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1 Introduction

Hydrodynamics is a powerful tool to describe the long wavelength physics of quantum field

theories at finite temperature. Remarkably, holography provides a dual realization of such

effective descriptions, typically at strong coupling in the field theory, in terms of the long

wavelength dynamics of black holes. The seminal example of this has been the calculation

of the viscosity to entropy ratio [1, 2] (see [3] for a review) of strongly coupled plasmas using
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black holes via the AdS/CFT correspondence. This deep relation between fluid dynamics

and gravity has led to the fluid/gravity correspondence [4, 5] (see [6] for a review) which

has sparked numerous novel insights on both sides of the duality.1

These developments initially focused on the dual gravitational formulation of rela-

tivistic hydrodynamics, since in the standard AdS holography the dual field theories are

relativistic. Motivated by applying holography in a wider setting, in particular strongly cou-

pled non-relativistic field theories, more general holographic bulk theories with anisotropic

scaling between time and space, characterized by the dynamical exponent z, have been

introduced [11–14]. These include include Schrödinger and Lifshitz space-times, and in

the latter case2 there are different bulk realizations (e.g. Einstein-Maxwell-dilaton (EMD)

and Einstein-Proca-dilaton (EPD) models) which have distinct physical features. All these

holographic models serve to describe different types of non-relativistic field theories, where

in the former there is Galilean boost symmetry, while in the latter there is a broken boost

symmetry. For possible applications to condensed matter systems, but also to further our

understanding of holography in non-AdS setups, it is thus a natural question to generalize

the fluid/gravity correspondence to these different classes of non-relativistic field theories.

This may also serve as a step towards a more general classification of such field theories.

For theories with Schrödinger symmetries a corresponding version of (conformal) non-

relativistic fluid/gravity correspondence was developed in [16–19]. Certain realizations of

Lifshitz hydrodynamics and their holographic description have subsequently been consid-

ered in [20–22]. Another class of Lifshitz theories and their hydrodynamics was holograph-

ically studied in the context of the Einstein-Maxwell-dilaton (EMD) model [23]. In these

theories there is an extra bulk U(1) symmetry and since the dilaton runs logarithmically

close to the boundary, there is a new scaling exponent on top of the dynamical exponent z.

In this paper we will focus on yet another class of Lifshitz theories, namely those that

have Lifshitz symmetry in the bulk and Schrödinger symmetry with broken particle number

on the boundary. For a large class of EPD models, it was shown in [24–26] that holography

in such bulk theories is dual to non-relativistic field theories of this type, coupled to a

background torsional Newton-Cartan geometry that is induced on the boundary. Our

aim is therefore to find a gravitational dual realization of the hydrodynamics, or rather

the perfect fluid limit, of this class of non-relativistic theories by constructing appropriate

Lifshitz black branes.

A classification of the different versions of Lifshitz hydrodynamics will be given in

the upcoming work [27] using a field theory perspective. The novel version of Lifshitz

hydrodynamics that we find in this paper is a holographic realization of one particular

class, which will be also discussed in [27] with field theory examples.3 We will find in this

paper that this version of Lifshitz hydrodynamics requires the construction of a new class

1For asymptotically flat black branes the blackfold approach [7–9] also gives a relation between the long

wavelength dynamics of black branes and fluids that live on dynamically embedded surfaces. Applied to

D3-branes this has been shown to encapsulate AdS fluid/gravity [10].
2See [15] for a review on Lifshitz holography.
3See also [28] for a discussion on field theories coupled to torsional Newton-Cartan geometry with broken

Schrödinger symmetries.
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of four-dimensional z = 2 Lifshitz black branes that have a non-zero linear momentum.

While, as mentioned above, a large class of general z Lifshitz space-times can be constructed

in the EPD model, we restrict for technical reasons to a particular EPD model with z = 2

solutions, that can be obtained by Scherk-Schwarz circle reduction of AdS5 gravity coupled

to a free real scalar field.

Our new z = 2 Lifshitz black brane solutions exhibit the following features:

• The linear momentum of the black brane cannot be obtained by a boost transforma-

tion, and hence this class of solutions is physically distinct from unboosted solutions.

• The (squared) magnitude of the boost velocity plays the role of a chemical potential

dual to the mass density. Consequently, the mass density occurs asymptotically as

an extra parameter on top of the energy, even when the velocity is zero.

• The black brane configurations describe a new class of Lifshitz perfect fluids that are

obtained by breaking particle number symmetry in Schrödinger perfect fluids.

In further detail, the thermodynamics for these Lifshitz black branes can be summarized by

E + P = Ts+
1

2
ρV 2 , (1.1)

δE = Tδs+
1

2
V 2δρ , (1.2)

where E is the energy density, P the pressure with equation of state P = E (2 spatial

dimensions with z = 2), T temperature, s entropy density, ρ mass density and V 2 = V iV i

with V i the fluid velocity.

Outline. The outline of the paper is as follows. In section 2 we introduce the Einstein-

Proca-dilaton (EPD) theory which consists of Einstein gravity coupled to a massive vector

and a dilaton with arbitrary dilaton-dependent couplings between the massive vector and

the dilaton. In section 2.2 we show that this model admits, under some mild restrictions on

the dilaton-dependent coupling functions, Lifshitz solutions for any value of the dynamical

exponent z. Important for the rest of this work we show in section 2.3 that there is one

EPD model that can uplifted to a 5-dimensional AdS gravity theory coupled to a free real

scalar field. This specific model will be referred to as the upliftable model and it admits

z = 2 Lifshitz solutions.

For the higher-dimensional AdS theory it is known how to perform holographic renor-

malization and by reducing the result to one dimension lower we can obtain the relevant

counterterms and near-boundary asymptotic expansions. This reduction is of the Scherk-

Schwarz type meaning that the 5-dimensional scalar field is required to come back to itself

up to a shift (which is a global symmetry) upon going around the compact 5th dimension.

In appendix B we provide the details of the holographic renormalization before and after

the dimensional reduction. In section B.5 we give a proof that the reduction is consistent.

The reduction in the bulk is everywhere along a spacelike circle however on the bound-

ary (due to conformal rescaling) the circle is null. Hence from a boundary perspective we are

dealing with a null reduction. It is well known that null reductions of Lorentzian geometries,
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in this case the boundary of the asymptotically AdS5 space-time, lead to Newton-Cartan

geometries. The details of this null reduction for both the metric and energy-momentum

tensor are given in appendix A.

Section 3 is concerned with the construction and properties of Lifshitz black branes

with linear momentum. We start with the ansatz in section 3.1 where we also show that

the effective action, that reproduces the equations of motion of the EPD model in which

our ansatz has been substituted, possesses two scale symmetries. This leads to two Noether

charges or first integrals of motion that are constant along the holographic coordinate. The

following sections 3.2–3.4 study the properties of the solution near the boundary and near

the horizon. In the last two subsections 3.5 and 3.6 we work out the thermodynamic proper-

ties of the solution showing that the magnitude of the velocity acts like a chemical potential

whose conjugate variable is the mass density. We further derive an Euler-type thermody-

namic relation for Lifshitz perfect fluids using the conserved Noether charges and once more

using the Killing charges associated with bulk Killing vectors. We end with a discussion of

the first law of thermodynamics (summarized in (1.1), (1.2)) for these Lifshitz black branes.

Section 4 can be read independently from sections 2 and 3. It only requires appendix A.

It takes the point of view that these Lifshitz perfect fluids can be obtained by dimensional

reduction of a relativistic perfect fluid (as discussed in appendix A.3) in the presence of

a scalar source that is linearly dependent on the circle coordinate. It presents the Ward

identities of a Lifshitz fluid and the expressions for the energy-momentum tensor and mass

current at the perfect fluid level. The goal of this section is to derive the first law of our

Lifshitz perfect fluids from the requirement that the Ward identities lead to the existence

of a conserved entropy current. Finally, we present our conclusions and a number of open

questions in section 5.

2 The bulk theory

Lifshitz space-times as a solution of a theory with Einstein gravity coupled to matter fall

into 2 classes. These are the Einstein-Proca-dilaton (EPD) theories of [29, 30] and the

Einstein-Maxwell dilaton (EMD) theories of [14, 31]. We are interested in Lifshitz black

brane solutions of the EPD models and to ultimately use them as a starting point to set up

a fluid/gravity correspondence for Lifshitz space-times. Black brane solutions of theories

with massive vectors were studied for models without a dilaton in [32–34]. However in

such theories the solutions are not analytically known. Nevertheless it is possible to work

out the thermodynamics of these solutions by using first integrals of motion (with respect

to the holographic radial coordinate) that allows one to relate near-horizon expansions to

asymptotic expansions. We will follow a similar approach here.

Regarding Lifshitz black brane solutions of the EMD models, they are known ana-

lytically however they have different physical properties due to the presence of an extra

bulk U(1) symmetry and the fact that the dilaton is running logarithmically close to the

boundary which introduces a new scaling exponent on top of the dynamical exponent z.

The fluid/gravity correspondence for these black branes was studied in [23].
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In this section we will introduce the EPD model and discuss its Lifshitz solutions. In

the last section 2.3 we will show that there is a specific EPD model that can be obtained

from dimensional reduction of an action in one dimension higher that admits asymptotically

AdS solutions. This so-called upliftable model will be used throughout the rest of this work.

2.1 The EPD model

The general class of 4-dimensional bulk EPD models is described by the following family

of actions

S =

∫
d4x
√
−g
(
R− 1

4
Z(Φ)F 2 − 1

2
W (Φ)B2 − x

2
(∂Φ)2 − V (Φ)

)
, (2.1)

where F = dB. The equations of motion are

GMN =
x

2

(
∂MΦ∂NΦ− 1

2
(∂Φ)2gMN

)
− 1

2
V (Φ)gMN

+
1

2
Z(Φ)

(
FMPFN

P − 1

4
F 2gMN

)
+

1

2
W (Φ)

(
BMBN −

1

2
B2gMN

)
, (2.2)

x√
−g

∂M
(√
−g∂MΦ

)
=

1

4

dZ

dΦ
F 2 +

1

2

dW

dΦ
B2 +

dV

dΦ
, (2.3)

1√
−g

∂M
(√
−gZ(Φ)FMN

)
= W (Φ)BN . (2.4)

The parameter x can always be set equal to one but often it is more convenient to take some

other value for it. It will prove convenient to make the following Stückelberg decomposition

of the massive vector field

BM = AM − ∂MΞ . (2.5)

The scalar Ξ has dimensions of length and all other fields are dimensionless.

2.2 Lifshitz solution

The equations of motion admit the following Lifshitz solutions (with z > 1)

ds2 = − 1

r2z
dt2 +

1

r2

(
dr2 + dx2 + dy2

)
, (2.6)

B = A0
1

rz
dt , (2.7)

Φ = Φ? , (2.8)

provided that

A2
0 =

2(z − 1)

zZ0
, (2.9)

W0

Z0
= 2z , (2.10)

V0 = −
(
z2 + z + 4

)
, (2.11)

V1 = (za+ 2b)(z − 1) . (2.12)
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where

a =
Z1

Z0
, b =

W1

W0
. (2.13)

Above we have used the notation

V0 ≡ V (Φ∗) , V1 ≡
dV

dΦ

∣∣∣
Φ=Φ∗

, V2 ≡
d2V

dΦ2

∣∣∣
Φ=Φ∗

(2.14)

etc. where Φ? is a constant. Equations (2.10) and (2.11) determine the values of Φ∗ and z

in terms of the functions appearing in the action. Equation (2.9) fixes A0, and (2.12) is a

condition on the potential in order that Lifshitz is a solution of the family of actions (2.1).

We note that there are also solutions of the EPD model with a logarithmically running

scalar whose metric is a Lifshitz space-time [29, 30], but since these involve an additional

scaling exponent these will not be considered here.

We can without loss of generality always perform a constant shift of Φ and redefine

the functions Z, W and V such that for the new Φ the solution has Φ? = 0. We will from

now on always assume this has been done.

In order to study the boundary fluid properties (or even only thermodynamic prop-

erties as we will do here) one needs to understand the near-boundary expansion and the

identification in that expansion of all the sources and vevs. We will restrict our attention

to a specific model for which this problem has been solved because it can be related to an

AdS holographic renormalization problem in one dimension higher. The general features

of Lifshitz black brane solutions of other EPD models will have to wait until we have un-

derstood fully the problem of performing holographic renormalization for asymptotically

Lifshitz solutions of the general class of EPD models (see appendix B.6 for additional com-

ments). The model for which we do have full control of the asymptotic expansion is called

the upliftable model and this will be the subject of the next subsection.

2.3 The upliftable model

When we make the choices

Z = e3Φ , W = 4 , V (Φ) = 2e−3Φ − 12e−Φ , x = 3 . (2.15)

the action (2.1) can be uplifted to

S =
1

2κ2
5

∫
d5x
√
−G

(
R+ 12− 1

2
∂Mψ∂

Mψ

)
, (2.16)

where κ2
5 = 8πG5 with G5 the 5-dimensional Newton’s constant and where M = (u,M).

The relation between the 5- and 4-dimensional theories is via a so-called Scherk-Schwarz

reduction whereby we demand that the scalar field ψ when going around the compactifi-

cation circle comes back to itself up to a shift. This is also known as a twisted reduction.

This is possible because the higher-dimensional theory has a shift symmetry acting on the

scalar. The Scherk-Schwarz reduction leading to (2.1) with the choices (2.15) is obtained

– 6 –
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by the following ansatz

ds2
5 = GMNdxMdxN =

dr2

r2
+ γABdx

AdxB = e−ΦgMNdx
MdxN + e2Φ

(
du+AMdx

M
)2

= e−Φ

(
eΦdr

2

r2
+ hµνdx

µdxν
)

+ e2Φ (du+Aµdx
µ)2 , (2.17)

ψ = 2u+ 2Ξ , (2.18)

where the four dimensional fields gMN , AM , Ξ and Φ are independent of the fifth coordinate

u which is periodically identified u ∼ u + 2πL. In our normalization the 4-dimensional

Newton’s constant G4 obeys 16πG4 = 1. This means that 5-dimensional Newton’s constant

G5 obeys 2πL
16πG5

= 1
16πG4

= 1.

