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1 Introduction and summary

Most precision studies of black holes in string theory are carried out near the BPS limit

where supersymmetry guarantees control. It is thought that various corrections become

unwieldy far from this limit. Curiously, most discussions of the black hole information
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paradox are carried out in the opposite limit of Schwarzschild black holes since their ge-

ometries are the simplest. It is thought that this is sufficient to gain universal insights. Few

details on the implied interpolation between the BPS and Schwarzchild limits are known.

In this paper we construct families of black holes that interpolate between these limits

while taking certain string corrections into account. We find that the string corrections are

surprisingly manageable. The simplifications we report are due to supersymmetry of the

theories we consider. Importantly, they persist even though the black holes we construct

generally do not preserve any of the supersymmetry.

A convenient starting point for connection with studies that are not motivated by

string theory is the 4D Einstein-Maxwell theory

LEM = − 1

16πGN

(
R+

1

4
FµνF

µν

)
. (1.1)

We primarily consider the standard Kerr-Newman family of solutions that includes BPS

black holes and Schwarzchild black holes as special cases.

A simple way to add higher-derivative terms to this theory is to consider the Gauss-

Bonnet density

LGB = αE4 = α
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
. (1.2)

This term is topological so the equations of motion are unchanged and therefore solutions

remain the same. Black holes nevertheless have a different entropy in the modified theory

because the Wald entropy formula depends on the action [1–3].

Generally other linear combinations of the curvature invariants are much more com-

plicated. The Weyl invariant

LWeyl = γWµνρσW
µνρσ = γ

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2

)
, (1.3)

introduces the Bach tensor into the equations of motion which are then difficult to analyze.

In our work we are inspired by string theory and consider theories with N = 2 supersym-

metry such as the supersymmetric completion of (1.3) that takes the schematic form (made

precise in equation (4.17) below):

LN=2 Weyl = γ1W
2 + γ2F

4 + γ3WF 2 + . . . , (1.4)

with various contractions of the tensors. In this case the equations of motion are even

more complicated and it is not clear from the outset that it is realistic to solve them. We

find that, surprisingly, any solution to Einstein-Maxwell theory automatically solves the full

theory with N = 2 supersymmetry. This will allow us to study generic non-supersymmetric

solutions in the presence of higher-derivative corrections.

The higher-derivative corrections modify the Wald entropy of Kerr-Newman black

holes. It turns out that the combined contribution from all the terms in the supersym-

metrized Weyl invariant (1.4) is precisely the same as the modification due to the Gauss-

Bonnet density (1.2) alone. In particular, the contribution from higher-derivative terms is

topological. It is therefore independent of black hole parameters and can be extrapolated

arbitrarily far from the BPS limit with no change.
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The supersymmetrized Weyl invariant (1.4) commonly appears in low energy effective

actions. For example, it arises when massive string modes are integrated out. (For a

discussion, see e.g. [4–6].) The terms we consider are string corrections in this sense. Our

result indicates that string corrections are milder than previousely suspected.

Massless modes running in virtual loops offer a related quantum mechanism that gives

higher-derivative terms at low energy. In previous work [7] we studied the logarithmic

corrections to Kerr-Newman entropy due to such effects. In general these logarithmic

corrections are very complicated but upon embedding of the Kerr-Newman black hole into

a theory with N ≥ 2 supersymmetry they greatly simplify and become independent of the

black hole parameters.

The two classes of corrections we have considered both show that black hole entropy

depends greatly on the setting. In an environment with N ≥ 2 supersymmetry there

are considerable simplifications even for black holes that do not themselves preserve any

supersymmetry. Indeed, several of the corrections to the entropy that have been analyzed

precisely in the BPS limit do not depend on black hole parameters at all and so apply

far off extremality. This result raises hopes that the entropy of non-supersymmetric black

holes can be understood precisely in a microscopic theory.

This paper is organized as follows. In section 2 we present a simplified summary of off-

shell N = 2 supergravity. (More details are given in the appendix.) In section 3 we study

minimal supergravity with higher-derivative corrections in the form of a supersymmetrized

Weyl invariant and derive the full equations of motion for the theory. In section 4 we embed

arbitrary Einstein-Maxwell solutions into our minimal supergravity theory and show that

all fields are unchanged, even for solutions that do not preserve supersymmetry. In section 5

we study properties of black holes in this embedding and find that the correction to the

black hole entropy is topological and independent of black hole parameters. Finally, in

section 6 we discuss our results and potential implications for microscopic models of Kerr-

Newman black holes.

2 Higher-derivative N = 2 supergravity

The details of 4D off-shell N = 2 supergravity with higher-derivative interactions have

been studied exhaustively [8–12]. We review some technical details in the appendix. In

this section we present a more elementary and accessible discussion of N = 2 supergravity

with higher-derivative corrections.

2.1 Field content

We focus on the bosonic fields in N = 2 supergravity. The physical N = 2 gravity

multiplet contains the metric gµν and a U(1) graviphoton field. We further couple this

theory to nV physical N = 2 vector multiplets, each comprising a U(1) gauge field and a

complex scalar. The version of the off-shell formalism we employ realizes this coupling by

introducing nV + 1 vectors W I
µ and nV + 1 complex scalars XI , where I = 0, . . . , nV . One

of the complex scalars can be removed by symmetries and does not correspond to physical

degrees of freedom. Without loss of generality, we can choose the auxiliary scalar to be X0,

– 3 –
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Off-Shell Field Content

Weyl multiplet: gµν , Aµ , T
−
µν , D

Vector multiplets: W I
µ , X

I

(I = 0, . . . , nV )

Physical Field Content

Gravity multiplet: gµν , W
0
µ

Vector multiplets: W a
µ , X

a

(a = 1, . . . , nV )

Auxiliary Fields

X0 , Aµ , T
−
µν , D

Table 1. Summary of the field content in the N = 2 supergravity theory. The nV + 1 off-shell

vector multiplets are indexed by I, while the nV physical vector multiplets are indexed by a.

and we will index the physical vector multiplets by a = 1, . . . , nV . The remaining gauge

field W 0
µ gets combined with the metric to form the N = 2 gravity multiplet on-shell.

The complete formalism based on realization of superconformal symmetry contains

many other auxiliary fields that must be carefully considered. However, for our purposes

we can consistently set most of these fields to zero at the level of the action. The only ones

we must retain are a U(1)R vector field Aµ, an anti-self-dual antisymmetric tensor T−µν and

a scalar D that all belong to an off-shell N = 2 Weyl multiplet with the metric.

We summarize this discussion with a list of fields, from both the off-shell and the

on-shell perspectives, in table 1.

