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1 Introduction

Holographic methods or gauge/gravity duality have provided novel and effective ways to

analyse strongly correlated systems. In particular, there have been much effort and some

successes in understanding universal properties of strongly coupled systems. Important

examples include the holographic bound of the ratio of shear viscosity to entropy density

(η/s) in strongly correlated plasma, linear T resistivity and Hall angle of strange metal

phase [1–4].

In this paper, we study another universal property observed in high-temperature super-

conductors and some conventional superconductors by holographic methods. It is Home’s

law [5, 6], which connects three quantities in normal phase and condensed phase as follows:

ρs(T = 0) = CσDC(Tc)Tc , (1.1)

where ρs is the superfluid density at zero temperature, Tc is the phase transition tempera-

ture, and σDC is the DC conductivity in the normal phase close to Tc. The point is that C

is a material independent universal number. C ≈ 4.4 for ab-plane high Tc superconductors

and clean BCS superconductors or C ≈ 8.1 for c-axis high Tc superconductors and BCS

superconductors in the dirty limit. Here, ρs, Tc and σDC are defined to be dimensionless

and the numerical values of C are computed in [7] based on the experimental data in [5, 6].
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It was argued that Homes’ law might be related to ‘Planckian dissipation’, which is

the quantum limit of dissipation with the shortest possible dissipation time

τP ∼
~

kBT
, (1.2)

in the normal state of high temperature superconductors [8]. Because the η/s bound of

strongly correlated plasma also can be explained by Planckian dissipation [9], Homes’ law

may give a good chance to find some universal physics in both condensed matter systems

and quark-gluon plasma [10].

Even though the holographic models of superconductor have been extensively de-

veloped [3, 4, 11, 12] since the pioneering work by Hartnoll, Herzog, and Horowitz in

2008 [13, 14], Homes’ law in this context has not been studied much. It is partly because

early holographic superconductor models are translationally invariant with finite charge

density.1 As a result they cannot relax momentum and yield infinite σDC in (1.1) so C is

not well defined. To have a finite σDC several methods were proposed to incorporate mo-

mentum relaxation: spatially modulated boundary conditions for bulk fields [15], massive

gravity models [16], Q-lattice models [17], massless scalar models with shift symmetry [18],

and models with a Bianchi VII0 symmetry dual to helical lattices [19]. Based on these

models, holographic superconductors incorporating momentum relaxation have been de-

veloped [7, 20–27].

Among the aforementioned holographic superconductors with momentum relaxation,

Homes’ law has been studied only in two models [7, 27]. For both cases, there are param-

eters representing the strength of momentum relaxation, which also can be interpreted as

parameters specifying material properties. Thus, Homes’ law in holographic models means

that C is constant independent of momentum relaxation parameters. In [7] a holographic

superconductor model in a helical lattice was analysed and Homes’ law was satisfied for

some restricted parameter regime. Here the amplitude and the pitch of the helix are the mo-

mentum relaxation parameters. In [27] a holographic superconductor model with massless

scalar fields linear in spatial coordinate2 are studied and Homes’ law was not satisfied. Here

the proportionality constant to spatial coordinate is the strength of momentum relaxation.

Therefore, it seems that Homes’ law is not realized for all holographic models. Because

physics behind Homes’ law in [7] has not been clearly understood yet, it is important to

analyse other holographic models i) to see how much holographic Homes’ law is robust and

ii) to find the common physical mechanism for Homes’ law in different models. For this

purpose, in this paper, we study Homes’ law in a holographic superconductor model with

Q-lattice3 [22, 23].

We choose this model for two reasons. First, our model can be easily compared with

two previous works on Homes’ law: i) the model has a similar structure to the helical lattice

1See [10] for an early attempt for Homes’ law in holographic superconductors without momen-

tum relaxation.
2The property of the normal phase and superconducting phase of this model was studied in [24, 28–31]

and in [23, 24] respectively.
3The property of the normal phase of this model was studied in [17]. See [32, 33] for a Mott system

based on this model.
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model [7] in that it has two parameters (amplitude and wavelength of lattice) ii) the model

is also similar to the massless scalar model [27] in certain limit. Second, it was argued in [7]

that Homes’ law might have something to do with the metal/insulator transition in normal

state and it was reported that our model also has the metal-insulator transition [34].

