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1 Introduction

Correlation functions of half-BPS operators in N = 4 super Yang-Mills (SYM) theory —

in particular of the stress-tensor multiplet — have been extensively studied because their

strong coupling regime is accessible via the AdS/CFT correspondence. Subsequently, the

integrability of the model’s spectrum problem was discovered, and in an initially unrelated

effort, many results were obtained for scattering amplitudes and a dual set of Wilson

loops. These two developments were brought together by the construction of an integrable

system [1, 2] for the so-called remainder function in amplitudes.

The stress-tensor correlators came back to center stage when it became clear that they

can act as generating objects for both scattering amplitudes and the dual polygonal Wilson

loops [3, 4]. It is then a natural question whether these correlators can also be analyzed

from an integrable systems perspective. In [5] such ideas have been put forward for general

three-point functions in weak coupling perturbation theory. Unfortunately, comparison to

perturbative “data” is possible only indirectly because it is a fairly hard task to obtain

exact field theory results for non-trivial three-point functions at higher loops. However,

three-point couplings for two half-BPS and one twist operator are available from OPE

limits of half-BPS four-point functions. The explicit result for the two-loop four-point

stress-tensor correlator from a decade ago [6, 7] has been a guideline for the construction

of the “hexagon proposal” of [5], and more recent work [8–11] for the three-loop part of

the four-point function has been successfully compared to the hexagon prediction [12, 13];

a vital test of the proposal.

At the next order it is not yet clear how to handle the hexagon due to problems

with a double pole. On the field theory side, the integrand of the four-point function of

stress-tensor multiplets has been elaborated in [8, 14–16] up to eight loops. It takes the

form of a kinematic factor [17] times a sum of scalar conformal integrals in a propagator

representation. At four loops (and beyond), the largest part of the integrals has not yet

been evaluated: there are 26 genuine four-loop integrals in the planar part of the correlator

(so the part relevant to integrability), of which five can be related to the ladder with four

rungs by flip identities on subintegrals. One further integral could be solved in [10] as it
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Figure 1. A four-loop conformal integral.

obeys a Laplace equation, see below. The recent paper [18] considers the leading terms in

an asymptotic expansion for the entire set of integrals.

A possible way to exactly evaluate conformal integrals is to follow the idea advocated

in [19] and to try to perform integration over Feynman parameters in an appropriate

order. If it turns out that there is an order in which the dependence of the denominator of

the integrand on the Feynman parameters is linear then the whole integral can be solved

in terms of multiple polylogarithms. This strategy was successfully applied for example

in [20–24] and implemented as the computer code HyperInt in [25].

We initiate here the study of the remaining 20 integrals by the method of differential

equations, choosing at will the simplest looking diagram. The goal of this paper is thus

to evaluate the coordinate-space Feynman integral associated with the graph of figure 1.

Although this integral is linearly reducible, in the sense of [19], and an analytical result can

be obtained with HyperInt in [25], we are going to evaluate it with differential equations,

keeping in mind that many cases in our set of 20 remaining four-loop conformal integrals

will be linearly irreducible, although knowledge on polynomial reduction is constantly

increasing. Indeed, it is helpful to be able to test our result against a different method.

The previous paper [10] chiefly aimed at three loops, but it also contains the afore-

mentioned application of the Laplace equation to one of the 26 four-loop integrals. Upon

flipping a subintegral, one external vertex is connected to the rest of this diagram only by

a single line. Acting by the operator � = ∂
∂xµ

∂
∂xµ , where x is the four-coordinate of this

vertex, is described in graph-theoretical language as the contraction of the corresponding

line, so that we easily obtain a differential equation in four dimensions.

In figure 1, conformal invariance allows us to send the point x4 to infinity to reduce

to the Feynman integral whose graph is shown in figure 2. Here two lines are incident to

each of the three external vertices so that we cannot derive a differential equation of the

same type as in the previous case.

The approach based on differential equations and integration by parts substantially

enlarges any problem, because instead of a single integral one considers a family of master

integrals closed under IBP relations. A four-dimensional version of the method [26] is
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Figure 2. A vertex integral obtained from our four-loop conformal integral.

more economical with respect to the size of the basis of integrals. However, an obvious

complication for our set of conformal integrals is that there are potentially ultraviolet

and infrared divergences, and it is not straightforward to choose a subspace of Feynman

integrals which includes a given conformal integral and other finite integrals (both in the

ultraviolet and infrared sense) closed under four-dimensional integration by parts relations.

