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Abstract: We introduce a new kind of jet function: the semi-inclusive jet function

Ji(z, ωJ , µ), which describes how a parton i is transformed into a jet with a jet radius R

and energy fraction z = ωJ/ω, with ωJ and ω being the large light-cone momentum com-

ponent of the jet and the corresponding parton i that initiates the jet, respectively. Within

the framework of Soft Collinear Effective Theory (SCET) we calculate both Jq(z, ωJ , µ)

and Jg(z, ωJ , µ) to the next-to-leading order (NLO) for cone and anti-kT algorithms. We

demonstrate that the renormalization group (RG) equations for Ji(z, ωJ , µ) follow exactly

the usual DGLAP evolution, which can be used to perform the lnR resummation for inclu-

sive jet cross sections with a small jet radius R. We clarify the difference between our RG

equations for Ji(z, ωJ , µ) and those for the so-called unmeasured jet functions Ji(ωJ , µ),

widely used in SCET for exclusive jet production. Finally, we present applications of the

new semi-inclusive jet functions to inclusive jet production in e+e− and pp collisions. We

demonstrate that single inclusive jet production in these collisions shares the same short-

distance hard functions as single inclusive hadron production, with only the fragmentation

functions Dh
i (z, µ) replaced by Ji(z, ωJ , µ). This can facilitate more efficient higher-order

analytical computations of jet cross sections. We further match our lnR resummation at

both LLR and NLLR to fixed NLO results and present the phenomenological implications

for single inclusive jet production at the LHC.
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1 Introduction

Collimated jets of hadrons play a crucial role in testing the dynamics of the strong inter-

actions and the fundamental properties of Quantum Chromodynamics (QCD) [1–9]. They

are also one of the main sources for obtaining information about the partonic structure

of the nucleon [10, 11], for searching for signatures of physics beyond the Standard Model

(BSM) [12, 13], and for probing the properties of the hot quark gluon plasma created in

heavy ion collisions [14–18]. Jets are copiously produced at the current highest energy

hadron collider, the Large Hadron Collider (LHC) at CERN. Needless to say, reliable pre-

dictions of jet cross sections are essential to obtain deeper insights into QCD dynamics,

and to constrain any potential signals for BSM physics.

The study of jets requires the use of a jet definition and a jet radius parameter denoted

by R [19, 20], which determines how close in angle two particles have to be in order to be

clustered into the same jet. Many jet and jet substructure observables have been resummed

to very high accuracy within the powerful framework of Soft Collinear Effective Theory

(SCET) [21–24]. One class of logarithms, to be resummed for jet production, that is under
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active discussion at the moment are logarithms of the jet radius parameter, lnR. When

the jet radius R is small, such logarithms can become large, thus potentially impacting

the convergence of the conventional perturbative expansion in terms of the strong coupling

constant αs and requiring resummation. Such resummation is highly desirable, since there

is a growing use of small R values in jet observables and/or modern jet analysis, especially

for jet substructure. Smaller jet radii, as small as R = 0.2, are also commonly used in

heavy ion collisions [25–29] in order to reduce the effects of fluctuations in the heavy-ion

background.

For narrow jets, resummation of logarithms of the jet radius R for the jet cross sections

is one of the hot topics discussed actively in the QCD community at the moment. The lnR

resummation has been studied by several groups within SCET, see, e.g., refs. [30–33], where

generally Sudakov double logarithms of the jet radius arise. In particular, the associated

jet function in these processes has a
(
αs ln2R

)n
dependence. On the other hand, Dasgupta,

Dreyer, Salam and Soyez also discussed the resummation of the jet radius parameter at

leading logarithmic order in [34, 35], which exhibits single logarithms of the form (αs lnR)n.

At the same time, the explicit next-to-leading order (NLO) calculations for single inclusive

jet cross section exhibit a single logarithmic dependence on R [36, 37]. Such an apparently

different structure of the logarithmic dependence on the jet radius R has been noticed

before [33, 34]. We further illuminate this important issue from a different perspective.

In this paper, within the framework of SCET, we introduce a new jet function — the

semi-inclusive jet function Ji(z, ωJ , µ), which describes a jet with energy ωJ and radius R,

carrying a fraction z of the large light-cone momentum component of the parton i that

initiates the jet [38]. We demonstrate that these semi-inclusive jet functions are the ones

relevant to the calculations of inclusive jet cross sections. We calculate Ji(z, ωJ , µ) for both

quark and gluon jets to NLO accuracy. We demonstrate that the renormalization group

(RG) equations for Ji(z, ωJ , µ) follow exactly the usual timelike DGLAP evolution [39–42],

which can be used to perform the lnR resummation for inclusive jet cross sections with

a small jet radius R. We clarify the difference between our RG equations for Ji(z, ωJ , µ)

and those for the so-called unmeasured jet functions Ji(ωJ , µ), widely used in SCET for

exclusive jet productions. In other words, the aforementioned single and double logarithm

differences are simply due to the difference in the jet observables, inclusive vs exclusive jet

cross sections.

In addition, we present applications of the semi-inclusive jet functions to single inclusive

jet production in e+e− and pp collisions: e+e− → jetX and pp → jetX. We demonstrate

that single inclusive jet production in these collisions shares the same short-distance hard

functions as single inclusive hadron production, e+e− → hX and pp→ hX, with only the

fragmentation functions Dh
i (z, µ) replaced by Ji(z, ωJ , µ). We expect that this finding will

facilitate more efficient higher-order computations of jet cross sections [43–45], as one can

evaluate the individual pieces separately. The semi-inclusive jet functions can also be used

in the study of jet physics in ep collisions at an electron ion collider (EIC) [46–53].

The rest of the paper is organized as follows. In section 2 we set up the theoretical

framework and give the SCET definitions of the semi-inclusive jet functions. We com-

pute the NLO semi-inclusive jet functions for both quark and gluons jets, and derive their

– 2 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
5

renormalization group equations. At the end of this section, we also present the numer-

ical solution of the RG equations and obtain the evolved semi-inclusive jet functions. In

section 3, using e+e− collisions as an example, we present the factorized cross sections for

e+e− → hX and e+e− → jetX. We compute the NLO hard functions, and demonstrate

that they are the same for single inclusive hadron/jet production. In section 4 we gener-

alize the factorized formalism in e+e− collisions to pp collisions and present in detail the

phenomenological implications of the lnR resummation for single inclusive jet production

at the LHC. We conclude our paper in section 5.

2 The semi-inclusive jet function

In this section we start by setting up the theoretical framework for our analysis and intro-

duce the relevant SCET ingredients. We then give the definition of the semi-inclusive quark

and gluon jet functions in SCET and calculate them to next-to-leading order. From the

explicit calculations, we discuss their renormalization and how the corresponding renormal-

ization group equations can be used to achieve small jet radius resummation for inclusive

jet spectra.

2.1 SCET ingredients

SCET [21–24] is an effective theory of QCD, describing the interactions of soft and collinear

degrees of freedom in the presence of hard scattering. It has been successfully applied to

study a wide variety of hard scattering processes at the LHC, especially jet producion. Jets

are collimated spray of hadrons, and are conveniently described using light-cone coordi-

nates. Typically, we introduce a light-cone vector nµ whose spatial part is along the jet

axis, and another conjugate vector n̄µ such that n2 = n̄2 = 0 and n · n̄ = 2. Any four-vector

pµ can then be decomposed as pµ = (p+, p−, p⊥) with p+ = n ·p, p− = n̄ ·p. In other words,

pµ = p−
nµ

2
+ p+ n̄

µ

2
+ pµ⊥. (2.1)

The momentum pµ of a particle within a jet scales collinearly, with pµ = (p+, p−, p⊥) ∼
p−(λ2, 1, λ).

The gauge invariant quark and gluon fields are given by

χn = W †nξn, Bµn⊥ =
1

g

[
W †niD

µ
n⊥Wn

]
, (2.2)

and are composite SCET fields of n-collinear quarks and gluons. Here iDµ
n⊥ = Pµn⊥+gAµn⊥,

and Pµ is the label momentum operator. On the other hand, Wn is the Wilson line of

collinear gluons,

Wn(x) =
∑

perms

exp

[
−g 1

n̄ · P n̄ ·An(x)

]
. (2.3)

We further define

χn,ω = δ (ω − n̄ · P)χn, Bµn⊥,ω = δ (ω − n̄ · P)Bµn⊥. (2.4)
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At leading order in the SCET power expansion, the interactions of soft gluons with collinear

quark/gluon fields exponentiate to form eikonal Wilson lines. One might redefine the above

collinear fields to decouple collinear-soft interactions in the Lagrangian [24]. In the rest

of the paper, all the collinear fields χn and Bµn⊥ are understood to be those after the field

redefinition, and thus do not interact with soft gluons.