We find that Homes’ law is realized also in our Q-lattice model for certain parameter

regime, similarly to the helical lattice model in [7]. However, in computing the superfluid

density, there is an issue that the superfluid density is different from the charge density at

zero temperature (see the end of section 4 for more details.). The same issue was also raised

in other holographic superconductor models [7, 27]. To check if the superfluid density is

identified correctly, we compute superfluid density in two methods: one is related to the

infinite DC conductivity and the other is related to the magnetic penetration depth. Both

yield the same results with finite momentum relaxation, but the only latter captures the

superfluid density in the case without momentum relaxation.

This paper is organised as follows. In section 2, we introduce a holographic super-

conductor model with Q-lattice. The metal-insulator transition in the normal state is also

reviewed. In section 3, the superconducting transition temperature and electric DC con-

ductivity are computed. In section 4 the superfluid density is computed in two methods.

In section 5 we discuss the Home’s law and we conclude in section 6.

2 Holographic superconductor on a Q-lattice

In this section we briefly review a holographic superconductor model on a Q-lattice, which

has been studied in detail in [22, 23]. The action is given by

S =

∫
d4x
√
−g
[
R+ 6− 1

4
F 2 − |(∂ − iqA)Φ|2 −m2

ΦΦΦ∗ − |∂Ψ|2 −m2
Ψ|Ψ|2

]
, (2.1)

where we have chosen units such that 16πG = 1 and set the AdS radius to unity. The first

two lines are the first holographic superconductor model [13, 14] with the U(1) gauge field

A, its field strength F = dA, and a complex scalar Φ. The last line is added to introduce

momentum relaxation by assuming a specific form of Ψ as described below. To be concrete,

we set the mass of two scalar fields as m2
Ψ = m2

Φ = −2.

For classical solutions we consider the following ansatz

ds2 =
1

z2

[
−(1− z)U(z)dt2 +

dz2

(1− z)U(z)
+ V1(z)dx2 + V2(z)dy2

]
,

A = µ(1− z)a(z)dt , Φ = zφ(z) ,Ψ = eikxzψ(z) ,

(2.2)

where U, V1, V2, a, φ and ψ are functions of only the holographic coordinate z. The holo-

graphic boundary is at z = 0 and the black hole horizon is at z = 1. The field theory

temperature (T ) is identified with the Hawking temperature U(1)/4π with the boundary

condition U(0) = 1. The chemical potential (µ) in field theory corresponds to At(0) with

a(0) = 1. The complex Φ with m2
Φ = −2 behaves as Φ = ϕ1z + ϕ2z

2 + · · · near boundary.

We choose ϕ1 as a source and ϕ2 ≡ (〈O〉) as a condensate of the scalar operator. For spon-

taneous symmetry breaking we impose the boundary condition ϕ1 = 0. Ψ is assumed to be

– 3 –
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the form in (2.2) which breaks translation symmetry so induces momentum relaxation. It

is called Q-lattice [17]. With a choice m2
Ψ = −2 the boundary value ψ(0) = λ corresponds

to the lattice amplitude and k is the lattice wavenumber.

For Ψ = Φ = 0 the system becomes the AdS-Reissner-Nordström(AdS-RN) black hole,

which allows an analytic solutions: U = 1 + z+ z2− µ2z3/4, V1 = V2 = a = 1, ψ = φ = 0.

However, for finite Φ and/or Ψ we have to resort to numerical method. Our numerical

solutions may be specified by four dimensionless parameters, namely (T/µ, λ/µ, k/µ, q).

To be concrete, we choose q = 6 and identify the holographic background dual to the field

theory state at various T/µ ∈ (0, 0.4) for a range of λ/µ ∈ (0, 90) and k/µ ∈ (0, 20).

2.1 Metal-insulator transition without Φ

We are mainly interested in properties of a holographic superconductor with Φ 6= 0 in this

paper. However, in this subsection, let us first consider a model with Ψ = 0 in (2.1) to

investigate the conductivity of our model without condensate. The result here will be used

later to understand properties of a holographic superconductor.