2.2 Definitions and notation

We will denote the field strengths of the U(1)R gauge field Aµ and the nV + 1 vector

multiplet gauge fields W I
µ as

Aµν = ∂µAν − ∂νAµ , F Iµν = ∂µW
I
ν − ∂νW I

µ . (2.1)

The self-dual and anti-self-dual parts of these field strengths are

A±µν =
1

2

(
Aµν ± Ãµν

)
, F±Iµν =

1

2

(
F Iµν ± F̃ Iµν

)
, (2.2)

where the dual field strengths Ãµν and F̃ Iµν in our conventions are

Ãµν = − i
2
εµνρσA

ρσ , F̃ Iµν = − i
2
εµνρσF

ρσI . (2.3)

We denote antisymmetrized and symmetrized indices by

[µν] =
1

2
(µν − νµ) , (µν) =

1

2
(µν + νµ) . (2.4)

– 4 –



J
H
E
P
1
0
(
2
0
1
6
)
1
4
2

To make it manageable to present equations in the following work we define the com-

posite fields

F−Iµν = F−Iµν −
1

4
X̄IT−µν ,

Â = T−µνT
−µν ,

F̂−µν = −16
(
WµνρσT

−ρσ +DT−µν + 2iAρ[µT
−ρ
ν]

)
,

Ĉ = 32

(
WµνρσW

µνρσ + i∗WµνρσW
µνρσ + 6D2 − 2AµνA

µν + 2AµνÃ
µν

−1

2
T−µνDµD

ρT+
ρν +

1

4
RµνT

−
µρT

+νρ +
1

256
T−µνT

−µνT+
ρσT

+ρσ

)
, (2.5)

where the dual to the Weyl tensor is

∗Wµνρσ =
1

2
ε λτ
µν Wρσλτ . (2.6)

The composite fields have significance in the underlying superconformal multiplet calculus.

However, in this paper we take a low-brow attitude where they represent nothing but

notation for combinations of fundamental fields, both physical and auxiliary.

We define the supercovariant derivative Dµ which acts on a field φ with chiral

weight c by

Dµφ = (∇µ − icAµ)φ , (2.7)

where ∇µ is the ordinary covariant derivative. The only (non-composite) fields with non-

zero chiral weights are the scalars XI and the anti-self-dual tensor T−µν . The fields XI and

T−µν have chiral weight c = −1, while their Hermitian conjugates X̄I and T+
µν have the

opposite chiral weight c = +1. The supercovariant derivative acts on these fields via

DµXI = (∇µ + iAµ)XI , DµT−ρσ = (∇µ + iAµ)T−ρσ . (2.8)

The scalar operators DµDµ and ∇µ∇µ are both useful. They are distinguished by

the notation

� = DµDµ , ∇2 = ∇µ∇µ . (2.9)

To summarize, we present all of the fields and their corresponding chiral weight c

(which determines how the supercovariant derivative (2.7) acts on the field) in table 2.

We will need to find the equations of motion for all fundamental fields, both physical and

auxiliary, but not the composite fields; those are defined for notational reasons only.

2.3 Prepotential

The interactions of N = 2 supergravity coupled to vector multiplets can be specified

succinctly by a prepotential [13–15]. In the two-derivative theory, the prepotential is a

meromorphic function of the complex scalars XI . A large class of higher-derivative cor-

rections can be incorporated by considering generalized prepotentials that are functions of

Â = T−µνT
−µν as well. We will denote the prepotential by

F ≡ F (XI , Â) . (2.10)
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Fundamental Composite

Field gµν W I
µ XI Aµ T−µν D F−µν Â F̂−µν Ĉ

Chiral weight 0 0 −1 0 −1 0 0 −2 −1 0

Table 2. Summary of the fields (and their corresponding chiral weight c) in our theory. The

conjugate fields have opposite chiral weights.

The derivatives of the prepotential are denoted

∂F

∂XI
= FI ,

∂F

∂Â
= FA . (2.11)

The prepotential is holomorphic, so

FĪ = FĀ = 0 (2.12)

The prepotential is homogeneous of degree two under weighted Weyl transformations

where the scalar fields XI and Â = T−µνT
−µν have Weyl weight w = 1 and w = 2, respec-

tively. Thus, the prepotential satisfies the homogeneity relation

FIX
I + 2FAÂ = 2F . (2.13)

2.4 Action

We can now present the bosonic part of the N = 2 supergravity action as

S =

∫
d4x
√
−gL , (2.14)

with

8πL = − i
2

(FIX̄
I − F̄IXI)R+ iDµFIDµX̄

I + h.c.

+

[
i

4
FIJF−Iµν F−µνJ −

i

8
FIF+I

µν T
+µν − i

32
FT+

µνT
+µν

+
i

2
FAIF−Iµν F̂−µν +

i

2
FAĈ +

i

4
FAAF̂

−
µνF̂

−µν
]

+ h.c. ,

(2.15)

where F−Iµν , Â, F̂−µν and Ĉ are the composite fields defined in (2.5), and F = F (XI , Â) is

the prepotential discussed in section 2.3. Any solution to the equations of motion of this

action must also be subject to the constraint

D = −1

3
R , (2.16)

which arises from making sure that the auxiliary D-field equation of motion is consistent

with the other equations of motion. The details of how we arrived at the Lagrangian (2.15)

are given in the appendix.

The coefficient of the Ricci scalar in the action is determined by the Kähler potential

e−K ≡ i
(
FIX̄

I − F̄IXI
)
. (2.17)
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At face value this means the metric is in a non-canonical frame since the Ricci scalar

normalization depends on the fields XI and Â. However, the theory is invariant under a

local Weyl symmetry that acts as a gauge symmetry and constrains the scalars XI such

that only nV of them are independent. In particular, we can gauge-fix our theory and

choose one of the scalars such that the Kähler potential is constant. The low-energy action

will then reduce to an Einstein-Hilbert action coupled to matter.

3 Minimal supergravity with (Weyl)2 corrections

In this section we specialize to minimal supergravity, where gravity is coupled to a single

vector field, with higher-derivative corrections in the form of a supersymmetrized (Weyl)2

term. We will present the prepotential and action for the theory and derive the full equa-

tions of motion.

3.1 Prepotential and Action

Following the discussion in section 2.1, the field content for a theory with nV = 0 physical

N = 2 vector multiplets is as follows.

There is a Weyl multiplet containing the metric gµν and a single vector multiplet

containing a physical U(1) gauge field Wµ and a complex scalar X. The complex scalar

field will eventually be gauge-fixed, leaving no physical scalars. The off-shell formalism

reviewed in section 2 (and the appendix) further requires that our theory contain the

auxiliary U(1)R vector field Aµ, the auxiliary scalar D and the auxiliary antisymmetric

tensor T−µν . The Lagrangian will be a function of all these fields.