2.2 Definition and jet algorithms

With the above gauge invariant quark and gluon fields, we can construct the following

semi-inclusive quark and gluon jet functions Jq(z, ωJ) and Jg(z, ωJ), respectively

Jq(z = ωJ/ω, ωJ , µ) =
z

2Nc
Tr

[
n̄/

2
〈0|δ (ω − n̄ · P)χn(0)|JX〉〈JX|χ̄n(0)|0〉

]
, (2.5)

Jg(z = ωJ/ω, ωJ , µ) = − z ω

2(N2
c − 1)

〈0|δ (ω − n̄ · P)Bn⊥µ(0)|JX〉〈JX|Bµn⊥(0)|0〉, (2.6)

where the state |JX〉 represents the final-state unobserved particles X and the observed

jet J . Note that summation over the unobserved particles X is implied, and ωJ = n̄ · pJ
is the large light-cone momentum component of the jet with momentum pJ . On the other

hand, ω is the large light-cone momentum component of the parton (either q or g) which

initiates the jet. We will refer to ωJ and ω as energy for simplicity in the rest of the paper.

Our semi-inclusive jet functions Ji(z, ωJ) can thus be interpreted as the probability of the

parton i with energy ω to transform into a jet with energy ωJ = z ω. In some sense, this

is similar to the so-called microjet fragmentation function introduced in [34, 35]. They

are very similar to the usual quark and gluon fragmentation functions, which are defined

as follows

Dh
q (z = p−h /ω, µ) =

z

2Nc
Tr

[
n̄/

2
〈0|δ (ω − n̄ · P)χn(0)|hX〉〈hX|χ̄n(0)|0〉

]
, (2.7)

Dh
g (z = p−h /ω, µ) = − z ω

2(N2
c − 1)

〈0|δ (ω − n̄ · P)Bn⊥µ(0)|hX〉〈hX|Bµn⊥(0)|0〉. (2.8)

We will now calculate the semi-inclusive jet function for both quark and gluon initiated

jets. We start with Jq(z, ωJ), where we present detailed derivations. For Jg(z, ωJ), the

calculation is similar, and we present only the final results. At leading order (LO), the

results are simple, we have

J (0)
q (z, ωJ) = δ(1− z), (2.9)

J (0)
g (z, ωJ) = δ(1− z), (2.10)

where the superscript (0) represents the LO result.

At next-to-leading order, the results of jet functions depend on the jet algorithm. For

example, at the LHC a longitudinally-invariant kT -type algorithm is usually used [19],

which introduces a distance between every pair of particles i and j

dij = min
(
p2p
T i, p

2p
Tj

) ∆R2
ij

R2
, (2.11)
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and a distance measure between each particle and the beam,

diB = p2p
T i. (2.12)

Here p = 1, 0,−1 correspond to the kT, Cambridge/Aachen, and anti-kT algorithm, re-

spectively. R is the jet radius parameter, and

∆Rij =

√
(∆ηij)

2 + (∆φij)
2, (2.13)

where ∆ηij and ∆φij are the rapidity and azimuthal differences between the particles i

and j. The algorithm proceeds by identifying the smallest of the dij and diB. If it is a

beam distance diB, the particle i is defined as a jet and removed from the list of particles.

If the smallest distance is a dij , the two particles i, j are merged into a single one. The

procedure is repeated until no particles are left in the event. In the so-called narrow jet

approximation [36, 37], where all the particles in the jet are collimated along the jet axis,

one can show [54] that the jet algorithm constraint amounts to

∆Rij ≈ θij cosh η < R, (2.14)

or equivalently

θij <
R

cosh η
≡ R, (2.15)

where θij is the angle between particles i and j, and η is the jet rapidity. On the other

hand, for the cone-jet algorithm [20] the constraint will be different and it leads to

θiJ < R, (2.16)

where θiJ is the angle between the jet and the particle i that belongs to the jet. For detailed

discussion, see ref. [55].

2.3 The semi-inclusive quark jet function

Let us now turn to the detailed calculations for the semi-inclusive quark jet function. The

Feynman diagrams which contribute to Jq(z, ωJ) are given in figure 1, where an incoming

quark with momentum ` = (`− = ω, `+, 0⊥) splits into a gluon q = (q−, q+, q⊥) and a

quark ` − q = (ω − q−, `+ − q+,−q⊥). The total forward scattering matrix element can

be computed as a sum over all cuts. The only diagrams that contribute are the cuts

through the loops, where there are two final-state partons. All the virtual diagrams which

correspond to the cuts through only one parton lead to scaleless integrals and thus vanish

in dimensional regularization (via 1/εUV − 1/εIR = 0). It would be possible to separate

IR and UV singularities by e.g. introducing parton masses, however, this would only make

it unnecessarily complicated [32, 55]. Working in n = 4 − 2ε space-time dimensions, and

adding all the contributions from the diagrams in figure 1, in MS scheme, we have

Jq(z, ωJ) =g2
s

(
µ2eγE

4π

)ε
CF

∫
d`+

2π

1

`+

∫
dnq

(2π)n

[
4
`+

q−
+ 2(1− ε)`

+ − q+

ω − q−
]

× 2πδ(q+q− − q2
⊥)2πδ

(
`+ − q+ − q2

⊥
ω − q−

)
δ
(
z − ωJ

ω

)
× θ(q−)θ(q+)θ(ω − q−)θ(`+ − q+)Θalg, (2.17)
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ℓ

q

ℓ− q

(A) (B) (C) (D)

Figure 1. Feynman diagrams that contribute to the semi-inclusive quark jet function. The quark

that initiates the jet has momentum ` = (`− = ω, `+, 0⊥), with ω = ωJ/z and ωJ the jet energy.

(A) (B) (C)

Figure 2. Three situations that contribute to the semi-inclusive quark jet function: (A) both quark

and gluon are inside the jet, (B) only quark is inside the jet, (C) only gluon is inside the jet.

where Θalg is the constraint from the jet algorithm and will be discussed separately below

for different situations.

There are three situations that we need to consider. We discuss them one by one.

1. Both quark and gluon are inside the jet

The situation is shown in figure 2(A). In this case, the incoming quark energy ω is

the same as the jet energy ωJ , and thus z = ωJ/ω = 1. The constraints for cone

and anti-kT algorithms were derived for e+e− collisions in [55]. They impose angle

restrictions and can be translated to our case as

cone: Θcone = θ

(
tan2 R

2
− q+

q−

)
θ

(
tan2 R

2
− `+ − q+

ω − q−
)
, (2.18)

anti-kT: Θanti-kT
= θ

(
tan2 R

2
− q+ω2

q− (ω − `−)2

)
. (2.19)

If we define x = (`− q)−/`−, with q2
⊥ = q+q−, we can rewrite the above constraints

as follows:

cone: Θcone = θ

(
(1− x)ωJ tan

R
2
− q⊥

)
θ

(
xωJ tan

R
2
− q⊥

)
, (2.20)

anti-kT: Θanti-kT
= θ

(
x(1− x)ωJ tan

R
2
− q⊥

)
. (2.21)

Performing the integration over `+, q+, we end up with the following expression,

Jq→qg(z, ωJ) = δ(1− z)
αs
π

(µ2eγE )ε

Γ(1− ε)

∫ 1

0
dxP̂qq(x, ε)

∫
dq⊥
q1+2ε
⊥

Θalg, (2.22)
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where the subscript “qg” represents the situation with both q and g inside the jet,

and the function P̂qq(x, ε) is given by

P̂qq(x, ε) = CF

[
1 + x2

1− x − ε(1− x)

]
. (2.23)

Implementing the constraints from the jet algorithms, e.g., for anti-kT algorithm,

we have∫
dq⊥
q1+2ε
⊥

Θanti-kT
=

∫ x(1−x)ωJ tan R
2

0

dq⊥
q1+2ε
⊥

= − 1

2ε

(
ωJ tan

R
2

)−2ε

(x(1− x))−2ε . (2.24)

Further integrating over x, and performing the ε-expansion, we obtain for the anti-

kT algorithm,

Jq→qg(z, ωJ)
anti-kT= δ(1−z)

αs
2π
CF

[
1

ε2
+

3

2ε
+

1

ε
L+

1

2
L2 +

3

2
L+

13

2
− 3π2

4

]
, (2.25)

where L is defined as

L = ln
µ2

ω2
J tan2 R

2

. (2.26)

For the cone-jet algorithm, we can derive the results accordingly. Let us express the

results collectively as

Jq→qg(z, ωJ) = δ(1− z)
αs
2π

[
CF

(
1

ε2
+

3

2ε
+

1

ε
L+

1

2
L2 +

3

2
L

)
+ dalg

q

]
, (2.27)

where the constant term dalg
q depends on the jet algorithm and is given by

dcone
q = CF

(
7

2
+ 3 ln 2− 5π2

12

)
, (2.28)

danti-kT
q = CF

(
13

2
− 3π2

4

)
. (2.29)

It is worthwhile to point out that Jq→qg(z, ωJ) in eq. (2.27) is exactly the same as

the so-called unmeasured quark jet function in [55], multiplied by the factor δ(1− z).