For our model with Φ = 0, it was shown that the DC conductivity, σDC , can be

computed by horizon data [35]

σDC =

(√
V2

V1
+
µ2a2
√
V1V2

2k2ψ2

)∣∣∣∣∣
z=1

. (2.3)

Plugging our numerical solutions of (2.2) into (2.3) we have computed the resistivity ρ =

1/σDC for various values of (T/µ, λ/µ, k/µ). For example, we show the resistivity as a

function of temperature for λ/µ = 50 in figure 1. If k/µ = 8 (a) the resistivity increases

and if k/µ = 12 (b) the resistivity decreases, as temperature lowers. Therefore, the former

(a) is an insulator and the latter (b) is a metal.4 The metal insulator transition occurs at

k/µ ≈ 10.1. By considering several values of λ/µ and k/µ we obtained a phase diagram

for metal-insulator transition (MIT), which is shown in figure 2.5 If k = 0 or λ = 0 (red

lines) translation symmetry is recovered and the system becomes perfect metal without

momentum relaxation.

MIT can be understood also by (2.3). For small k (insulating phase), as temperature

lowers it turns out V2(1) goes to zero, which yields σDC → 0. Because the entropy of the

system is 4π
√
V1(1)V2(1), the entropy vanishes in insulating phase. For large k (metal

phase), ψ(1) goes to zero similarly to figure 5, which yields a large σDC. In metal phase,

the entropy is finite.

3 Critical temperature and DC conductivity

To study Homes’ law we need three quantities, critical temperature Tc, DC conductivity

at Tc (σDC(Tc)) and superfluid density. In this section we compute the first two and in the

next section we investigate superfluid density in more detail.

4For Φ 6= 0, because of a superconducting phase transition at critical temperature Tc, ρ becomes zero

below Tc as shown by blue lines in figure 1.
5This phase diagram was first studied in [34] and here we extended the analysis for a much bigger range

of λ/µ and k/µ to explore Homes’ law in a big enough parameter space.
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(a) Insulator.
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(b) Metal.

Figure 1. Resistivity in insulator and metal phase. Red dotted curves are the case with Φ = 0. If

Φ 6= 0, there is a superconducting phase transition at critical temperature Tc and ρ becomes zero

below Tc. It was shown as blue lines.
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Figure 2. Metal-insulator transition with Φ = 0. Red lines at k = 0 and λ = 0 represent

perfect metals.

Using pseudo spectral method [36], we numerically constructed classical solutions (2.2)

for various three dimensionless parameters (T/µ, λ/µ, k/µ) and q = 6. For every set of

parameters (λ/µ, k/µ), there is a solution with Φ = 0 (normal state). In addition we find

another solution with Φ 6= 0 (superconducting state) below the critical temperature Tc/µ.

In this case, the superconducting state has lower free energy than normal state so a phase

transition occurs at Tc/µ.

In figure 3 we illustrate how the critical temperature depends on λ/µ and k/µ. First,

for a fixed k/µ, the critical temperature decreases monotonically with the increase of λ/µ.

Second, for a fixed λ/µ, the critical temperature first decreases for small k/µ, and then

increases for large k/µ. As k/µ → ∞, it approaches to the critical temperature of the

AdS-RN (λ = 0). A similar non-monotonic behaviour was also observed in the massless

scalar model [24] and the helical lattice model [7]. However, this behaviour was not seen

in the previous analysis of Q-lattice models [22, 23], where the scalar field Φ has a smaller

charge q = 2 than our case (q = 6).
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Figure 3. Critical temperature (Tc/µ) vs lattice wavenumber (k/µ) at fixed lattice amplitude

(λ/µ = 1, 5, 10, 30, 50, 70, 90). The solid part and dotted part correspond to insulator and metal

respectively in figure 2.
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Figure 4. DC conductivity at Tc (σDC) vs lattice wavenumber (k/µ) at fixed lattice amplitude

(λ/µ = 1, 5, 10, 30, 50, 70, 90). The solid part and dotted part correspond to insulator and metal

respectively in figure 2.