What the Scherk-Schwarz reduction does is that it gauges the shift symmetry of ψ using

the Kaluza-Klein vector. In 4 dimensions this results in a covariant derivative acting on Ξ.

This covariant derivative can be read as a massive vector field B where B is given by (2.5).

The consistency of the reduction will be proven in appendix B.5. We now specialize to the

case of the upliftable model (2.15) because for this theory we have full control over the

asymptotic solution space.

3 Black branes with linear momentum

The goal of this work is to construct the gravity dual of a Lifshitz perfect fluid. The

Lifshitz algebra does not contain a boost generator. We will be interested in cases where

the Lifshitz algebra arises from a larger algebra that contains boosts4 by some explicit

symmetry breaking. The bulk Lifshitz space-time has no boost Killing vector and the

EPD model has no additional local symmetries that could combine with a space-time

transformation to give an additional global symmetry like a Galilean boost.5 Hence in

order to study perfect fluids with a non-zero velocity we cannot simply boost a static

Lifshitz black brane and promote the boost velocity to the fluid velocity. If we do that for

a static Lifshitz black brane solution of the EPD model we simply describe a static black

brane in a moving coordinate system and that is not equivalent to a moving black brane in

a static coordinate system because of the absence of a boost symmetry. That means that

we need to construct a new class of Lifshitz black branes that has a non-zero velocity or as

we shall say non-zero linear momentum. We will construct these solutions near the Lifshitz

boundary and near the horizon. We will then construct first integrals of motion to relate

near-horizon quantities such as temperature and entropy to near-boundary quantities such

as energy and mass density.6

4These can only be Galilean or Carrollian boosts as these are compatible with a z > 1 scaling. We

cannot obtain a Lifshitz algebra by breaking Lorentz boosts because these require z = 1.
5What we have in mind here is some bulk dual of the mechanism discussed in [28, 35] whereby a

boundary space-time transformations combined with a certain U(1) transformation leads to an additional

global symmetry. For example Galilean boost symmetries of the Schrödinger equation come about by a

combination of a space-time Galilean coordinate transformation and a U(1) phase transformation of the

wave function. The latter can be traded for a U(1) transformation of a background gauge field.
6If we assume that a Galilean boost symmetry has been broken, the velocity V i or rather by rotational

invariance, its magnitude V 2, will be a chemical potential. On dimensional grounds it follows that the dual
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3.1 The ansatz

We assume that the black brane solution admits time and space translation Killing vectors.

We can perform a rotation to make sure that the linear momentum is only along the y-

direction. The full non-linear solution is thus of the form

ds2
4 = −F1(r)

dt2

r4
+

1

F2(r)

dr2

r2
+ F3(r)

dx2

r2
+ F4(r)

(
dy

r
+N(r)

dt

r2

)2

, (3.1)

B = G1(r)
dt

r2
+G2(r)

(
dy

r
+N(r)

dt

r2

)
, (3.2)

Φ = Φ(r) , (3.3)

where we did not fix the r reparametrization invariance. The powers in r are chosen for

convenience to match with the Lifshitz scaling of the boundary coordinates t, x and y.

We can go to Eddington-Finkelstein coordinates7 by defining V and Y coordinates as

follows

dt = dV + r (F1F2)−1/2 dr , (3.4)

dy = dY −N (F1F2)−1/2 dr , (3.5)

leading to

ds2
4 = −F1

dV 2

r4
− 2

(
F1

F2

)1/2 dV dr

r3
+ F3

dx2

r2
+ F4

(
dY

r
+N

dV

r2

)2

, (3.6)

B = G1
dV

r2
+

G1

(F1F2)1/2

dr

r
+G2

(
dY

r
+N

dV

r2

)
. (3.7)

Substituting the ansatz (3.1)–(3.3) into the bulk equations of motion (2.2)–(2.4)

for (2.15) and integrating the equations to an action leads to the following effective La-

grangian for the equations of motion

L = r−5 (F1F2F3F4)1/2

[
r2

2

F ′1
F1

F ′3
F3

+
r2

2

F ′1
F1

F ′4
F4
− rF

′
3

F3
− rF

′
4

F4
+ 2r

F ′2
F2

+
r2

2

F ′3F
′
4

F3F4
− 6

+
1

2

F4 (rN ′ −N)2

F1
+

1

2

Z (rG′1 − 2G1)2

F1
+ 2

G2
1

F1F2
− 3

2
r2Φ′2 − V

F2
− 2

G2
2

F2F4
(3.8)

+
1

2

ZG2
2(rN ′−N)2

F1
− 2

ZG1G2(rN ′−N)

F1
+ r

ZG2G
′
1(rN ′−N)

F1
− 1

2

Z(rG′2 −G2)2

F4

]
,

where the independent functions are F1 to F4, N , G1, G2, Φ and their derivatives with re-

spect to r. This effective Lagrangian can also be obtained by substituting the ansatz (3.1)–

(3.3) into the bulk action (2.1) with (2.15) and performing a few partial integrations. This

thermodynamic variable must be a mass density denoted by ρ. We will show that Lifshitz black branes

indeed contain such a quantity.
7Null geodesics with generalized momenta ∂L

∂ẋ
= 0 and ∂L

∂ẏ
= 0 where L = 1

2
gµν ẋ

µẋν correspond to

V = cst and Y = cst.

– 8 –
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ansatz is a generalization of a static black brane with zero momentum corresponding to

setting G2 = N = 0 and F3 = F4.

The effective Lagrangian (3.8) has the following two scaling symmetries

F1 → λ2F1 , F3,4 → λ−1F3,4 , N → λ3/2N , G1 → λG1 , G2 → λ−1/2G2 , (3.9)

and

F3 → µ2F3 , F4 → µ−2F4 , N → µN , G2 → µ−1G2 . (3.10)

Both of these transformations are symmetries of the ansatz (3.1)–(3.3) provided we trans-

form the coordinates appropriately. For the λ transformation that means that we must

rescale the coordinates as

t→ λ−1t , x→ λ1/2x , y → λ1/2y , (3.11)

while for the µ transformation it means that we must rescale the spatial coordinates as

x→ µ−1x , y → µy . (3.12)

Using Noether’s theorem the associated charges are Qλ and Qµ, respectively, and given by

Qλ = −2
∂L

∂F ′1
F1 +

∂L

∂F ′3
F3 +

∂L

∂F ′4
F4 −

3

2

∂L

∂N ′
N − ∂L

∂G′1
G1 +

1

2

∂L

∂G′2
G2 , (3.13)

Qµ = −2
∂L

∂F ′3
F3 + 2

∂L

∂F ′4
F4 −

∂L

∂N ′
N +

∂L

∂G′2
G2 . (3.14)

Using that L is given by (3.8) these charges can be shown to be equal to

Qλ = −3

2
r−1QNN + r−4 (F1F2F3F4)1/2

[
−ZG1

F1

(
rG′1 − 2G1

)
− 2 + r

F ′1
F1
− r

2

F ′3
F3
− r

2

F ′4
F4

−ZG1G2 (rN ′ −N)

F1
− 1

2

ZG2 (rG′2 −G2)

F4

]
, (3.15)

and

Qµ = −r−1QNN + r−4 (F1F2F3F4)1/2

[
r
F ′3
F3
− rF

′
4

F4
− ZG2 (rG′2 −G2)

F4

]
, (3.16)

where we defined the charge QN

QN =
∂L

∂N ′
= r−3 (F1F2F3F4)1/2

[
F4 (rN ′ −N)

F1
+
ZG2

2 (rN ′ −N)

F1
− 2

ZG1G2

F1

+
ZG2 (rG′1 −G1)

F1

]
, (3.17)

which results from the fact that L does not depend on N . The Noether charges Qλ and

Qµ are first integrals of motion and thus independent of the radial coordinate r. This will

play an important role later when we derive the thermodynamic properties. We will see

that Qλ relates to the energy and Qµ to the linear momentum of the black brane.
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The ansatz (3.1)–(3.3) has a third global scale symmetry namely

t→ ν−1t , F1 → ν2F1 , N → νN , G1 → νG1 . (3.18)

However this transformation does not leave the effective Lagrangian (3.8) invariant be-

cause it is not a symmetry of the prefactor. On top of the 3 global symmetries whose

parameters are λ, µ and ν the ansatz also has one local symmetry which corresponds to

r-reparametrization invariance. This symmetry acts as

δF2 = ξrF ′2 + 2F2

(
r−1ξr − ∂rξr

)
, δAI = ξrA′I , (3.19)

where AI is any of the functions appearing in the ansatz that is not F2 and ξr is the

local parameter generating the r-reparametrization. This local symmetry can be fixed by

choosing a gauge. This local symmetry implies that using the F2 equation of motion (which

is first order and needs to be differentiated with respect to r) and any 6 of the other AI
equations of motion the remaining 7th AI equation of motion can be derived.

3.2 The asymptotic solution

The 4-dimensional near-boundary expansion follows by dimensional reduction using the

reduction ansatz (2.17) and (2.18) as well as the 5-dimensional Fefferman-Graham (FG)

expansion (B.4) and (B.5), the details of which are given in appendix B.1.

The ansatz for the black branes with linear momentum are such that all 4-dimensional

fields only depend on the radial coordinate r. From the 5-dimensional FG expansion point

of view that implies that all sources and vevs must be constants. The only exception to

this is of course the fact that ψ is allowed to be linear in the reduction circle coordinate u

because we are performing a Scherk-Schwarz reduction. That means that our ansatz forces

us to consider a FG expansion in 5D with the following sources and vevs

γ(0)AB = cst , with γ(0)uu = 0 , (3.20)

tAB = cst , (3.21)

ψ(0) = 2u , 〈Oψ〉 = 0 , so that Ξ = 0 , (3.22)

where tAB obeys the Ward identities (B.28) and (B.29). Setting 〈Oψ〉 = 0 is a consequence

of the Ward identity ∇(0)At
A
B = −〈Oψ〉∂Bψ for B = u and constant tAB. Since the field

Ξ always appears differentiated it makes no difference if we set it equal to zero or equal to

some constant. The choice γ(0)uu = 0 is rather important and is necessary in order that

the lower-dimensional theory has a z = 2 scaling exponent. This is explained in detail

in [25, 36]. It is shown in section 2 of [25] that the reduction in the bulk is everywhere

along a spacelike circle (due to ψ(0) = 2u) but that this circle is null on the boundary.8

It is well known that reductions along null Killing directions turn a Riemannian ge-

ometry into a torsional Newton-Cartan (TNC) geometry [25, 37–39]. For details see ap-

pendices A.1 and B.4. In particular see the reduction ansatz for the AdS5 boundary

8Here we use a model that is simpler than the one used in [25] but regarding this point the properties

are identical.

– 10 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
0

metric (A.1). In the language of TNC geometry the uu component of the inverse metric

is called Φ̃ which is defined in (A.8) with mµ the Kaluza-Klein vector associated with the

null reduction as given in (A.1). In appendix B.4 it is shown that mµ combines with χ the

source of the bulk scalar Ξ into Mµ = mµ − ∂µχ. Since here we have χ = 0 we can take

Mµ = mµ. From the inverse metric we know that9

γuu(0) = 2Φ̃ . (3.23)

We will be interested in flat boundaries of the 4-dimensional z = 2 Lifshitz space-time.

A flat space-time in TNC language means that there exists a coordinate system in which

we have [28]

τµ = δtµ , Mµ = 0 , htt = hti = 0 , hij = δij . (3.24)

This means in particular that Φ̃ = 0. Turning on Φ̃ corresponds to turning on a Newtonian

potential for the boundary theory [28, 40]. We will thus not consider this possibility.

The expansion of the 4-dimensional fields follows from (2.17) and (2.17) which im-

ply that10

e2Φ = γuu , (3.25)

Aµ =
γuµ
γuu

, (3.26)

hµν = (γuu)1/2

(
γµν −

γuµγuν
γuu

)
, (3.27)

where γAB is FG expanded using the results of appendix B.1. In order to carry out this

reduction we need to know how to reduce the AdS boundary energy-momentum tensor

into the language of the energy-momentum tensor of the TNC boundary of the lower-

dimensional Lifshitz space-time. The relation between a relativistic energy-momentum

tensor tMN and the TNC energy-momentum tensor related via null reduction is explained

in appendix A.2 where we derive the following relations

tuu = ρ , (3.28)

tuµ = τρT
ρ
µ , (3.29)

tµν = ĥµρĥνκh
κσT ρσ −

(
τν ĥµρ + τµĥνρ

)
v̂σT ρσ + (v̂ρv̂σtρσ) τµτν , (3.30)

where

v̂ρv̂σtρσ = tuu − 4Φ̃2ρ+ 4Φ̃v̂στρT
ρ
σ . (3.31)

Recall that here Φ̃ = 0. The TNC energy-momentum tensor is denoted by Tµν and the TNC

mass density is denoted by ρ. We note that tuu has no lower dimensional interpretation in

terms of energy-momentum or mass density. As shown in appendix A.1 it does not appear

in any of the Ward identities involving Tµν and ρ. Hence we will set tuu equal to zero. It

9We warn the reader that the boundary background field Φ̃ should not be confused with the bulk

scalar field Φ.
10We warn the reader that we use hµν both to denote the µν component of the bulk metric as well as

the spatial metric-like quantity (A.2) on the boundary. We hope that this will not cause any confusion.
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would appear in 4 dimensions for the first time at order r2 in that part of the expansion

of hµν that is proportional to τµτν . We refer to [25] for more discussion on the role of tuu.