The prepotential in the minimal theory is a function only of the complex scalar X

and the composite field Â = T−µνT
−µν . In this paper we focus on four-derivative correc-

tions to minimal supergravity, which corresponds to a term in the prepotential that is

linear in Â. Higher powers of Â will give rise to corrections with at least six derivatives.

The homogeneity (2.13) and holomorphicity (2.12) conditions require the prepotential take

the form

F (X, Â) = − i
2
X2 − cÂ , c = c1 + ic2 ∈ C . (3.1)

We can now specialize the full bosonic Lagrangian (2.15) to the minimal supergravity case

defined by the prepotential (3.1). Dropping all total derivative terms, we find

8πL = −|X|2R+ 2DµXDµX̄ +
1

4
FµνF

µν − 1

4
Fµν

(
XT+µν + X̄T−µν

)
+

1

32

(
X2T+

µνT
+µν + X̄2T−µνT

−µν)+ 32c2

(
WµνρσW

µνρσ + 6D2

− 2AµνA
µν +

1

2
(DµT

−µν)(DρT+
ρν) +

1

4
RµνT

−
µρT

+νρ

+
1

512
T−µνT

−µνT+
ρσT

+ρσ

)
.

(3.2)

As we discussed in the general case, any solution is also subject to the constraint equa-

tion D = −1
3R.
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The coefficient of the Ricci scalar is determined by the complex scalar X. As we

noted in section 2.4, the local Weyl symmetry of the action allows a gauge where X is an

arbitrary constant. We will eventually assign it the conventional numerical value but for

now we keep X as an independent field.

For c2 = 0 our minimal N = 2 supergravity Lagrangian (3.2) reduces to the standard

two-derivative minimal supergravity, albeit presented in a somewhat unfamiliar form. The

new terms are collected in the bracket preceded by the factor 32c2. They include first of all

an explicit WµνρσW
µνρσ term, as we wanted, but there are many other terms as well. We

interpret the entire expression proportional to c2 as the N = 2 supersymmetric completion

of WµνρσW
µνρσ.

In the off-shell formalism the auxiliary field T−µν is an antisymmetric tensor, a fun-

damental field. From this point of view the supersymmetric partners of WµνρσW
µνρσ all

contain at most two derivatives. This presents a conceptual advantage because it simplifies

the initial value problem. On the other hand, in the context of explicit solutions T−µν will

coincide with a gauge field strength, with one derivative acting on a gauge field. We will

additionally take D2 = AµνA
µν = 0 consistently. Therefore the supersymmetric partners

of WµνρσW
µνρσ will all represent four-derivative terms on-shell.

The coefficient c2 was introduced as the imaginary part of the coupling constant

c = c1 + ic2 in the prepotential (3.1). All dependence on the real part c1 has dropped

out, because c1 couples only to total-derivative terms such as the Chern-Pontryagin terms
∗WµνρσW

µνρσ and AµνÃ
µν . We omitted such terms from the Lagrangian since they do not

contribute to the equations of motion.

3.2 Equations of motion

Many previous studies focused on BPS solutions that preserve the full N = 2 supersym-

metry, or at least 1
2 -BPS solutions that preserve a residual N = 1 supersymmetry. Such

solutions are greatly constrained by relatively simple BPS equations and so it is sufficient

to consider a small subset of the equations of motion. We are interested in solutions that

explicitly break supersymmetry, and so we need to derive and solve the full equations of

motion for the Lagrangian (3.2).

The only D-dependence in the Lagrangian is the D2 term, and so the D-equation of

motion forces D = 0. When combined with the constraint equation (2.16), this forces us

to consider solutions with vanishing Ricci scalar

R = 0 . (3.3)

We compute the equations of motion for the matter fields X, T−µν , Wµ, and Aµ to be,

respectively,

0 = �X̄ +
1

2
X̄R+

1

8

(
F+
µν −

1

4
XT+

µν

)
T+µν ,

0 = X̄

(
F−µν −

1

4
X̄T−µν

)
− c2

2

(
128D[µD

ρT+
ν]ρ + T−µνT

+
ρσT

+ρσ − 64Rρ[µT
+
ν]ρ

)
,

0 = Dµ

(
F+
µν + F−µν −

1

2
XT+

µν −
1

2
X̄T−µν

)
,

0 = XDµX̄ − X̄DµX + 8c2

(
T−µνDρT+

ρν − T+µνDρT−ρν − 16iDνA
µν
)
.

(3.4)

– 8 –



J
H
E
P
1
0
(
2
0
1
6
)
1
4
2

The field strength Fµν must also satisfy the Bianchi identity DµF̃µν = 0 which we express as

Dµ
(
F+
µν − F−µν

)
= 0 . (3.5)

In order to derive the Einstein equation, we first rewrite the minimal supergravity La-

grangiann (3.2) as

L = − 1

8π
|X|2R+ L(2) + L(4) , (3.6)

where L(2) is the Lagrangian for the two-derivative matter terms

L(2) =
1

8π

[
2DµXDµX̄ +

1

4
FµνF

µν − 1

4
Fµν

(
XT+µν + X̄T−µν

)
+

1

32

(
X2T+

µνT
+µν + X̄2T−µνT

−µν) ] , (3.7)

while L(4) contains all of the four-derivative terms present in the supersymmetrized Weyl

invariant

L(4) =
4c2

π

(
WµνρσW

µνρσ + 6D2 − 2AµνA
µν +

1

2
(DµT

−µν)(DρT+
ρν)

+
1

4
RµνT

−
µρT

+νρ +
1

512
T−µνT

−µνT+
ρσT

+ρσ

)
.

(3.8)

The Einstein equation can now be expressed as

1

4π
|X|2

(
Rµν −

1

2
gµνR

)
= T (2)

µν + T (4)
µν , (3.9)

where T
(2)
µν is the energy-momentum tensor for the two-derivative matter

T (2)
µν =

2√
−g

δ
(√
−gL(2)

)
δgµν

=
1

4π

[
2(DµX)(DνX̄)− gµν(DρX)(DρX̄)

+ F+
µρF

−ρ
ν − 1

4

(
XF−µρT

+ρ
ν + X̄F+

µρT
−ρ
ν

) ]
,

(3.10)

while T
(4)
µν is the energy-momentum tensor for the four-derivative parts of the action

T (4)
µν =

2√
−g

δ
(√
−gL(4)

)
δgµν

=
8c2

π

(
4RµρR

ρ
ν − gµνRρσRρσ −

4

3
RµνR+

1

3
gµνR

2 − 2�Rµν

+ 4DρDµRνρ +
1

3
gµν�R−

4

3
DµDνR− 4AµρA

ρ
ν + gµνAρσA

ρσ

− 1

4
gµν(DρT−ρτ )(DσT

+στ ) +
1

2
(DµT

−
νρ)(DσT

+σρ)

+
1

2
(DµT

+
νρ)(DσT

−σρ) +
1

2
(DρT−ρµ)(DσT+

σν)

+
1

1024
gµνT

−
ρσT

−ρσT+
τλT

+τλ − 1

8
gµνRρσT

−
ρτT

+τ
σ +

1

2
RµρT

−
νσT

+ρσ

+
1

4
RρσT−µρT

+
νσ +

1

4
DρDµ(T−νσT

+ρσ)− 1

8
�(T−µρT

+νρ)

−1

8
gµνDρDσ(T−ρτT+σ

τ )

)
.