Next, we compute the conductivity at Tc (σDC(Tc)) for a range of λ/µ and k/µ. We

use the formula (2.3) and our results are shown in figure 4. When k/µ = 0, we have infinite

σDC because the system is translationally invariant. For a fixed λ/µ, σDC(Tc) decreases

when k/µ is small and increases when k/µ is large. As k/µ→∞, it again goes to infinity.

Notice that both Tc and σDC(Tc) approach their values of the AdS-RN as k/µ → ∞.

Indeed, as shown in the following section, the superfluid density also approaches the value

of the AdS-RN as k/µ→∞. This universal feature can be understood in two ways. First,

For k/µ � 1, Ψ = zψeikx oscillates so fast that the lattice effect is averaged out and

translational symmetry is effectively restored. Second, the bulk profile of |Ψ(z)| = zψ

becomes suppressed for k/µ � 1 as shown in figure 5, where, for example, |Ψ(z)| at

T/Tc = 0.1 with λ/µ = 50 is plotted for different k/µ. For large k/µ, |Ψ(z)| are almost

zero near horizon (z = 1) so infrared physics will not be affected by Ψ.

Figure 5 also shows that there is a qualitative change of |Ψ(z)| at the critical value

of kc/µ ≈ 10.1. That is |Ψ(1)| = 0 for k/µ > kc/µ and |Ψ(z)| 6= 0 for k/µ < kc/µ.

Interestingly, this critical kc/µ when Φ 6= 0 coincides with the MIT point when Φ = 0

in figure 2.
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Figure 5. The bulk profile of |Φ| = zψ(z). From top to down the curves represent k/µ =

2, 4, 6, 10.1, 12, 15, 20. T/Tc = 0.1 and λ/µ = 50.

In both figures 3 and 4, the curves have the solid part and the dotted part. The former

has the k/µ values of insulator and the latter has the k/µ values of metal, where k/µ is read

off from figure 2. It shows that k/µ dependence of Tc and σDC(Tc) has some correlation

with the MIT.

4 Superfluid density

In this section we compute the superfluid density ρs in two ways based on the London

equation [14]:

Ji(ω, ~p) = −ρsAi(ω, ~p) , (4.1)

which is valid when ω and ~p are small compared to the scale at which the system loses

its superconductivity. We will consider two limits: 1) ~p = 0 and ω → 0, 2) ω = 0 and

~p → 0. The two cases can explain the infinite DC conductivity and the Meissner effect of

superconductors respectively.

First, in the limit ~p = 0 and ω → 0, the time derivative of (4.1) gives

Ji(ω, 0) =
iρs
ω
Ei(ω, 0) ≡ σ(ω)Ei(ω, 0) , (4.2)

where σ(ω) denotes complex optical conductivity. Thus the superfluid density is identified

with the coefficient of 1/ω pole in the imaginary part of the complex electric conductivity

Im[σ(ω)] =
ρs
ω

+ · · · , (4.3)

which implies the infinite DC conductivity (the delta function in the real part of the con-

ductivity)

Re[σ(ω)] =
π

2
ρsδ(ω) , (4.4)

by the Kramers-Kronig relation

Im[σ(ω)] = −2ω

π
P
∫ ∞

0
dω̃

Re[σ(ω̃)]

ω̃2 − ω2
. (4.5)

– 7 –
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The appearance of the delta function in Re[σ(ω)] at ω = 0 in the superconducting

phase is understood as the spectral weight transferred from finite ω by the Ferrell-Glover-

Tinkham (FGT) sum rule [7, 24]∫ ∞
0+

dωRe[σn(ω)− σs(ω)] =
π

2
ρs , (4.6)

where σn and σs denote the electric optical conductivity in the normal phase and super-

conducting phase respectively. Physically, it means that the charged degrees of freedom of

the system are conserved.

Second, in the limit ω = 0 and ~p → 0, the curl of (4.1) gives ∇ × ~J = −ρs ~B. With

Maxwell’s equation ∇× ~B = 4π ~J , we have

−∇2 ~B = ∇× (∇× ~B)

= 4π∇× ~J = −4πρs ~B ≡ −
1

λ2
~B ,

(4.7)

implying the Meissner effect. Here λ2 is the magnetic penetration depth squared which is

inversely proportional to the superfluid density.

