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1 Introduction

One of the most interesting questions in holographic duality [1] is how a bulk spacetime

description, on which approximately-local bulk fields propagate, arises from the CFT.

One way to attack this question is to construct local bulk observables as CFT opera-

tors. The CFT operators that reproduce bulk 2-point functions for various spin fields

are known [2–10], and the corrections needed to reproduce bulk 3-point functions for var-

ious spins have been worked out [11–15]. Recently there have been interesting sugges-

tions of connections to quantum error correction [16, 17] and relations to twisted Ishibashi

states [18–20].

In constructing bulk operators one can use two approaches.

• Given the bulk equations of motion, one can construct a bulk operator in terms of

the CFT which obeys this equation of motion. In this construction one basically

builds up the Heisenberg picture operator for a bulk field. While this shows that the

construction is possible it does not always illuminate the underlying framework.
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• One can proceed by demanding certain bulk locality properties for the bulk operators.

The program then becomes constructing such entities just from the CFT. In this

approach local bulk equations of motion are an output rather than an input.

In [15] it was shown that these two approaches are equivalent to O(1/N). The general

structure for the 3-point function was understood and was shown to result in the correct

bulk equation of motion. In this paper we build on these results and treat a 4-point

function. By demanding an appropriate bulk locality condition, we show that we can

construct operators directly in the CFT that mimic the behavior of local bulk fields when

inserted in a scalar 4-point function.

Since 4-point functions, unlike 3-point functions, are not determined by conformal

invariance, we cannot proceed as we did in the 3-point case. Instead, to characterize the

4-point function we make an OPE expansion in various channels. This reduces the problem

to a collection of 3-point functions which we already know how to handle. However we

must require that, up to possible field redefinitions, we obtain the same expression for the

bulk field in all channels. This is a powerful constraint which we call the “bulk bootstrap.”

It should be equivalent to a subset of the regular bootstrap constraints. Depending on the

dimensions of the operators appearing in the initial 4-point function, the bulk bootstrap

turns out to determine quite simply either the OPE coefficients of double-trace operators

to order 1/N2, or their anomalous dimensions to the same order. The bulk bootstrap

does not require knowledge of the conformal blocks and is much simpler to solve than the

regular bootstrap.

In developing this approach we clarify the connection between locality and the boot-

strap seen in [21, 22] and derived using Mellin amplitudes in [23, 24]. We show how the

OPE coefficients (or anomalous dimensions) to order 1/N2 determine the bulk equations

of motion to the same order. This approach can also be used in reverse and provides a

simple way to deduce CFT data given the bulk equations of motion.

We start in section 2 with a summary of previous results needed for this paper and set

normalizations and conventions. In section 3 we develop the bulk bootstrap approach. In

this approach one uses the OPE in various channels to reduce the problem to that of an

infinite set of 3-point functions, then demands that the same result arises from the other

channels. We illustrate this with examples of double-trace scalar exchange in section 3.1.

We consider examples in which this approach gives the OPE coefficients for the double-

trace operators and examples in which it gives the anomalous dimensions of double-trace

operators. It is clear from these examples why the bulk equations of motion are local, at

least when only double-trace scalar operators appear in all OPE channels.

In section 4 we formulate things differently. We demand that the expression for the

bulk operator φ(z, x) computed in one channel gives a local expression inside a 4-point

function even away from the OPE limit (and hence in any OPE channel). It turns out to

be far simpler to demand that (∇2 − m2)φ(z, x) be local inside a 4-point function. This

can be implemented simply even in situations where the OPE exchange is only known in

one channel. Remarkably results for the OPE or anomalous dimensions to order 1/N2 are

recovered quite simply in an infinite family of examples, even if other channels include the

exchange of operators with unbounded spins.
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In section 5 we repeat the analysis for vector exchange. Double-trace exchange in-

volving a vector is treated in section 5.2, with the simplifying assumption that in another

channel only scalars are exchanged. The case of single-trace and double-trace spin one ex-

change in one channel (with unbounded spins in other channels) is analyzed in section 5.3.