2. Only the quark is inside the jet

The situation is illustrated in figure 2(B). In this case, the final-state quark forms the

jet, with a jet energy ωJ = (`− q)− = z `−. In other words, only a fraction z of the

incoming quark energy ω is translated into the jet energy. The constraints from the

jet algorithms, i.e. the gluon is outside the jet which is composed by the final-state

quark only, is the same for cone and anti-kT algorithms, and is simply given by

Θcone = Θanti-kT
= θ

(
q+ω2

q− (ω − `−)2 − tan2 R
2

)
. (2.30)
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Using ωJ = (` − q)− = z `− with `− = ω and q2
⊥ = q+q−, we can rewrite the

constraint as

Θcone = Θanti-kT
= θ

(
q⊥ − (1− z)ωJ tan

R
2

)
. (2.31)

Following the same calculation as above, we obtain

Jq→q(g)(z, ωJ) =
αs
π

(µ2eγE )ε

Γ(1− ε) P̂qq(z, ε)
∫

dq⊥
q1+2ε
⊥

Θalg, (2.32)

where the subscript “q(g)” represents the situation with only q inside and g outside

the jet. The jet algorithm then leads to the following constraint∫
dq⊥
q1+2ε
⊥

Θalg =

∫ ∞
(1−z)ωJ tan R

2

dq⊥
q1+2ε
⊥

=
1

2ε

(
ωJ tan

R
2

)−2ε

(1− z)−2ε . (2.33)

Performing the ε-expansion, we thus have

Jq→q(g)(z, ωJ) =
αs
2π
CF δ(1− z)

[
− 1

ε2
− 1

ε
L− 1

2
L2 +

π2

12

]
(2.34)

+
αs
2π
CF

[(
1

ε
+ L

)
1 + z2

(1− z)+
− 2(1 + z2)

(
ln(1−z)

1−z

)
+

− (1−z)

]
.

3. Only the gluon is inside the jet

The situation is illustrated in figure 2(C). In this case, the final-state gluon forms the

jet, with a jet energy ωJ = q− = z `−. It is easy to be convinced that the constraint

from the jet algorithms are again given by eq. (2.30) or eq. (2.31).

The calculation is very similar to the case where the quark is inside the jet, and we

obtain

Jq→(q)g(z, ωJ) =
αs
2π

(
1

ε
+ L

)
Pgq(z)− αs

2π

[
Pgq(z)2 ln(1− z) + CF z

]
, (2.35)

where the subscript “(q)g” represents the situation with g inside and q outside the

jet. It is worthwhile to emphasize that the situations 2 and 3 do not have a jet

algorithm-dependence, simply because only one particle forms the jet.

Ellis et al. also considered the above three situations in their seminal work [55], hence

it is instructive to compare to their results. In [55], the authors place an energy cut Λ on

the total energy outside of the observed jets to ensure that the jet algorithm does not find

more than N jets. In such a case of exclusive jet production, the parton outside the jet

should have energy less than Λ. It was shown carefully in [55] that the contributions from

the above situations 2 and 3 (i.e. only one parton is inside the jet) are power suppressed

by O(Λ/ω). However, this is not the situation we consider in our current paper. Here,

we have in mind the inclusive jet production, and we do not place any constraint on the

energy of the parton outside the jet. As long as the jet energy ωJ is large enough to be

– 8 –
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observed as a jet following the experimental kinematic cuts, it will be identified as a jet.

In this case, the contributions from 2 and 3 are not power suppressed, as can be clearly

seen from the expressions above.

Summing the above three contributions, we obtain the full expression for the semi-

inclusive quark jet function

J (1)
q (z, ωJ) =Jq→qg(z, ωJ) + Jq→q(g)(z, ωJ) + Jq→(q)g(z, ωJ) (2.36)

=
αs
2π

(
1

ε
+ L

)[
Pqq(z) + Pgq(z)

]
− αs

2π

{
CF

[
2
(
1 + z2

)( ln(1− z)

1− z

)
+

+ (1− z)

]
− δ(1− z)dq,alg

J

+ Pgq(z)2 ln (1− z) + CF z

}
, (2.37)

where the superscript “(1)” represents the NLO O(αs) result, Pqq(z) and Pgq(z) are the

standard Altarelli-Parisi splitting functions,

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, (2.38)

Pgq(z) = CF
1 + (1− z)2

z
. (2.39)

On the other hand, the constant term dq,alg
J depends on the jet algorithm, and they are

related to dalg
q in eq. (2.27) by

dq,alg
J = dalg

q + CF
π2

12
, (2.40)

where the second term comes from the constant δ(1 − z)-piece in eq. (2.34). It might be

instructive to point out that this second term actually corresponds to the same π2-constant

term of the single hemisphere soft function [33], and such a fact thus demonstrates the

consistency with the exclusive limit at z → 1.1 The constant terms dq,alg
J have the following

explicit expressions,

dq,cone
J = CF

(
7

2
+ 3 ln 2− π2

3

)
, (2.41)

dq,anti-kT
J = CF

(
13

2
− 2π2

3

)
. (2.42)

Adding LO to NLO results, we obtain the full result for semi-inclusive quark jet function,

Jq(z, ωJ) = J (0)
q (z, ωJ) + J (1)

q (z, ωJ). (2.43)

It is very interesting to point out that although the contribution with both q and g inside

the jet, Jq(z, ωJ)|qg, contains a double pole 1/ε2 (correspondingly the double logarithm L2),

1We thank P. Pietrulewicz, I. Stewart, F. Tackmann, and W. Waalewijn for pointing this out.
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(A)

ℓ

q

ℓ− q

(C)(B) (D)

(E) (F) (G)

Figure 3. Feynman diagrams that contribute to the semi-inclusive gluon jet function Jg(z, ωJ).

The gluon that initiates the jet has momentum ` = (`− = ω, `+, 0⊥), with ω = ωJ/z and ωJ the

jet energy. The dotted loop in (B) is the ghost loop, while the dashed loop in (D) and (E) are

collinear quark loops, the mirror diagrams of (F) and (G) are not shown here but are included in

the calculations.

such double poles and L2 cancel out between Jq→qg(z, ωJ) and Jq→q(g)(z, ωJ). We are thus

left with only a single pole 1/ε and the single logarithm L for Jq(z, ωJ). Such a difference

is the main reason why the unmeasured jet function Jq(ωJ) widely studied in SCET (see,

e.g., [55]) will follow RG evolution equations different from our semi-inclusive jet functions

Jq(z, ωJ), as we will demonstrate below.

2.4 The semi-inclusive gluon jet function

Likewise, we can compute the semi-inclusive gluon jet function Jg(z, ωJ). The relevant

Feynman diagrams are give in figure 3. It also receives three contributions just like

Jq(z, ωJ). When both final-state partons are inside the jet, we have

Jg→gg+qq̄(z, ωJ) ≡ Jg→gg(z, ωJ) + Jg→qq̄(z, ωJ) (2.44)

= δ(1− z)
αs
π

(µ2eγE )ε

Γ(1− ε)

∫ 1

0
dx
[
P̂gg(x, ε) + 2nf P̂qg(x, ε)

] ∫ dq⊥
q1+2ε
⊥

Θalg.

Here, Jg→gg represents the contribution from g → gg with both gluons inside the jet, and

it is given by the term ∝ P̂gg(x, ε). On the other hand, Jg→qq̄ stands for the contribution

from g → qq̄ with both quark and anti-quark inside the jet, and it is given by the term

∝ P̂qg(x, ε). Here P̂qg(x, ε) and P̂gg(x, ε) are given by

P̂qg(x, ε) =TF

[
1− 2x(1− x)

1− ε

]
, (2.45)

P̂gg(x, ε) = 2CA

[
x

1− x +
1− x
x

+ x(1− x)

]
. (2.46)

After taking into account the constraint from the jet algorithm, and completing the inte-

gration and ε-expansion, we obtain

Jg→gg+qq̄(z, ωJ) =δ(1− z)
αs
2π

(
CA
ε2

+
β0

2ε
+
CA
ε
L +

CA
2
L2 +

β0

2
L+ dalg

g

)
, (2.47)
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where β0 is the lowest order coefficient of the QCD β function,

β0 =
11

3
CA −

4

3
TFnf , (2.48)

and the constant terms dalg
g have the following expressions

dcone
g = CA

(
137

36
+

11

3
ln 2− 5π2

12

)
− TFnf

(
23

18
+

4

3
ln 2

)
, (2.49)

danti-kT
g = CA

(
67

9
− 3π2

4

)
− TFnf

(
23

9

)
. (2.50)

On the other hand, when one of the partons is outside the jet, we have

Jg→g(g)(z, ωJ) = Jg→(g)g(z, ωJ), (2.51)

Jg→q(q̄)(z, ωJ) = Jg→(q)q̄(z, ωJ), (2.52)

where the subscript “g(g)” on the left-hand side means that only the gluon g with momen-

tum ` − q is inside the jet, while “(g)g” on the right-hand side represents that only the

gluon g with momentum q is inside the jet. They are symmetric, and thus give the same

results. Similar is the case of g → q(q̄) and g → (q)q̄. To simplify the notation, in the rest

of the paper, we use Jg→g(g)+q(q̄)(z, ωJ) to represent the sum of both cases. The result is

given by

Jg→g(g)+q(q̄)(z, ωJ) = 2
αs
π

(µ2eγE )ε

Γ(1− ε)
[
P̂gg(z, ε) + 2nf P̂qg(z, ε)

] ∫ dq⊥
q1+2ε
⊥

Θalg, (2.53)

where the factor of “2” on the right hand side is reflecting the identities in eqs. (2.51)

and (2.52). With the constraint from the jet algorithm in eq. (2.31), we can integrate over

q⊥ and perform the ε-expansion. The final result is given by

Jg→g(g)+q(q̄)(z, ωJ) =
αs
2π
δ(1− z)

