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1 Introduction

Infrared divergences have a long and controversial history in the context of cosmology. Infla-

tionary calculations often utilize the “in-in” formalism of Schwinger and Keldysh [1–20].1 A

recent proposal for analyzing infrared issues in the presence of interaction is to deal directly

with the wavefunction for the fields of interest [24]. The technique of computing wavefunc-

tions in cosmological spacetimes via analytic continuation from Euclidean signature was

introduced earlier in [25]. Computing the wavefunction directly helps us understand how

divergences in the wavefunction will feed into divergences of any type of observable. The

simplest analogy for this point of view involves quantum mechanics: the hydrogen atom is

a well-defined quantum system even though observables like 〈1/r3〉 diverge. The wavefunc-

tion point of view makes clear precisely which observables will diverge and which ones are

well-defined. A more relevant example is that of a massless scalar field in de Sitter space (in

any dimension). The equal-time correlator 〈φ(x)φ(y)〉 ∼ log(|x− y|Λ) has a long-distance

divergence which is regulated by some IR cutoff Λ. The resolution to this divergence is to

1For a review of the in-in formalism, see [21, 22], and for a review of infrared effects in cosmology,

see [23].

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
3

discard this as an unphysical (i.e. unobservable) correlation function. One should instead

deal with observables like 〈(∂φ)(x)(∂φ)(y)〉 ∼ 1
(x−y)2 which tame the IR behavior.

An interesting extension of the perturbative corrections to the Bunch-Davies de Sitter

wavefunction is to the one-parameter family of accelerating Bunch-Davies FRW wavefunc-

tions. This is the extension we will explore in this note. Equal-time correlators of free

scalar fields in the Bunch-Davies vacuum for accelerating FRW have IR divergences which

increase as the acceleration slows. This is an infrared spectral tilt. In particular, de Sit-

ter has the softest IR structure, with only a logarithmic divergence and scale-invariant

spectrum. We will particularly be interested in the pattern of spatial and temporal IR

divergences as a function of the acceleration upon including interactions. This may help

give some insight into which values of the acceleration parameter lead to IR divergences

which can be consistently understood in terms of some putative Q-space/QFT duality [26].

(See also [27–30].)

In [24], perturbative corrections to the Bunch-Davies de Sitter wavefunction of self-

interacting fields were found by calculating Witten diagrams in a fixed Euclidean AdS

background and then performing an analytic continuation. We plan to follow a similar

approach. As noted in [26], the FRW metric may be obtained by analytically continuing

the metric of a Euclidean hyperscaling-violating geometry. Therefore, by computing Witten

diagrams in a Euclidean hyperscaling-violating geometry and analytically continuing, we

will have computed perturbative corrections to the Bunch-Davies wavefunction of self-

interacting fields in a fixed FRW background.

We will consider two cases in our calculations. The first example will be a massless

scalar with λφ4 self-interaction. We will compute the perturbative corrections to the wave-

function at first order in λ, which constitutes evaluating tree-level and one-loop Witten

diagrams. The second example will be a conformally coupled scalar field with general

λφn interaction. We will again compute the perturbative corrections to the wavefunc-

tion at first order in λ, which in this case constitutes evaluating all L-loop diagrams for

L = 0, 1, . . . , dn/2e − 1.

In the rest of the introduction we will introduce and discuss the relevant geometries.

In section 2 we will carefully build the diagrammatic expansion for the Bunch-Davies

wavefunction for massless scalar fields with λφ4 self-interaction and compute the tree-level

and one-loop corrections to the wavefunction. In section 3 we will compute the tree-level

and L-loop corrections to the wavefunction for a conformally coupled scalar with general

λφn interaction. We will stick to (3 + 1) dimensions throughout, while appendix A will

treat the conformally coupled scalar in arbitrary dimension. Appendix B will present a

non-minimally coupled scalar field theory with soluble wave equation that can also be

analyzed.

