmic divergences, we find the one-loop

contribution to the effective Lagrangian in Euclidean signature [24]

I1−loop
undef = −

1

8π
lnµ · [Tr

(0)
adj + Tr

(2)
adj − (2s2 +

1

2
)(Tr

(1)
adj + Tr

(3)
adj)](Θ ·Θ). (7.6)

The theory (7.1) has vanishing one-loop beta function [24] precisely when s = ±1/2 as a

consequence of the vanishing of the dual Coxeter number or, equivalently, the quadratic

Casimir operator in the adjoint representation of f = psu(1, 1|2).

7.2 The lambda model

Now we want to discover if the deformation described by (2.3) preserves the one loop

conformal invariance of the action (2.9). Recall that our choice above corresponds to

s = 1/2.

15For the choice s = 1/2, we recover the hybrid superstring action (2.9).
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After using the gauge field A± equations of motion, we obtain the effective lambda

model action16 (cf. (2.11))

Sλ = −
k

4πtN

∫

Σ
d2x

〈
F−1∂+F [1 + 2(Ω−D)−1D]F−1∂−F

〉
N
+ SWZ + Sdil. (7.7)

Using the background field (compared with f above)

F = expxµΛµ, (7.8)

where Λµ ∈ f(2) are constant fields satisfying [Λµ,Λν ] = 0, we get the following dual

background currents

I
(2)
± ≡ Θ± = ±

λ

(1− λ2)
Λ±, I

(i)
± = 0, i = 0, 1, 3. (7.9)

From the equations of motion (2.14), we obtain the operators governing the fluctuations

of the bosonic and fermionic sectors. For the bosonic sector we get

DB(x) =




∂− 0 0 −Θ+

0 ∂+ −Θ− 0

−Θ− Θ+ −∂− ∂+
0 0 ∂− ∂+


 acting on




Î
(2)
+

Î
(2)
−

Î
(0)
+

Î
(0)
−




, (7.10)

where the last line right above is the analogue of the gauge fixing condition η(0) = 0 used

in the un-deformed hybrid sigma model. For the fermionic sector, we obtain

DF (x) =




∂− 0 Θ− −Θ+

0 ∂+ 0 0

0 0 ∂− 0

−Θ− Θ+ 0 ∂+


 acting on




Î
(1)
+

Î
(1)
−

Î
(3)
+

Î
(3)
−




. (7.11)

The 1-loop quantum effective Lagrangian in Euclidean signature is then given by

Leff
E = L

(0)
E + I1−loop

def , I1−loop
def =

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)− logDF (p)], (7.12)

where

L
(0)
E =

k

16πtN

1 + λ2

1− λ2
〈Λ · Λ〉N (7.13)

and

DB(p) =




p− 0 0 −Θ+

0 p+ −Θ− 0

−Θ− Θ+ −p− p+
0 0 p− p+


 , DF (p) =




p− 0 Θ− −Θ+

0 p+ 0 0

0 0 p− 0

−Θ− Θ+ 0 p+


 . (7.14)

16The dilaton contribution Sdil is not necessary at this level of analysis as we are interested only in the

quantum scale invariance, not Weyl.
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The contributions associated to logarithmic divergences (denoted by the symbol
.
=) are

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)]

.
= −

1

8π
lnµ[Tr

(0)
adj + Tr

(2)
adj ](Θ ·Θ), (7.15)

−
1

2

∫

|p|<µ

d2p

(2π)2
tr[logDF (p)]

.
=

1

8π
lnµ[Tr

(1)
adj + Tr

(3)
adj ](Θ ·Θ). (7.16)

Altogether we get, to one-loop in 1/k but exact in λ, that

I1−loop
def = −

1

8π
lnµ · [Tr

(0)
adj + Tr

(2)
adj − (Tr

(1)
adj + Tr

(3)
adj)](Θ ·Θ), (7.17)

which is proportional to the un-deformed one-loop contribution found above. The pro-

portionality factor being λ-dependent, determined by (7.9) and can be found by writing

Θ± in terms of Λ±. The λ-deformation besides preserving the underlying integrability of

the original hybrid superstring sigma model also preserves its 1-loop conformal invariance,

i.e. the coupling λ is marginal to this order. It would be very interesting to follow the

lines of [19, 20] and to verify if this λ-model is also Weyl invariant at quantum level by

constructing explicitly the background fields and checking if they obey the relevant set of

supergravity equations of motion.