In order to find out where the momentum flux, the spatial projection of τρT
ρ
µ, which

is one of the quantities of interest, the spatial stress tensor etc. appear upon reduction we

need to know what happens with tµν upon reduction. Clearly in 5 bulk dimensions tµν
appears in γµν at order r2. Therefore in order to see it in four bulk dimensions we need to

expand Aµ and hµν up to order r2. This follows from (3.26) and (3.27) and implies that

we need to expand γuu to order r6, γuµ to order r4 and γµν to order r2.

We will now proceed to construct the 5-dimensional solution up to the required order.

Since the sources and vevs are constants (with ψ(0) linear in u) we have that �ψ = 0

implies √
−Gr2∂rψ = C , (3.32)

where C is an integration constant. Using
√
−G = 1 +O

(
r6
)
, (3.33)

it follows that

r−3∂rψ = C
(
1 +O

(
r6
))
, (3.34)

so that using ψ(4) = 0 implies that C = 0. Hence ∂rψ = 0, or in other words ψ = 2u to all

orders. With this result the Einstein equation simplifies to

GMN = 6GMN + 2δuMδ
u
N − GMNγuu , (3.35)

which is equivalent to

RMN = −4GMN + 2δuMδ
u
N . (3.36)

To find the solution up to order r6 we make the following ansatz

γAB = r−2

(
γ(0)AB + r2δuAδ

u
B −

1

4
r4tAB + r6γ(6)AB + r8γ(8)AB +O

(
r10
))

. (3.37)

The log terms at order r2 log r are zero and so it is expected that they are zero to all orders.

This is a correct assumption as long as we do not need to put constraints on the sources

and vevs coming from the nature of the expansion. The inverse metric reads

γAB = r2

(
γAB(0) − r

2γAu(0)γ
Bu
(0) +

1

4
r4tAB + r6σAB(6) + r8σAB(8) +O

(
r10
))

, (3.38)

where

σAB(6) = −γAB(6) −
1

4
γAu(0) t

uB − 1

4
γBu(0) t

uA , (3.39)

σAB(8) = −γAB(8) + γAu(0)γ
uB
(6) + γBu(0) γ

uA
(6) +

1

16
tACtC

B +
1

4
γAu(0)γ

Bu
(0) t

uu . (3.40)

The Christoffel symbols are

Γrrr = −1

r
, ΓrrA = 0 , ΓrAB = −1

2
r2∂rγAB ,

ΓArr = 0 , ΓArB =
1

2
γAC∂rγBC , ΓABC = 0 . (3.41)
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From this we conclude that

Rrr = −4r−2 + r4
(
−12γA(6)A − 2tuu

)
+ r6

(
−24γA(8)A + 18γuu(6) +

1

2
tABtAB

)
+O

(
r8
)
.

(3.42)

The rr component of (3.36) tells us that Rrr = −4r−2 so that

γA(6)A = −1

6
tuu , γA(8)A =

3

4
γuu(6) +

1

48
tABtAB . (3.43)

The rA component of (3.36) brings nothing as both sides are identically zero. Using that

RAB = −4r−2γ(0)AB − 2δuAδ
u
B + r2tAB + r4

(
1

4
tuuγ(0)AB − 10γ(6)AB −

1

2
δuAt

u
B −

1

2
δuBt

u
A

)
+r6

(
−20γ(8)AB − γuu(6)γ(0)AB −

1

24
tCDtCDγ(0)AB + 6δuAγ

u
(6)B + 6δuBγ

u
(6)A

+
1

2
tA
CtCB +

1

2
δuAδ

u
Bt

uu

)
+O

(
r8
)
, (3.44)

as well as the equation of motion RAB = −4γAB + 2δuAδ
u
B, we find that

γ(6)AB = −1

6
δuAt

u
B −

1

6
δuBt

u
A +

1

24
tuuγ(0)AB , (3.45)

γ(8)AB = − 1

16
tuuδuAδ

u
B −

1

384
tCDtCDγ(0)AB +

1

32
tA
CtBC . (3.46)

From the reduction (3.25)–(3.27) it follows that

Φ = −1

8
r2ρ+ r4

(
1

6
v̂στρT

ρ
σ −

1

64
ρ2

)
+O

(
r6
)
, (3.47)

Aµ = r−2τµ +
1

4
ρτµ + r2

(
1

12
τρT

ρ
µ +

1

16
ρ2τµ −

1

3
h̄µρT

ρ

)
+O

(
r4
)
, (3.48)

hµν = − r−4τµτν + r−2

(
h̄µν −

1

8
ρτµτν

)
− 1

8
ρh̄µν +

1

4
(τµτρT

ρ
ν + τντρT

ρ
µ)

−
(

3

128
ρ2 − 1

6
v̂στρT

ρ
σ

)
τµτν + r2

(
−1

4
ĥµρĥνκh

κσT ρσ +
1

12

(
τν ĥµρ + τµĥνρ

)
v̂σT ρσ

+

(
1

6
v̂στρT

ρ
σ −

1

128
ρ2

)
h̄µν −

1

16
ρ (τµτρT

ρ
ν + τντρT

ρ
µ)

+

(
3

64
ρv̂στρT

ρ
σ +

1

64
T στρT

ρ
σ −

5

1024
ρ3 − 1

32
tuu
)
τµτν

)
+O

(
r4
)
. (3.49)

For the interested reader we have included the term tuu. But, as remarked earlier, we

will set this independent quantity equal to zero. If we choose the boundary sources to
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correspond to a flat TNC boundary as in (3.24) then the expansions become

Φ = −1

8
r2ρ− r4

(
1

6
T tt +

1

64
ρ2

)
+O

(
r6
)
, (3.50)

At = r−2 +
1

4
ρ+ r2

(
1

12
T tt +

1

16
ρ2

)
+O

(
r4
)
, (3.51)

Ai = −1

4
r2T ti +O

(
r4
)
, (3.52)

htt = −r−4 − 1

8
r−2ρ+

1

3
T tt −

3

128
ρ2 +O

(
r2
)
, (3.53)

hti =
1

4
T ti + r2

(
− 1

12
δijT

j
t +

1

32
ρT ti

)
+O

(
r4
)
, (3.54)

hij = r−2δij−
1

8
ρδij+r

2

((
1

12
T tt −

1

128
ρ2

)
δij−

1

4
δikT

k
j+

1

8
T kkδij

)
+O

(
r4
)
, (3.55)

where in the last expression we used the z-deformed trace Ward identity (equation (A.44)

with zero on the right hand side)

2T tt + T kk = 0 . (3.56)

In this work we are interested in gravitational duals of boundary perfect fluids so

without loss of generality we can assume that Tµν takes the form of a perfect fluid. This

form is derived in appendix A.3 by the null reduction of a relativistic perfect fluid. On flat

TNC space-time it reads

T tt = −
(
E +

1

2
ρV 2

)
, T it = −

(
E + P +

1

2
ρV 2

)
V i , (3.57)

T ti = ρVi , T j i =
(
Pδji + ρV jVi

)
, (3.58)

where E is the energy density, P the pressure, ρ the mass density and V i the velocity of

the fluid. The z-deformed trace Ward identity tells us that the equation of state is P = E .

It is interesting and insightful to take a closer at look at this V -dependent solution

from the 5-dimensional point of view. Using the relations between the lower and higher-

dimensional energy-momentum tensors (3.28)–(3.30) we see that the 5-dimensional energy-

momentum is given by

tuu = ρ , tut = −E − 1

2
ρV 2 , tui = ρVi ,

tti = −
(
E + P +

1

2
ρV 2

)
Vi , tij = Pδij + ρViVj , (3.59)

with ttt being undetermined. A convenient way of writing this is in terms of tABdx
AdxB,

which can be seen to be equal to

tABdx
AdxB = ρ

(
du+ Vidx

i − 1

2
V 2dt

)2

− 2Edt
(
du+ Vidx

i − 1

2
V 2dt

)
(3.60)

+Pδij
(
dxi − V idt

) (
dxj − V jdt

)
+

(
ttt −

(
E + P +

1

2
ρV 2

)
V 2

)
dt2 .
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The rest of the solution is fully determined by the following boundary data

γ(0)ABdx
AdxB = 2dtdu+ δijdx

idxj , (3.61)

ψ(0) = 2u , 〈Oψ〉 = 0 . (3.62)

If we now perform the following coordinate transformation, which from a lower dimensional

point of view is a Galilean boost and a U(1) gauge transformation (acting on the Kaluza-

Klein vector mµ),

u = u′ − 1

2
V 2t′ − Vix′i , t = t′ , xi = x′i + V it′ , (3.63)

we obtain

tABdx
AdxB = ρdu′2 − 2Edt′du′ + Pδijdx

′idx′j

+

(
ttt −

(
E + P +

1

2
ρV 2

)
V 2

)
dt′2 , (3.64)

γ(0)ABdx
AdxB = 2dt′du′ + δijdx

′idx′j , (3.65)

ψ(0) = 2u′ − V 2t′ − 2Vix
′i , (3.66)

〈Oψ〉 = 0 . (3.67)

We thus see that the boundary metric γ(0)AB remained invariant and that all the V -

dependence now resides in the expression for ψ(0). The t′t′ component of tAB is not

important for the lower dimensional boundary energy-momentum tensor and its Ward

identities. It is thus clear that due to the presence of ψ, and the Scherk-Schwarz reduction

ansatz ψ = 2u + Ξ, solutions with different V i are not diffeomorphic. We will later see

this reflected in the fact that V 2 plays the role of a chemical potential. The ansatz in

section 3.1 used rotations to orient the flow in the y-directions. We will see further below

that indeed V x = 0.

3.3 The near-horizon solution

The near-horizon expansion is entirely straightforward. Referring to the ansatz (3.6)

and (3.7) in EF coordinates we can make the following observations about the behavior of

the solution near the horizon.

The horizon is located at the locus where the r = cst hypersurface becomes null, i.e.

at grr = 0. That means that F2 will have a first order zero at r = rh. Regularity of the

metric in EF coordinates, in particular of the component gV r then tells us that F1 must

also have a first order zero at r = rh. Note that for N 6= 0 this is not the locus where ∂t
becomes null. In other words the stationary limit surface gtt = 0 comes before the horizon

(viewed from outside). Regularity of the massive vector at the horizon forces G1 to have a

first order zero at r = rh. The functions F4 and N are both regular without any zeros at

the horizon, i.e. F4(rh) 6= 0 and N(rh) 6= 0. The latter quantity can be zero but as we will

see in the next subsection that corresponds to a brane without any momentum so we take

it to be non-zero. The remaining functions G2 and Φ are regular at the horizon, but they

do not have to be non-vanishing.
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A convenient gauge choice to fix the r reparametrization invariance of the ansatz to

study the near-horizon horizon solution is to take F3 = 1. In this gauge we will refer to the

radial coordinate as R to distinguish it from the radial coordinate r used in the previous

subsection.11 The horizon is now located at R = Rh.

The ansatz also has three global scale symmetries (3.11), (3.12) and (3.18) that leave

the ansatz invariant. These can be viewed as rescalings of x, y and t. We have used these

symmetries to set the asymptotic values of F1, F3 and F4 equal to one. This fixes the

asymptotic values of Φ and thus of F2 (via the asymptotic gauge choice F2 = e−Φ) as

well as of G1 via the equations of motion. That means that we cannot use these rescaling

symmetries a second time to fix parameters in the near-horizon solution. We thus take for

the near-horizon solution the following expansion

F1 = f1
R−Rh
Rh

+ . . . , (3.68)

F2 = h1
R−Rh
Rh

+ . . . , (3.69)

F3 = 1 , (3.70)

F4 = p0 + p1
R−Rh
Rh

+ . . . , (3.71)

N = n0 + n1
R−Rh
Rh

+ . . . , (3.72)

G1 = g1
R−Rh
Rh

+ . . . , (3.73)

G2 = m0 +m1
R−Rh
Rh

+ . . . , (3.74)

Φ = l0 + l1
R−Rh
Rh

+ . . . . (3.75)

Most but not all of the coefficients appearing in the near-horizon expansion will be

determined by solving the equations of motion of the effective action L in an expansion

around R = Rh. We studied the solution up to second order in R − Rh and it leaves 8

parameters unfixed. These are f1, p0, g1, m0, n0, n1, l0 and rh. The parameter h1 is fixed

by the equations of motion to be12

h1 =
2f1

(
2e−3l0 − 12e−l0

)
4f1 − e3l0 (g1 +m0n1)2 , (3.76)

where the numerator is 2f1 times the potential (2.15) evaluated at R = Rh. We ex-

pect that most of these parameters will be determined by matching the solution onto the

asymptotic region.

There are not many examples known of analytic black brane solutions of the EPD

model. However in the context of Schrödinger space-times we can obtain analytic solutions

11We permit ourselves to also use r for the family of gauges parametrized by the ansatz (3.6) and (3.7).