The flat FRW geometries are given by

ds2
d+1 = `2(−η)2θ/(d−1)

(
−dη2 + dx2

i

η2

)
, i ∈ {1, . . . d} , η < 0 , (1.1)

while the Euclidean hyperscaling-violating geometries [31, 32] are given by

ds2
d+1 = `2z2θ/(d−1)

(
dz2 + dx2

i

z2

)
. i ∈ {1, . . . d} , z > 0 . (1.2)
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The analytic continuation from Euclidean signature (1.2) to Lorentzian signature (1.1) is

achieved via the following transformation:

z → (−i)(−η), (1.3)

`→ (−i)1−θ/(d−1)`. (1.4)

When θ = 0, this is the usual connection between the de Sitter and Euclidean anti-de

Sitter spacetimes. We will restrict ourselves to θ ≤ 0, which correspond to accelerating

cosmologies and are regular as z → 0.

A simple matter action which sources this background is a minimally coupled scalar

with self-interacting potential:

S =
1

2

∫
dd+1x

√
g

(
R− 2(∂Φ)2 − V 2

0

`2
e−βΦ

)
, (1.5)

V 2
0 =

1

4
(d− 1)(2− θ)(d(2 + θ)− θ) , β = 2

√
2θ

(d− 1)(θ − 2)
. (1.6)

The scalar field takes the on-shell value

Φ =
1

2

√
θ(d− 1)(θ − 2)

2
log(−η) . (1.7)

For top-down constructions of such models, see e.g. [33, 34].

In the context of inflationary physics, such models fall under the class of “power-law

inflation” [35]. The power law refers to the scale factor in synchronous coordinates a(t) ∼ tq

with q > 1. To linear order in the slow-roll parameters εsr and ηsr we have

εsr ∼ −θ, ηsr ∼ −2θ . (1.8)

The simplest versions of these models are disfavored by recent data [36] (tuning θ to

accommodate for the infrared spectral tilt leads to a tensor mode contribution which is too

large), but they are useful due to their analytic solubility. The nonlinear stability of this

system is shown in [37]. The particular matter theory which sources the FRW background

will not, however, be important to us.

2 Massless self-interacting scalar

Consider a massless scalar field φ on the hyperscaling-violating background (1.2). This

scalar is distinct from the scalar Φ from the previous section. We take the action to consist

of the kinetic term and a φ4 interaction which is treated perturbatively:

S[φ] =

∫
dd+1x

√
g

(
−1

2
gµν∂µφ∂νφ−

λ

24
φ4

)
. (2.1)

The equation of motion of the free theory is

∂z (
√
g gzz∂zφ(z))−√g gzzk2φ(z) = 0, (2.2)
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where we are working in momentum space in the xi directions. The general solution of (2.2)

is given by

φ(z) = c1φ1(z) + c2φ2(z), where (2.3)

φ1(z) = z
d−θ

2 I d−θ
2

(kz) , φ2(z) = z
d−θ

2 K d−θ
2

(kz) . (2.4)

Here I and K are Bessel functions. To find the tree-level wavefunction, we need to find the

on-shell action of the solution that is regular as z → ∞ and satisfies Dirichlet boundary

conditions at the cutoff surface z = zc � 1. The Dirichlet boundary condition reads

lim
z→zc

φ(z;~k) = φ~k , (2.5)

where φ~k is some specified field configuration. The solution with this property is eas-

ily found:

φ(z;~k) = φ~k

z
d−θ

2 K d−θ
2

(kz)

z
d−θ

2
c K d−θ

2
(kzc)

. (2.6)

Next, we compute the on-shell action, which is a functional of the boundary value of

the field

Son-shell[φ] =

∫
ddx
√
g gzzφ∂zφ

∣∣∣
z=zc

(2.7)

=

∫
ddk

(2π)d
zθ+1−d
c φ−~k φ~k

(
−k

K 2−d+θ
2

(kzc)

K d−θ
2

(kzc)

)
. (2.8)

The wavefunction is then determined as

Ψ0[φ] = N exp [−Son-shell] . (2.9)

Expanding this out for small zc, we see that the piece which will give us the cosmological

correlator is

log Ψ0 ∼ −
∫

ddk

(2π)d
φ−~kφ~k k

d−θ. (2.10)