We believe that the strategy outlined in [26] can be adjusted to the case of conformal

integrals as well. In this paper, however, we decided to employ the well-known straightfor-

ward technique within dimensional regularization based on D-dimensional integration by

parts [27] and differential equations [28–34].

On the one hand, we certainly make the situation more complicated, because dimen-

sional regularization means involving a fairly large number of integrals. Indeed, as we will

see shortly, there are 213 master integrals in the corresponding extended family of Feynman

integrals; the integral of figure 2 is only one of them. On the other hand, we obtain the

possibility to apply the very well-known powerful machinery of differential equations.

To solve these linear differential equations we follow the strategy suggested by Henn [34]

(see also [35]) and first applied in [36–38] and then in many other papers. To this end we

switch to a uniformly transcendental basis of master integrals. We obtain a solution to

these equations up to weight eight in terms of multiple polylogarithms [39]. An analytical

result for the given four-loop conformal integral considered in four-dimensional space-time

is given in terms of harmonic polylogarithms [40] of weight eight. This result can naturally

be represented in terms of single-valued harmonic polylogarithms [41]. As a by-product we

obtain analytical results for all the other 212 master integrals considered in D dimensions.

In the next section, we present definitions, describe master integrals and differential

equations and explain how we arrived at a canonical basis, in the sense of [34]. In section 3,

we solve the differential equations in our canonical basis and describe our results. We

discuss perspectives in the conclusions.

2 Master integrals and differential equations

Since after going to D = 4− 2ǫ dimensions we have to deal with a complete set of integrals

closed under integration by parts relations, we introduce eight more numerators (in the

form of propagators) in addition to the ten existing propagators. Thus, we arrive at the
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following family of integrals

Fa1,...,a18 =

∫

. . .

∫

dDx5 d
Dx6 d

Dx7 d
Dx8

[−x2
5
]a1 [−x2

6
]a2 [−(x1 − x5)2]a3 [−(x1 − x7)2]a4 [−(x2 − x6)2]a5

×
[−(x2−x5)

2]−a11 [−(x1−x6)
2]−a12 [−(x2−x7)

2]−a13 [−(x6−x7)
2]−a14 [−x2

7
]−a15

[−(x2−x8)2]a6 [−(x5−x6)2]a7 [−(x5−x7)2]a8

×
[−(x1 − x8)

2]−a16 [−(x5 − x8)
2]−a17 [−x2

8
]−a18

[−(x6 − x8)2]a9 [−(x7 − x8)2]a10
. (2.1)

The powers of the propagators (indices) ai are integer and ai ≤ 0 for i ≥ 11. Although the

situation is of Euclidean type we prefer to deal with propagators in Minkowski space, with

x2 = x2
0
− ~x2 because some computer codes are oriented at Minkowski propagators.

This is a family of vertex Feynman integrals depending on x1, x2 and x3. In the last

formula translation invariance was used to set x3 to zero. We put (x1 − x2)
2 = −1 and

introduce standard conformal variables by

x21 = −zz̄ , x22 = −(1− z)(1− z̄) . (2.2)

Using FIRE [42–44] combined with LiteRed [45] we reveal 213 master integrals. In

particular, there are four master integrals in the top sector, i.e. with all the first ten indices

positive. The integral number 210 is the integral F1,...,1,0,... equal to the conformal integral

in figure 2 which was our starting point. The full list of primary master integrals is present

in a file attached to this paper.

The derivation of differential equations for a family of master integrals is a straight-

forward procedure. We take derivatives of the master integrals in z and z̄ with the help of

the package LiteRed [45] and then apply FIRE to reduce the resulting integrals to master

integrals. As a result we obtain two systems of linear differential equations.

∂

∂z
f = A1(z, z̄, ǫ)f , (2.3)

∂

∂z̄
f = A2(z, z̄, ǫ)f , (2.4)

where f is the vector of primary master integrals and A1, A2 are 213× 213-matrices.

We follow the strategy suggested in [34] and turn to a new basis where the differential

equations take the form

∂

∂z
f = ǫĀ1(z, z̄)f , (2.5)

∂

∂z̄
f = ǫĀ2(z, z̄)f , (2.6)

where the matrices Ā1, Ā2 are independent of ǫ.

In differential form, we have

d f(z, z̄) = ǫ (d Ã(z, z̄)) f(z, z̄) ,
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where

Ã =
∑

k

Ãαk
log(αk) . (2.7)

The matrices Ãαk
are constant matrices and the arguments of the logarithms αi (letters)

are functions of z, z̄. One calls this form of differential equations canonical.