We hope that this will not cause any confusion.
12To find this result one solves the leading term of the F1 equation of motion for p1 and the leading term

of the F3 equation of motion for f2. The expression then follows from the leading term in the F4 equation

of motion. A similar expression has been observed in [33].
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by applying a sequence of duality transformations known as TsT transformations [17] to

obtain black brane solutions from known AdS black branes [16, 18, 41]. The resulting

Schrödinger black branes have a non-zero charge associated with particle number. Since

in Schrödinger holography particle number is realized geometrically this means that these

correspond to black branes with a linear momentum along a direction that asymptotically

becomes null. If we study these black branes near the horizon in the same coordinates

in which the AdS black brane has a flat boundary Minkowski metric written in Cartesian

coordinates then we see the exact same near-horizon boundary conditions as we imposed

for our Lifshitz black brane.13

3.4 Comments on the interpolating solution

We have used different radial gauges in the near-horizon region (F3 = 1) and in the asymp-

totic region (F2 = e−Φ). The two coordinates are related via the coordinate transformation

hxx = R−2 , (3.77)

where hxx is given in (3.55). In order to write both the near-horizon and the near-boundary

expansion in the same gauge it is convenient to rewrite the expansions (3.50)–(3.55) in terms

of the radial coordinate R. This can be done as follows. The expansions (3.50)–(3.55) in

terms of the ansatz functions correspond to

F1 = 1 +
1

8
r2ρ+ r4

(
−1

3
T tt +

3

128
ρ2

)
+O

(
r6
)
, (3.78)

F2 = e−Φ = 1 +
1

8
r2ρ+ r4

(
1

6
T tt +

3

128
ρ2

)
+O

(
r6
)
, (3.79)

F3 = 1− 1

8
r2ρ+ r4

(
1

12
T tt −

1

128
ρ2 +

1

8
ρV 2

)
+O

(
r6
)
, (3.80)

F4 = 1− 1

8
r2ρ+ r4

(
1

12
T tt −

1

128
ρ2 − 1

8
ρV 2

)
+O

(
r6
)
, (3.81)

N =
1

4
r3ρV +O

(
r5
)
, (3.82)

G1 = 1 +
1

4
r2ρ+ r4

(
1

12
T tt +

1

16
ρ2

)
+O

(
r6
)
, (3.83)

G2 = −1

4
r3ρV +O

(
r5
)
, (3.84)

Φ = −1

8
r2ρ− r4

(
1

6
T tt +

1

64
ρ2

)
+O

(
r6
)
, (3.85)

where we remind that V = V y and V x = 0. The change of gauge (3.77) implies that we

define R asymptotically as

R−2 = r−2

(
1− 1

8
r2ρ+ r4

(
1

12
T tt −

1

128
ρ2 +

1

8
ρV 2

)
+O

(
r6
))
. (3.86)

13More explicitly if we use equation (62) of [41] setting ξ = V the TsT transformation (113)–(115)

provides us with a z = 2 Schrödinger black brane solution of some EPD model. If we then perform the

coordinate transformation t = T −X and 2ξ = 2V = T + X we find that the near-horizon geometry has

exactly the same properties as the Lifshitz black brane solution studied here.
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We can invert this order by order to obtain r = r(R) up to any desired power of R.

Inverting (3.86) up to order R6 we find

r = R

(
1− 1

16
R2ρ+

1

8
R4

(
1

3
T tt +

1

64
ρ2 +

1

2
ρV 2

)
+O

(
R6
))

. (3.87)

This can be used to express (3.1)–(3.3) with the above expansions for the various functions

as an asymptotic solution that is written in terms of the same radial coordinate R as the

near-horizon solution. If we carry out these steps we obtain the following expressions for

the ansatz functions in the new gauge

F1 = 1 +
3

8
R2ρ+

1

2
R4

(
−T tt +

9

64
ρ2 − 1

2
ρV 2

)
+O

(
R6
)
, (3.88)

F2 = 1 +
3

8
R2ρ+R4

(
−1

6
T tt +

11

128
ρ2 − 1

2
ρV 2

)
+O

(
R6
)
, (3.89)

F3 = 1 , (3.90)

F4 = 1− 1

4
R4ρV 2 +O

(
R6
)
, (3.91)

N =
1

4
R3ρV +O

(
R5
)
, (3.92)

G1 = 1 +
3

8
R2ρ+

1

2
R4

(
9

64
ρ2 − 1

4
ρV 2

)
+O

(
R6
)
, (3.93)

G2 = −1

4
R3ρV +O

(
R5
)
, (3.94)

Φ = −1

8
R2ρ− 1

6
R4T tt +O

(
R6
)
. (3.95)

In order to find an interpolating solution we thus need to solve the equations of motion

of (3.8) in the F3 = 1 gauge such that near the horizon the solution looks like (3.68)–(3.75)

while near the boundary it looks like (3.88)–(3.95). It would be interesting to study the

interpolating solution numerically. For the purposes of this work we do not need this

explicit solution, but we will need to assume that it exists.

We also see from the asymptotic solution that even for V = 0 we still can turn on

the ρ deformation. Hence static Lifshitz black branes can have a non-zero mass density.

Furthermore, even though the full non-linear solution breaks rotational symmetries the

near-boundary solution has an asymptotic Killing vector for rotations. Hence rotations are

spontaneously broken.

3.5 Thermodynamics

The most general Killing vector that (3.1) admits is of the form

KM = (∂t)
M +A1 (∂x)M +A2 (∂y)

M , (3.96)

where A1 and A2 are constants. The norm is given by

||K||2 = −F1

r4
+
F4

r2

(
N

r
+A2

)2

+A2
1

F3

r2
. (3.97)
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In order to find the generator of the horizon we demand that ||K||2 vanishes at R = Rh
which will be the case if and only if

A1 = 0 , A2 = −N(Rh)

Rh
. (3.98)

Hence the horizon generator which we will denote by XM is given by

XM = (∂t)
M − N(Rh)

Rh
(∂y)

M . (3.99)

We thus see that there is a chemical potential −N(Rh)/Rh associated with the motion in

the y-direction.

The metric and vector field expanded near the horizon read

ds2
4 = −ρ̃2dt̃2 + dρ̃2 +

1

R2
h

dx2 +
p0

R2
h

(
dy +

N(Rh)

Rh
dt

)2

, (3.100)

B =
1

2
g1

(
h1f

−1
1

)1/2
ρ̃2dt̃+

m0

Rh

(
dy +

N(Rh)

Rh
dt

)
, (3.101)

where we defined

ρ̃ = 2

(
R−Rh
h1Rh

)1/2

, (3.102)

t̃ =
1

2
(f1h1)1/2R−2

h t . (3.103)

We next ask which linear functions f(t, x, y) solve the equation XM∂Mf = 0. These are x

and y+ N(Rh)
Rh

t. The metric induced on the common intersection of the hyperplanes x = cst

and y + N(Rh)
Rh

t = cst, after Wick rotating the time coordinate t = −itE , is called the bolt

and is given by

ds2|bolt =
F1

R4
dt2E +

dR2

F2R2
. (3.104)

We expand this metric around R = Rh with a periodic tE demanding the absence of

conical singularities. Because we are on the hyperplane y + N(Rh)
Rh

t = cst this forces us to

also Wick rotate y = −iyE and make it periodic as well in agreement with the interpretation

of −N(Rh)/Rh as a chemical potential. The inverse temperature is the periodicity of tE .

The temperature and entropy density are given by

T =
1

4πR2
h

(f1h1)1/2 , (3.105)

s = 4π
(p0)1/2

R2
h

, (3.106)

where we used units in which 16πGN = 1.

In the Wick rotated geometry tE and yE are periodic. The thermal cycle parametrized

by tE is contractible while the cycle parametrized by yE + N(Rh)
Rh

tE is non-contractible.
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Hence we can compute
∮
R=Rh

B where we integrate along the cycle parametrized by yE +
N(Rh)
Rh

tE . The result is ∮
R=Rh

B =
4πm0n0

(f1h1)1/2
. (3.107)

In general using our ansatz the massive vector field can be written as

BM = −R2G1

F1

(
(∂t)

M − N

R
(∂y)

M

)
+R

G2

F4
(∂y)

M . (3.108)

It thus follows that for m0 = 0 the massive vector field BM is proportional to the horizon

generator XM at R = Rh.

It can be shown by using the near-horizon solution that the charges Qλ and Qµ (3.15)

and (3.16) are such that

Qλ −
3

2
Qµ = Ts , (3.109)

with T , s given in (3.105), (3.106). Using the asymptotic form of the solution (3.50)–(3.55)

with (3.57) and (3.58) to compute the left hand side of (3.109) we conclude that

E + P = Ts+
1

2
ρV 2 . (3.110)

The equations of state follows from (3.56)

P = E . (3.111)

We have thus been able to derive the thermodynamic relations without knowing the

full solution analytically using the Noether charges Qλ and Qµ. This is similar to what

has been done in [33, 34]. We will see further below that we can also derive the first law

of thermodynamics without having full analytic control of the solution. All that we need

to know is the near-horizon expansion, the near-boundary expansion and the existence of

an interpolating solution. We assume the latter to be the case. It would be interesting to

provide numerical evidence for the interpolating solution.

3.6 Charges

The goal of this subsection is to find an alternative derivation of (3.110) which can be

thought of as an integral form in terms of the renormalized on-shell action and certain

horizon charges. The second goal is to find additional relations between near-boundary

and near-horizon quantities. In particular we will show that the velocity V y = V is equal

to the chemical potential −N(Rh)/Rh.

In order to define the black brane charges we use the boundary diffeomorphism Ward

identity which on a flat TNC geometry reads (B.92). Given a boundary Killing vector Kµ

in the sense that

LKτµ = 0 , LK h̄µν = 0 , LKΦ̃ = 0 , (3.112)

it can be shown (see [28, 35]) that we find the conserved current

∂µ (KνTµν) = 0 . (3.113)
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The conserved charge associated with the boundary Killing vector Kµ is thus

QK = −
∫
t=cst

dxdyKνT tν . (3.114)

For our case the integrand is independent of x and y and so it is better to consider the

charge per unit boundary volume. We will often write
∫
t=cst dxdy as a formal integral that

we never really perform. We can always divide the charges by it. We will assume that Kµ

is the µ component of a bulk Killing vector KM .

Using the definitions of the vevs in (B.48), (B.49) and (B.61), (B.62),14 as well as the

boundary energy-momentum tensor in (B.77) and (B.90) we find that

T tν = − lim
r→0

r−2
(
TµνE

ν
0 + T ρE0

ρBµ
)
. (3.115)

Using (B.41) and (B.43) we find that for purely radial solutions (no dependence on bound-

ary coordinates)

TµνE
ν
0 + T ρE0

ρBµ =
1√
−h
Los

bdryE
0
µ + 2KµνE

ν
0 + e3ΦnMEν0FMνBµ , (3.116)

where Los
bdry is the on-shell value of the counterterm Lagrangian (B.33) including the

Gibbons-Hawking boundary term, i.e.

Los
bdry =

√
−h
(

2K − 5e−Φ/2 + eΦ/2BρB
ρ
)
. (3.117)

The extrinsic curvature K is given by K = hµνKµν where Kµν is the µν component of

KMN = −1
2LnhMN = ∇MnN − nMnK∇KnN with the unit normal vector nM given by

nM = −(grr)−1/2δrM . Since the Killing vector KM is a boundary Killing vector we have

KMnM = 0. Further we employ a radial gauge choice such that EM0 nM = 0. Using these

results we can write

QK =

∫
t=cst

dxdy lim
r→0

r−2

(
1√
−h
Los

bdryK
ME0

M + nMEN0ZNM

)
, (3.118)

where ZNM = −ZMN ,15 is given by

ZNM = 2∇NKM + e3ΦFNMK
PBP . (3.119)

The integrand is over a t = cst hypersurface. Its timelike unit normal is given by

uM = UδtM , U = r−2

(
1 +

1

16
r2ρ+ r4

(
−1

6
T tt +

5

2

1

256
ρ2

)
+O

(
r6
))

, (3.120)

where we used the boundary expansions of section 3.2. It can be shown using these same

expansions that

U t = Et0 +O
(
r8
)
, U i = O

(
r4
)
, (3.121)

14The quantity α(0) defined in (B.67) equals unity because for our solutions Φ = O(r2) so that φ = 0 as

follows from (B.57).
15The antisymmetry follows from the fact that KM is also assumed to be a bulk Killing vector.
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where Et0 = U−1 + O(r8). We also have that Ei0 = O(r4). Using these results together

with the near-boundary expansion of ZNM it can be proven that we can replace EN0 by

uN everywhere in the integrand of QK , i.e. we can write

QK =

∫
t=cst

dxdy lim
r→0

r−2

(
1√
−h
Los

bdryK
MuM + nMuNZNM

)
. (3.122)

Let us define the projector PNM = δNM + uMu
N which projects onto the t = cst hy-

persurface whose metric we will denote by HIJ , i.e. using the ADM decomposition we

obtain

ds2 = −U2dt2 +HIJ

(
dxI + uIdt

)(
dxJ + uJdt

)
. (3.123)

Let us furthermore define ZM = uNZNM . We can derive the following identity

PNM∇NZM =
1√
−H

∂I

(√
HZI

)
. (3.124)

Hence it follows that∫
t=cst

d3x
√
HPNM∇NZM =

∫
t=cst

dxdy

∫ Rh

ε
dR∂R

(√
HZR

)
, (3.125)

where we used the radial R coordinate of section 3.4, i.e. the F3 = 1 gauge, with a cut-off

boundary at R = ε and the horizon at R = Rh. The integration measure in terms of the

ansatz functions can be written as

√
H = r−3F

−1/2
2 F

1/2
4 . (3.126)

It follows that∫
t=cst

d3x
√
HPNM∇NZM =

∫
t=cst

dxdyR−2nMZ
M |R=ε

+

∫
t=cst

dxdyR−3F
−1/2
2 F

1/2
4 ZR|R=Rh . (3.127)

We conclude that the charge QK can be written as

QK =

∫
t=cst

dxdyR−2 1√
−h
Los

bdryK
MUM |R=ε +

∫
t=cst

dxdy

∫ Rh

ε
dR
√
HPNM∇NZM

+

∫
t=cst

dxdyR−2F
1/2
4 XNY PZNP |R=Rh , (3.128)

where we send ε to zero. In the horizon integral XP is the horizon generator (3.99) and

Y N is given by (in the EF coordinates of (3.6) with F3 = 1)

Y N = R3

(
F2

F1

)1/2

δNR . (3.129)

The vector Y is a null vector that satisfies X · Y = −1 at the horizon.
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Using the equations of motion (2.2)–(2.4) with (2.15) as well as the fact that the Killing

vector K is a symmetry of the matter fields which means that

LKBM = 0 , LKΦ = 0 , (3.130)

it can be shown that

PNM∇NZM =
1√
−g
Los

bulkK
MuM . (3.131)

The charge can now be written as

QK = KtTSos
E +

∫
t=cst

d2x
√
σXNY PZNP |R=Rh , (3.132)

where we used that KMuM = KtU with
√
−g = U

√
H and where we defined

√
σ =

F
1/2
4 R−2 which is the determinant of the metric on the t = cst and R = cst submanifold.