After analytic continuation via (1.3) and (1.4), this wavefunction satisfies the Schrödinger

equation for the Hamiltonian of a free scalar field in the FRW background:

H =
1

2

∫
ddk

(2π)d

(
−|η|

d−1−θ

`d−1

δ

δφ−~k

δ

δφ~k
+

`d−1

|η|d−1−θ k
2φkφ−k

)
. (2.11)

We now wish to incorporate self-interactions of the scalar and compute interaction

corrections to the free wavefunction obtained above. Formally, to order λ, we have

log Ψ[φ] = log Ψ0[φ] + δΨ
(4)
λ [φ] + δΨ

(2)
λ [φ] + . . . , (2.12)

δΨ
(4)
λ = −λ

∫ 4∏
i=1

ddki
(2π)d

M(4)
λ (~k1, ~k2, ~k3,~k4)φ~k1

φ~k2
φ~k3

φ~k4
, (2.13)

δΨ
(2)
λ = −λ

∫ 2∏
i=1

ddki
(2π)d

M(2)
λ (~k1, ~k2)φ~k1

φ~k2
. (2.14)
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Figure 1. Witten diagrams for the order λ contributions to the partition function in the Euclidean

hyperscaling violating geometry, with φ4 interaction. These corrections analytically continue to

corrections of the wavefunction in FRW spacetimes.

The two corrections, M(4)
λ and M(2)

λ , come from the two Witten diagrams in figure 1. In

order to compute these Witten diagrams, we need to derive the bulk-to-bulk and bulk-

to-boundary propagators for the massless scalar field on the background (1.2). These

propagators are then used to compute Witten diagrams.

2.1 Propagators

To construct the bulk-to-bulk propagator we need to identify the modes that diverge to

plus and minus infinity as z →∞ [24]. These modes are just φ1 and φ2 respectively. The

form of the bulk-to-bulk propagator is the following:

G(z, w; k) =

{
Aφ1(z)φ2(w) + Cφ2(z)φ2(w) for w > z,

Bφ2(z)φ1(w) + Cφ2(z)φ2(w) for z > w.
(2.15)

We will now impose various conditions on the propagator given above in order to determine

the unspecified coefficients. First, we require that G(z, w, k) is continuous at z = w. This

condition imposes that A = B. The second condition requires that as z increases through

z = w, the first derivative ∂zG(z, w, k) decreases by zd−θ−1. This condition implies that

A = − iπ
4 `

1−d. Finally, we enforce the Dirichlet boundary condition G(z = zc, w, k) = 0

at the cutoff, which specifies C. The bulk-to-bulk propagator for w > z can finally be

written as:

G(z, w; k) = `1−dw
d−θ

2 z
d−θ

2

K d−θ
2

(kw)

K d−θ
2

(kzc)

(
K d−θ

2
(kzc) I d−θ

2
(kz)−K d−θ

2
(kz) I d−θ

2
(kzc)

)
.

(2.16)

To get G(z, w; k) for w < z, we simply swap z and w in the above equation.

We can obtain the bulk-to-boundary propagator via its relation to the bulk-to-bulk

propagator:

K(z; k) =
√
g(w) gww∂wG(w, z; k)

∣∣∣∣
w=zc

. (2.17)

Plugging in for the expression obtained previously for G(w, ~y; z, ~x) we find that

K(z; k) =
z
d−θ

2 K d−θ
2

(kz)

z
d−θ

2
c K d−θ

2
(kzc)

, (2.18)

an expression which could also have been obtained directly from (2.6).
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2.2 Tree-level diagram for the four-point function

From now on we will work in d = 3 corresponding to a four spacetime dimensions. The

tree level diagram (drawn on the left in figure 1) is given by

M(4)
λ (k1, k2, k3, k4) =

∫
dz
√
g K(z; k1)K(z; k2)K(z; k3)K(z; k4). (2.19)

The small z behavior of the bulk-to-boundary propagators is smooth and nonvanishing,

and the singularities all come from the
√
g factor:∫

dz
√
g ∼

∫
dz z2θ−4 ∼ z2θ−3 . (2.20)