(3.11)
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In summary, we have shown that any solution to our minimal supergravity theory must

satisfy the matter field equations of motion (3.4), the Bianchi identity (3.5), the Einstein

equation (3.9), and must have a geometry with vanishing Ricci scalar R = 0.

4 Non-supersymmetric solutions

In this section we embed arbitrary solutions to Einstein-Maxwell theory into the minimal

N = 2 supergravity theory (with a supersymmetrized (Weyl)2 correction) presented in

section 3. The matter fields of the higher-derivative gravity are specified in terms of the

matter in the Einstein-Maxwell theory. The geometry that supports the Einstein-Maxwell

solution is unchanged when considered as solution to higher-derivative gravity.

4.1 Einstein-Maxwell

The starting point is the standard Einstein-Maxwell theory

LEM = − 1

2κ2

(
R +

1

4
FµνF

µν

)
, (4.1)

where κ2 = 8πGN . We are using boldfaced symbols gµν , R , and Fµν for the metric, Ricci

scalar, and electromagnetic field strength in Einstein-Maxwell theory in order to avoid any

confusion with related quantities in the higher-derivative supergravity Lagrangian (3.2).

Any solution to Einstein-Maxwell theory satisfies the Maxwell equations and the

Bianchi identities, which we package together as the Maxwell-Bianchi equations

∇µF±µν = 0 , (4.2)

where the self-dual and anti-self-dual parts of the field strength are defined using the

conventions in section 2.2. The geometry and the matter fields are related by the Ein-

stein equation

Rµν −
1

2
gµνR = −F−µρF

+ρ
ν . (4.3)

We are particularly interested in Kerr-Newman black hole solutions but our embedding

will apply to any solution of Einstein-Maxwell theory.

4.2 Embedding

Starting from a solution to Einstein-Maxwell theory we specify the matter fields in the

higher-derivative theory as

X =

√
4π

κ
, Aµ = 0 , T±µν = 4F±µν , F±µν =

1

4
XT±µν = XF±µν . (4.4)

As mentioned previously, the geometry is unchanged.

The numerical value of X is such that the Ricci scalar term in the Lagrangian (3.2) is

normalized correctly

L = − 1

2κ2
R+ . . . . (4.5)
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By choosing Aµ = 0, the supercovariant derivative operator Dµ reduces to the ordinary

covariant derivative operator ∇µ.

It is rather straightforward to show that all the matter field equations of motion (3.4)

are satisfied by the matter (4.4). Since F±µν is divergence-free by the Maxwell-Bianchi

equations (4.2), T±µν must be divergence-free as well

DµT±µν = 0 . (4.6)

Since X is constant and Aµν = 0 the final equation in (3.4) follows. We also have DµF±µν = 0

(since X is constant) and so the gauge field equations in the third line of (3.4) are satisfied.

The scalar equation of motion is satisfied because X is constant, the geometry has R = 0,

and the matter satisfies

F±µν = F±µν −
1

4
XT±µν = 0 . (4.7)

The equation of motion for the antisymmetric tensor T−µν is slightly less obvious. It is

satisfied due to the following identities for (anti-)self-dual tensors in 4D:

T+
µνT

−ρσ + T+ρσT−µν = 4δ
[ρ
[µT

+
ν]τT

−σ]τ , T+
µνT

−µν = 0 . (4.8)

At this point we still need to verify the Einstein equation (3.9). It is important to note

that the only dependence on c2 is in the four-derivative energy-momentum tensor T
(4)
µν and

not in any of the two-derivative terms. Since we claim the embedding works for any value

of the constant c2, the two-derivative and four-derivative terms must cancel independently.

The original Einstein equation (3.9) therefore becomes two separate equations

1

4π
|X|2

(
Rµν −

1

2
gµνR

)
= T (2)

µν and T (4)
µν = 0 . (4.9)

The energy-momentum tensor T
(2)
µν , given in (3.10), simplifies greatly due to the embed-

ding (4.4). The two-derivative part of the Einstein equations (4.9) becomes

Rµν −
1

2
gµνR = −F+

µρF
−ρ
ν . (4.10)

We recognize this equation as the original condition on the Einstein-Maxwell geome-

try (4.3). Taking the trace of this expression yields

R = 0 , (4.11)

as required by the constraint equation (3.3) coming from the auxiliary D-field.

The four-derivative part of the Einstein equations (4.9), with T
(4)
µν given in (3.11),

becomes

0 = 4RµρR
ρ
ν − gµνRρσRρσ −

4

3
RµνR+

1

3
gµνR

2 − 2∇2Rµν

+ 4∇ρ∇µRνρ +
1

3
gµν∇2R− 4

3
∇µ∇νR

+
1

4
gµνF

−
ρσF

−ρσF+
τλF

+τλ − 2gµνRρσF
−
ρτF

+τ
σ + 8RµρF

−
νσF

+ρσ

+ 4RρσF−µρF
+
νσ + 4∇ρ∇µ(F−νσF

+ρσ)− 2∇2(F−µρF
+νρ)

− 2gµν∇ρ∇σ(F−ρτF+σ
τ ) ,

(4.12)
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upon insertion of the embedding (4.4). It is not immediately obvious that it is realistic

to solve this equation. However, repeated use of Rµν = −F+
µρF

−ρ
ν in (4.12) and careful

simplification shows that it is in fact satisfied identically.

In summary, we have verified that our embedding (4.4) generates a solution to the

higher-derivative theory for each solution to the original Einstein-Maxwell theory. This

result relies on supersymmetry of the theory, as the action we consider is far from arbitrary.

However, the solutions do not generally preserve any supersymmetry.

As a check on these results, we consider the special case of extremal Reissner-Nordström

black holes. We have verified that the BPS equations derived in [11, 12] are satisfied

by our embedding (4.4) for extremal Reissner-Nordström geometries. This is expected,

since these geometries are known to be 1
2 -BPS domain walls that interpolate between the

N = 2 supersymmetric AdS2×S2 geometry at the horizon and the N = 2 supersymmetric

Minkowski spacetime at infinity.