In this expression for the charge Sos
E is the Euclidean on-shell action, i.e.

TSos
E = lim

ε→0

[∫ Rh

ε
dR

∫
t=cst

d2xLos
bulk +

∫
t=cst

d2xLos
bdry|R=ε

]
. (3.133)

Equation (3.132) is the result we were looking for. It expresses the asymptotic charge

associated with the Killing vector KM in terms of a horizon integral and the Euclidean

on-shell action.

This result can be used to compute the charges associated with the Killing vectors ∂t
and ∂y twice, once near the boundary using (3.114) and once at the horizon using (3.132).

Near the boundary we find

Q∂t = −
∫
t=cst

dxdyT tt =

∫
t=cst

dxdy

(
E +

1

2
ρV 2

)
, (3.134)

Q∂y = −
∫
t=cst

dxdyT ty = −
∫
t=cst

dxdyρV . (3.135)

Using (3.132) we can derive the following relation

Q∂t − TSos
E = T

∫
t=cst

dxdys− N(Rh)

Rh
Q∂y , (3.136)

where we used (3.105) and (3.106).

The momentumQ∂y can be written in terms the Noether charge Qµ defined in (3.16) via

N(Rh)

Rh
Q∂y =

∫
t=cst

dxdyQµ . (3.137)

This can be proven by computing the left and right hand side at the horizon where for

the left hand side we use the integral form given in (3.132). The Noether charge Qµ can

also be computed near the boundary where it gives Qµ = ρV 2. Hence with (3.135) we

conclude that
N(Rh)

Rh
= −V y = −V , (3.138)
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i.e. the chemical potential is the velocity of the fluid. From this and (3.136) it follows that

the Euclidean on-shell action relates to the pressure as follows

TSos
E = −

∫
t=cst

dxdyP . (3.139)

We believe that similar arguments allow one to derive the first law of thermodynamics

for these Lifshitz holographic fluids. For example using arguments similar to those of [42]

that do not require an explicit knowledge of the interpolating solution. However there are

quite compelling arguments that fix the first law in a more straightforward manner so we

will refrain from using a more general approach. One of these arguments uses the Ward

identities of the dual holographic fluid and the existence of an entropy current. This will

be discussed in the next section. The other argument results from the assumption that

the pressure only depends on temperature and chemical potential. Given, say, a numerical

solution this could be tested by evaluating (3.139). For us this is a rather minor assumption

because it is essentially assuming that a solution with a horizon generated by XM exists.

If we assume that P = P (T, V 2) we can vary it and use (3.110) to derive(
∂P

∂T

)
V 2

= s ,

(
∂P

∂V 2

)
T

=
1

2
ρ , δE = Tδs+

1

2
V 2δρ , (3.140)

where the latter relation is the first law for our holographic Lifshitz perfect fluid. More

will be said about this in the next section.

4 Lifshitz perfect fluids

This section is independent from holography and derives the Lifshitz perfect fluid from

dimensional reduction. In appendix A.3 we have discussed the null reduction of a relativistic

perfect fluid. This gives rise to a Galilean perfect fluid. If furthermore the relativistic fluid

is scale invariant, i.e. conformal, the lower-dimensional Galilean perfect fluid has a z = 2

Schrödinger invariance. The z = 2 Schrödinger algebra contains the z = 2 Lifshitz algebra

as a subalgebra. Hence a Lifshitz invariant system can be obtained by starting with a

Schrödinger invariant system and breaking the generators that are part of the Schrödinger

algebra but not of the Lifshitz algebra. One of these symmetries is particle number N . By

breaking N explicitly the z = 2 Schrödinger algebra reduces to the z = 2 Lifshitz algebra.16

This is precisely what our holographic model for Lifshitz invariant field theories does.

We have shown that the 4-dimensional bulk theory follows from Scherk-Schwarz re-

duction of a 5-dimensional AdS-gravity model coupled to a scalar field. This scalar field

leads to an additional source in the dual field theory and, as derived in section B.2, the

corresponding diffeomorphism Ward identity, reads

∇AtAB = −〈Oψ〉∂Bψ . (4.1)

16In the Schrödinger algebra the commutator between Galilean boosts Gi and momenta Pi reads

[Pi , Gj ] = δijN so by breaking N keeping Pi intact we break Gi. Further special conformal symme-

tries K in the Schrödinger algebra satisfy the commutation relation [K ,Pi] = −Gi so that breaking Gi
leads to broken K symmetries. Hence by breaking N we loose the Gi and K generators as well and we are

left with the Lifshitz algebra.
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Here we will be interested in flat space only so the left hand side is simply ∇AtAB = ∂At
A
B.

The Scherk-Schwarz reduction tells us that

ψ = 2u− 2χ , (4.2)

〈Oψ〉 = −1

2
〈Oχ〉 , (4.3)

where χ and 〈Oχ〉 are independent of u. If we now set the 4-dimensional scalar source

χ = 0 we obtain the 4-dimensional Ward identities (see also (B.92) and (B.93))

∂µT
µ
ν = 0 , (4.4)

∂µT
µ = 〈Oχ〉 , (4.5)

where we used (A.40) and (A.41). We thus see that the mass current Tµ is not conserved

due to the presence of 〈Oχ〉. The z = 2 scale Ward identity follows from (A.44) with

tAA = 0 which for the case of a flat TNC space-time (3.24) reads

2T tt + T ii = 0 . (4.6)

The null reduction also implies the identities (A.32) and (A.33) which on a flat TNC

space-time read

T ti = T i , T ij = T j i . (4.7)

The null reduction in the presence of the scalar source ψ as written in (4.1)–(4.3) gives

rise to a system that breaks Galilean boost symmetries and particle number. This is due to

the fact the ψ in (4.2) breaks these symmetries. What we are left with is a z = 2 Lifshitz

invariant system in one dimension lower.

We will now apply the Lifshitz Ward identities (4.4)–(4.7) to the case of a d = z = 2

perfect fluid where E = P and V i are functions of t, xi. It has been shown that the form

of Tµν and Tµ for the null reduction of a relativistic perfect fluid take the form (A.57)

and (A.58). We now consider the fluid equations as follows from the Ward identities and

demand that there exists a conserved entropy current. The latter requirement will tell us

what the thermodynamic relations for a Lifshitz perfect fluid are.

On flat TNC space-time the form of the fluid energy-momentum tensor and mass

current for a perfect fluid are given by (3.57) and (3.58). The fluid equations are thus

given by the Ward identities which read17

0 = ∂t

(
E +

1

2
ρV 2

)
+ ∂i

((
E + P +

1

2
ρV 2

)
V i

)
, (4.8)

0 = ∂t (ρVi) + ∂i

(
Pδji + ρV jVi

)
, (4.9)

〈Oχ〉 = ∂tρ+ ∂i (ρVi) . (4.10)

17If in the holographic setup we would make the fluid variables functions of the boundary coordinates

we would have to correct the energy-momentum tensor by derivatives of the fluid variables. The Einstein

equations will then lead to Ward identities for this corrected boundary energy-momentum tensor. At leading

order in derivatives it will however reduce to the Ward identities for a perfect fluid.
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These equations can be used to rewrite the equation for energy conservation (4.8) as

∂tE + V i∂iE +

(
E + P − 1

2
ρV 2

)
∂iV

i − 1

2
V 2
(
∂tρ+ V i∂iρ

)
= 0 . (4.11)

This gives rise to an equation for conservation of entropy,

∂ts+ ∂i
(
sV i

)
= 0 , (4.12)

provided we take

E + P = Ts+
1

2
ρV 2 , (4.13)

δE = Tδs+
1

2
V 2δρ . (4.14)

These two equations together with the equation of state P = E (which follows

from (4.6)) describe the thermodynamic properties of a Lifshitz invariant system obtained

by breaking particle number symmetries. What we see here is a realization of a Lifshitz

perfect fluid where the velocity or rather, due to rotational symmetries, V 2, plays the role

of a chemical potential.18 The thermodynamically conjugate variable is the mass density

ρ. From the first law (4.14) it follows that

δP = sδT +
1

2
ρδV 2 , (4.15)

so that pressure is a function of T and the chemical potential V 2.

We see here that the way in which we realize Lifshitz hydrodynamics is quite differ-

ent from what has been discussed in [20]. The approach in [20] is to start with a z = 1

relativistic perfect fluid and to break Lorentz symmetries by adding higher derivative in-

teractions that break the symmetry of the energy-momentum tensor. One can then take a

non-relativistic limit to obtain systems with z 6= 1 that break Galilean boost symmetries.

This leads to a model where Galilean boosts are broken at higher orders in a derivative

expansion. On the other hand here we realize Lifshitz symmetries by breaking particle

number and hence Galilean boosts already at the perfect fluid level. In [27] we will present

more examples of Lifshitz hydrodynamics from a field theory perspective.

As a final comment we note that in order to solve the d+ 2 equations (4.8)–(4.10) we

need to know what 〈Oχ〉 is in terms of the fluid variables ρ, V i and E . Explicit examples

will be given in [27].

5 Discussion and outlook

We have shown that there is a new class of Lifshitz perfect fluids in which Galilean boosts

are broken at the perfect fluid level. The holographic dual description is realized by a

moving black brane solution of the EPD model. The motion of the black brane is not

obtained by applying a boost transformation to a static black brane but follows from

18A similar extension of the first law of thermodynamics involving a fluid with boost momentum was seen

in [43] in the proposed effective theory for the dynamics of helicoidal black p-branes using the blackfold

construction [7, 8].
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constructing a new class of solutions corresponding to Lifshitz black branes with linear

momentum. From the dual field theory point of view the boundary fluid can be obtained

by a twisted null reduction of relativistic fluid in the background of a free scalar source

that depends linearly on the null circle. From the lower-dimensional point of view this

corresponds to a Schrödinger fluid with broken particle number symmetry.

In this work we restricted our attention to a specific EPD model for which we obtained

the counterterms and near-boundary expansion by dimensional reduction from AdS holog-

raphy coupled to a free real scalar. In order to consider similar solutions of other EPD

models we need to be able to write down the counterterms and near-boundary expansions

for general EPD models. Despite a lot of effort the situation is presently still not fully

understood. There are different proposals [44, 45] and [26, 28] (see [46, 47] for earlier

work) that share certain similarities but that also have some differences. A comparison

between [44, 45] and [26, 28] is made in appendix B.6. We believe that more work needs to

be done before we can state what the near-boundary expansion and counterterms are for a

given EPD model in the general class that admits Lifshitz solutions. This general analysis

includes asymptotically Lifshitz solutions with hyperscaling violation exponent θ and the

charge hyperscaling violation exponent introduced in [29, 30].

A special subset of the EPD models are those for which W = 0 so that the bulk

vector field becomes a Maxwell gauge potential with a U(1) gauge symmetry. It has been

shown in [23] that the corresponding global U(1) symmetry in the boundary theory leads

to mass conservation. For the EMD model we know the black brane solutions that are dual

to perfect fluids analytically [14, 31]. For the solutions of the EPD models with W 6= 0

we only know the solution near the boundary and near the horizon but we do not know

that interpolating solution. Hence we have to resort to arguments based on the existence

of conserved Noether charges that are a consequence of various ansatz symmetries that

allows one to relate near-boundary and near-horizon properties of the solution as was done

in [33, 34]. Here we followed a similar approach and we added to this various integral

forms of the asymptotic charges related to the existence of Killing vectors. It would be

interesting to see how far one can push this kind of analysis beyond the perfect fluid level.

In other words it is worth exploring if it is possible to construct bulk solutions in which

the fluid variables such as the temperature and velocity become slowly varying functions

of the boundary coordinates in such a way that we can extract all the relevant boundary

properties from the near-horizon and near-boundary features. Further, it would be nice to

have numerical confirmation about the interpolating solution we have assumed to exist.

We also remark that it would be interesting to study the role of charge in the boundary

Lifshitz hydrodynamics by adding additional U(1) vector gauge fields to the bulk descrip-

tion like in [48]. For this the recent results in [49] on non-relativistic electrodynamics

coupled to TNC could be relevant.

Finally, another interesting direction to pursue is to use Hořava-Lifshitz gravity the-

ories as bulk theories in holography [50, 51] and examine the connection with Lifshitz

hydrodynamics [52, 53]. It would be worthwhile to pursue this further in the light of the

results of this paper. In particular in connection to dynamical NC geometry [54] and fi-

nite temperature states in the 3-dimensional Chern-Simons Schrödinger gravity that was

recently constructed [55].
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A Torsional Newton-Cartan geometry and non-relativistic field theory

Here we summarize results obtained in [24–26, 28, 35, 40, 54, 56, 57] regarding the most

general formulation of torsional Newton-Cartan (TNC) geometry. We will focus only on

those aspects that are needed for the purposes of this work. Since here we encounter TNC

geometry through null reduction of the AdS5 boundary metric we will study its properties

in this context.