Doing the integrals for a generic value of θ and expanding for small zc, we see that there

are two power series in the expression for the tree level diagram. Schematically, we can

write the two power series as follows:

M(4)
λ (k1, k2, k3, k4) ∼ `4

(
z2θ−3
c + k2z2θ−1

c + k4z2θ+1
c + . . . (2.21)

+ k3−θzθc + k5−θzθ+2
c + k7−θzθ+4

c + . . .
)
, (2.22)

where we have not written down the coefficients in front of any of the terms. We also use

the generic notation kα to refer to a homogeneous order α polynomial in the four variables

k1, . . . k4. Let us look at some special values of θ.

When θ is a negative odd integer, zθc appears in the first power series. In this case, the

second power series starts with zθc log zc. To be concrete, for θ = −1, we have

M(4)
λ (k1, k2, k3, k4) = `4

(
− 1

5z5
c

+

∑
i k

2
i

30z3
c

+ . . .

)
+ `4

(∑
i k

4
i log(kizc/2)

20zc
+ . . .

)
. (2.23)

When θ is zero or a negative even integer, the second power series contains a log zc
term. The θ = 0 case considered in [24] falls under this category where the second power

series starts with log zc. To be concrete, for θ = −2, we have

M(4)
λ (k1, k2, k3, k4) = `4

(
− 1

7z7
c

+

∑
i k

2
i

105z5
c

+ . . .

)
+ `4

(
−
∑

i k
5
i

126z2
c

+ c1 log zc . . .

)
. (2.24)

The constant c1 depends on the momenta. The expression is quite ugly, and therefore we

have not written it down explicitly.

Our job now is to continue these Euclidean-signature calculations to our Lorentzian

FRW metric. Let us emphasize that we do not subtract off the terms with inverse powers

of zc via holographic renormalization. This is because in the Lorentzian signature, they

encode physical time-dependence of the wavefunction.

The analytic continuation to Lorentzian signature is achieved via the transformation

in equations (1.3) and (1.4). In analytically continuing the first power series, the factor

of (−i)−2θ coming from the continuation of `4 combines with the (−i)2θ−3 from the first

term to give (−i)−3, which is independent of θ and purely imaginary. The step size is by

two and so every term in the series is pure imaginary. In the second power series, the

– 6 –
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imaginary factors coming from the analytic continuation depend on θ. We get (−i)−2θ ×
(−i)θ = (−i)−θ. Since (−i)−θ has a real part for generic θ, this means that we get a

contribution to |Ψ|.
In particular, for θ = −2, the contribution from the second series in (2.24) is purely

real and thus contributes to |Ψ|. Let us focus on the first term in the second series in (2.24).

This term in UV-divergent since it has inverse powers of zc. It is also a contact term in

position space, which we can see by inverse Fourier transforming
∑

i k
5
i to position space.

Thus, we see several situations where a local UV-divergent piece in the Euclidean

calculation analytically continues to the magnitude of the wavefunction instead of its phase.

This is one of the main messages of this paper.

2.3 One-loop diagram for the two-point function

In the λφ4 theory at order λ, we also have a one-loop diagram, drawn on the right in

figure 1. It evaluates to∫ ∞
zc

dz
√
g K(z;~k)K(z;~k)

∫
d3p

(2π)3
G(z, z; p). (2.25)

We first have to integrate G over the loop momentum p. A physical UV cutoff is imposed

on the loop momentum p as

pcutoff =
Λ

z1−θ/(d−1)
, (2.26)

where the power of z is determined by the metric. Power counting establishes that this

term is quadratically divergent ∫
dp p2G(z, z; p) ∼ z−θΛ2. (2.27)

The two power series we get in this case for generic θ are

M(2)
λ (~k) = `2Λ2

(
zθ−3
c + k2zθ−1

c + k4zθ+1
c + . . .

+ k3−θ log zc + k5−θz2
c log zc + . . .

)
, (2.28)

where again we have just exhibited the general structure and not written out the coefficients

in front of any of the terms. The only zc-divergent term in the second series is the first

one. The special case to be noted is that when θ is a negative odd integer, log zc appears

in the first power series: in this case, the second power series starts with (log zc)
2.