(
−CA
ε2
− β0

2ε
− CA

ε
L− CA

2
L2 − β0

2
L+

π2

12

)
+
αs
2π

(
1

ε
+ L

)[
Pgg(z) + 2nfPqg(z)

]
− αs

2π

[
4CA(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

+ 4nf

(
Pqg(z) ln(1− z) + TF z(1− z)

)]
, (2.54)

where Pgg(z) and Pqg(z) are the standard splitting functions with the expressions,

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+
β0

2
δ(1− z), (2.55)

Pqg(z) = TF
[
z2 + (1− z)2

]
. (2.56)
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Adding the contributions from eqs. (2.47) and (2.54) together, we obtain the following

expression for the semi-inclusive gluon jet function Jg(z, ωJ) at NLO,

J (1)
g (z, ωJ) =Jg→gg+qq̄(z, ωJ) + Jg→g(g)+q(q̄)(z, ωJ)

=
αs
2π

(
1

ε
+ L

)[
Pgg(z) + 2nfPqg(z)

]
− αs

2π

[
4CA(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

− δ(1− z)dg,alg
J

+ 4nf

(
Pqg(z) ln(1− z) + TF z(1− z)

)]
, (2.57)

where again dg,alg
J is related to dalg

g as follows

dg,alg
J = dalg

g + CA
π2

12
, (2.58)

with dalg
g given in eqs. (2.49) and (2.50). For later convenience and completeness, we give

them here:

dg,cone
J = CA

(
137

36
+

11

3
ln 2− π2

3

)
− TFnf

(
23

18
+

4

3
ln 2

)
, (2.59)

dg,anti-kT
J = CA

(
67

9
− 2π2

3

)
− TFnf

(
23

9

)
. (2.60)

Again, we find that all double pole 1/ε2 and the double logarithms L2 cancel between the

above contributions, and we are left with only a single pole 1/ε and a single logarithm L.

2.5 RG evolution

We will now discuss the renormalization of the above semi-inclusive jet functions. The

renormalized semi-inclusive jet functions are defined through

Ji,bare(z, ωJ) =
∑
j

∫ 1

z

dz′

z′
Zij

( z
z′
, µ
)
Jj(z

′, ωJ , µ), (2.61)

with Zij the renormalization matrix. The renormalization-group equation for the renor-

malized semi-inclusive jet functions Ji(z, ωJ , µ) will thus follow from eq. (2.61),

µ
d

dµ
Ji(z, ωJ , µ) =

∑
j

∫ 1

z

dz′

z′
γJij

( z
z′
, µ
)
Jj(z

′, ωJ , µ), (2.62)

with anomalous dimension γJij given by

γJij(z, µ) = −
∑
k

∫ 1

z

dz′

z′
(Z)−1

ik

( z
z′
, µ
)
µ
d

dµ
Zkj(z

′, µ). (2.63)
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Here, the inverse of the renormalization factor (Z)−1
ik is defined through∑

k

∫ 1

z

dz′

z′
(Z)−1

ik

( z
z′
, µ
)
Zkj(z

′, µ) = δijδ(1− z). (2.64)

The lowest order renormalization factors Z
(0)
ij can be trivially determined,

Z
(0)
ij (z, µ) = δijδ(1− z). (2.65)

On the other hand, the one-loop renormalization factors Z
(1)
ij can be extracted from our

one-loop results presented in last section, eqs. (2.37) and (2.57). We obtain to NLO,

Zij(z, µ) = δijδ(1− z) +
αs(µ)

2π

(
1

ε

)
Pji(z), (2.66)

where Pji(z) are the standard splitting functions as given in eqs. (2.38), (2.39), (2.55), (2.56).

Thus, the renormalized semi-inclusive jet functions at NLO have the following expressions

Ji(z, ωJ , µ) = J
(0)
i (z, ωJ , µ) + J

(1)
i (z, ωJ , µ), (2.67)

where J
(0)
i (z, ωJ , µ) = δ(1− z), and

J (1)
q (z, ωJ , µ) =

αs
2π
L
[
Pqq(z) + Pgq(z)

]
− αs

2π

{
CF

[
2
(
1 + z2

)( ln(1− z)

1− z

)
+

+ (1− z)

]

− δ(1− z)dq,alg
J + Pgq(z)2 ln (1− z) + CF z

}
, (2.68)

J (1)
g (z, ωJ , µ) =

αs
2π
L
[
Pgg(z) + 2nfPqg(z)

]
− αs

2π

[
4CA(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

− δ(1− z)dg,alg
J + 4nf

(
Pqg(z) ln(1− z) + TF z(1− z)

)]
. (2.69)

It is interesting to point out that the above renormalized semi-inclusive jet functions are

exactly the same as those found through conventional NLO calculations for single inclusive

jet cross section, see, [36, 37, 56].

On the other hand, from eq. (2.63) we obtain the anomalous dimensions of the semi-

inclusive jet functions

γJij(z, µ) =
αs(µ)

π
Pji(z). (2.70)

We thus have the following RG evolution for Jq/g(z, ωJ , µ)

µ
d

dµ
Ji(z, ωJ , µ) =

αs(µ)

π

∑
j

∫ 1

z

dz′

z′
Pji

( z
z′
, µ
)
Jj(z

′, ωJ , µ). (2.71)

In other words, they are exactly the same as the usual timelike DGLAP evolution equations

for standard fragmentation functions Dh
i (z, µ).
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It is instructive to point out that from the NLO expressions in eqs. (2.68) and (2.69),

the natural scale for Ji(z, ωJ , µ) is given by

µ ∼ ωJ tan
R
2
≡ µJ , (2.72)

at which the large logarithmic terms ∼ L are eliminated. Realizing that ωJ = 2pT cosh η,

we have

µJ = ωJ tan
R
2

= (2pT cosh η) tan

(
R

2 cosh η

)
≈ pTR, (2.73)

where we have used eq. (2.15) for the expression of R, and tan(x) ≈ x for small x. Thus,

solving the above evolution equations from the scale µJ ∼ pTR to a higher scale µ ∼ pT ,

we naturally resum the logarithms of the form (αs lnR)n, which can be large for small R.

For later convenience, let us denote the natural scale of the semi-inclusive jet functions as

pTR ≡ pT R. (2.74)

We will demonstrate such a small jet radius resummation for single inclusive jet produc-

tion below.

2.6 Small jet radius resummation

Following eq. (2.71), the timelike DGLAP evolution equations for the semi-inclusive jet

function can be cast into the following form

d

d log µ2

(
JS(z, ωJ , µ)

Jg(z, ωJ , µ)

)
=
αs(µ)

2π

(
Pqq(z) 2NfPgq(z)

Pqg(z) Pgg(z)

)
⊗
(
JS(z, ωJ , µ)

Jg(z, ωJ , µ)

)
, (2.75)

where ⊗ denotes the usual convolution integral defined as

(f ⊗ g)(z) =

∫ 1

z

dz′

z′
f(z′)g(z/z′) . (2.76)

The function JS(z, ωJ , µ) in (2.75) is the singlet semi-inclusive jet function given by the

sum over all quark and anti-quark flavors

JS(z, ωJ , µ) =
∑
q,q̄

Jq(z, ωJ , µ) = 2NfJq(z, ωJ , µ) . (2.77)

Since the semi-inclusive jet function is the same for all quarks and anti-quarks, we do not

need to consider separate non-singlet evolutions.

The initial conditions for the evolution equations at the scale µJ involve delta func-

tions and distributions. We deal with this problem by solving the evolution equations in

Mellin moment space following the method outlined in [57]. The Mellin moments of any

z-dependent function are defined as

f(N) =

∫ 1

0
dz zN−1f(z) . (2.78)
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Note that the delta functions and “plus” distributions turn into simple functions in Mellin

moment space. After performing the evolution in Mellin space from scale µJ to any scale

µ, we take the Mellin inverse transformation in order to obtain the corresponding semi-

inclusive jet functions in z space, JS, g(z, ωJ , µ). An important advantage when formulating

the solution of the DGLAP evolution equations in Mellin space is that the convolution

structure in (2.75) turns into simple products. Schematically, one has

(f ⊗ g)(N) = f(N) g(N) . (2.79)

We can write down the solution of the DGLAP equations in Mellin space for an evolution

from scale µJ to µ as [57](
JS(N,ωJ , µ)

Jg(N,ωJ , µ)

)
=

[
e+(N)

(
αs(µ)

αs(µJ)

)−r−(N)

+ e−(N)

(
αs(µ)

αs(µJ)

)−r+(N)
](

JS(N,ωJ , µJ)

Jg(N,ωJ , µJ)

)
,

(2.80)

where r+(N) and r−(N) denote the larger and smaller eigenvalue of the leading-order

singlet evolution matrix, see (2.75),

r±(N) =
1

2β0

[
Pqq(N) + Pgg(N)±

√
(Pqq(N)− Pgg(N))2 + 4Pqg(N)Pgq(N)

]
. (2.81)

The projector matrices e±(N) in (2.80) are defined as

e±(N) =
1

r±(N)− r∓(N)

(
Pqq(N)− r∓(N) 2NfPgq(N)

Pqg(N) Pgg(N)− r∓(N)

)
. (2.82)

The evolved semi-inclusive jet functions in z-space are eventually obtained by performing

a Mellin inverse transformation

JS,g(z, ωJ , µ) =
1

2πi

∫
CN
dN z−NJS,g(N,ωJ , µ) , (2.83)

where the contour in the complex N plane is chosen to the right of all the poles in

JS,g(N,ωJ , µ).