8 Digression on the pure spinor λ-model

In this last final section we speculate on the possibility of associating a λ-model to the pure

spinor (PS) superstring on the background AdS5 × S5. One of the main properties of the

PS formalism [31, 32] is that on it both the kappa symmetry and the Virasoro constraints

characteristics of the GS formalism are replaced by a single BRST symmetry. Fortunately,

by demanding BRST invariance of the λ-model of the hybrid superstring plus a term

involving the PS ghosts we are able to construct a sensible deformation. Unfortunately,

the deformation does not seem to preserve integrability.

8.1 The σ-model of the PS superstring

The pure spinor superstring action on AdS5 × S5 is given by

S = −
κ2

π

∫

Σ
d2x 〈J+θJ−〉 −

2κ2

π

∫

Σ
d2x

〈
w(3)D

(0)
− l(1) + w(1)D

(0)
+ l

(3)
+NN

〉
, (8.1)

where D
(0)
± (∗) = ∂±(∗) +

[
J
(0)
± , ∗

]
is a covariant derivative, J± = f−1∂±f is the usual flat

current and θ is the same projector used for the hybrid superstring (2.7). This time the

Lie superalgebra to be considered is psu(2, 2|4). Now, l(1) and l
(3)

are ghosts satisfying the

pure spinor constraints [
l(1), l(1)

]
+
=

[
l
(3)

, l
(3)]

+
= 0 (8.2)

and w(3) and w(1) are their conjugate momenta. It is important to notice that l(1) and l
(3)

are fermionic in character because

l(1) = lαTα, l
(3)

= lαTα, (8.3)
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where Tα ∈ f(1), Tα ∈ f(3) are fermionic generators of f, while the components lα and lα are

bosonic spinors. Also

N = −
[
l(1), w(3)

]
+
, N = −

[
l
(3)

, w(1)
]
+
, (8.4)

are the PS Lorentz currents. They are bosonic and belong to f(0).

The action (8.1) is invariant under an on-shell BRST symmetry

δBf = f(l(1) + l
(3)

), δBw
(1) = −J

(1)
− , δBw

(3) = −J
(3)
+ , δBl

(1) = δBl
(3)

= 0 (8.5)

and it is also classical integrable [44, 45] with a Lax pair given by

L+(z) = J
(0)
+ + zJ

(1)
+ + z2J

(2)
+ + z3J

(3)
+ + (z4 − 1)N,

L−(z) = J
(0)
− + z−3J

(1)
− + z−2J

(2)
− + z−1J

(3)
− + (z−4 − 1)N.

(8.6)

Now, we proceed to deform this theory.

8.2 The “λ-model” of the PS superstring

In order to construct the lambda model of the pure spinor superstring, we need to find a

way to: I) preserve its BRST symmetry and II) preserve its integrability. Our strategy will

be to start with I) and later verify if II) is guaranteed by the resulting deformation.

We construct the lambda model for the PS superstring by adding to the λ-deformed

hybrid action

Shybrid = SF/F (F , Aµ)−
k

π

∫

Σ
d2x 〈A+(Ω− 1)A−〉 , (8.7)

a term proportional to the PS ghosts

Sghost = r

∫
d2x

〈
w(3)D

(0)
− l(1) + w(1)D

(0)
+ l

(3)
+ sNN

〉
, (8.8)

where r, s are parameters to be determined by BRST symmetry arguments and D
(0)
± (∗) =

∂±(∗) +
[
A

(0)
± , ∗

]
is a covariant derivative. Namely, we define

SPS = Shybrid + Sghost. (8.9)

In order to find a candidate BRST symmetry we will work on stages. Start by consid-

ering the matter part and propose (set δB = δ) the following transformations17

δF = −αF + Fβ, δA+ = D+α, δA− = D−β, (8.10)

where α and β are functions of l(1), l
(3)

. The variation of the first term in (8.7) is given by

δSF/F =
k

π

∫

Σ
d2x

〈
(α− β)F+−

〉
, (8.11)

17This is the same method used in [9] to construct the kappa symmetry for the GS case. Notice the

resemblance between the kappa and the BRST symmetry in both formulations.
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where F+− 6= 0 is the curvature of A±. The variation of the Ω-dependent part of (8.7) is

of the form

δSΩ =
k

π
(λ− 1)

∫

Σ
d2x

〈
− cl(1)F

(3)
+− + bl

(3)
F

(1)
+−

〉

+
k

π
λ(λ−4 − 1)