The power of ` appearing in M(2)
λ analytically continues as `2 → `2 × (−i)−θ. The

factor of (−i)−θ coming from the continuation of `2 combines with the (−i)θ−3 from the

first power series to give (−i)−3. The θ dependence in the analytic continuation cancels

in the first series, as what happened for the tree-level case. The second series, in general,

contributes divergent terms to the magnitude of the wavefunction.

Note that while we have exhibited the divergent structure of the loop diagram, it must

be borne in mind that it is a tadpole diagram. Being a tadpole diagram, it can be exactly
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canceled by a counterterm in the original scalar action of the form

cλ

∫
d4x
√
g φ2,

where we can tune the coefficient c sitting in front of this term.

3 Conformally coupled scalar

The conformally coupled scalar is a useful test case to consider due to its analytic solubility.

The mode functions are directly related to those of de Sitter due to the conformal equiva-

lence of the two backgrounds. The action for our conformally coupled scalar is given as

S =

∫
dd+1x

√
g

(
−1

2
gµν∂µφ∂νφ+

d− 1

8d
Rφ2 − λn

n!
φn
)

(3.1)

and has the invariance gµν → Ω2gµν , φ → Ω(1−d)/2φ. Picking Ω = zθ/(d−1) maps anti-de

Sitter to a hyperscaling-violating spacetime, and the mode functions will therefore trans-

form as φ→ z−θ/2φ. The wave equation of the free theory is given as(
1
√
g
∂µ (
√
ggµν∂ν) +

d− 1

4d
R

)
φ = 0, R = −

d
(
(d− θ)2 − 1

)
`2(d− 1)

z−
2θ
d−1 (3.2)

with solution

φ(z) = c1φ1(z) + c2φ2(z) ; φ1(z) = z
−1+d−θ

2 ekz, φ2(z) = z
−1+d−θ

2
e−kz

2k
. (3.3)

Notice that the θ = 0 case is related to the θ 6= 0 case as advertised.

The bulk-to-bulk propagator is given as

G(z, w, k) = Aφ1(z)φ2(w) + Cφ2(z)φ2(w) for w > z, (3.4)

G(z, w, k) = Bφ2(z)φ1(w) + Cφ2(z)φ2(w) for z > w, (3.5)

B = A = `1−d, C = −2k e2kzc `1−d. (3.6)

Altogether this gives the following bulk-to-bulk and bulk-to-boundary propagators:

G(z, w, k) =
`1−d

2k
e−k(w+z)

(
e2kz − e2kzc

)
(wz)

1
2

(d−θ−1) , (3.7)

K(z, zc) =

(
z

zc

) 1
2

(d−θ−1)

e−k(z−zc) . (3.8)

3.1 Tree-level diagram

Let us consider an arbitrary interaction φn for integer n ≥ 3 in d = 3. The case of general

d 6= 3 will be treated in appendix A. The tree-level diagram (drawn on the left in figure 1

but now with n legs going out to the boundary) evaluates to

M(n)
λ =

∫
dz
√
g

n∏
i=1

K(z, ki) = `4ekΣnzcz2θ−3
c E(

− (n−4)(2−θ)
2

)(kΣnzc) , kΣn =

n∑
i=1

ki .

(3.9)
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for the exponential integral function E(ν)(z) =
∫∞

1 dte−zt/tν . Expanding this general

expression for small zc, the divergent structure for n 6= 3 contains no logarithms and is as

follows:

M(n)
λ = `4

(
z2θ−3
c + kΣnz

2θ−2
c + . . . (3.10)

+ k
3−2θ+n

2
(θ−2)

Σn
z
n
2

(θ−2)
c + k

4−2θ+n
2

(θ−2)

Σn
z

1+n
2

(θ−2)
c + . . .