Our evolution code is a modified version of the evolution code for fragmentation func-

tions presented in [58], which in turn is based on the Pegasus evolution package for

PDFs [57]. The evolution codes of [57, 58] can be used to perform an evolution at NNLO.

Here we only need a LO evolution instead. However, for the purpose of this work, we

had to increase the numerical precision in the region of z → 1. PDFs and FFs fall off as

∼ (1− z)α for z → 1, where α is typically in the range of α = 3− 8. Instead, here we have

to handle distributions at the initial scale µJ which are divergent for z → 1. We deal with

this divergence by adopting a prescription developed in [59], as discussed below.

Figure 4 shows the evolved (red) and unevolved (blue) jet functions Jq,g(z, ωJ , µ).

As an example, we choose several different values of the jet parameter in the range of

R = 0.05− 0.99 and a final scale for the evolution of µ = 250 GeV, while we set the initial

evolution scale µJ = µR to eliminate the logarithm L in the fixed-order expressions for

Jq,g(z, ωJ , µ). Since the DGLAP equations are linear evolution equations, the evolution of
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Figure 4. The semi-inclusive jet function with evolution (red) and without evolution (blue) for

several values of the jet radius parameter R = 0.99, 0.7, 0.5, 0.3, 0.1, 0.05. Using the DGLAP

evolution equations, the semi-inclusive jet function is evolved to a final scale of µ = 250 GeV. In

order to perform the correct matching to NLO, we need to perform the evolution of the LO and

NLO jet functions separately for both quarks J
(0),(1)
q and for gluons J

(0),(1)
g as shown in the four

panels. Note that the initial condition for the evolution of the LO jet function is given by a delta

function which is illustrated in the left two panels by a blue straight line.

the sum
(
J

(0)
i + J

(1)
i

)
will be equal to the sum of the individually evolved J

(0)
i and J

(1)
i .

Here we present the evolved J
(0)
i and J

(1)
i separately for later convenience. In the left

two panels, the leading-order jet functions J
(0)
q,g (z, ωJ , µ) are shown. In this case, the initial

condition for the evolution is simply given by a delta function δ(1−z), as illustrated in blue

at z = 1. We note that a longer evolution, i.e. a lower starting scale due to a smaller value

of R, leads to an increase at small-z as it is expected for an evolution to larger scales. One

also notices that the evolution for the gluon is stronger than for the quark semi-inclusive

jet function. In the two panels on the right side of figure 4, we show the evolution of the

O(αs) correction for the semi-inclusive jet function at NLO, J
(1)
q,g (z, ωJ , µ). Both initial

conditions J
(1)
q,g (z, ωJ , µ) are also divergent at z = 1 since they contain distributions. Note

that in this case, the evolution leads to a decrease both at small- and large-z. A sufficiently

long evolution can turn the evolved functions negative for both small- and large-z.
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3 Application: e+e− → jetX

In this section we consider single inclusive jet production in e+e− collisions, e+e− → jetX.

We demonstrate to the next-to-leading order that the short distance hard functions for

single jet production are the same as those for single hadron production, e+e− → hX,

with only the standard fragmentation functions Dh
i (z, µ) replaced by the semi-inclusive jet

functions Ji(z, ωJ , µ).

3.1 Factorized form

To be specific, we study single inclusive jet production, as well as single inclusive hadron

production for comparison,

e+(k1) + e−(k2)→ jet(p) +X(pX), (3.1)

e+(k1) + e−(k2)→ h(p) +X(pX), (3.2)

where X denotes all other final-state particles besides the measured jet or hadron, with

momentum pX . For simplicity, we assume e+e− annihilates into a virtual photon to demon-

strate our derivation. The virtual photon has four-momentum q = k1 +k2 with the center-

of-mass energy
√
s ≡ Q =

√
q2. We are interested in the region where p2

X ∼ Q2, for which

a standard collinear factorization theorem has been proven for single inclusive hadron pro-

duction in the traditional QCD methods, see, e.g., refs. [60–63]. Here, we will first review

the same factorization formalism within SCET for single hadron production [64] and then

generalize the factorization formalism to single jet production. We find that the factorized

forms are given by

dσh

dpTdη
=
∑
c=q,g

∫
dzc
zc
He+e−→c (p̂, µ)Dh

c (zc, µ), (3.3)

dσjet

dpTdη
=
∑
c=q,g

∫
dzc
zc
He+e−→c (p̂, µ) Jc(zc, ωJ , µ), (3.4)

where p̂ = p/zc is the four-momentum for the parton that fragments into the final-state

hadron h (or that initiates the jet), η and pT are the rapidity and transverse momentum of

the hadron (or jet) in the center-of-mass frame of the incoming leptons, and the jet energy

ωJ = 2pT cosh η. Here in eqs. (3.3) and (3.4), we use exactly the same short-distance hard

functions He+e−→c (p̂, µ), since we will demonstrate that they are the same below. We

choose the cross sections under investigation in eqs. (3.3) and (3.4) to be differential in pT
and η,2 because we want to easily generalize the formalism from e+e− to pp collisions in

the next section.

2This is different from the conventional set-up where one usually computes the cross sections as a function

of the hadron/jet energy. Nevertheless, there are experimental jet measurements based on our set-up, see,

e.g. [65].
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We start with the invariant amplitude M for the process to produce a hadron/jet. The

invariant amplitude M can be written as

Mh = v̄(k1, λ1)γµu(k2, λ2)
e2

Q2
〈hX|Jµ(0)|0〉, (3.5)

Mjet = v̄(k1, λ1)γµu(k2, λ2)
e2

Q2
〈JX|Jµ(0)|0〉, (3.6)

where the subscript h (jet) represents the hadron (jet) production, and the current Jµ(0)

on the hadronic side is

Jµ(0) = ψ̄q(0)γµψq(0). (3.7)

After taking into account the averaging over the incoming polarizations, and at the same

time including the final-state phase space, the cross section can be eventually written as

dσh

dydpT
=
α2

empT
2Q6

LµνW
µν
h , (3.8)

dσjet

dydpT
=
α2

empT
2Q6

LµνW
µν
jet , (3.9)

where the leptonic tensor Lµν has the following expression

Lµν = 2k1µk2ν + 2k1νk2µ −Q2gµν , (3.10)

while the hadronic tensor Wµν can be written as

Wµν
h =

∫
d4x eiq·x〈0|Jµ(x)|hX〉〈hX|Jν(0)|0〉, (3.11)

Wµν
jet =

∫
d4x eiq·x〈0|Jµ(x)|JX〉〈JX|Jν(0)|0〉, (3.12)

where again a summation over the final-state unobserved particles X is implied.

In the region of phase space under consideration p2
X ∼ Q2, the hard fluctuations ∼ p2

X

can be integrated out. Operationally this means we match Wµν onto local operators in the

effective theory which involves only the collinear fields in the direction of the hadron/jet,

as illustrated in figure 5. This technique is the same as the one that has been used in [66],

for inclusive deep inelastic scattering in the so-called operator product expansion (OPE)

region, inclusive Drell-Yan production, or heavy quark production in [64]. Following this

seminal work, we have

Wµν
h →

∫
dωdω′

[
Hµν
e+e−→q(ω, ω

′)Tr

(
n̄/

2
〈0|χn,ω|hX〉〈hX|χ̄n,ω′ |0〉

)
−Hµν

e+e−→g(ω, ω
′)〈0|Bµn⊥,ω|hX〉〈hX|Bn⊥,ω′ µ|0〉

]
+O

(
m2
h/p

2
T

)
, (3.13)

Wµν
jet →

∫
dωdω′

[
Hµν
e+e−→q(ω, ω

′)Tr

(
n̄/

2
〈0|χn,ω|JX〉〈JX|χ̄n,ω′ |0〉

)
−Hµν

e+e−→g(ω, ω
′)〈0|Bµn⊥,ω|JX〉〈JX|Bn⊥,ω′ µ|0〉

]
+O

(
µ2
J/p

2
T

)
. (3.14)
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µ ν

νµ

q

p̂

p
X

Figure 5. Tree-level matching onto the operators for single inclusive hadron/jet production in

e+e− → hX or e+e− → jetX. The red vertical line is the final-state cut.

The above factorization is simply a separation of physics at two different scales. For the

hadron case, it is the scale of hadronization, i.e. the hadron mass mh and the scale of hard

collisions ∼ pT . For jet production, it is the natural scale of the jet function µJ ∼ pTR
and the scale of the hard collisions pT . As µ2

J/p
2
T ≈ R2, our factorization is valid up to the

power corrections of jet radius R.