4.3 Simplified Lagrangian

Having showed that the embedding (4.4) satisfies the fairly complicated equations of motion

for minimal supergravity with higher-derivative corrections, it is worth understanding why

this is the case. We do so by introducing a simplified effective Lagrangian that captures

the same dynamics as the original Lagrangian (3.2) within the context of our embedding.

As a first step we can consistently eliminate the auxiliary fields D and Aµ by setting

both to zero at the level of the action. We can then use properties of (anti-)self-dual tensors

in 4D (4.8) to express the simplified Lagrangian as

8πLtrunc = −|X|2R− 1

4
FµνF

µν + 2∇µX∇µX̄ +
1

2

(
F+
µν −

1

4
XT+

µν

)2

+ h.c.

+ 32c2

(
WµνρσW

µνρσ +
1

4
RµνT

−
µρT

+νρ +
1

512
T−µνT

−µνT+
ρσT

+ρσ

+
1

2
(∇µT−µν)(∇ρT+

ρν)

)
.

(4.13)

We now want to eliminate the auxiliary fields X and T−µν from the action by replacing them

with their ansatz in the embedding (4.4):

X =

√
4π

κ
, T−µν =

4

X
F−µν , (4.14)

at the level of the action. We can see from (4.13) thatX is sourced by the Ricci scalar, which

vanishes for Einstein-Maxwell backgrounds, and F+
µν − 1

4XT
+
µν , which vanishes in (4.14).

Similarly, T−µν is sourced by F−µν − 1
4X̄T

−
µν and various other terms that vanish for Einstein-

Maxwell backgrounds. The elimination (4.14) is therefore consistent with the X and T−µν
equations of motion and can be implemented at the level of the action.

To make the normalization simpler we also rescale the vector multiplet field strength by

Fµν →
√

4π

κ
Fµν . (4.15)
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After these simplifications we find

Ltrunc = − 1

2κ2

(
R+

1

4
FµνF

µν

)
+

4c2

π

(
WµνρσW

µνρσ + 4RµνF
−
µρF

+νρ

+
1

2
F−µνF

−µνF+
ρσF

+ρσ + 8(∇µF−µν)(∇ρF+
ρν)

)
.

(4.16)

This form of the Lagrangian expresses the intuitive notion that our theory is ordinary

Einstein-Maxwell theory with addition of a supersymmetrized Weyl invariant that includes

mixings between the electromagnetic field strength and the Riemann tensor. Any solution

to the truncated theory (4.16) will automatically be a solution to the minimal supergravity

theory (3.2).

Our black hole solutions imply that the supersymmetrized Weyl invariant

LN=2 Weyl = WµνρσW
µνρσ + 4RµνF

−
µρF

+νρ +
1

2
F−µνF

−µνF+
ρσF

+ρσ

+ 8(∇µF−µν)(∇ρF+
ρν)

(4.17)

can be included into the Einstein-Maxwell action without consequence to the geometry

or the field strength. To understand this claim we rewrite WµνρσW
µνρσ in terms of the

Gauss-Bonnet density E4 as

WµνρσW
µνρσ = E4 + 2RµνR

µν − 2

3
R2 , (4.18)

and find

LN=2 Weyl = E4 + 2
(
Rµν + F−µρF

+ρ
ν

)2 − 2

3
R2 + 8(∇µF−µν)(∇ρF+

ρν) . (4.19)

The Gauss-Bonnet density E4 does not contribute to the equations of motion because it

is topological. The remaining terms (Rµν + F−µρF
+ρ
ν )2, R2, and (∇µF−µν)(∇ρF+

ρν) are

all quadratic in expressions that vanish for Einstein-Maxwell backgrounds. That explains

why these terms can be introduced in the Einstein-Maxwell action without changing the

original solutions.

The simplifications we find are predicated on the precise combination of four-derivative

terms appearing in (4.17); any others would lead to complicated corrections of the solutions

(see e.g. [16, 17]). In our context those coefficients were dictated by the N = 2 supersym-

metry of the theory. Thus supersymmetry is responsible for substantial simplifications even

for solutions that do not preserve any supersymmetry.

It was previously noticed in [18] that the entropy of supersymmetric black holes in

heterotic string theory is the same whether one introduces higher-derivative corrections in

the form of a supersymmetrized Weyl invariant or an ordinary Gauss-Bonnet term. This led

to arguments (see e.g. [19]) that the supersymmetrized Weyl invariant should coincide with

the Gauss-Bonnet density on-shell. Our supersymmetrized Weyl invariant (4.19) makes this

argument concrete. This is particularly surprising in the near-horizon region of BPS black

holes: the AdS2×S2 geometry has vanishing Weyl tensor, yet the supersymmetrized Weyl

invariant is non-zero and matches the Gauss-Bonnet density exactly.
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5 Properties of black holes in higher-derivative gravity

In this section we analyze properties of Kerr-Newman black holes considered as solutions

to minimal supergravity with higher-derivative corrections. We show that the black hole

entropy simplifies when the theory has N = 2 supersymmetry.

5.1 Black hole entropy

The black hole entropy in the higher-derivative theory is given by the Wald entropy for-

mula [1–3]. The entropy is

SWald = 2π

∫
H

δL
δRµνρσ

εµνερσ
√
h d2x , (5.1)

where hij is the induced metric on the black hole horizon H and εµν is the (antisymmetric)

unit binormal to the horizon, normalized such that εµνε
µν = −2. Four-derivative terms in

the action give rise to an integrand that includes terms linear in the curvature and terms

with two derivatives acting on the matter fields. Each of these terms in the integrand is

somewhat intricate and upon integration they will generally give complicated contributions

to the entropy.

However, N = 2 supersymmetry dictates relations between the coefficients of these

contributions such that the four-derivative terms combine into the expression (4.19). Any

part of the action that is quadratic in terms that vanish on-shell cannot contribute to the

Wald entropy (5.1), since the entropy is determined by a linear variation. For the purposes

of computing the Wald entropy it is therefore sufficient to add the Gauss-Bonnet term

LGB =
4c2

π
E4 (5.2)

to the standard Einstein-Hilbert Lagrangian. This is a considerable simplification.