A.1 Null reduction of metric

Consider the null reduction ansatz for the metric

ds2 = γABdx
AdxB = 2τµdx

µ (du−mνdx
ν) + hµνdx

µdxν , (A.1)

where A = (u, µ) and with

hµν = δabe
a
µe
ν
b , (A.2)

in which a = 1 , . . . , d. The metric hµν has vanishing determinant. The reduction ansatz is

the most general metric for which γuu = 0. It is assumed that ∂u is a null Killing vector of

γAB. The fields τµ and eaµ are the vielbeins of the d+ 1 dimensional TNC geometry. The

metric (A.1) preserves the following local tangent space transformations

δτµ = 0 , (A.3)

δeaµ = τµλ
a + λabe

b
µ , (A.4)

δmµ = ∂µσ + λae
a
µ . (A.5)

The local σ transformation requires δu = σ. The transformations with local parameter λa

correspond to tangent space Galilean boosts (G) and transformations with local parameter

λab correspond to tangent space rotations (J). The metric components γµu = τµ and

γµν = h̄µν where

h̄µν = hµν − τµmν − ∂ντµ , (A.6)

are invariant under these local transformations.
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The inverse metric is

γuu = 2Φ̃ , γuµ = −v̂µ , γµν = hµν , (A.7)

where

Φ̃ = −vρmρ +
1

2
hρσmρmσ , (A.8)

v̂µ = vµ − hµνmν , (A.9)

hµν = δabeµae
ν
b . (A.10)

The inverse vielbeins vµ and eµa are defined through

vµeaµ = 0 , (A.11)

vµτµ = −1 , (A.12)

eµaτµ = 0 , (A.13)

eµae
b
µ = δba . (A.14)

It is sometimes useful to work with the Galilean boost invariant vielbeins τµ, êaµ and their

inverse v̂µ, eµa where êaµ is defined by

êaµ = eaµ −mνe
νaτµ . (A.15)

These satisfy the orthogonality relations

v̂µêaµ = 0 , (A.16)

v̂µτµ = −1 , (A.17)

eµaτµ = 0 , (A.18)

eµa ê
b
µ = δba . (A.19)

Finally we will often use the spatial metric ĥµν defined by

ĥµν = δabê
a
µê
b
ν = h̄µν + 2Φ̃τµτν . (A.20)

The inverse vielbeins transform as

δvµ = λaeµa , (A.21)

δeµa = λa
beµb . (A.22)

A torsionful affine connection Γρµν that is invariant under the local tangent space sym-

metries (G, J) and that satisfies metric compatibility, in the sense of

∇µτν = 0 , (A.23)

∇µhνρ = 0 , (A.24)

is given by

Γ̄ρµν = −v̂ρ∂µτν +
1

2
hρσ

(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
. (A.25)
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The bar on Γ is supposed to emphasize that the connection is not unique and we have

chosen a particular realization. We will later encounter another affine connection that

is metric compatible. We note that in [58] it is shown that at the linearized level the

connection (A.25) (which is linear in mµ) appears when applying the Noether procedure

to gauging the space-time symmetries in theories with Galilean symmetries.

A.2 Null reduction of energy-momentum tensor

In [25, 26, 28, 35, 57] (see also [58]) the coupling prescriptions of non-relativistic field the-

ories to torsional Newton-Cartan (TNC) backgrounds have been worked out both directly

in field theory and from Lifshitz holography. The results of course agree (see e.g. [28]).

Here we briefly review these results and derive them from null reduction as done in [25].

The TNC energy-momentum tensor (EMT) is defined as the response to varying the

TNC fields via

δbgS =

∫
dd+1xe

[
−τνT νµδv̂µ −

(
ĥσν v̂

µT νµ

)
τρδh

ρσ

+
1

2

(
ĥρν ĥσλh

λµT νµ

)
δhρσ + τµT

µδΦ̃

]
, (A.26)

where e is the determinant of the 3 by 3 matrix (τµ, e
a
µ) which is both boost and rotation

invariant. We can alternatively define an energy-momentum tensor by varying the unhatted

TNC fields via

δbgS =

∫
dd+1xe

[
−Tµδvµ +

1

2
Tµνδhµν + Tµδmµ

]
. (A.27)

The two are related via

hνρTρµ − vνTµ = T νµ + T νmµ . (A.28)

According to the null reduction of [25] the energy momentum tensor Tµν and mass

current Tµ are related to the higher-dimensional energy-momentum tensor tAB via19

tµu = 2Φ̃Tµ − v̂σTµσ , (A.29)

tµν = −v̂µT ν + hµρT νρ . (A.30)

The latter relation implies due to the symmetry of tµν

− v̂µT ν + hµρT νρ + v̂νTµ − hνρTµρ = 0 , (A.31)

from which we read off the boost and rotation Ward identities

0 = −ĥµνTµ + τµh
ρσĥνσT

µ
ρ , (A.32)

0 = ĥµρĥνλh
λσT ρσ − (µ↔ ν) . (A.33)

The definitions (A.29) and (A.30) imply

−1

2
tABδγAB = −τνT νµδv̂µ −

(
ĥσν v̂

µT νµ

)
τρδh

ρσ

+
1

2

(
ĥρν ĥσλh

λµT νµ

)
δhρσ + τµT

µδΦ̃ , (A.34)

19Since tAB is the response to varying γAB there is no need for tuu since γuu = 0.
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in agreement with the definition of Tµν and Tµ as the response to varying the TNC

invariants v̂µ, hµν and Φ̃ as given in (A.26). The relation between the higher and lower

dimensional energy-momentum tensors holds for any reduction given that γAB admits a

null Killing vector. No additional assumptions such as hypersurface orthogonality of ∂u
are needed.

The higher-dimensional energy-momentum tensor corresponds to the boundary theory

of a bulk AdS5 space-time and is thus traceless. Further by boundary diffeomorphism

invariance it satisfies a Ward identity for local diffeomorphism invariance. Upon reduction

these give rise to Ward identities for local scale and diffeomorphism invariance. To this

end it is useful to consider20 tAB, i.e.

tuu = 2Φ̃τµT
µ − v̂ντµTµν , (A.38)

tuν = 2Φ̃τµT
µ
ν − v̂σĥνρT ρσ + τν v̂

ρv̂σtρσ , (A.39)

tµu = Tµ , (A.40)

tµν = Tµν , (A.41)

where v̂ρv̂σtρσ, which contains tuu, is unspecified in terms of lower dimensional quantities

as it will drop out of the Ward identities. We can derive the following identities

∇AtAu = ∂µ (eTµ) , (A.42)

∇AtAµ = e−1∂ν (eT νµ) + T ρν
(
v̂ν∂µτρ − eνa∂µêaρ

)
+ τνT

ν∂µΦ̃ , (A.43)

tAA = −2v̂ντµT
µ
ν + êaµe

ν
aT

µ
ν + 2Φ̃τµT

µ . (A.44)

If we are dealing with a relativistic and scale invariant theory, i.e. ∇AtAB = tAA = 0 we

find the diffeomorphism, U(1) and the z = 2 version of the local dilatation Ward identities

as given in [25, 26, 28, 35].

The diffeomorphism Ward identity (A.43) can also be written in a TNC covariant form

using the connection (A.25) as done in [26]. Instead of the connection (A.25) we can also

take the Riemann-Cartan connection of [59], that we will denote by Γ̌ρµν , given by

Γ̌λµρ = −v̂λ∂µτρ +
1

2
hνλ

(
∂µĥρν + ∂ρĥµν − ∂ν ĥµρ

)
− hνλτρKµν , (A.45)

where Kµν = −1
2Lv̂ĥµν is the extrinsic curvature. This connection obeys

∇̌µτν = 0 , ∇̌µĥνρ = 0 , ∇̌µv̂ν = 0 , ∇̌µhνρ = 0 , (A.46)

and the relation (A.43) becomes

∇AtAν = ∇̌µTµν + 2Γ̌ρ[µρ]T
µ
ν − 2Γ̌µ[νρ]T

ρ
µ + τµT

µ∂νΦ̃ . (A.47)

This is the most compact and TNC covariant way of writing the diffeomorphism Ward

identity.

20Sometimes it is useful to express tAB in terms of lower-dimensional quantities via

tµν = ĥρνT
ρ
µ + ĥρµT

ρ
ν − ĥµρĥνσhσλT ρλ + τµτν v̂

ρv̂σtρσ , (A.35)

tµu = τρT
ρ
µ , (A.36)

tuu = τρT
ρ . (A.37)
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In [59] it was shown that TTNC geometry (but not the more general TNC geometry)

can be obtained by projecting the higher-dimensional metric compatibility conditions in-

volving the Levi-Civita connection onto the surface orthogonal to ∂u (null reduction) in

the sense that the TNC metric compatibility conditions follow from the projection of the

higher-dimensional metric compatibility conditions only when ∂u is hypersurface orthog-

onal. However, the condition that the TNC metric compatibility conditions follows by

projection is somewhat artificial. Here we see that the diffeomorphism Ward identity takes

the required form for any field theory on a TNC geometry and not just TTNC geometry.

At no point in the analysis did we assume anything about τµ.

A.3 Null reduction of a perfect relativistic fluid

Since we are interested in non-relativistic versions of the fluid/gravity correspondence we

study here the null reduction of a relativistic fluid.21

A relativistic perfect fluid is given by a conserved energy-momentum tensor tAB that

is of the form

tAB = (E + P )UAUB + PγAB , (A.48)

where UA satisfies UAU
A = −1. Consider the following parametrization of UA,

U2
u =

ρ

E + P
, (A.49)

hµνUν = Uu (v̂µ − uµ) , (A.50)

v̂µUµ =
1

2
Uu

(
ĥµνu

µuν + 2Φ̃ + U−2
u

)
, (A.51)

where uµ satisfies τµu
µ = −1. It follows that

Uµ = −1

2
Uuτµ

(
ĥρσu

ρuσ + 2Φ̃ + U−2
u

)
− Uuĥµνuν (A.52)

= −Uu
[

1

2
τµ
(
hρσu

ρuσ + U−2
u

)
+ hµνu

ν +mµ

]
, (A.53)

which (except for the U−2
u term) takes the form of the velocity of a point particle. The

components of Uµ are given by

Uu = −1

2
Uu

(
ĥµνu

µuν − 2Φ̃ + U−2
u

)
, (A.54)

Uµ = −Uuuµ . (A.55)

Further redefine the energy density E as

E = 2E + P . (A.56)

Using the above results it follows that Tµν and Tµ are given by

Tµν =

(
E + P + ρΦ̃ +

1

2
ρĥλκu

λuκ
)
uµτν + Pδµν + ρuµĥνρu

ρ

=

(
E + P +

1

2
ρhλκu

λuκ
)
uµτν + Pδµν + ρuµhνρu

ρ + ρuµmν , (A.57)

Tµ = −ρuµ . (A.58)

21This has also been done in [60] but our approach differs in that we do not need to introduce what is

called a null fluid in [60].
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This can be shown to agree with the notion of a Galilean perfect fluid as given in [61]. On

flat NC space-time as defined in (3.24) the velocity uµ can be parameterized as ut = −1

and ui = −V i, so that the resulting energy-momentum tensor becomes (3.57), (3.58).

The null reduction ansatz has a local U(1) symmetry which is the diffeomorphism

δu = −ξu and δmµ = −∂µξu. If we act with this diffeomorphism on UA and UA via

δUA = ξB∂BUA + UB∂Aξ
B , δUA = ξB∂BU

A − UB∂BξA , (A.59)

with ξA = δAu ξ
u we see that Uu and Uµ are U(1) invariant. It follows from (A.55) that the

fluid velocity uµ is particle number invariant.

The z = 2 trace Ward identity reads (for d = 2 spatial dimensions)

tAA = −2v̂ντµT
µ
ν + êaµe

ν
aT

µ
ν + 2Φ̃τµT

µ = −2E + 2P = 0 . (A.60)

The null reduction only leads to theories with z = 2 scaling relations.

B Holographic renormalization of the upliftable model

As discussed in section 2.3 the EPD model with

Z = e3Φ , W = 4 , V (Φ) = 2e−3Φ − 12e−Φ , x = 3 . (B.1)

can be obtained from a Scherk-Schwarz reduction of the 5-dimensional action

S =
1

2κ2
5

∫
d5x
√
−G

(
R+ 12− 1

2
∂Mψ∂

Mψ

)
, (B.2)

where κ2
5 = 8πG5 with G5 the 5-dimensional Newton’s constant and where M = (u,M).

The consistency of this reduction will be shown in section B.5.

In this appendix we will first perform the holographic renormalization in 5 dimensions

for those asymptotically locally AdS space-times that have a boundary metric obeying the

null reduction ansatz of section A.1. We then subsequently reduce the result to obtain

the counterterms and near-boundary expansions in 4 dimensions for asymptotically locally

z = 2 Lifshitz space-times.