In our case, the list of letters is

{z, 1− z, z̄, 1− z̄,−z + z̄, 1− z − z̄, 1− zz̄, z + z̄ − zz̄} . (2.8)

In the case of one variable there exists an algorithm [46] which provides the possibility

of arriving at a canonical basis.1 In our case there are two variables. We followed recipes

formulated in [34, 35] and successfully applied in [36–38, 47] and many other papers. In

particular, one tries to choose basis integrals that have constant leading singularities2 [48].

Sometimes we also used small additional rotations of the basis to ’integrate out’ terms with

an ǫ0 dependence, as it was done in many cases, see e.g. [36–38, 47].

We have implemented these recipes in a code which we successfully applied in the

case at hand. A description of this code will be given in a future publication together with

results on more complicated four-loop conformal integrals. Our canonical basis is presented

in the supplementary material attached to this paper.

3 Solving canonical differential equations

We solve the linear system (2.5), (2.6), in a power expansion in ǫ according to the strategy

described in detail in [49, 50]. We solve the first linear system, eq. (2.5), which results into

multiple polylogarithms of the argument z, up to unknown functions of z̄.

The multiple polylogarithms are defined recursively by

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) (3.1)

with ai, z ∈ C and G(z) = 1. In the special case where ai = 0 for all i one has by definition

G(0, . . . , 0;x) =
1

n!
lnn x . (3.2)

Then we substitute this solution into the second system, eq. (2.6), check that the

dependence on z drops out and solve the resulting linear system depending only on z̄, up

to constants of weights w ≤ 8. To fix these 213 × 9 unknown constants, we match our

results for the canonical basis in terms of multiple polylogarithms to the leading order

asymptotic behaviour of the solution of eqs. (2.5), (2.6) in the Euclidean limit x1 → 0, or

equivalently z, z̄ → 0, found by solving the differential equations in the limit.

1In fact, some parts of it can be applied in the case of several variables as well.
2Leading singularities are multidimensional residues of the integrand. They determine rational factors

in front of the otherwise logarithmic functions in explicit expressions for Feynman integrals.
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The corresponding terms of the expansion can be written in the well-known graph-

theoretical language — see, e.g., [51]. Alternatively, they can be described in the language

of expansion by regions [51, 52]. The crucial point in the matching is that the leading-order

contributions are classified according to the power dependence on the small parameter of the

limit, i.e. ∼ zz̄. This parameter enters with powers of the form −kǫ where k = 0, 1, 2, 3, and

this is seen both from the point of view of differential equations and expansion by regions.

Upon fixing all the constants in our solution we obtain analytic results for all the

213 elements of the canonical basis. These are presented in two files (for contribu-

tions up to weight 7 and of weight 8, respectively) which can be downloaded from:

http://theory.sinp.msu.ru/∼smirnov/ci4.

Element number 210 of the basis is

f210 = ǫ8(z − z̄)2F1,...,1,0,... . (3.3)

Its ǫ-expansion starts from order ǫ8. We obtain the following result for the original confor-

mal integral

F1,...,1,0,... =
4

(z − z̄)2
× (3.4)