4.1 Holographic methods

Based on these two limits, the superfluid density can be obtained experimentally by mea-

suring optical conductivity or magnetic penetration depth. Corresponding to both cases

there are holographic computational methods. According to the AdS/CFT correspondence

Ai and Ji in (4.1) are identified with the leading term a
(0)
i and the sub-leading term a

(1)
i

in the expansion of the bulk gauge field ai(z) near boundary z = 0:

ai(z, ω, ~p) = a
(0)
i (ω, ~p) + za

(1)
i (ω, ~p) + · · · . (4.8)

Thus

ρs = −
a

(1)
i (ω, ~p)

a
(0)
i (ω, ~p)

∣∣∣∣∣
{ω,~p}→0

. (4.9)

We can compute this by choosing a different limit 1) ~p = 0 and ω → 0, 2) ω = 0 and ~p→ 0

corresponding to the optical conductivity and the magnetic penetration depth respectively.6

However, there is a subtle issue in the order of limit. The two limits ω → 0 and ~p→ 0 may

not commute. In the probe limit, it was shown that the two limits commute [4], but in the

case of full back reaction as in our set-up, these two limits may not commute. Because of

this potential subtlety we will introduce new notations for superfluid density: Ks for the

case 1) and K̃s for the case 2).

First, to calculate the superfluid density in the limit ~p = 0 and ω → 0, we introduce a

small fluctuation of the gauge field of the form [22, 23]

δAx = e−iωtax(z) , (4.10)

6Since the gauge field in the holographic model is external, currents do not source electromagnetic fields

and Maxwell’s equation can not be applied in (4.7), but we still have a London equation.

– 8 –
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which is coupled to the fluctuations of the metric and the scalar field Ψ:

δgtx = e−iωthtx(z), δΨ = ie−iωteikxzχ(z) . (4.11)

The equations of motion for ax(z), htx(z) and χ(z) are shown in appendix A. Near boundary

the asymptotic behaviour of the fluctuations are as follows:

ax(z) = a(0)
x + za(1)

x + · · · , (4.12)

χ(z) = χ(0) + zχ(1) + · · · , (4.13)

htx(z) =
h

(0)
tx

z2
+ · · · . (4.14)

We want to read off the electric conductivity only with electric field turned on, i.e. χ(0) =

h
(0)
tx = 0 However, as explained in detail in [17] if we impose ingoing boundary conditions

near horizon it turns out that the number of independent parameters becomes only two, one

of which should be a
(0)
x . Thus we cannot set both χ(0) and h

(0)
tx to be zero. However, if we

impose ωχ(0)−ikλh(0)
tx = 0. we may turn off the other sources by using diffeomorphism [17].

With this condition we get

ρs = −a
(1)
x (ω, 0)

a
(0)
x (ω, 0)

∣∣∣∣∣
ω→0

≡ Ks , (4.15)

which is equivalent to (4.2) because iωa
(0)
x (ω, 0) = Ex and a

(1)
x (ω, 0) = Jx by the AdS/CFT

correspondence.

Next we study the limit ω = 0 and ~p → 0. In this case we introduce a fluctuation in

Ax that have momentum dependence of the form [37]

δAx = eipyax(z) . (4.16)

Unlike [37], we consider the back-reaction so δAx is coupled to the metric fluctuation:

δgtx = eipyhtx(z). (4.17)

The equations of motions for these two fluctuations are written in appendix A. Near boun-

dary

ax(z) = a(0)
x + za(1)

x + · · · , (4.18)

htx(z) =
h

(0)
tx

z2
+ · · · , (4.19)

and setting h
(0)
tx = 0 we have

ρs = −a
(1)
x (0, p)

a
(0)
x (0, p)

∣∣∣∣∣
p→0

≡ K̃s . (4.20)
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Figure 6. The charge density n, superfluid density Ks, and K̃s vs T/Tc.