B.1 Fefferman-Graham expansions and counterterms

By using the results of [25, 36, 62, 63]22 we can obtain the solution to the equations

of motion of (B.2) (that are given further below in (B.18) and (B.19)) expressed as an

asymptotic series in radial gauge, i.e. as a Fefferman-Graham (FG) expansion [64]. The

result reads23

GMNdxMdxN =
dr2

r2
+ γABdx

AdxB , (B.3)

γAB =
1

r2

[
γ(0)AB+r2γ(2)AB+r4 log rγ(4,1)AB+r4γ(4)AB+O(r6 log r)

]
, (B.4)

ψ = ψ(0) + r2ψ(2) + r4 log rψ(4,1) + r4ψ(4) +O(r6 log r) , (B.5)

22We set χ̂ = 0 and redefine φ̂ = ψ in [25].
23We will denote here and further below by a(n,m) the coefficient at order rn(log r)m of the field r∆a

where r−∆ is the leading term in the expansion of a with the exception of the a(n,0) term which we will

simply denote as a(n).
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where the coefficients are given by

γ(2)AB = −1

2

(
R(0)AB −

1

2
∂Aψ(0)∂Bψ(0)

)
+

1

12
γ(0)AB

(
R(0) −

1

2
(∂ψ(0))

2

)
, (B.6)

ψ(2) =
1

4
�(0)ψ(0) , (B.7)

at second order and by

γ(4,1)AB =
1

4
∇C(0)

(
∇(0)Aγ(2)BC +∇(0)Bγ(2)AC −∇(0)Cγ(2)AB

)
− 1

4
∇(0)A∇(0)Bγ

C
(2)C

+γ(2)ACγ
C
(2)B −

1

2
∂(Aψ(0)∇(0)B)ψ(2) − γ(0)AB

(
1

4
γCD(2) γ(2)CD +

1

2
ψ2

(2)

)
, (B.8)

ψ(4,1) = −1

4

[
�(0)ψ(2) + 2ψ(2)γ

A
(2)A +

1

2
∂Aψ(0)∇(0)Aγ

B
(2)B − γ

AB
(2) ∇(0)A∂Bψ(0)

−∂Aψ(0)∇B(0)γ(2)AB

]
, (B.9)

at order r4 log r. We note that the quantity γ(4,1)AB is traceless. Indices of the expansion

coefficients are raised and lowered with the AdS boundary metric γ(0)AB. At order r4 we

have that γ(4)AB is constrained by

γA(4)A =
1

4
γ(2)ABγ

AB
(2) −

1

2
ψ2

(2) , (B.10)

∇B(0)γ(4)AB = ψ(4)∂Aψ(0) −
1

2
ψ(2)∇(0)Aψ(2) −

1

4
γBC(2) ∇(0)Aγ(2)BC

−1

4
γ(2)AC∇C(0)γ

B
(2)B +

1

2
γBC(2) ∇(0)Bγ(2)AC +

1

2
γC(2)A∇

B
(0)γ(2)BC . (B.11)

Following [62] we write the coefficient γ(4)AB as

γ(4)AB = XAB −
1

4
tAB , (B.12)

where tAB is the boundary energy-momentum tensor defined in (B.24). The trace and

divergence of tAB will be given below together with the explicit form of XAB. In the

expansion for the scalar we have that ψ(4) is a fully arbitrary function of the boundary

coordinates.

The complete action with Gibbons-Hawking and local counterterms (using minimal

subtraction) is given by

Sren =
1

2κ2
5

∫
M
d5x
√
−G

(
R+ 12− 1

2
∂Mψ∂

Mψ

)
+

1

κ2
5

∫
∂M

d4x
√
−γK + Sct , (B.13)

where γ denotes the determinant of the metric γAB on the cut off boundary ∂M, the

extrinsic curvature K is given by

K = γABKAB , KAB = −1

2
LnγAB , nM = −rδMr , (B.14)

and where

Sct =
1

κ2
5

∫
∂M

d4x
√
−γ
(
−1

4

(
R(γ) + 12− 1

2
∂Aψ∂

Aψ

)
− 1

2
A log r

)
, (B.15)
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with

A = −1

4

(
QABQAB −

1

3
Q2 +

1

2

(
�(γ)ψ

)2)
, (B.16)

QAB = R(γ)AB −
1

2
∂Aψ∂Bψ .

B.2 One-point functions

To compute one-point functions, we write the total variation of Sren = Sbulk +SGH +Sct as

δSren =
1

2κ2
5

∫
M
d5x
√
−G

(
EMN δGMN + Eψδψ

)
+

1

2κ2
5

∫
∂M

d4x
√
−γ
(

1

2
TABδγ

AB + Tψδψ

)
, (B.17)

where EMN and Eψ are the equations of motion

EMN = GMN − 6GMN −
1

2
∂Mψ∂Nψ +

1

4
GMN (∂ψ)2 , (B.18)

Eψ = �ψ , (B.19)

and where

TAB = −2(K − 3)γAB + 2KAB −QAB +
1

2
hABQ+ log rT

(A)
AB , (B.20)

Tψ = −nM∂Mψ −
1

2
�(γ)ψ + log rT

(A)
ψ . (B.21)

Here we defined

T
(A)
AB = − 2κ2

5√
−γ

δA

δγAB
, T

(A)
ψ = − κ2

5√
−γ

δA

δψ
, (B.22)

with

A =
1

κ2
5

∫
∂M

d4x
√
−γA . (B.23)

From the expansions it follows that
√
−γ = r−4√−γ(0) + O(r−2), δγAB = r2δγAB(0) +

O(r4), δψ = δψ(0) + O(r2), which is used to obtain the following one-point functions (we

take the cut-off boundary at r = ε)

tAB =
4κ2

5√
−γ(0)

δSon-shell
ren

δγAB(0)

= lim
ε→0

ε−2TAB = −4γ(4)AB + 4XAB , (B.24)

〈Oψ〉 =
2κ2

5√
−γ(0)

δSon-shell
ren

δψ(0)
= lim

ε→0
ε−4Tψ = 4ψ(4) + ψ(2)γ

A
(2)A + 3ψ(4,1) , (B.25)

where

XAB =
1

2
γ(2)ACγ

C
(2)B −

1

4
γC(2)Cγ(2)AB +

1

8
γ(0)ABA(0) −

3

4
γ(4,1)AB , (B.26)

with

A(0) = lim
ε→0

ε−4A =
(
γA(2)A

)2
− γAB(2) γ(2)AB − 2ψ2

(2) . (B.27)

Using equations (B.10) and (B.11) we can compute the trace and divergence of the

boundary energy-momentum tensor and the result is

tAA = A(0) , (B.28)

∇(0)At
A
B = −〈Oψ〉∂Bψ(0) . (B.29)
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B.3 Dimensional reduction of the action

The Scherk-Schwarz reduction leading to (2.1) with the choices (2.15) is obtained by the

following reduction ansatz

ds2
5 = GMNdxMdxN =

dr2

r2
+ γABdx

AdxB = e−ΦgMNdx
MdxN + e2Φ

(
du+AMdx

M
)2

= e−Φ

(
eΦdr

2

r2
+ hµνdx

µdxν
)

+ e2Φ (du+Aµdx
µ)2 , (B.30)

ψ = 2u+ 2Ξ , (B.31)

where all the functions are independent of the fifth coordinate u which is periodically

identified, so u ∼ u + 2πL. The only exception is the term linear in ψ which means that

upon going around the reduction circle ψ comes back to itself up to a constant shift. This

is allowed because shifting ψ is a global symmetry of the higher-dimensional theory. The

consistency of the reduction is proven in section B.5.

After reduction the four dimensional action is

S =

∫
d4x
√
−g
(
R− 3

2
∂MΦ∂MΦ− 1

4
e3ΦFMNF

MN − 2BMB
M − V

)
+2

∫
d3x
√
−hK + Sct , (B.32)

Sct = 2

∫
∂M

d3x
√
−h
[
−1

4
eΦ/2

(
R(h) −

3

2
∂µΦ∂µΦ− 1

4
e3ΦFµνF

µν − 2BµB
µ + 10e−Φ

)]
− log r

∫
∂M

d3x
√
−he−Φ/2A , (B.33)

where

BM = AM − ∂MΞ , (B.34)

FMN = ∂MBN − ∂NBM , (B.35)

V = 2e−3Φ − 12e−Φ , (B.36)

and where we used that 2πL
2κ2

5
= 1.

The total variation can be written as

δSren =

∫
M
d4x
√
−g
(
EMNδg

MN + ENδBN + EΦδΦ
)

+

∫
∂M

d3x
√
−h
(

1

2
Tµνδh

µν + T νδBν + TΦδΦ

)
, (B.37)

with

EMN = GMN +
1

8
e3ΦgMNFPQF

PQ − 1

2
e3ΦFMPFN

P + gMNBPB
P − 2BMBN

+
3

4
gMN∂PΦ∂PΦ− 3

2
∂MΦ∂NΦ +

1

2
gMNV , (B.38)

EΦ = 3�Φ− 3

4
e3ΦFMNF

MN + 6e−3Φ − 12e−Φ , (B.39)

EN = ∇M
(
e3ΦFMN

)
− 4BN , (B.40)
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and

Tµν = −2Khµν + 2Kµν − eΦ/2G(h)µν + 5e−Φ/2hµν

+
1

2
e7Φ/2FµρFν

ρ − 1

8
e7Φ/2hµνFρσF

ρσ − eΦ/2hµνBρB
ρ + 2eΦ/2BµBν

+
1

2
eΦ/2

(
∇(h)
µ ∂νΦ− hµν�(h)Φ

)
+

7

4
eΦ/2∂µΦ∂νΦ− eΦ/2hµν∂ρΦ∂

ρΦ , (B.41)

TΦ = −3nM∂MΦ− 1

4
eΦ/2R(h) −

3

8
eΦ/2∂µΦ∂µΦ− 3

2
eΦ/2�(h)Φ

+
7

16
e7Φ/2FµνF

µν +
1

2
eΦ/2BµB

µ +
5

2
e−Φ/2 , (B.42)

T ν = −e3ΦnMF
Mν − 1

2
∇(h)
µ

(
e7Φ/2Fµν

)
+ 2eΦ/2Bν , (B.43)

where the extrinsic curvature is

K = hµνKµν , Kµν = −1

2
Lnhµν , nM = −re−Φ/2δMr . (B.44)

These expressions are correct up to log r terms since we did not vary those counterterms.

B.4 Sources and vevs

We write the 4-dimensional metric in (B.30) as

ds2 = eΦdr
2

r2
+ hµνdx

µdxν = eΦdr
2

r2
− E0E0 + δabE

aEb . (B.45)

In order to compute the vevs we use the identity [25, 26]

1

2
Tµνδh

µν +T νδBν +TΦδΦ = S0
µδE

µ
0 +SaµδEµa +Tϕδϕ+T aδAa+TΞδΞ +TΦδΦ , (B.46)

which holds up to a total derivative, where we used that Bν = Aν − ∂νΞ, Aa = EµaAµ and

where ϕ is defined by [26]

ϕ = Eν0Aν − α(Φ) , (B.47)

with α = e−3Φ/2 for the particular model studied here [25] and where

S0
µ = −

(
TµνE

ν
0 + T ρE0

ρAµ
)
, (B.48)

Saµ =
(
TµνE

νa − T ρEaρAµ
)
, (B.49)

Tϕ = T νE0
ν , (B.50)

TΦ = TΦ + T νE0
ν

dα

dΦ
, (B.51)

T a = T νEaν , (B.52)

TΞ = e−1∂µ (eT µ) . (B.53)

The 4-dimensional sources are defined as the leading terms in the expansions of the

bulk fields appearing on the right hand side of (B.46). We find the sources vµ, eµa ,mµ, φ, χ
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defined via

Eµ0 ' −r
2α
−1/3
(0) vµ , (B.54)

Eµa ' rα
1/3
(0) e

µ
a , (B.55)

Aµ − α(Φ)E0
µ ' −mµ , (B.56)

Φ ' φ , (B.57)

Ξ ' −χ , (B.58)

ϕ ' r2α
−1/3
(0) vµmµ , (B.59)

Aa ' −rα1/3
(0) e

µ
amµ . (B.60)

Likewise the vevs are defined as the leading terms in the expansions of the objects

that are the responses to the variations written in (B.46), i.e. we define the vevs

S0
µ, S

a
µ, T

0, T a, 〈Oφ〉, 〈Oχ〉

S0
µ ' r2α

2/3
(0) S

0
µ , (B.61)

Saµ ' r3Saµ , (B.62)

Tϕ ' −r2α
2/3
(0) T

0 , (B.63)

T a ' −r3T a , (B.64)

TΦ ' r4α
1/3
(0) 〈Oφ〉 , (B.65)

TΞ ' −r4α
1/3
(0) 〈Oχ〉 , (B.66)

where

α(0) = e−3φ/2 . (B.67)

Using (B.45), (B.30) as well as the definitions of the 4-dimensional sources (B.54)–

(B.56) we can derive the following relation between the 5-dimensional boundary metric

γ(0)AB and the 4-dimensional sources τµ, mµ and eaµ,

ds2 = γ(0)ABdx
AdxB = 2τµdx

µ (du−mνdx
ν) + hµνdx

µdxν , (B.68)

where hµν = δabe
a
µe
b
ν which is the form of a null reduction ansatz for a reduction along

u as discussed in section A.1. The fact that the boundary metric of the 5-dimensional

asymptotically locally AdS space-time must have a null circle means that the source φ

which appears in the expansion of Φ is not independent of the other sources. This can be

seen by noting that γuu = e2Φ, so that the 5-dimensional FG expansion via (B.4) and (B.6)

tells us that

e2φ = γ(2)uu = −1

2
R(0)uu + 1 = −1

4
(εµνρτµ∂ντρ)

2 + 1 , (B.69)

where the epsilon tensor is given by εµνρ = e−1εµνρ where e is the determinant of the

TNC vielbein matrix (τµ , e
a
µ) and εµνρ is the Levi-Civita symbol. For more details we refer

to [25]. The consequence of this is that the variation of the on-shell with respect to φ gives

zero since nothing depends on φ.
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We now relate the 5-dimensional vevs to the 4-dimensional vevs. For all solutions

obeying the reduction ansatz the variation of the on-shell action can be written in both a

5-dimensional and a 4-dimensional notation. From a 5-dimensional perspective we have

δSon-shell
ren = lim

ε→0

1

2κ2
5

∫
r=ε

d4x
√
−γ
(

1

2
TABδγ

AB + Tψδψ

)
=

∫
∂M

d3xe

(
1

2
tABδγ

AB
(0) + 〈Oψ〉δψ(0)