)
. (3.11)

For even n and negative-odd-integer θ, or for odd n 6= 3 and vanishing or negative-even-

integer θ, the two series truncate to a finite number of terms:

M(n)
λ = `4

(
k3−2θ+n

2
(θ−2)z

n
2

(θ−2)
c + k4−2θ+n

2
(θ−2)z

1+n
2

(θ−2)
c + · · ·+ z2θ−4

c /k
)
. (3.12)

The case of n = 4 for any θ is particularly simple:2

M(4)
λ = −`4z2θ−4

c /kΣ . (3.14)

For the case of n = 3 we have logarithms appearing for negative-even-integer or vanishing θ:

M(3)
λ, θ=0

`4
=− γE + log(kΣzc)

z3
c

− kΣ

z2
c

(−1 + γE + log(kΣzc))

−
k2

Σ

4zc
(−3 + 2γE + 2 log(kΣzc))−

k3
Σ

36
(−11 + 6γE + 6 log(kΣzc)) + . . . (3.15)

M(3)
λ, θ=−2

`4
=

1

z7
c

+
kΣ

z6
c

(γE + log(kΣzc))−
k2

Σ

z5
c

(−1 + γE + log(kΣzc))

−
k3

Σ

4z4
c

(−3 + 2γE + 2 log(kΣzc))−
k4

Σ

36z3
c

(−11 + 6γE + 6 log(kΣzc)) + . . . .

(3.16)

In this case, unlike the rest of the expressions in this note, we have explicitly displayed

the numerical coefficients of the expansion. This is to illustrate the matching numeri-

cal coefficients appearing between the two series. The general structure for vanishing or

negative-even-integer θ is

M(3)
λ, θ = `4

∞∑
i=1

z2θ−3+i−1
c ki−1[ci(θ) + di(θ)(log(kΣzc))

mi ] , mi = max{0, i+ θ/2}

(3.17)

2The expression takes this simple form because a quartic interaction in four dimensions preserves confor-

mal invariance of the scalar field. Indeed, we can formally consider the classically scale-invariant interaction

φ2(d+1)/(d−1) in arbitrary dimension (formal since this is non-integer unless d = 3, 5,∞). The entire answer

in this case is

M(2(d+1)/(d−1))
λ = −`d+1z

(d+1)(θ−d+1)
d−1

c /kΣ . (3.13)

The numerical coefficient, which usually we ignore in our schematic expansions but restore here, is simply

−1. Its independence of θ is related to the fact that n = 4 preserves conformality at tree level, and θ 6= 0

is conformally related to θ = 0.
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for constants ci, di satisfying the interesting relations ci(θ) = −ci−θ/2(θ − 2) and di(θ) =

−di−θ/2(θ − 2), which relate different theories.

The first power series (3.10) looks just like the first power series for the massless

scalar with φ4 interaction (2.21), except in this case the step size is by single powers of zc
instead of z2

c . This means that the second, fourth, etc., terms in (3.10), which are local

in position space, analytically continue to the real part of the wavefunction. Even for the

renormalizable interaction φ3, for generic θ these local terms exist and continue to the real

part of the wavefunction, and for negative-even-integer or vanishing θ the logarithms that

appear contribute to the real part of the wavefunction as well. This contribution to the real

part of the wavefunction from a local term in position space was noticed for θ = 0 in [24].

3.2 One-loop diagram

Let us now consider the one-loop diagram drawn on the right in figure 1, but with n − 2

legs going out to the boundary. We want to calculate

M(n−2)
λ =

∫ ∞
zc

dz
√
g
n−2∏
i=1

K(z, ki)

∫ Λ`/z1−θ/2

0
d3pG(z, z; p) . (3.18)

We first do the momentum integral of the bulk-to-bulk propagator to obtain

1

2
πz−θ

(
ze2Λ`z(θ−2)/2(zc−z)

`2(z − zc)2

(
2Λ`zθ/2(z − zc)− ze2Λ`z

θ
2−1(z−zc) + z

)
+ 2Λ2zθ

)
. (3.19)

There are different regularization procedures one can adopt at this point. We will keep the

leading divergence Λ2 and drop the rest, which is finite as Λ → ∞. Although the finite

piece can be kept and its contribution to the wavefunction calculated, it is subleading.