∫

Σ
d2x

〈
cl(1)D

(0)
− A

(3)
+ + bl

(3)
D

(0)
+ A

(1)
−

〉
,

(8.12)

where we have taken

α = λcl(1) + bl
(3)

, β = cl(1) + λbl
(3)

, (8.13)

with b and c arbitrary constants. Using this particular choice we end up with

δShybrid =
k

π
λ(λ−4 − 1)

∫

Σ
d2x

〈
cl(1)D

(0)
− A

(3)
+ + bl

(3)
D

(0)
+ A

(1)
−

〉
. (8.14)

From this expression, we discover that by taking r = − k
π (λ

−4 − 1) and setting

δw(1) = −λbA
(1)
− , δw(3) = −λcA

(3)
+ , δl(1) = δl

(3)
= 0, (8.15)

we obtain for the whole action that

δSPS =
k

π
(λ−4 − 1)

∫

Σ
d2x

〈
Nδ(A

(0)
+ − sN) +Nδ(A

(0)
− − sN)

〉
. (8.16)

By setting s = 1, we arrive at the desired form

δSPS =
k

π
(λ−4 − 1)

∫

Σ
d2x

〈
bA

(1)
+

[
l
(3)

, N
]
+ cA

(3)
−

[
l(1), N

]〉
. (8.17)

Finally, we notice that the action is BRST invariant δSPS = 0 because, say

[
l(1), N

]
=

1

2

[
w(3),

[
l(1), l(1)

]
+

]
, (8.18)

vanishes by virtue of the pure spinor constraints (8.2). This is where the formulation

borrows its name.

In the sigma model limit λ → 1, the action (8.9) reduces to the first order form

SPS = −
κ2

π

∫

Σ
d2x 〈A+θA− + νF+−〉 −

2κ2

π

∫

Σ
d2x

〈
w(3)D

(0)
− l(1) + w(1)D

(0)
+ l

(3)
+NN

〉
,

(8.19)

which is to be compared with (8.1). However, after taking the limit the action is no

longer BRST invariant because in this limit α = β and hence δ 〈νF+−〉 = 0. When

compared with (8.11) this term is needed to cancel some contributions of the curvature

coming from the variation of SΩ. Only when we use the ν equations of motion and fix the

gauge A± = f−1∂±f, the BRST symmetry is restored, i.e. when we return to the original

formulation and to the set of variations (8.5).
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Now, we can find the equations of motion by varying the action we have constructed.

For the field F , we get

δSPS = −
k

π

∫

Σ
d2x

〈
F−1δF

[
∂+ +ΩTA+ + (λ−4 − 1)N, ∂− +A−

]〉

= −
k

π

∫

Σ
d2x

〈
δFF−1

[
∂+ +A+, ∂− +ΩA− + (λ−4 − 1)N

]〉
,

(8.20)

after using the A± equations of motion

A+ =
(
ΩT −DT

)−1
[F−1∂+F − (λ−4 − 1)N ],

A− = − (Ω−D)−1 [∂−FF−1 + (λ−4 − 1)N ].
(8.21)

The ghosts have the same equations as in the un-deformed theory

D
(0)
+ N + [N,N ] = 0, D

(0)
− N + [N,N ] = 0. (8.22)

If the deformation is to preserve the integrability, then the two expressions (8.20) for

the equations of motion should be equivalent to the evaluation of the curvature

[∂+ + L+(z), ∂− + L−(z)] , (8.23)

of the Lax pair

L+(z) = I
(0)
+ + zI

(1)
+ + z2I

(2)
+ + z3I

(3)
+ + (z4 − 1)N ′,

L−(z) = I
(0)
− + z−3I

(1)
− + z−2I

(2)
− + z−1I

(3)
− + (z−4 − 1)N

′
(8.24)

at the special values of the spectral paramenter z = λ−1/2 and z = λ1/2, respectively.18

The prime in N ′ and N
′
is to denote possible re-scalings of the ghosts in terms of the

parameter λ similar to the ones required to define the currents I±. We conclude that under

the present (naive) construction, the pure spinor superstring does not seem to admit a

λ-model and more work is to be required. A possibility is to add a new term in order to

restore integrability. This new term should, in principle, possess the following properties:

• It must be BRST invariant and gauge invariant, at least under the gauge group

generated by the f(0) part of the Lie superalgebra f = psu(2, 2|4),

• It must be become a sub-leading correction of the order O(1/k) in the sigma model

limit λ → 1, where k → ∞ with κ2 fixed.