)
, (B.70)

where we used the fact that
√
−γ(0) = e = det

(
τµ, e

a
µ

)
as follows from (B.68) and the fact

that nothing depends on u so that we can perform the u integral. At the same time from

a 4-dimensional perspective we also have, using (B.37), (B.46),

δSon-shell
ren = lim

ε→0

∫
r=ε

d3x
√
−h
(

1

2
Tµνδh

µν + T νδBν + TΦδΦ

)
(B.71)

=

∫
∂M

d3xe
(
−S0

µδv
µ + Saµδe

µ
a + T 0δm0 + T aδma + 〈Oχ〉δχ+ 〈Õφ〉δφ

)
,

with m0 = −vµmµ, ma = eµamµ and where we used

ψ(0) = 2u− 2χ , 〈Oψ〉 = −1
2〈Oχ〉 , (B.72)

so that δψ(0) = −2δχ and where furthermore Õφ is given by

Õφ = Oφ −
1

2

[
vµ
(
S0
µ + T 0mµ

)
+ eµa

(
Saµ + T amµ

)]
= 0 , (B.73)

which must vanish because of the comment below (B.69). The extra terms added to Oφ
come from the variation of φ due to the α(0)(φ) factors in (B.54)–(B.56). Equating (B.71)

with (B.70) we obtain

1

2
tABδγ

AB
(0) + 〈Oψ〉δψ(0) = −S0

µδv
µ + Saµδe

µ
a + T 0δm0 + T aδma + 〈Oχ〉δχ+ 〈Õφ〉δφ ,

(B.74)

up to total derivatives. The right hand side can be rewritten as follows

−S0
µδv

µ + Saµδe
µ
a + T 0δm0 + T aδma + 〈Oχ〉δχ+ 〈Õφ〉δφ =

−τνTχνµδv̂µχ −
(
τ(µĥ

χ
ν)ρv̂

σ
χTχ

ρ
σ

)
δhµν +

1

2

(
ĥχµρĥ

χ
νλh

λσTχ
ρ
σ

)
δhµν + τµT

µδΦ̃χ

+

(
〈Oχ〉−

1

e
∂µ (eTµ)

)
δχ+

(
êχ
a
µT

µ−τνeµaTχνµ
)
δMa−

1

2
êχ

[a
ν e

b]µTχ
ν
µ

(
êχρaδe

ρ
b−êχρbδe

ρ
a

)
,

(B.75)

where v̂µχ, êχ
a
µ and Φ̃χ are given by (A.8), (A.9) and (A.15) but with mµ replaced by Mµ

which is

Mµ = mµ − ∂µχ . (B.76)

This does not affect their orthonormality properties. Further we defined Ma = eµaMµ and

Tχ
µ
ν = −

(
S0
ν + T 0∂νχ

)
vµ + (Saν + T a∂νχ) eµa , (B.77)

Tµ = −T 0vµ + T aeµa . (B.78)
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The definitions of the 4-dimensional sources (B.68) and (B.72) imply that they transform

under the local symmetries as TNC fields

δeaµ = τµλ
a + λabe

b
µ , (B.79)

δmµ = ∂µσ + λae
a
µ , (B.80)

δχ = σ , (B.81)

for the same reasons as discussed in section A.1. From this we conclude that

δeµa = λa
beµb , (B.82)

δMa = λa + λa
bMb , (B.83)

so that we must have the off-shell Ward identities

êχ
a
µT

µ = τνe
µaTχ

ν
µ , (B.84)

0 = êχ
[a
ν e

b]µTχ
ν
µ , (B.85)

〈Oχ〉 =
1

e
∂µ (eTµ) . (B.86)

Hence we obtain the following relation between the 5- and 4-dimensional vevs

1

2
tABδγ

AB
(0) + 〈Oψ〉δψ(0) = −τνTχνµδv̂µχ −

(
τ(µĥ

χ
ν)ρv̂

σ
χTχ

ρ
σ

)
δhµν

+
1

2

(
ĥχµρĥ

χ
νλh

λσTχ
ρ
σ

)
δhµν + τµT

µδΦ̃χ . (B.87)

Using the same reasoning as in section A.2 we conclude from this that the relation between

the 5- and 4-dimensional vevs can be summarized as

tµu = 2Φ̃Tµ − v̂ν (Tχ
µ
ν − Tµ∂νχ) , (B.88)

tµν = −v̂µT ν + hµρ (Tχ
ν
ρ − T ν∂ρχ) . (B.89)

Note that Tχ
µ
ν−Tµ∂νχ is independent of χ because we absorbed Tµ∂νχ into the definition

of Tχ
µ
ν (see also (B.77)). Put another way we can use equations (A.35)–(A.41) with

Tµν = Tχ
µ
ν − Tµ∂νχ . (B.90)

The Ward identities are then obtained by the dimensional reduction of (B.28) and (B.29)

using (B.72) and equations (A.35)–(A.41) with Tµν = Tχ
µ
ν − Tµ∂νχ. On a flat boundary

with τµ = δtµ, hµν = δijδ
i
µδ
j
ν , mµ = 0 and χ = 0 this becomes

2T tt + T ii = 0 , (B.91)

∂µT
µ
ν = 0 , (B.92)

∂µT
µ = 〈Oχ〉 . (B.93)
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B.5 Consistency of the reduction

In this subsection we will show that the Scherk-Schwarz reduction (B.30) and (B.31) is

consistent. We performed the reduction at the level of the action in section B.3. It remains

to show that also the equations of motion of the 5-dimensional action reduce correctly. The

5-dimensional equations of motion (B.18)and (B.19) can be written as

R
(5)
MN = −4GMN +

1

2
∂Mψ∂Nψ , (B.94)

0 = ∂M

(√
−GGMN∂Nψ

)
, (B.95)

where the superscript on the Ricci tensor is used to distinguish its MN component from

the 4-dimensional Ricci tensor R
(4)
MN .

The Kaluza-Klein ansatz for the metric (B.30) tells us that

GMN = e−ΦgMN + e2ΦAMAN , GMu = e2ΦAM , Guu = e2Φ , (B.96)

GMN = eΦgMN , gMu = −eΦAM , Guu = e−2Φ + eΦAMAM . (B.97)

Further we have
√
−G = e−Φ√−g. The reduction of the 5-dimensional Ricci tensor follows

from standard results on circle reductions of gravity (see for example [65]). The components

of the 5-dimensional Ricci tensor can be written as follows

R(5)
uu = −e3Φ�Φ +

1

4
e6ΦF 2 , (B.98)

R
(5)
uM = R(5)

uuAM +
1

2
∇N

(
e3ΦFMN

)
, (B.99)

R
(5)
MN = AMR

(5)
uN +ANR

(5)
uM −AMANR

(5)
uu +R

(4)
MN −

3

2
∂MΦ∂NΦ

+
1

2
gMN�Φ− 1

2
e3ΦFMPFN

P . (B.100)

Using the Scherk-Schwarz reduction ansatz for ψ given in (B.31) we also have

R(5)
uu = −4e2Φ + 2 , (B.101)

R
(5)
uM = −4e2ΦAM + 2∂MΞ , (B.102)

R
(5)
MN = −4e−ΦgMN − 4e2ΦAMAN + 2∂MΞ∂NΞ . (B.103)

It is now straightforward to verify that combining (B.98) and (B.101) leads to the

equation of motion for Φ given in (B.39). Continuing with (B.99) and (B.102) we obtain

the equation of motion for BM = AM−∂MΞ given in (B.39). Finally the equations (B.100)

and (B.100) lead to the trace-reversed versions of the Einstein equation given in (B.38).

We also have the 5-dimensional equation of motion for ψ. This can be seen to reduce

to ∂M
(√
−gBM

)
= 0 which is a consequence of (B.39). We have hereby shown that the

reduction (B.30) and (B.31) is consistent.

B.6 Comparison to other approaches

The works [44, 45] and [26, 28] both study asymptotically locally Lifshitz solutions of the

EPD model. The setup of [44, 45] includes in principle what we refer to as the upliftable
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model but does not study it explicitly. Below we will make a first attempt at a comparison

between the two approaches. We will do this for the general class of EPD models for

as much as possible. Some statements will however be more specific for the case of the

upliftable model.

In the notation of [44, 45] the solution to the equations of motion of the EPD model

near a Lifshitz boundary is written as

ds2 = dr2 + γijdx
idxj , (B.104)

A = Aidx
i , B = A− dω . (B.105)

The U(1) gauge transformations have been partially fixed by setting Ar = 0. In [26, 28] we

make the same gauge choice only for z = 2. In our notation we would replace the i index by

a µ index and replace r by log r. Further ω here is denoted by Ξ,24 and γij is called hµν here.

In [44, 45] a radial gauge (F2 = 1) is employed for the metric while in [26, 28] we

allow for a general function in the rr component of the metric. For example for the

upliftable model it is more natural to work with a gauge in which25 F2 = e−Φ so that the

5-dimensional uplifted asymptotically locally AdS metric is written in radial gauge. This

difference is more than just a matter of choice because we have shown in [25] that one

cannot transform to the F2 = 1 gauge unless the leading term in the expansion of Φ, that

we call φ, vanishes.26 This is not always the case and when we impose this extra condition

it leads via (B.69) to the condition that τµ is hypersurface orthogonal. Hence if we make

the assumption that the asymptotically locally Lifshitz boundary conditions of [25] are

compatible with radial gauge we need to put the source φ = 0.

In [44, 45] the metric γij is written in the ADM decomposition as

γijdx
idxj = −n2dt2 + σab (dxa + nadt)

(
dxb + nbdt

)
, (B.106)

where a labels the number of spatial dimensions which here is d = 2. In order to make con-

tact with the way we set up the definition of the sources we write the ADM decomposition

in terms of vielbeins as follows

γijdx
idxj = −E0E0 + δabE

aEb , (B.107)

where underlined indices a refer to flat tangent space indices that take as many values as

there are spatial coordinates. We keep here with the notation of [44, 45]. Since these works

do not use tangent space indices we introduced these underlined indices only in this section

for the sake of comparison. We can take without loss of generality

E0 = ndt , Ea = eaa (dxa + nadt) . (B.108)

24The source ω(0) of the Stückelberg field ω is what we call χ.
25Similar gauge choices for F2 are also important for some other EPD models that do not admit an uplift

(see the z = 2 and ∆ = 0 cases discussed in [26]).
26For general EPD models we set Φ ' r∆φ [26, 28] where the value of ∆ depends on the details of the

EPD action. To the best of our knowledge this ∆ parameter does not appear explicitly in [44, 45]. However

there is a comment below their equation (5.25) stating that the asymptotic form of the dilaton depends on

the potential which is essentially allowing for a ∆ in the fall-off of the dilaton.
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This allows us to establish the following dictionary between the sources in [44, 45] and

those defined in [26, 28]

τµ =
(
n(0) , 0

)
, vµ = n−1

(0)

(
−1 , na(0)

)
, (B.109)

hµνdx
µdxν = g(0)ab

(
dxa + na(0)dt

)(
dxb + nb(0)dt

)
. (B.110)

Hence in [44, 45] the source τµ is always taken to be hypersurface orthogonal.

In the work [26, 28] we also introduce the Newton-Cartan vector mµ as a source or

rather the U(1) invariant combination Mµ = mµ−∂µχ. By fixing local tangent space trans-

formations (with parameter λa) we can fix all but one component of Mµ. The remaining

component is related to Φ̃χ which is defined by (A.8) with mµ replaced by Mµ. The scalar

Φ̃ has scaling weight 2(z − 1). Similarly there is a scalar source in the work of [44, 45]

that is denoted by ψ following [46]. The main difference between the approach of [44, 45]

and [26, 28] lies in the fact that the dilatation weight of ψ denoted by ∆− does not in

general agree with the dilatation weight of Φ̃. The number of sources (when comparing

both approaches in radial gauge and taking τµ to be hypersurface orthogonal) thus agrees

but for one of them the scaling dimensions differ.

To see where Φ̃ appears in our near-boundary expansion we consider purely radial

solutions, like we studied in section 3.2. Recall that in section 3.2 we set Φ̃ = 0 by hand.

If we do not do this then we obtain, using the results of appendices A.1 and B.1,

γ(2)AB = δuAδ
u
B −

1

3
Φ̃γ(0)AB , (B.111)

γ(4,1)AB =
4

3
Φ̃δuAδ

u
B −

2

3
Φ̃2γ(0)AB , (B.112)

γ(4)AB = −1

2
Φ̃δuAδ

u
B +

5

18
Φ̃2γ(0)AB −

1

4
tAB , (B.113)

ψ(2) = ψ(4,1) = ψ(4) = 0 . (B.114)

Components such as γ(4,1)AB correspond to logarithmic terms in the expansion. This

implies that for example the expansions of the matter fields become

Φ =
2

3
Φ̃r2 log r − 1

8

(
ρ+ 2Φ̃

)
r2 + . . . , (B.115)

Aµ = r−2τµ −
4

3
log rΦ̃τµ +

1

6
Φ̃τµ +

1

4
ρτµ + . . . , (B.116)

where the dots denote subleading terms.

It would be nice to make a direct comparison between the case studied here where V

is a sum of two exponential potentials as given in (2.15). However the case where V is

the sum of two exponentials is not explicitly studied in [44, 45] so this would have to be

worked out first.27

27There exists another model used in [25] that contains two dilatons that can be obtained by a similar

Scherk-Schwarz reduction as used in the present work admitting a z = 2 Lifshitz solution. This model is

related in [36] (see around equation (6.40)) to an EPD model with a single exponential potential, which

is a case explicitly worked out in that paper. This is done by setting a linear combination of these two

scalars equal to a constant, which, however, is not a consistent truncation of the model discussed in [36].

The relation (6.40) of [36] only holds asymptotically at leading order in a near-boundary expansion.
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