4.2 Numerical results

Using (4.15) and (4.20) we have computed Ks and K̃s as functions of T/Tc for different

sets of parameters λ/µ and k/µ. For example, in figure 6, we show our results for four

cases: (λ/µ, k/µ) = (0, 0), (5, 0), (5, 2), (5, 20). The orange curves are for Ks/µ and the

green curves are for K̃s/µ. The blue curves represent the charge density n/µ2 ,7 which is

added for comparison.

First, we display the cases with no momentum relaxation in figure 6 (a) and (b): (a)

is the case of AdS-RN geometry because λ/µ = 0 means Ψ(z) = 0. (b) is not AdS-RN,

since there is a finite scalar field Ψ(z) with a boundary value ψ(0)/µ = 5. However,

the boundary theory is still translationally invariant because k = 0. Here we find that

Ks 6= K̃s in general. We expect the superfluid density vanishes T > Tc so the superfluid

density should be identified with K̃s. The non-zero Ks for T > Tc may be interpreted as a

spurious effect by the infinite DC conductivity due to translational invariance. This is an

interesting and useful observation, since K̃s gives a direct way to compute the superfluid

density even in the case with translation invariance.

7The charge density is defined by a sub-leading term of At in (2.2). i.e. At = µ−nz+ · · · near boundary.
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Figure 7. Superfluid density ρs/µ(= Ks/µ = K̃s/µ) at T/Tc = 0.1 vs lattice wavenumber (k/µ) at

fixed lattice amplitude (λ/µ = 1, 5, 10, 30, 50, 70, 90). The solid part and the dotted part correspond

to insulator and metal respectively in figure 2.

Next, let us turn to the case with momentum relaxation in figure 6 (c) and (d). Here

Ks = K̃s and they are zero for T > Tc, which means that the aforementioned spurious

contribution to Ks by translational invariance vanishes. Notice that the superfluid density

K̃s in figure 6 (d) is similar to K̃s in figure 6 (a). It is because in the limit k → ∞ the

translation invariance is effectively restored as explained at the end of section 3. In this

limit the value of λ becomes irrelevant and the geometry approaches to the AdS-RN not

the one for figure 6 (b).

For our goal (Homes’ law), we need to know ρs at zero T . ρs = Ks = K̃s near

zero temperature for all cases, so we will use the notation ρs for superfluid density. For

example, ρs at zero T can be read from figure 6 (b),(c),(d), for λ/µ = 5 and k/µ = 0, 2, 20

respectively. Because of numerical instability of our numerical analysis we have obtained

data up to T/Tc = 0.1 and extrapolated them to T = 0. We have done this analysis for

a range of λ/µ and k/µ and our results are shown in figure 7. For a fixed λ/µ, ρs/µ at

zero T decreases when k/µ is small and increases when k/µ is large. As k/µ → ∞, it

approaches to the AdS-RN value regardless of λ. In the curves, the solid part has the k/µ

values of insulator and the dotted part has the k/µ values of metal in figure 2. Similarly

to Tc (figure 3) and σDC(Tc) (figure 4), the k/µ dependence of the superfluid density has

some correlation with the MIT.

At zero temperature, without momentum relaxation Ks/µ = n/µ2 (figure 6(a)(b))

while with momentum relaxation Ks/µ 6= n/µ2 (figure 6(c)). This difference was also ob-

served in other holographic superconductor models with momentum relaxation [10, 27], so

it seems a general feature of holographic superconductors. Because the FGT sum rule (4.6)

still holds even with Ks/µ 6= n/µ2 we may conclude that some of the low frequency spectral

weight is transferred to finite frequencies rather than the delta function at zero frequency.

As another possibility to explain Ks/µ 6= n/µ2 at zero T [10], it was argued that the iden-

tification of superfluid density in (4.3) or (4.15) may not be correct and it was proposed to

cross check it via the magnetic penetration depth, which is (4.20). We have cross checked

it in our model and find two methods agree, Ks = K̃s.
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Figure 8. Checking Homes’ law: C = ρs/(σDCTc) as functions of λ/µ ∈ (0, 90) and k/µ ∈ (0, 20).