By replacing (8.21) back into (8.9) we find that the resulting effective action differs

from (2.11) plus the ghosts term action by a non-standard coupling between the cur-

rents Ĵ±’s and N,N . Another hint that perhaps we need to add a new term in order to

compensate the extra terms. However, we will leave this problem to be considered more

carefully in a companion paper.

18This time the currents I± will include contributions from the PS currents.
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9 Concluding remarks

In this paper we have studied in detail the λ-model of the hybrid formalism of the su-

perstring in the background19 AdS2 × S2 and showed how it preserves most of the main

characteristics of the original σ-model except the one related to the maximal isometry

group of the target space, a situation that is common to all λ-models. The presence of

Poisson-Lie groups at classical level is a strong signal of a quantum group symmetry Fq,

which should appear as the symmetry group of some non-commutative space.20 From the

point of view of string theory the claim is that in the λ-model the isometry group F of the

original target space is replaced by Fq with q a phase but without breaking any of the con-

ditions that makes the deformed target space a genuine string background.21 This is also

supported by the recent results of [19–21] showing that the background fields judiciously

extracted from the λ-model action functional form a one-parameter family of solutions to

the supergravity equations of motion of relevance to each case. In the present situation

the target space metric has fermionic directions as well and the explicit construction of it

should be much more involved than in the Green-Schwarz formalism. We leave the problem

of the explicit construction of the background fields for the near future.

One of the goals of this work was to gain a better understanding of the structure of the

λ-deformation itself, in the sense of clarifying its true content from the integrable systems

point of view. For further work devoted to this specific question see the papers [40, 41] to

which the present results should be added as a complement.

Relying on our findings and on what is known for the GS superstring on AdS5×S5, it is

reasonable to expect that the λ-model for the GS superstring on the supercoset AdS4×CP 3

is not only classical integrable but also one-loop conformal invariant. This can be seen

from the Lie algebraic properties of semi-symmetric spaces [59] and from the fact that

there is no difference in the construction of the Lagrangian in comparison to the case of

AdS5 × S5. The Lax pair representation is also the same [43] and as a consequence of this

the determinant for the fluctuations will be proportional to the quadratic Casimir in the

adjoint representation as well.

Finally, an interesting question to be considered is if the Poisson-Lie T-duality that is

known between the η and the λ models of the Green-Schwarz superstring has an analogue

for the hybrid superstring as well, i.e, if the action (2.9) admits a deformation of the Yang-

Baxter type in terms of an R-matrix satisfying the cmYBE as constructed in [2] for the GS

formalism. However, it is already known that the η-deformation is not Weyl invariant at

the quantum level for the GS case and perhaps an analogue situation could be present in the

hybrid superstring as well. A possible way out of this situation in both formulations might

be to consider Yang-Baxter deformations in terms of dynamical R-matrices instead of the

usual constant ones. Hopefully, they could be general enough as to introduce the necessary

freedom required to restore Weyl’s symmetry. We will come back to this question elsewhere.

19The supercoset AdS3 × S3 can be treated along the same lines.
20This is certainly an interesting situation to be further explored in the context of the AdS/CFT duality.

For an example of this in relation to the η-deformation see [58].
21As initially suggested by the vanishing of the beta functions.
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These two appendices gather the most useful algebraic results used for calculations in

the body of the paper: the deformed current algebra and the psu(1, 1|2) Lie superalgebra

proper to the AdS2 × S2 supercoset.

A Current algebra for the deformed hybrid formulation

The non-zero Poisson brackets for the currents (2.13) or (3.17) can be computed directly

from22 (5.1) by using the identities

{〈µ, Iα〉 , 〈µ, Iβ〉} =
〈
{

1
Iα,

2
Iβ}, (µ⊗ µ)

〉
12
,

〈[µ, µ], Iα〉 =−
〈
[C12,

2
Iα], µ⊗ µ

〉
12
,

〈µ, µ〉 = 〈C12, µ⊗ µ〉12 ,

(A.1)

where µ, µ are the test functions and α, β = ±. The upper indices 1, 2 refer to the copy

in a chain of tensor products. For example,
1
u = u ⊗ I,

2
u = I ⊗ u. The lower indices 1, 2

indicate taking the supertrace on the first or on the second copy of the vector space in the

tensor product.