To proceed further, one realizes that [64, 66], for single hadron production

1

2Nc
Tr

(
n̄/

2
〈0|χn,ω|hX〉〈hX|χ̄n,ω′ |0〉

)
=

∫ 1

0

dzc
zc
δ(ω−)δ

(
zc −

2n̄ · ph
ω+

)
Dh
q (zc), (3.15)

1

2(N2
c − 1)

〈0|Bµn⊥,ω|hX〉〈hX|Bn⊥,ω′ µ|0〉 = − 2

ω+

∫ 1

0

dzc
zc
δ(ω−)δ

(
zc −

2n̄ · ph
ω+

)
Dh
g (zc),

(3.16)

and for single jet production,

1

2Nc
Tr

(
n̄/

2
〈0|χn,ω|JX〉〈JX|χ̄n,ω′ |0〉

)
=

∫ 1

0

dzc
zc
δ(ω−)δ

(
zc −

2n̄ · pJ
ω+

)
Jq(zc, ωJ), (3.17)

1

2(N2
c − 1)

〈0|Bµn⊥,ω|JX〉〈JX|Bn⊥,ω′ µ|0〉 = − 2

ω+

∫ 1

0

dzc
zc
δ(ω−)δ

(
zc −

2n̄ · pJ
ω+

)
Jg(zc, ωJ),

(3.18)

where ω± = ω±ω′. After substituting the above expressions back into eqs. (3.8) and (3.9),

i.e., contracted with the leptonic tensor, we end up with the factorized forms as given in

eqs. (3.3) and (3.4), for single hadron and single jet production, respectively. In other

words, the short-distance hard functions He+e−→c are simply given by the contraction of

the leptonic tensor with the hadronic ones,

Hh
e+e−→c ∝ LµνH

µν, h
e+e−→c(ω+ = 2n̄ · ph/zc, ω− = 0), (3.19)

H jet
e+e−→c ∝ LµνH

µν, jet
e+e−→c(ω+ = 2n̄ · pJ/zc, ω− = 0). (3.20)

3.2 NLO calculations: single hadron

We will now compute in perturbation theory the short-distance hard functions Hh
e+e−→c

and H jet
e+e−→c, and will demonstrate that they are the same to NLO accuracy. This is a
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standard matching calculation, where one replaces the hadron or the jet by a parton state

on both sides, and one calculates both sides in an expansion of the strong coupling constant

αs. For single inclusive hadron production, the NLO results are well-known [67–71]. It is

convenient to write

Hh
e+e−→c(p̂, µ) =

2p̂T
s

dσ̂c(s, p̂T , η, µ)

dvdz
, (3.21)

and thus the cross section for e+e− → hX can be expressed as

dσe
+e−→hX

dpTdη
=

2pT
s

∑
c=q,q̄,g

∫ 1

zmin
c

dzc
z2
c

dσ̂c(s, p̂T , η, µ)

dvdz
Dh
c (zc, µ), (3.22)

where p̂T = pT /zc and zmin
c = 2pT cosh η/

√
s. At the same time we define the v and z

variables as

v = 1− 2p̂T√
ŝ
e−η̂, z =

2p̂T√
s

cosh η . (3.23)

Now the partonic cross section up to the NLO can be written as

dσ̂c
dvdz

=
dσ̂

(0)
c

dv
δ(1− z) +

αs(µ)

2π

dσ̂
(1)
c

dvdz
, (3.24)

where we have the leading order result

dσ̂
(0)
c

dv
=
Nc e

2
qπα

2

s
2(v2 + (1− v)2), (3.25)

and the NLO expressions for both quark and gluon channels within the MS scheme are

given by,

dσ̂
(1)
q

dvdz
=
Nc e

2
qπα

2

s
CF

[
2(v2 + (1− v)2)

(
(1 + z2)

(
ln(1− z)

1− z

)
+

− Pqq(z)

CF

(
ln

(
µ2

s

)
+

3

4

)
+

(
2π2

3
− 27

8

)
δ(1−z) + 2

1+z2

1−z ln z

)
+ 2

1 + z2

z3

(
ln(1−z) + 2 ln z − ln

(
µ2

s

))
×
(
2v2(z2 + z + 1)− 2v(z2 + z + 2) + z2 + 2

)
− 1

2z3

(
2v2(3z4 + 3z3 + 6z2

+12z + 8)− 2v(3z4 + 3z3 + 16z + 16) + 3z4 + 9z3 − 12z2 + 8z + 16
) ]
, (3.26)

dσ̂
(1)
g

dvdz
=
Nc e

2
qπα

2

s
CF

[
4
z2 − 2z + 2

z4
(2v2 + 2vz − 4v + z2 − 2z + 2)

×
(

ln(1− z) + 2 ln z − ln

(
µ2

s

))
− 8

1− z
z4

(6v2 + 6vz − 12v + z2 − 6z + 6)

]
.

(3.27)
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3.3 NLO calculation: single jet

Let us now turn to the calculations of the short-distance hard functions for single inclusive

jet production. At LO, a single parton makes the jet and the semi-inclusive jet functions

are given by Ji(z, ωJ , µ) = δ(1 − z). The short-distance hard functions are calculated

from the standard e+e− → qq̄ channel, and they are the same for single hadron and jet

production, we thus obtain at LO

dσ̂(0), jet
c = dσ̂(0),h

c ≡ dσ̂(0)
c , (3.28)

which is given in eq. (3.24). At NLO, the calculations are more involved. To produce

analytical calculations, we will use the narrow jet approximation, which is equivalent to

requiring the jet to be highly collimated, as it is usually assumed in the SCET computations.

We will follow the computations in [36, 37], where one starts from the NLO single-parton

inclusive cross section (i.e. dσ̂e+e−→cX for e+e− collisions), relevant for the single-inclusive

hadron production, e+e− → hX, as calculated above, and convert these results to the

desired single-inclusive jet cross sections. The procedure is straightforward, and has been

explained in detail in [36, 37]. Here we recall these results for completeness and for later

convenience when we perform the matching onto the semi-inclusive jet functions to obtain

the short-distance hard functions.

In order to convert analytically the single-parton inclusive cross sections to single

inclusive jet cross sections, we use the narrow jet approximation and the fact that the jet

is formed either by a single final-state parton or jointly by two partons, as illustrated in

figure 6. The final expression for the desired partonic jet cross section can be written as3

dσ̂e+e−→jetX =
[
dσ̂q − dσ̂q(g)

]
+
[
dσ̂g − dσ̂g(q)

]
+ dσ̂qg + (q → q̄) , (3.29)

where we suppressed a term for anti-quark q̄, and dσ̂q is the single quark inclusive cross

section as given above, while dσ̂q(g) is the cross section where still q is observed, but g is

also in the cone. Thus their difference dσ̂q − dσ̂q(g) gives exactly the configuration where

only q forms the jet, while g is outside the jet cone. Similarly for dσ̂g − dσ̂g(q) when only g

forms the jet while q is outside the jet cone. On the other hand, dσ̂qg is the cross section

where q and g are both inside the cone and form the jet together. In other words, eq. (3.29)

produces exactly the contributions as illustrated in figure 6.

It may be important to emphasize that the single-parton inclusive cross sections dσ̂q
and dσ̂g are obtained after a subtraction of final-state collinear singularities in the MS

scheme. Thus upon calculation of the combinations −dσ̂q(g) − dσ̂g(q) + dσ̂qg in the above

equation, one also needs to perform an MS subtraction to compensate the aforementioned

subtraction and thus obtain the correct combination, for details, see [36, 37]. The way to

compute dσ̂q(g) and dσ̂g(q) are given in [36]. Since there is only one parton inside the jet,

there is no jet algorithm dependence. On the other hand, the cross section dσ̂qg represents

the situation where both partons q and g jointly form the jet, and it will depend on the jet

algorithm. All of them dσ̂q(g), dσ̂g(q), and dσ̂qg are proportional to the lowest order cross

3Note we do not have the situation where q and q̄ forms the jet together at leading power [72–74], since

gluons do not interact directly with electrons/photons.
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jet jet

e−

e+

(a) (b)

Figure 6. Contributions to the single-inclusive jet cross section from partonic scattering: (a) with

only one parton inside the jet, (b) two essentially collinear partons, q and g, form a narrow jet.

section, with the detailed expressions given in [36, 37] for both cone and anti-kT jets. We

find that they can be cast in the following form:

−dσ̂q(g) = dσ̂(0)
q ⊗ Jq→q(g)(zc, ωJ), (3.30)

−dσ̂g(q) = dσ̂(0)
q ⊗ Jq→(q)g(zc, ωJ), (3.31)

dσ̂qg = dσ̂(0)
q ⊗ Jq→qg(zc, ωJ), (3.32)

where ωJ = 2pT cosh η is the jet energy and ⊗ represents the standard convolution over

the momentum fraction zc. We, thus, obtain

−dσ̂q(g) − dσ̂g(q) + dσ̂qg = dσ̂(0)
q ⊗

[
Jq→q(g)(zc, ωJ) + Jq→(q)g(zc, ωJ) + Jq→qg(zc, ωJ)

]
,

= dσ̂(0)
q ⊗ J (1)

q (zc, ωJ). (3.33)

In the second step, we have used eq. (2.36). At the same time, with an additional MS

subtraction as discussed above to compensate the same subtraction performed for dσ̂q,

we have [
− dσ̂q(g) − dσ̂g(q) + dσ̂qg

]
MS

= dσ̂(0)
q ⊗ J (1)

q (zc, ωJ , µ), (3.34)

where J
(1)
q (zc, ωJ , µ) is the renormalized quark jet function given in eq. (2.68).