5 Homes’ law

Homes’ law is given by

ρs(T = 0) = CσDC(Tc)Tc , (5.1)

where C is a universal material independent constant. In our holographic model, k and λ

correspond to the properties of material so we want to check if C is constant irrespective of

k and λ. Having computed Tc (figure 3), σDC(Tc) (figure 4), and ρs (figure 7) as functions

of k and λ we are ready to check Homes’ law in our holographic superconductor model.

First, to have an overall picture, we present a contour plot of C = ρs/(σDCTc) in

λ/µ-k/µ plane (0 ≤ k/µ ≤ 20 and 0 ≤ λ/µ ≤ 90) in figure 8(a). The black diagonal line is

the MIT line in figure 2. In general, in the region close to the MIT, C is larger and below

the MIT, C becomes small quickly. C vanishes as k/µ� 1 and k/µ� 1 because σDC � 1

due to the restoration of translational invariance.
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For λ/µ & 40, in a triangular region surrounded by a contour, C does not change much

compared to the other region. In that region, there is a possibility that Homes’ law hold.

To see it more clearly we make figure 8(b), which is the cross-sections of figure 8(a) for

fixed λ/µ = 1, 5, 10, 30, 50, 70, 90. Here we can see plateaus in some range of k for every

λ/µ & 50, which means Homes’ law holds in that regime. The regime are in the insulating

phase near the MIT line, which was also observed in a holographic superconductor with

helical lattice [7]. In our case, Homes’ law seems to hold for a wider range of λ/µ than

the helical lattice case, even thought C is a little bit different for a different λ/µ.8 In

figure 8(c), we zoom in the grey window in figure 8(b) for 49 ≤ λ/µ ≤ 51. Figure 8 (d) is

the Log-Log plot of ρs/µ vs (σDCTc/µ) for 49 ≤ λ/µ ≤ 51 and 7 ≤ k/µ ≤ 10. Figure 8 (c)

and (d) are similar to figure 15 in [7].

The appearance of the plateaus for large λ/µ in figure 8(b) may be qualitatively un-

derstood from figure 3, 4 and 7, where all three quantities ρs, σDC , and Tc show the same

qualitative behaviour. At fixed λ/µ, as k/µ increases, they decrease at small k/µ and reach

their minimum values and again increase at large k/µ. As λ/µ grows, their minimum values

are saturating and the plateaus start developing around the minimum. Bigger the λ/µ,

longer the ranges of k/µ for plateaus.

However, if we look at closely, the plateau of every ρs, σDC , ann Tc is not strictly flat.

They are slightly increasing or decreasing, but the combination of them, C, shows a better

plateau behaviour. To check it explicitly we have made a plot for B ≡ ρs/Tc without σDC

and found that B is not as flat as C shown in figure 8(c). Physically, this means that the

Uemura’s law9 does not hold in our model.

In addition, there are also plateaus at fixed k/µ for some range of λ. It can be seen

from the almost vertical part of contour lines for k/µ ≤ 5 in figure 8(a).

6 Conclusion and discussions

We investigated Homes’ law by computing the critical temperature (Tc), the DC conductiv-

ity at the critical temperature (σDC(Tc)), and the superfluid density (ρs) in a holographic

superconductor with Q-lattice. In this set-up Homes’ law means that C = ρs/(TcσDC(Tc))

is independent of the amplitude (λ) and/or wavenumber (k) of Q-lattice. We find that

Homes’ law holds for a range of k/µ at every fixed λ/µ & 50. As λ/µ grows, C tends to

approach to some universal value. Homes’ law holds in insulating phase near the metal

insulator transition (MIT), where momentum relaxation is strongest. Roughly speaking,

i) for a given λ/µ, there is k/µ near the MIT (say, kc/µ) which gives the maximum value

of C, ii) if λ/µ increases C becomes constant for a range of k/µ around the kc/µ.