The Gauss-Bonnet term (5.2) is topological, and so any variation of it with respect

to physical fields with produce a total derivative. It can also be expressed in 4D as a

total derivative acting on (non-covariant) Christoffel symbols. However, the Wald entropy

formalism requires first putting the Lagrangian in a covariant form, e.g. in terms of the

metric and the Riemann tensor. The Wald entropy formalism then requires varying the

Lagrangian with respect to the Riemann tensor, not a physical field. The contribution to

the Wald entropy from a Gauss-Bonnet term in the action is therefore not forced to be

zero. This contribution has been studied in detail; it was explicitly shown by Wald and

Iyer in [2] that this contribution is proportional to the Euler characteristic of the surface of

integration. This result was also independently shown in [20] by use of the Jacobson-Myers

functional. The total Wald entropy, including the area law due to the Einstein-Hilbert

action, is

SWald =
AH
4GN

+ 128πχ(2)c2 , (5.3)

where χ(2) is the Euler characteristic of the black hole horizon1

χ(2) = − 1

4π

∫
H
dAR(2) . (5.4)

1Our curvature conventions are set by the sign on the Ricci scalar in the Einstein-Hilbert action. The

curvature of a sphere is negative and the Euler character (5.4) has an unusual overall minus sign.
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For general Kerr-Newman black holes, the Euler characteristic of the horizon is χ(2) = 2,

and so the Wald entropy (5.3) becomes

SWald =
AH
4GN

+ 256πc2 . (5.5)

This is the entropy of a Kerr-Newman black hole, including the higher-derivative correction

in the form of a supersymmetrized Weyl invariant.

In the special case of vanishing charge, the black hole geometry is Ricci flat Rµν = 0

and so it is obvious that the Weyl invariant coincides with the Gauss-Bonnet term on-shell.

We find that this well-known statement generalizes to Kerr-Newman black holes. That is

interesting because this family includes a BPS limit, where the black hole preserves the

supersymmetry of the theory and the microscopic description is under control. Previous

studies [4–6, 9–11, 18, 21–26] have found that higher-derivative corrections in string theory

gives rise to a correction of the form (5.5) with a numerical coefficient that can be matched

with microscopic considerations.

Our result for the correction to the black hole entropy (5.5) has no dependence what-

soever on the parameters of the black hole. The deformation away from the BPS limit

by adding mass and introducing angular momentum does not change the correction due

to higher-order derivatives. This is reminiscent of our previous result [7] that quantum

corrections to Kerr-Newman black holes are universal and similarly insensitive to defor-

mations off extremality. For both classes of corrections it is significant that the theory

preserves N = 2 supersymmetry but it is unimportant whether the black holes preserve

the supersymmetry of the theory.

5.2 OSV conjecture

The correction to the entropy due to the higher-derivative terms is just a constant, in-

dependent of the black hole parameters. The value of the constant is therefore captured

by the BPS limit and so it can be interpreted in string theory, e.g. following the OSV

conjecture [27].

For extremal BPS black holes, the attractor mechanism [28–31] specifies scalars in the

horizon AdS2 × S2 geometry in terms of the charges (pI , qI) by the attractor equations

pI = Re[CXI ] , (5.6)

qI = Re[CFI ] , (5.7)

where C is an arbitrary scaling parameter chosen as

C2Â = 256 , (5.8)

with Â evaluated at the horizon. Expressing the real and imaginary parts of the scalars as

CXI = pI +
i

π
φI , (5.9)

the black hole potential is

F(φI , pI) = −π Im[C2F (XI , Â)] , (5.10)
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in a mixed ensemble defined as a microcanonical ensemble of magnetic charges pI and

a canonical ensemble of electric charges qI with chemical potentials φI . The black hole

entropy, including higher-derivative terms, is then given by the Legendre transform

SBH(qI , p
I) =

(
1− φI ∂

∂φI

)
F(φI , pI) , (5.11)

where the electric potentials φI have been eliminated in favor of the electric charges qI
through the attractor equation (5.7).

In the case of our minimal prepotential (3.1) the attractor equations are

p = Re[CX] , q = Im[CX] =
1

π
φ , (5.12)

and the black hole potential (5.10) becomes

F(φ, p) =
π

2
p2 − 1

2π
φ2 + 256πc2 . (5.13)

The Legendre transform of this potential gives the black hole entropy

SBH =
π

2
(q2 + p2) + 256πc2 . (5.14)

The first term agrees with the classical area law for an extremal Reissner-Nordström black

hole with dyonic U(1) charge, and the correction agrees with our result (5.5) computed

using the Wald entropy formalism.

The OSV conjecture [27] makes a connection with microscopic considerations through

the relation

ZBH = |Ztop|2 , (5.15)

where ZBH is the supersymmetric partition function

ZBH(φ, p) = exp
[
F(φ, p)

]
(5.16)

of a four-dimensional BPS black hole in the mixed ensemble. The partition function of the

topological string is similarly

Ztop(φ, p) = exp
[
Ftop(φ, p)

]
, (5.17)

with

Ftop(λ,X) =
∑
g=0

λ2g−2
top Ftop,g(X) , (5.18)

a perturbative expansion in the coupling constant λtop = 4πi
p+iq . The correction we consider

is charge-independent, corresponding to the torus partition function with genus g = 1.

The OSV conjecture and its possible extensions have been subject to much study and

debate, including [26, 32–35]. Since the minimal model we consider has nV = 0 moduli it

corresponds to a somewhat singular limit, the case of a rigid Calabi-Yau (in the language

of the A-model). It would be interesting to study this special case further.
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6 Discussion

The motivation for studying Kerr-Newman black holes in string theory is the hope that a

precision understanding can be achieved in this setting. We are still far from that goal but

we can make some observations in the spirit of phenomenology.

The classical black hole entropy of Kerr-Newman black holes computed from the outer

and inner horizons is

S± = 2π

((
M2 − 1

2
Q2

)
±
√
M2(M2 −Q2)− J2

)
. (6.1)

An appealing (but speculative) interpretation of these formulae identifes the combinations

SR =
1

2
(S+ + S−) , SL =

1

2
(S+ − S−) , (6.2)

with the entropy of factorized right- and left-moving excitations of an underlying CFT

with (0, 4) supersymmetry [36–38]. This theory would be a generalization of the MSW

CFT describing the BPS and near-BPS limits [39]. The assignment of supersymmetry

is such that the dependence on the angular momentum quantum number can be entirely

accounted for by an SU(2)R current, arbitrarily far from extremality. This is analogous to

the standard BMPV model of rotating BPS black holes in five dimensions [40, 41].

The correction to the black hole entropy due to higher-derivative terms (5.5) is not

just independent of black hole parameters; it is the same when computed at the outer and

the inner horizons [42]. Therefore, the prescription (6.2) with higher-derivative corrections

included identifies the corrections as pertaining to the “Right” sector, with no corrections

in the “Left” sector.

The “Left” sector contains the novel excitations, the ones that BPS conditions force

into their ground state. These are also the ones that carry the angular momentum of the

black hole so the BPS limit is incompatible with rotation. The independence of corrections

on black hole parameters suggest that this sector receives no string corrections in the

leading approximation. At the level of a phenomenological model this is not unreasonable

since, after all, the “Left” sector is subject to N = 4 supersymmetry, albeit spontaneously

broken by the state.