The non-zero current algebra elements are given by

{

1

I
(0)
1 (x),

2

I
(0)
1 (y)} = −

2π

k
([C

(00)
12 ,

2

I
(0)
1 (y)]δxy − C

(00)
12 δ′xy),

{

1

I
(0)
1 (x),

2

I
(1)
± (y)} = ±α[C

(00)
12 ,

2

I
(1)
∓ (y)− z4∓

2

I
(1)
± (y)]δxy,

{

1

I
(0)
1 (x),

2

I
(2)
± (y)} = ±α[C

(00)
12 ,

2

I
(2)
∓ (y)− z4∓

2

I
(2)
± (y)]δxy,

{

1

I
(0)
1 (x),

2

I
(3)
± (y)} = ±α[C

(00)
12 ,

2

I
(3)
∓ (y)− z4∓

2

I
(3)
± (y)]δxy,

(A.2)

for [f(0), f(i)], i = 0, 1, 2, 3.

{

1

I
(1)
+ (x),

2

I
(1)
+ (y)} = α[C

(13)
12 ,

2

I
(2)
− (y)− a

2

I
(2)
+ (y)]δxy,

{

1

I
(1)
± (x),

2

I
(1)
− (y)} = −α[C

(13)
12 ,

2

I
(2)
± (y)]δxy,

{

1

I
(1)
+ (x),

2

I
(2)
+ (y)} = α[C

(13)
12 ,

2

I
(3)
− (y)− a

2

I
(3)
+ (y)]δxy,

{

1

I
(1)
+ (x),

2

I
(2)
− (y)} = −α[C

(13)
12 ,

2

I
(3)
+ (y)]δxy,

(A.3)

22The R with the minus sign is the one that reproduce the Poisson brackets computed directly from (3.17).
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{

1

I
(1)
− (x),

2

I
(2)
± (y)} = −α[C

(13)
12 ,

2

I
(3)
± (y)]δxy,

{

1

I
(1)
± (x),

2

I
(3)
± (y)} = ∓α([C

(13)
12 ,

2

I
(0)
1 (y)± αz4±C

(0)
0 (y)]δxy − C

(13)
12 δ′xy),

{

1

I
(1)
± (x),

2

I
(3)
∓ (y)} = −α2[C

(13)
12 ,

2

C
(0)
0 (y)]δxy,

(A.4)

for [f(1), f(i)], i = 1, 2, 3.

{

1

I
(2)
± (x),

2

I
(2)
± (y)} = ∓α([C

(22)
12 ,

2

I
(0)
1 (y)± αz4±C

(0)
0 (y)]δxy − C

(22)
12 δ′xy),

{

1

I
(2)
+ (x),

2

I
(2)
− (y)} = −α2[C

(22)
12 ,

2

C
(0)
0 (y)]δxy,

{

1

I
(2)
+ (x),

2

I
(3)
± (y)} = −α[C

(22)
12 ,

2

I
(1)
± (y)]δxy,

{

1

I
(2)
− (x),

2

I
(3)
+ (y)} = −α[C

(22)
12 ,

2

I
(1)
− (y)]δxy,

{

1

I
(2)
− (x),

2

I
(3)
− (y)} = α[C

(22)
12 ,

2

I
(1)
+ (y)− a

2

I
(1)
− (y)]δxy,

(A.5)

for [f(2), f(i)], i = 2, 3 and

{

1

I
(3)
+ (x),

2

I
(3)
± (y)} = −α[C

(31)
12 ,

2

I
(2)
± (y)]δxy,

{

1

I
(3)
− (x),

2

I
(3)
− (y)} = α[C

(31)
12 ,

2

I
(2)
+ (y)− a

2

I
(2)
− (y)]δxy,

(A.6)

for [f(3), f(3)]. We have defined a ≡ z4+ + z4−.

Notice that a = −2(2ǫ2 − 1) for comparison with previous works that make use of

ǫ2 = − (1−λ2)2

4λ2 as the deformation parameter. In the sigma model limit when λ → 1, the

Poisson brackets above coincide with the current algebra of the matter sector of the pure

spinor superstring computed in [57].

Finally, the brackets involving the gauge constraint are the standard ones

{

1

C
(0)
0 (x),

2

C
(0)
0 (y)} = −[C

(00)
12 ,

2

C
(0)
0 (y)]δxy,

{

1

C
(0)
0 (x),

2

I
(0)
1 (y)} = −([C

(00)
12 ,

2

I
(0)
1 (y)]δxy − C

(00)
12 δ′xy),

{

1

C
(0)
0 (x),

2

I
(i)
± (y)} = −[C

(00)
12 ,

2

I
(i)
± (y)]δxy, i = 1, 2, 3.