Integrating the leading divergence against the n−2 bulk-to-boundary propagators gives us

M(n−2)
λ = πΛ2`4ekΣn−2

zcz2θ−3
c E( 1

2
(n−6)(θ−2))(kΣn−2zc) . (3.20)

This is the same expression as for the tree-level diagram, except with n → n − 2. This is

easy to understand: the quadratic divergence Λ2 coming from the momentum integral over

the bulk-to-bulk propagator is independent of z and zc. Thus, the small zc expansion is

the same as in the tree-level case, after accounting for the shift n→ n− 2. As mentioned

in the case of the massless scalar field, these loop diagrams are tadpole diagrams and can

be canceled by counterterms in the action.

3.3 L-loop diagram

We can generalize the results of the previous subsection to arbitrary loop order L ≤ dn/2e−
1, at first order in λ. Then we need to compute

M(n−2L)
λ =

∫ ∞
zc

dz
√
g

(
n−2L∏
i=1

K(z, ki)

)∫ Λ`/z1−θ/2

0

(
L∏
i=1

d3piG(z, z; pi)

)
(3.21)

= (πΛ2)L`4ekΣn−2L
zcz2θ−3

c E(
(θ−2)(n−2L−4)

2

)(kΣn−2L
zc) . (3.22)

This is the same as the tree-level answer, except with a divergent factor of Λ2L and n →
n− 2L, as expected.
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4 Conclusions

We have used the connection from [26] between Euclidean hyperscaling-violating spacetimes

— which appear generically within holography for non-conformal branes — and accelerating

FRW cosmologies to organize a perturbation theory for the Bunch-Davies wavefunction.

This generalizes the procedure first discussed in [24].

One reason to focus directly on the cosmological wavefunction is the clarity of well-

defined observables, as explained in the introduction. Another reason to focus on the

cosmological wavefunction is that it plays a starring role in holographic duality. Some of the

results of [24] where θ = 0, for example the lack of logarithmic IR divergences for the spin-1

and spin-2 fields, can be understood and interpreted via the dS/CFT duality [25, 38, 39]. In

particular, since gauge fields are dual to conserved currents, and logarithmic IR divergences

can be interpreted as shifts in operator dimensions, the lack of divergences is simply the

statement that the currents remain conserved and their anomalous dimensions therefore

vanish. As any purported field theory dual to an FRW phase is not expected to be a CFT

unless θ = 0, there is no reason to expect these fields to be protected in a similar way.

Certain perturbative wavefunctions, for example those of a conformally coupled scalar field

or higher-spin fields, can potentially make contact with wavefunction calculations [40–45]

in non-minimal higher-spin dS/CFT [46–48].

Besides elaborating on our proposal for calculating correlators in accelerating FRW

spacetimes with a few concrete toy models, there are two conceptual upshots to our cal-

culations. The first concerns an often-repeated folk theorem that divergences which are

contact terms in position space in Euclidean signature analytically continue to phases of

the wavefunction. This connection was first highlighted in the context of tree-level dia-

grams in dS4 [25]. The examples considered in our work explicitly illustrate that this is

not generally true. This should come as no surprise, and violations of this folk theorem

already appeared at the level of perturbative interactions in dS4 [24], but it seems to be a

confusion that refuses to go away.

The second upshot is that the late-time and large-space infrared divergences of the

Bunch-Davies wavefunction due to self-interactions worsen as the acceleration slows. Con-

cretely, this means that as θ becomes more and more negative, the leading power-law

term in the small-zc expansion becomes more and more singular; see, for example, equa-

tions (2.21) and (3.10). This mirrors the fact that the large-space infrared divergences of

the free theory worsen as the acceleration slows. This extreme infrared structure in the

large-space correlation function has been shown to imply a fascinating ultrametric struc-

ture in the state space of a scalar field for θ = 0 in [49, 50]. This ultrametric structure

becomes sharper as the acceleration slows [26], i.e. as θ decreases, and the perturbative

corrections indicate an analogous story. What this extreme infrared structure implies for

a holographic dual theory remains an open question.