It would clearly be interesting to develop such a model in more detail.
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A Off-shell N = 2 supergravity

In this section, we summarize the construction of N = 2 supergravity in 4D following

the off-shell formalism studied in [10, 11, 13–15]. We review the bosonic field content and
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Weyl Multiplet Vector Multiplet

Field gµν bµ Aµ V i
µ j T−µν D XI W I

µ Y I
ij

Weyl weight −2 0 0 0 −1 2 1 0 2

Chiral weight 0 0 0 0 −1 0 −1 0 0

Table 3. Bosonic content of the Weyl and vector multiplets, with the corresponding Weyl and

chiral weights.

discuss actions that realize the full N = 2 supersymmetry with higher-derivative corrections

present. These steps justify the Lagrangian (2.15) that we use to study non-supersymmetric

solutions of higher-derivative supergravity.

A.1 N = 2 supergravity multiplets

The first step in constructing off-shell N = 2 supergravity is to build up an N = 2 super-

conformal gauge theory. We then turn this into a theory of supergravity by realizing the

superconformal symmetries as spacetime symmetries (instead of internal symmetries). The

Weyl multiplet is the multiplet that contains all of the gauge fields of these superconformal

transformations, as well as some auxiliary fields that must be added for consistency. The

bosonic content of the Weyl multiplet includes the metric gµν , the dilatation generator bµ,

the SU(2)R gauge field V i
µ j (where i and j are SU(2) indices), the U(1)R gauge field Aµ,

the auxiliary anti-self-dual antisymmetric tensor T−µν and the auxiliary real scalar D.

We will couple this Weyl multiplet to nV + 1 off-shell vector multiplets, indexed by

I = 0, . . . , nV . The bosonic content of each vector multiplet is a complex scalar XI , a U(1)

gauge field W I
µ , and an auxiliary SU(2) triplet of real scalars Y I

ij .

We summarize the bosonic field content of the Weyl and vector multiplets in table 3,

as well as the Weyl and chiral weights of each of the fields.

We will also couple our theory to a chiral multiplet. We will eventually identify the

fields in the chiral multiplet with various contractions of fields from the Weyl multiplet, in

order to introduce higher-derivative corrections to the theory. For now, we will keep the

chiral multiplet fully general. The bosonic content of this multiplet includes the complex

scalars Â and Ĉ, a complex SU(2) triplet of scalars B̂ij , and an anti-self-dual tensor F̂−µν .

The Weyl and chiral weights w and c of the lowest-component scalar Â are arbitrary, but

we can express the weights of the other fields in terms of these weights, as shown in table 4.

A.2 Off-shell action

The interactions between the Weyl multiplet and the matter fields in the vector and chiral

multiplets are conveniently summarized by introducing a prepotential F ≡ F (XI , Â), a

meromorphic function of the vector multiplet scalars XI and the chiral multiplet scalar Â.

Derivatives of the prepotential are denoted by

∂F

∂XI
= FI ,

∂F

∂Â
= FA . (A.1)
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Chiral Multiplet

Field Â B̂ij F̂−µν Ĉ

Weyl weight w w + 1 w + 1 w + 2

Chiral weight c c+ 1 c+ 1 c+ 2

Table 4. Bosonic content of the chiral multiplet, with arbitrary Weyl and chiral weights w and c

for the lowest-component scalar Â.

The prepotential is holomorphic and does not depend on the complex conjugate scalars X̄I

and
¯̂
A, and so FĪ = FĀ = 0. The prepotential is also homogeneous of second degree with

respect to Weyl-weighted scalings of XI and Â, so

F (λXI , λwÂ) = λ2F (XI , Â) , (A.2)

where w is the Weyl weight of the chiral multiplet scalar Â and λ is some arbitrary scaling

constant. An equivalent statement of this homogeneity is

FIX
I + wFAÂ = 2F . (A.3)

The action is

S =

∫
d4x
√
−gL , (A.4)

where L is the Lagrangian for our off-shell theory. The purely bosonic part of the La-

grangian that couples the Weyl multiplet, the vector multiplets, and the chiral multiplet

via interactions dictated by the prepotential is

8πL =

[
iDµFIDµX̄

I − iFIX̄I

(
1

6
R−D

)
− i

8
FIJY

I
ijY

Jij

+
i

4
FIJ

(
F−Iµν −

1

4
X̄IT−µν

)(
F−µνJ − 1

4
X̄JT−µν

)
− i

8
FI

(
F+I
µν −

1

4
XIT+

µν

)
T+µν − i

32
FT+

µνT
+µν

+
i

2
FAI

(
F−Iµν −

1

4
X̄IT−µν

)
F̂−µν +

i

2
FAĈ

− i

8
FAA

(
εikεjlB̂ijB̂kl − 2F̂−µνF̂

−µν
)
− i

4
FAIB̂ijY

Iij

]
+ h.c. ,

(A.5)

where the (bosonic) supercovariant derivative acts on the vector multiplet scalars XI and

the chiral multiplet scalar Â by

DµX
I = (∂µ − bµ + iAµ)XI , DµÂ = (∂µ − wbµ − icAµ)Â . (A.6)

The Lagrangian (A.5) has a term linear in the auxiliary D field

8πL = i(FIX̄
I − F̄IXI)

(
D − 1

6
R

)
+ . . . , (A.7)
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which leads to inconsistent equations of motion. In order to fix this, we can couple a

non-linear multiplet to the Lagrangian such that all linear terms in D are cancelled. The

bosonic content of this non-linear multiplet includes two SU(2) scalar fields Φi
α, where

i is the SU(2) index and α = 1, 2, a real vector field Vµ, and a complex antisymmetric

matrix Mij of scalars. Ignoring all fermionic terms, the non-linear multiplet is subject to

the constraint

DµVµ −
1

2
V µVµ −

1

4
|Mij |2 +DµΦi

αDµΦα
i = D +

1

3
R , (A.8)

where DµVµ indicates the bosonic supercovariant derivative acting on Vµ. In order to cancel

the linear D-dependence in (A.5), we must add the term

i(FIX̄
I − F̄IXI)

(
DµVµ −

1

2
V µVµ −

1

4
|Mij |2 +DµΦi

αDµΦα
i −D −

1

3
R

)
(A.9)

to the Lagrangian. The resulting bosonic Lagrangian is

8πL = − i
2

(FIX̄
I − F̄IXI)R+

[
iDµFIDµX̄

I − i

8
FIJY

I
ijY

Jij

+
i

4
FIJF−Iµν F−µνJ −

i

8
FIF+I

µν T
+µν − i

32
FT+

µνT
+µν +

i

2
FAIF−Iµν F̂−µν

+
i

2
FAĈ −

i

8
FAA

(
εikεjlB̂ijB̂kl − 2F̂−µνF̂

−µν
)
− i

4
FAIB̂ijY

Iij

]
+ h.c.