Finally, realizing that the single-parton inclusive cross section can be written as a

trivial convolution with a δ(1− z) function, we can write

dσ̂c = dσ̂(1)
c ⊗ J (0)

c (zc, ωJ , µ), (3.35)

with J
(0)
c (zc, ωJ , µ) = δ(1− zc). We can then rewrite eq. (3.29) up to the NLO as follows

dσe+e−→jetX =
[
dσ̂(0)

q + dσ̂(1)
q

]
⊗ J (0)

q (zc, ωJ , µ) + dσ̂(0)
q ⊗ J (1)

q (zc, ωJ , µ)

+ dσ̂(1)
g ⊗ J (0)

g (zc, ωJ , µ) + (q → q̄). (3.36)

This is exactly the perturbative expansion up to NLO of our factorized formula given in

eq. (3.4), i.e.

dσe+e−→jetX =
∑
c

dσ̂c ⊗ Jc(zc, ωJ , µ) (3.37)

=
∑
c

[
dσ̂(0)

c + dσ̂(1)
c

]
⊗ [J (0)

c (zc, ωJ , µ) + J (1)
c (zc, ωJ , µ)], (3.38)
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where we drop O(α2
s) contributions that appear in the form of dσ̂

(1)
c ⊗J (1)

c above. Eq. (3.37)

clearly demonstrates that the short-distance hard functions are exactly the same as those

for single hadron production up to NLO. Even though we did not perform the matching

calculations beyond NLO, and thus cannot make a definite statement but we conjecture

that such a conclusion remains true even beyond the NLO. This is because the short-

distance hard functions only depend on the hard scale µ ∼ pT (not on the lower scale

associated with jet µJ ∼ pTR). Within MS scheme, there seems no other way around. Of

course this could be checked through explicit calculations.

4 Phenomenology: pp → jetX

In this section, we show phenomenological applications for single inclusive jet production

in pp collisions at the LHC. In particular, we present how the resummation of logarithms

of the small jet radius affects the inclusive jet cross sections.

4.1 Matching NLO and lnR resummation

Following our discussion on the factorization formalism for e+e− → jetX, we can easily

generalize the formula to write the cross section for pp→ jetX as

dσpp→jetX

dpTdη
=

2pT
s

∑
a,b,c

∫ 1

xmin
a

dxa
xa

fa(xa, µ)

∫ 1

xmin
b

dxb
xb

fb(xb, µ)

×
∫ 1

zmin
c

dzc
z2
c

dσ̂cab(ŝ, p̂T , η̂, µ)

dvdz
Jc(zc, ωJ , µ). (4.1)

Such a factorized formula has already been conjectured in [56], if one chooses the fixed NLO

results for Jc(zc, ωJ , µ) as given in eqs. (2.68) and (2.69). Here s, pT and η correspond to

the center of mass (CM) energy, the jet transverse momentum and jet rapidity, respectively.

The hard functions dσ̂cab(ŝ, p̂T , η̂, µ) are functions of the corresponding partonic variables:

the partonic CM energy ŝ = xaxbs, the partonic transverse momentum p̂T = pT /zc and

the partonic rapidity η̂ = η − ln(xa/xb)/2. The variables v, z can be expressed in terms of

these partonic variables

v = 1− 2p̂T√
ŝ
e−η̂, z =

2p̂T√
s

cosh η̂ . (4.2)

Up to one loop, the hard functions take the form

dσ̂cab
dvdz

=
dσ̂

c,(0)
ab

dv
δ(1− z) +

αs(µ)

2π

dσ̂
c,(1)
ab

dvdz
. (4.3)

As demonstrated above, the hard functions here are the same as the hard functions for the

process pp → hX. The corresponding expressions were presented in [75, 76]. Finally, the

integration limits in (4.1) are customarily written in terms of the hadronic variables V,Z,

V = 1− 2pT√
s
e−η, Z =

2pT
s

cosh η , (4.4)
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and are given by

xmin
a = 1− 1− Z

V
, xmin

b =
1− V

1 + (1− V − Z)/xa
, zmin

c =
1− V
xb

− 1− V − Z
xa

. (4.5)

With our evolution equations for the semi-inclusive jet functions, Jq,g(z, ωJ , µ), which

can be evolved from scale µJ = pTR to the scale µ ∼ pT as in eq. (2.80), we can resum the

large logarithms of the jet radius lnR. For phenomenological predictions, it is also necessary

to combine the lnR resummation with the results from the fixed-order calculations. For

concreteness, in most of the discussion in the rest of the paper we will perform DGLAP

evolution for the semi-inclusive jet functions with LO O(αs) splitting functions as given

in section 2.6, commonly referred as leading logarithmic resummation (LLR). At the end

of the section, we comment on next-to-leading logarithmic resummation (NLLR). In order

to combine NLO and LLR results, we write the inclusive jet cross section in eq. (4.1)

schematically as

dσpp→jetX ∼
(
dσ̂

c,(0)
ab + dσ̂

c,(1)
ab

)
⊗
(
J (0)
c + J (1)

c

)
=
(
dσ̂

c,(0)
ab + dσ̂

c,(1)
ab

)
⊗ J (0)

c + dσ̂
c,(0)
ab ⊗ J (1)

c +O(α2
s) , (4.6)

where the term dσ̂
c,(1)
ab ⊗ J (1)

c is at O(α2
s), i.e., part of NNLO contribution, and will be

dropped for consistency. This allows us to get back to the NLO calculation of [37] in

the limit of having no evolution for the semi-inclusive jet function. At the same time,

when we evolve both J
(0)
c and J

(1)
c through our DGLAP evolution equations eq. (2.80)

from µJ = pTR to µ ∼ pT , we are resumming the logs of R. Since the initial scale of the

evolution depends on R, we obtain the limit of no evolution for R → 1. Even though the

limit of no evolution, R → 1, is beyond the approximation of narrow jets, it serves as an

important numerical cross check of our DGLAP-based resummation code.

4.2 Dealing with the semi-inclusive jet function at z → 1

As can be seen already from figure 4, the evolved semi-inclusive jet functions are still

divergent for z → 1. Therefore, we can not directly use them in order to calculate a cross

section. For example, for pp→ jetX, we would have to integrate the jet functions over zc
up to one, where they are divergent. We would like to emphasize again that the evolution

does not render the initially divergent distributions finite for z = 1. We deal with this

issue by adopting a prescription developed in the context of fragmentation functions for

quarkonia in [59]. The main idea is to separate the integral in eq. (4.1) into two pieces by

introducing a cutoff ε. This way, we can integrate part of the cross section analytically

instead of numerically. Schematically, we have∫ 1

zmin
c

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) =

∫ 1−ε

zmin
c

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) +

∫ 1

1−ε

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) , (4.7)

where we have left the dependence on other variables than zc implicit to shorten our

notation. Note that the variables v and z depend on zc as specified in eq. (4.2). The

cutoff parameter ε is a small positive number chosen such that the the first integral can be
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computed numerically up to 1− ε using the evolved semi-inclusive jet functions. Our final

numerical results are in fact independent of the choice of ε to a remarkable degree. On the

other hand, following [59], we rewrite the second term in eq. (4.7) as∫ 1

1−ε

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) =

∫ 1

1−ε

dzc
z2
c

[
dσ̂cab(zc)

dvdz
z−Nc

] [
zNc Jc(zc)

]
≈
[
dσ̂cab(zc)

dvdz

]
zc=1

×
∫ 1

1−ε
dzc z

N−2
c Jc(zc) (4.8)

=

[
dσ̂cab(zc)

dvdz

]
zc=1

×
[∫ 1

0
dzc z

N−2
c Jc(zc)−

∫ 1−ε

0
dzc z

N−2
c Jc(zc)

]
.

Here, we purposely multiply the semi-inclusive jet function Jc(zc) by a factor zNc to ensure

that the second factor in the second line is finite over the integration region, which is

true as long as N > 2. The approximation in the second line is obtained by expanding

z−Nc dσ̂cab(zc)/dvdz in powers of 1− zc and keeping only the first term in the expansion. In

the last line, the first term in the bracket can be calculated numerically and it is simply

given by the N − 1 Mellin moments of the evolved semi-inclusive jet function. In practice,

we can obtain this part from our evolution code before the Mellin inverse is taken. On the

other hand, the second term in the bracket is given by the truncated N−1 Mellin moments

of the evolved semi-inclusive jet functions, which can be calculated numerically as it only

requires the Jc(zc) for zc < 1− ε as input. For this approach to work, eq. (4.8) should be

independent of the choice of N . We find that the numerical results change only ∼ 0.01%

for N in the range of N = 3 − 7 [34, 59]. To summarize, we calculate the single inclusive

jet cross section in the following way∫ 1

zmin
c

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) ≈

∫ 1−ε

zmin
c

dzc
z2
c

dσ̂cab(zc)

dvdz
Jc(zc) (4.9)

+

[
dσ̂cab(zc)

dvdz

]
zc=1

×
[∫ 1

0
dzc z

N−2
c Jc(zc)−

∫ 1−ε

0
dzc z

N−2
c Jc(zc)

]
.