To compute the superfluid density, we employed two methods. One is related to the

infinite DC conductivity and the other is related to the magnetic penetration depth. With

finite momentum relaxation both give the same results, which serves as a good cross-check

8For large λ, it seems that C is approaching to the universal value. However, we could not confirm it

due to numerical instability for λ/µ > 90.
9Uemura’s law is ρs(T = 0) = B Tc, where B is another universal constant independent of materials. It

holds only for underdoped cuprates [5, 6].
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of our computation. However, without momentum relaxation only the latter correctly

captures the superfluid density. The former gets spurious contribution from the infinite

DC conductivity due to translational invariance.

At zero temperature, with momentum relaxation Ks/µ 6= n/µ2 while without momen-

tum relaxation Ks/µ = n/µ2. It was observed in other holographic models. Because the

FGT sum rule (4.6) still holds it seems that some of the low frequency spectral weight is

transferred to finite frequencies rather than the delta function at zero frequency.

In this paper, we considered the case with q = 6 and m2
Ψ = −2 in detail. We have also

checked Homes’ law for a different q (q = 2) and obtained qualitatively the same result.

If m2
Ψ increases, it is possible that the MIT does not occur and consequently Homes’ law

does not hold. For example, if m2
Ψ = 0 our model becomes similar to the massless scalar

model and it was shown that there is no MIT and no Homes’ law in that model if Ψ does

not have z dependence [27].

Homes’ law in our model comes from the MIT and strong momentum relaxation. The

MIT seems to be less relevant phenomenologically but strong momentum relaxation is en-

couraging since it is a property of incoherent metal regime where Planckian dissipation (1.2)

may occur [38]. However, it turns out that our model does not have a linear in T resistivity

in normal (strange metal) phase as shown in figure 1. Because the linear in T resistivity is

a universal property of the normal phase of high Tc superconductors and may be related

to the physics of Homes’ law by the Planckian dissipation [8], it will be important to study

Homes’ law in a holographic model having linear in T resistivity such as [39, 40].

A Equations of motion for superfluid density

We present the equations of motion for superfluid density used in section 4. The first one

is for the case ~p = 0 and ω → 0 and the second is for ω = 0 and ~p→ 0.

1. ~p = 0 and ω → 0

0 = a
′′
x+

[
((1−z)U)

′

(1−z)U
+

1

2

(
V

′
2

V2
−V

′
1

V1

)]
a
′
x+

(
ω2

(1−z)2U2
− z

2((1−z)a)
′

(1−z)U

)
ax

− 2q2φ2

(1−z)U
ax+

2ikz2((1−z)a)
′
(ψ

′
χ−ψχ′

)

ω
,

0 = h
′
tx+((1−z)a)

′
ax+

(
2

z
−V

′
1

V1

)
htx−

2q2φ2

(1−z)U
ax−

2ik(1−z)U(ψ
′
χ−ψχ′

)

ω
, (A.1)

0 = χ
′′
+

[
((1−z)U)

′

(1−z)U
+

1

2

(
V

′
2

V2
+
V

′
1

V1

)]
χ

′
+

(
ω2

(1−z)2U2
− k2

(1−z)UV1

)
χ

+
1

z

[
((1−z)U)

′

(1−z)U
+

1

2

(
V

′
2

V2
+
V

′
1

V1

)]
χ+

2−2(1−z)U

(1−z)z2U
χ− ikωz2ψ

(1−z)2U2V1
htx,
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2. ω = 0 and ~p→ 0

0 = a
′′
x+

[
((1−z)U)

′

(1−z)U
+

1

2

(
V

′
2

V2
−V

′
1

V1

)]
a
′
x−

p2+2q2V2φ
2

(1−z)UV2
ax

+
z2((1−z)a)

′

(1−z)U
h

′
tx+

z((1−z)a)
′
(2V1−zV

′
1 )

(1−z)UV1
htx,

0 = h
′′
tx+

1

2

(
4

z
−V

′
1

V1
+
V

′
2

V2

)
h

′
tx+((1−z)a)

′
a
′
x+

2q2aφ2

U
ax

+

z2((1−z)a)
′2

2(1−z)U
+
z4
(

(1−z)U
z2

)′ (
V1
z2

)′
(1−z)UV1

− p
2z2+2V2(3+z2(ψ2+φ2))

(1−z)z2UV2

htx.

(A.2)
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