(A.7)

B A basis for the psu(1, 1|2) Lie superalgebra

For completeness we write the basis presented in [56] and include the fermionic elements

used here to construct explicitly the W -element related to the superconformal algebra in

section 6.
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The (anti)-commutation relations are (the m’s are even while the q’s are odd)

[mα
β ,m

γ
δ] = δγβm

α
δ − δαδm

γ
β , [mi

j ,m
k
n] = δkjm

i
n − δinm

k
j ,

[mα
β , q

k
γ ] = −δαγq

k
β +

1

2
δαβq

k
γ , [mα

β , q
γ
k] = δγβq

α
k −

1

2
δαβq

γ
k,

[mi
j , q

k
α] = δkjq

i
α −

1

2
δijq

k
α, [mi

j , q
α
k] = −δikq

α
j +

1

2
δijq

α
k,

[qiγ , q
β
j ]+ = l(δijm

β
α + δαβm

i
j), l2 = −1,

(B.1)

where α, β = 1, 2 and i, j = 1, 2. The bosonic subalgebras su(1, 1) and su(2) are generated

by mα
β and mi

j , respectively. There are 8 supercharges qkγ , q
γ
k.

Under the Z4 decomposition f =
⊕3

i=0 f
(i), the generators split as follows

f(0) = span{m1
1, m1

1},

f(1) = span{q11, q22, q12, q21},

f(2) = span{m1
2, m2

1, m1
2, m2

1},

f(3) = span{q11, q22, q12, q21}.

(B.2)

Consider now the following re-labeling of generators for the fermionic sectors f(1) and

f(3), respectively,

T
(1)
(++) = q12, T

(1)
(−−) = q21, T

(1)
(+−) = q22, T

(1)
(−+) = q11,

T
(3)
(++) = q12, T

(3)
(−−) = q21, T

(3)
(+−) = q11, T

(3)
(−+) = q22.

(B.3)

They satisfy the commutation relations with the gauge algebra f(0) = u(1)× u(1)

[(h1, h2), T
(a)
(±±)] =

1

2
(±1,±1)T

(a)
(±±), [(h1, h2), T

(a)
(±∓)] =

1

2
(±1,∓1)T

(a)
(±±), (B.4)

where a = 1, 3. We have introduced the “vector” (h1 = m1
1, h2 = m1

1) in order to exhibit

the gauge labels in a compact way.
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[4] C. Klimč́ık, Yang-Baxter σ-models and dS/AdS T-duality, JHEP 12 (2002) 051

[hep-th/0210095] [INSPIRE].

– 27 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP11(2013)192
https://arxiv.org/abs/1308.3581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3581
http://dx.doi.org/10.1103/PhysRevLett.112.051601
https://arxiv.org/abs/1309.5850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5850
http://dx.doi.org/10.1007/JHEP10(2014)132
https://arxiv.org/abs/1406.6286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6286
http://dx.doi.org/10.1088/1126-6708/2002/12/051
https://arxiv.org/abs/hep-th/0210095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210095


J
H
E
P
1
0
(
2
0
1
6
)
1
5
1

[5] B. Hoare, T.J. Hollowood and J.L. Miramontes, A Relativistic Relative of the Magnon

S-matrix, JHEP 11 (2011) 048 [arXiv:1107.0628] [INSPIRE].

[6] B. Hoare, T.J. Hollowood and J.L. Miramontes, q-Deformation of the AdS5 × S5 Superstring

S-matrix and its Relativistic Limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].

[7] B. Hoare, T.J. Hollowood and J.L. Miramontes, Bound States of the q-Deformed AdS5 × S5

Superstring S-matrix, JHEP 10 (2012) 076 [arXiv:1206.0010] [INSPIRE].

[8] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, Integrable Deformations of Strings on

Symmetric Spaces, JHEP 11 (2014) 009 [arXiv:1407.2840] [INSPIRE].

[9] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the

AdS5 × S5 Superstring, J. Phys. A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].

[10] K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals,

Nucl. Phys. B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].

[11] K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations

and their relation, Nucl. Phys. B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].

[12] B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to

AdSn × Sn supercosets, Nucl. Phys. B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].

[13] B. Vicedo, Deformed integrable σ-models, classical R-matrices and classical exchange algebra

on Drinfel’d doubles, J. Phys. A 48 (2015) 355203 [arXiv:1504.06303] [INSPIRE].
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