[

−L{3,5} + L{5,3} − L{1,2,5} + L{1,3,4} + L{1,4,3} − L{1,5,2}

− L{2,1,5} + L{2,5,0} + L{2,5,1} − L{3,1,4} − L{3,4,1} + L{4,1,3}

− L{4,3,0} − L{4,3,1} + L{5,1,2} + L{5,2,1} − L{1,1,1,5} + L{1,1,2,4}

− L{1,1,4,2} + L{1,1,5,0} + L{1,1,5,1} − L{1,2,3,2} − L{1,2,4,1} + 2L{1,3,1,3}

+ L{1,4,2,1} − L{1,5,0,0} − L{1,5,1,0} − L{1,5,1,1} − L{2,1,1,4} − L{2,1,2,3}

+ L{2,1,4,0} + L{2,3,2,1} + L{2,4,1,0} + L{2,4,1,1} − L{3,1,3,0} − 2L{3,1,3,1}

+ L{3,2,1,2} + L{3,3,0,0} + L{3,3,1,0} + L{4,1,1,2} − L{4,1,2,0} − L{4,2,1,0}

− L{4,2,1,1} + L{5,1,1,1} − L{1,1,1,2,3} − L{1,1,1,3,2} + L{1,1,1,4,0} + L{1,1,2,1,3}

+ L{1,1,2,3,0} + L{1,1,2,3,1} − L{1,1,3,1,2} + L{1,1,3,2,1} − L{1,1,4,0,0} + L{1,2,1,1,3}

− L{1,2,1,3,1} − L{1,2,3,1,1} + L{1,3,1,1,2} + L{1,3,1,2,1} − L{1,3,2,1,0} − L{1,3,2,1,1}

− L{1,4,1,0,0} − L{1,4,1,1,0} − L{2,1,1,1,3} − L{2,1,1,3,1} + L{2,1,3,0,0} + 2L{2,1,3,1,0}

+ L{2,1,3,1,1} − L{2,2,1,2,0} − L{2,3,0,0,0} − L{2,3,1,0,0} + L{2,3,1,1,1} + L{3,1,1,1,2}

− L{3,1,1,2,0} − L{3,1,1,2,1} + L{3,1,2,0,0} − L{3,1,2,1,1} + L{3,2,1,0,0} + L{3,2,1,1,0}

+ L{3,2,1,1,1} − L{4,1,1,1,0} + L{1,1,1,1,3,0} − L{1,1,1,2,1,2} + L{1,1,1,3,1,0} + L{1,1,2,1,2,1}

− L{1,1,3,0,0,0} − 2L{1,1,3,1,0,0} − L{1,1,3,1,1,0} + L{1,2,1,1,1,2} + L{1,2,1,2,0,0} − L{1,2,1,2,1,1}

+ L{1,3,0,0,0,0} + L{1,3,1,0,0,0} − L{1,3,1,1,1,0} − L{2,1,1,1,2,0} − L{2,1,1,1,2,1} + L{2,1,1,2,0,0}

+ L{2,1,1,2,1,0} − L{2,1,2,0,0,0} + L{2,1,2,1,1,0} + L{2,1,2,1,1,1} − L{2,2,1,0,0,0} − L{2,2,1,1,0,0}

− L{2,2,1,1,1,0} + L{3,1,1,1,0,0} + L{1,1,1,1,2,0,0} + L{1,1,1,1,2,1,0} − L{1,1,1,2,0,0,0}

− L{1,1,1,2,1,0,0} + L{1,1,2,0,0,0,0} − L{1,1,2,1,1,0,0} − L{1,1,2,1,1,1,0} + L{1,2,1,0,0,0,0}

+ L{1,2,1,1,0,0,0} + L{1,2,1,1,1,0,0} − L{2,1,1,1,0,0,0} + L{1,1,1,1,0,0,0,0}

]
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which is, of course, of weight 8. In the last formula L denotes a single-valued harmonic

polylogarithm

L{a1,...,a8} = (−1)
∑

aiG(a1, . . . a8; z) +
∑

cij G(ai; z)G(aj ; z̄) (3.5)

where ai∪aj has length 8 and aj is never the empty word. The coefficients cij are polynomi-

als of multiple zeta values such that all branch cuts cancel. The entries in the weight vectors

are in the set {0, 1} and we are using the “condensed notation” . . . 0, 0, 0, 1 . . . = . . . 4 . . .

etc. These are the SVHPL’s introduced by Brown in [41].

Note that (3.4) takes a much simpler form after flipping points x2 ↔ x3 (i.e. z →

1/z, z̄ → 1/z̄) followed by x1 ↔ x2 (which implies z → 1−z, z̄ → 1− z̄): the pure function

in the square bracket transforms as

[. . .] → −L{3,5}+L{5,3}+L{2,5,0}−L{4,3,0}−L{1,5,0,0}+L{3,3,0,0}−L{2,3,0,0,0}+L{1,3,0,0,0,0} .

(3.6)

We checked our result (3.4) by a numerical calculation with FIESTA [53], as well as those

for some other elements in the basis. Our result (3.4) is in agreement with a calculation

by different means [54] about which we knew in advance and with a calculation3 based on

HyperInt [25].

4 Conclusions

To evaluate a four-loop conformal integral we applied powerful techniques designed for

dimensionally regularized Feynman integrals, although we still believe that one can develop

an efficient purely four-dimensional technique to evaluate conformal integrals. We have

also evaluated a family of four-loop vertex master integrals with all the differences of the

external coordinates off the light-cone. The corresponding dual momentum space Feynman

integrals are vertex integrals with all the end-points off the light-cone. We believe that this

is a first example of a complete calculation of such a family of vertex integrals at the level of

four loops. We hope to report on further results on four-loop conformal integrals obtained

with the help of D-dimensional differential equations.
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