+ i(FIX̄
I − F̄IXI)

(
DµVµ −

1

2
V µVµ −

1

4
|Mij |2 +DµΦi

αDµΦα
i

)
,

(A.10)

where we have defined the supercovariant field strengths

F+I
µν = F+I

µν −
1

4
XIT+

µν ,

F−Iµν = F−Iµν −
1

4
X̄IT−µν .

(A.11)

A.3 Higher-derivative interactions

At this point the bosonic Lagrangian (A.10) contains the Ricci scalar but no higher-

derivative gravity terms. One way to introduce these is to identify the chiral multiplet

fields with various contractions of fields in the Weyl tensor, chosen precisely such that the

supersymmetry variations are all consistent. Roughly speaking, we set the chiral multiplet

to be the square of the Weyl multiplet. Ignoring all fermionic terms, this identifies the

chiral multiplet fields as

Â = T−µνT
−µν ,

B̂ij = − 16εk(iV k
µν j)T

−µν ,

F̂−µν = −16
(
WµνρσT

−ρσ +DT−µν + 2iAρ[µT
−ρ
ν]

)
,

Ĉ = 32

(
WµνρσW

µνρσ + i∗WµνρσW
µνρσ + 6D2 − 2AµνA

µν + 2AµνÃ
µν

− 1

2
T−µνDµD

ρT+
ρν +

1

4
RµνT

−
µρT

+νρ +
1

256
T−µνT

−µνT+
ρσT

+ρσ

+
1

2
V i
µν jV

µνj
i −

1

2
V i
µν jṼ

µνj
i

)
,

(A.12)
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where the field strength of the SU(2)R gauge field V i
µ j is

V i
µν j = ∂µV i

ν j − ∂νV i
µ j +

1

2
V i
µ kV k

ν j −
1

2
V i
ν kV k

µ j . (A.13)

The scalar Â now has Weyl weight w = 2 and chiral weight c = −2. The bosonic

Lagrangian (A.10) still retains the same form, but this identification introduces higher-

derivative interactions to the theory that we are interested in studying.

B Simplifying the Lagrangian

In this section, we will simplify the Lagrangian (A.10) both by partially gauge-fixing our

theory and by eliminating various auxiliary fields via their equations of motion.

B.1 Partial gauge-fixing

The Lagrangian (A.10) has an N = 2 superconformal symmetry that acts as a gauge sym-

metry. To obtain an N = 2 Poincaré supergravity theory, we must gauge-fix the extra

gauge symmetries of the superconformal theory, including special conformal transforma-

tions, dilatations, and a local chiral SU(2)R × U(1)R symmetry. We gauge-fix the special

conformal symmetry by choosing the K-gauge

bµ = 0 . (B.1)

To gauge-fix the dilatational symmetry, we choose the D-gauge that sets the Kähler po-

tential to be constant

e−K ≡ i(FIX̄I − F̄IXI) =
8π

κ2
, (B.2)

with the value of the constant chosen to reproduce the standard normalization of the

Einstein-Hilbert term in the action. The local chiral SU(2)R invariance can be gauge-fixed

by imposing the V -gauge

Φi
α = δiα . (B.3)

Finally, to gauge-fix the local chiral U(1)R symmetry, we choose the A-gauge

X0 = X̄0 . (B.4)

Note that the D-gauge (B.2) and A-gauge (B.4) remove two degrees degree of freedom

from the vector multiplet scalars, and thus the Poincaré supergravity theory has only nV
independent scalars.

B.2 Eliminating auxiliary fields

The remaining independent auxiliary fields in our theory are the SU(2)R gauge field V i
µ j ,

the U(1)R gauge field Aµ, the vector multiplet SU(2) triplets Y I
ij , the non-linear multiplet

fields Vµ and Mij , and the anti-self-dual antisymmetric tensor T−µν . We will use the auxiliary

equations of motion to eliminate everything except Aµ and T−µν from the action.
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If we insert the chiral multiplet field expressions (A.12) into the Lagrangian (A.10),

we find that the fields Y I
ij and V i

µ j and their derivatives appear at least quadratically with

one another in the action. It is therefore consistent to set them both to zero

Y I
ij = 0 , V i

µ j = 0 , (B.5)

at the level of the action.

We now want to eliminate the non-linear multiplet fields Vµ and Mij from (A.10), sub-

ject to the constraint (A.8). These non-linear multiplet fields interact with the other matter

fields only through the Kähler potential e−K = i(FIX̄
I − F̄IXI), which is set to a constant

via the D-gauge condition (B.2). The non-linear multiplet fields effectively decouple from

the rest of our theory, and so we can study their equations of motion independently from

the others. We find that we can choose

Vµ = 0 , Mij = 0 , (B.6)

at the level of the action, as long as the background value of D satisfies D = −1
3R.

B.3 Resulting Lagrangian

In subsections B.1 and B.2, we found via partial gauge-fixing and elimination of auxiliary

fields that we can consistently set

bµ = Y I
ij = V i

µ j = Vµ = Mij = 0 , Φi
α = δiα , (B.7)

at the level of the action. This truncation requires that any solution to the theory satisfies

the constraint

D = −1

3
R . (B.8)

Since the SU(2)R gauge field V i
µ j is set to zero, the chiral multiplet fields

from (A.12) become

Â = T−µνT
−µν ,

B̂ij = 0 ,

F̂−µν = −16
(
WµνρσT

−ρσ +DT−µν + 2iAρ[µT
−ρ
ν]

)
,

Ĉ = 32

(
WµνρσW

µνρσ + i∗WµνρσW
µνρσ + 6D2 − 2AµνA

µν + 2AµνÃ
µν

−1

2
T−µνDµD

ρT+
ρν +

1

4
RµνT

−
µρT

+νρ +
1

256
T−µνT

−µνT+
ρσT

+ρσ

)
.

(B.9)

If we take the full Lagrangian (A.10) and implement the consistent truncation (B.7), we find

8πL = − i
2

(FIX̄
I − F̄IXI)R+ iDµFIDµX̄

I + h.c.

+

[
i

4
FIJF−Iµν F−µνJ −

i

8
FIF+I

µν T
+µν − i

32
FT+

µνT
+µν

+
i

2
FAIF−Iµν F̂−µν +

i

2
FAĈ +

i

4
FAAF̂

−
µνF̂

−µν
]

+ h.c. .

(B.10)

This is the Lagrangian presented in (2.15).
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