We can test this prescription numerically by considering the case of almost no evolution,

i.e. by choosing R → 1 and then comparing with the calculations from a standard NLO

code for jet cross sections [36, 37, 75].

4.3 Numerical results for the LHC

We now turn to the numerical results for inclusive jet cross sections at the LHC. As an

example, we choose a CM energy of
√
s = 8 TeV and the jet rapidity |η| < 0.5. We perform

the numerical calculations using the CTEQ6.6M NLO parton distribution functions [77]. In

figure 7, we plot both NLO (red) and NLO + LLR (blue) cross sections as a function of the

jet transverse momentum pT for different values of R = 0.99−0.05. Both cross sections are

normalized to the leading-order result for better visualization. In the calculations, we take

the nominal scale choices: both the renormalization scale µR (associated with αs) and the

factorization scale µF (associated with the parton distributions functions in the incoming

protons) are equal to pT of the jet, µR = µF = pT ; the natural scale for semi-inclusive jet
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Figure 7. NLO (red) and NLO + LLR (blue) cross sections normalized to the leading-order result

for different values of R = 0.99 − 0.05. The small-R approximation is only valid up to R ≈ 0.7.

However, R = 0.99 illustrates that the resummed result does converge to the NLO result for R→ 1.

As an example, we choose
√
s = 8 TeV and |η| < 0.5.

functions µJ = pTR as given in eq. (2.74), which is further evolved to scale µ = pT . The

small-R approximation is only valid up to R ≈ 0.7, see the detailed discussion in [35, 37].

However, R = 0.99 illustrates that the resummed result does converge to the NLO result

for R→ 1, as can be seen clearly in the top left panel. We also find that when compared to

the NLO results, NLO + LLR results lead to about 10− 20% reduction in the cross section

for the intermediate R = 0.3 − 0.5. As R becomes even smaller, the reduction becomes

more evident.

To see more clearly the reduction of the cross section as R decreases, in figure 8 we show

the NLO (red) and NLO + LLR (blue) cross sections normalized to the leading-order result,

now as a function of the jet radius R for different values of the jet transverse momentum

pT = 100, 500, 1100, 1700 GeV, respectively. Again, we choose
√
s = 8 TeV and |η| < 0.5.

Note that here we chose to plot the ratio only until R = 0.7 which is the uppermost value

where the small-R approximation is expected to be valid. The reduction from the NLO

result can be as large as 30− 40% at pT = 1700 GeV for a very small R ∼ 0.05.
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Figure 8. The NLO (red) and NLO + LLR (blue) cross sections normalized to the leading-order

result are now shown as a function of R for different values of the jet transverse momentum pT =

100, 500, 1100, 1700 GeV. Again, we choose
√
s = 8 TeV and |η| < 0.5. Note that here we chose to

plot the ratio only until R = 0.7 which is the uppermost value where the small-R approximation is

expected to be valid.

Let us now discuss the theoretical uncertainties of our factorization formalism, es-

pecially those from the sale variations. In figure 9 we plot the scale uncertainty of the

NLO result (green) and the NLO + LLR resummed calculation (red). Both calculations

are normalized by the LO cross section, with the LO result calculated at the nominal scales

µR = µF = pT . For proper comparison, we vary in both cases only the renormalization and

the factorization scales independently pT /2 < µR,F < pT and take the envelope. Note that

for the resummed calculation, we keep the jet scale µJ and the final scale of the DGLAP

evolution fixed at the nominal values: µJ = pTR and µ = pT . We present results for√
s = 8 TeV, |η| < 0.5 and R = 0.1 (left panel) and R = 0.7 (right panel). As one can

see, for the small jet radius R = 0.1 case, there is a strong reduction in the cross section

from the NLO+LLR results in the high pT region, and the uncertainty bands for NLO

and NLO+LLR results do not overlap. It might be worthwhile mentioning that the scale

uncertainty of the NLO result for R = 0.1 is extremely small in the high pT & 1000 GeV

region. Such a small (almost vanishing) scale dependence is usually considered to be un-

physical, likely to be an artifact of the NLO formalism, as advocated in [35]. However, such

an unphysically small scale dependence does not appear in our lnR-resummed NLO+LLR
result, which has an uncertainty band of similar size in the whole pT region.

Within SCET, the single inclusive jet cross section will eventually contain simply two

scales. One is the renormalization scale µ for the hard function and the jet function4

4One might simply consider this as the case when one chooses µR = µF to be equal and varies them

together.
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Figure 9. Comparison of the scale dependence of the NLO result (green) and the NLO + LLR

resummed calculation (red). Both calculations are normalized by the leading-order cross section.

For a proper comparison, we vary in both cases only the renormalization and the factorization scales

independently pT /2 < µR,F < pT and take the envelope. Note that for the resummed calculation

we keep the jet scale µJ and the final scale of the DGLAP evolution fixed. We present results for√
s = 8 TeV, |η| < 0.5 and R = 0.1 (left), R = 0.7 (right).

as given in the factorization formalism in eq. (4.1). The other one is the scale µJ that

arises when we perform the lnR resummation, i.e., when we evolve the semi-inclusive jet

function from the initial scale µJ to the renormalization scale µ. We vary both of them

by a factor of 2 with respect to their natural values: pT /2 < µ < 2pT and pTR/2 <

µJ < 2pTR. In figure 10, we plot the scale uncertainty of the LO result (green) and the

NLO + LLR resummed calculation (red). Again both results are normalized to the LO cross

section calculated at the nominal renormalization scale µ = pT . One clearly sees that the

theoretical uncertainties are significantly reduced from the LO to the NLO+LLR results.

So far we have presented NLO+LLR results. In fact we can also easily implement the

NLO+NLLR cross sections. To do that, one starts from the matching formula in eq. (4.6),

and performs the NLO DGLAP evolution for the semi-inclusive jet functions J
(0,1)
c by using

NLO O(α2
s) splitting functions. One might recall that for a consistent NLO calculations of

single hadron production, we usually use NLO-evolved fragmentation functions Dh
i (z, µ).

In the same spirit, let us perform NLO-evolved semi-inclusive jet functions and assess their

impact in the cross sections. In figure 11, we plot the ratio of the NLO+NLLR result over

NLO+LLR calculation for R = 0.3 as a function of jet transverse momentum pT . There

are two common solutions in Mellin moment space,5 and we plot both of them: truncated

solution (red) and iterated solution (blue). We find that such a ratio is only around 1%

level, indicating that the NLO+NLLR resummation does not provide significant effects on

the inclusive jet cross sections compared with NLO+LLR.

5For details, see refs. [57, 58].
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Figure 10. Comparison of the scale dependence of the LO result (green) and the NLO + LLR

resummed calculation (red). Both calculations are normalized by the nominal leading-order cross

section. We vary the renormalization scale pT /2 < µ < 2pT , as well as the jet scale pTR/2 < µJ <

2pTR independently, and take the envelope. We present results for
√
s = 8 TeV, |η| < 0.5 and

R = 0.1 (left panel), R = 0.7 (right panel).
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Figure 11. The ratio of NLO+NLLR cross section over NLO+LLR result for jet radius R = 0.3 is

plotted as a function of jet transverse momentum pT . There are two common solutions in Mellin

moment space, and we plot both of them: truncated solution (red) and iterated solution (blue).

5 Summary

In this paper, motivated by the need for small jet radius resummation for inclusive jet

cross sections, we introduced a new kind of jet function: the semi-inclusive jet function

Ji(z, ωJ , µ). It describes the jet initiated by a parton i which retains a momentum fraction z

of the parent parton energy. We demonstrated that it is these semi-inclusive jet functions

for collinear quarks and gluons that appear in the factorized formalism for the single
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inclusive jet cross sections. When implemented in the factorization formula, single inclusive

jet production shares the same short-distance hard functions as single inclusive hadron

production, with only the fragmentation functions Dh
i (z, µ) replaced by Ji(z, ωJ , µ). Within

Soft Collinear Effective Theory, we calculated both Jq(z, ωJ , µ) and Jg(z, ωJ , µ) to the next-

to-leading order and demonstrated that the renormalization group equations of Ji(z, ωJ , µ)

follow exactly the usual timelike DGLAP evolution. Such RG equations can be used to

perform the lnR resummation for inclusive jet cross sections with a small jet radius R.

It is important to emphasize again that our approach for inclusive jet cross sections is

different from the usual exclusive jet production where different types of jet functions

enter into the calculations. Finally, we presented phenomenological applications of such

semi-inclusive jet functions for inclusive jet production in pp collisions at the LHC. We

matched our lnR resummation to the fixed NLO results, and produced both NLO+LLR
and NLO+NLLR results. We found numerically that NLO+LLR and NLO+NLLR lead to

very similar results, and a reduction of 10 − 20% in the cross section compared with the

NLO results for intermediate R = 0.3−0.5. Our method can be easily generalized to study

jet substructure in the case of inclusive jet production [78].
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