Acknowledgments

The authors would like to thank Dionysios Anninos, Tarek Anous, Daniel Green, Juan

Maldacena, and Daniel Z. Freedman for stimulating discussions and comments. RM is

supported by a Gerhard Casper Stanford Graduate Fellowship.

– 11 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
3

A Conformally coupled scalar in general dimension

A.1 Tree-level diagram

Let us consider an arbitrary interaction φn for integer n ≥ 3 in general dimension. The

tree-level diagram evaluates to

M(n)
λ =

∫
dz
√
g

n∏
i=1

K(z, ki) = `d+1ekΣnzcz
(d+1)θ
d−1

−d
c E(ν)(kΣnzc) , (A.1)

if n >
2(d2 − θ − d(1 + θ))

(d− 1)(d− 1− θ)
; kΣn =

n∑
i=1

ki , ν = −(d(n− 2)− n− 2)(d− θ − 1)

2(d− 1)
,

(A.2)

for the exponential integral function E(ν)(z) =
∫∞

1 dte−zt/tν . Expanding this general

expression for small zc, the divergent structure is as follows:

M(n)
λ = `d+1

(
z

(d+1)θ
d−1

−d
c + kΣnz

1+
(d+1)θ
d−1

−d
c + . . . (A.3)

+ kν−1
Σn

z
n
2

(1−d+θ)
c + kνΣnz

1+n
2

(1−d+θ)
c + . . .

)
. (A.4)

There are various special cases of this structure where the powers begin to coincide at some

point in the two series. In these cases there are often cancellations and the series truncates

at the first common power in the series.

A.2 L-Loop diagram

Our general answer is

M(n−2L)
λ =

∫ ∞
zc

dz
√
g

(
n−2L∏
i=1

K(z, ki)

)∫ Λ

0

(
L∏
i=1

ddpiG(z, z; pi)

)
(A.5)

=

(
(d− 1) Γ

(
d

2

))−L
`d+1ΛL(d−1)πdL/2ekΣn−2L

zcz
(d+1)θ
d−1

−d
c E(ν)(kΣn−2L

zc) ,

(A.6)

ν =
(d− θ − 1)(d(2L− n+ 2)− 2L+ n+ 2)

2(d− 1)
. (A.7)

In doing this calculation, we first do the momentum integral of the bulk-to-bulk propagator

G and keep only the large-momentum divergence ΛL(d−1). This piece is independent of `

and zc. As a result, the answer above, and therefore the small zc expansion, is the same

as in the tree-level diagram, except with the substitution n→ n− 2L.

B “Conformally massive” scalar

It is not possible to solve the wave equation for a massive scalar in FRW in closed form,

so we cannot analyze the divergences for that case. However, we can instead consider
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modifying the coefficient of the nonminimal coupling Rφ2 to be an arbitrary number which

we will suggestively call m2 even though it is dimensionless. In this case we can solve the

wave equation:(
1√
−g

∂µ
(√
−ggµν∂ν

)
+m2R

)
φ = 0,

=⇒ φ(η) = η
d−θ

2 (c1Jν(−ikη) + c2Yν(−ikη)) ,

ν2 =
( (

1− 4m2
)
d3 +

((
8m2 − 2

)
θ − 1

)
d2

+
(
θ(θ + 2)− 4m2

(
θ2 − 1

))
d− θ2

)
(4(d− 1))−1.

Notice that this solution looks like that of a massive scalar in de Sitter. We can make the

connection a little more precise. For massive scalars in de Sitter we have

φ(η) = ηd/2
(
c1J 1

2

√
d2+4m̃2`2(−ikη) + c2Y 1

2

√
d2+4m̃2`2(−ikη)

)
(B.1)

This means that for

m2 = −(−1 + d)((3d− θ)(d+ θ) + 16m̃2`2)

4d(−1 + (d− θ2)2)
(B.2)

the two solutions are conformally related by a factor of η−θ/2, just as in the case of a

massless scalar. In other words, for every value of the mass of the dS scalar, there exists a

value of the “conformal mass” of the FRW scalar for which the two solutions are conformally

related.
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