2 Preliminaries

In this section we review results from previous works that we will need in order to tackle

a 4-point function. For notational purposes we use the following. For any primary scalar

O∆ of dimension ∆, either single trace or multi-trace, we define

KO(z, x) ≡ φ(0)(z, x) =

∫

ddx′K∆(z, x|x′)O∆(x
′) (2.1)

where K∆(z, x|x′) is the smearing function obeying the free field equation of motion (acting

on (z, x))

(∇2 −∆(∆− d))K∆(z, x|x′) = 0 (2.2)

We need to define the normalization of the bulk and boundary operators and we choose to

have it as

〈KO(z, x)O(y)〉 = Γ(∆)

πd/2Γ(∆− d
2)

(

z

(x− y)2 + z2

)∆

(2.3)

and [25–27]

KO(z, x)z→0 →
z∆

2∆− d
O(x) (2.4)

This means our normalization for primary operators (single- or multi-trace) is

〈O(x)O(y)〉 = (2∆− d)Γ(∆)

πd/2Γ(∆− d
2)

1

(x− y)2∆
(2.5)

The results of [15] can then be summarized as follows (see also appendix A). Start

with a CFT 3-point function with γ̃ as its coefficient.

〈O(x)O1(y1)O2(y2)〉 =
γ̃

|x− y1|∆+∆1−∆2 |x− y2|∆+∆2−∆1 |y1 − y2|∆1+∆2−∆
(2.6)

We want to promote O(x) to a bulk operator inside a 3-point function. The zeroth order

expression gives

〈φ(0)(z, x)O1(y1)O2(y2)〉 =
1

(y1 − y2)2∆1

[

z

z2 + (x− y2)2

]∆2−∆1

I(χ) (2.7)

Here

χ =
[(x− y1)

2 + z2][(x− y2)
2 + z2]

(y1 − y2)2z2
(2.8)

and

I(χ) =
γ̃

2∆− d

(

1

χ− 1

)∆∗
F

(

∆∗, ∆∗ − d

2
+ 1, ∆i −

d

2
+ 1,

1

1− χ

)

(2.9)

– 3 –
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with ∆∗ = 1
2(∆ + ∆1 −∆2). However this expression does not obey bulk causality: it is

singular at χ = 1, and in general has a branch cut for 0 < χ < 1, but these values of χ

correspond to bulk spacelike separation.

To restore bulk causality we we need to change the definition of the bulk field. The

change is given by adding to the zeroth order definition (2.1) a tower of higher-dimension

primary double-trace operators built out of the other two operators appearing in the initial

3-point function (2.6). Let us label the double-trace primary scalar built out of O1, O2 and

2n derivatives (hence with dimension ∆n = ∆1 +∆2 + 2n) as (O1O2)n. Then we define a

new bulk operator

φ(z, x) = φ(0)(z, x) +
1

N

∞
∑

n=0

an12K(O1O2)n(z, x) (2.10)

where the coefficients an12 are chosen such that inserting (2.10) into (2.7) instead of

φ(0)(z, x) will give an expression obeying bulk causality.

We know from [15] that there are infinitely many choices for an12 that satisfy this

condition. They are given by

1

N
an12 = λ

bn12
M2

n −m2
0

+
1

N

∞
∑

k=0

βk(M
2
n −m2

0)
kbn12 (2.11)

In this expression m2
0 = ∆(∆ − d), M2

n = ∆n(∆n − d), and the coefficient λ is fixed by

requiring locality to be

λ =
γ̃

γF (∆,∆1,∆2)
(2.12)

Here γ̃ is the coefficient of the 3-point function appearing in (2.6) and γF is [28]

γF (∆i,∆j ,∆k) = −Γ[12(∆i +∆j −∆k)]Γ[
1
2(∆i −∆j +∆k)]Γ[

1
2(∆k +∆j −∆i)]

2πdΓ(∆i − d
2)Γ(∆j − d

2)Γ(∆k − d
2)

× Γ

[

1

2
(∆i +∆j +∆k − d)

]

. (2.13)

The coefficients bn12 are given by1 (recall ∆n = ∆1 +∆2 + 2n)

bn12 = (−1)n

[

1

2πd/2

Γ(n+ d
2)

Γ(d2)Γ(n+ 1)

Γ(∆n − d
2 + 1)Γ(∆n − d+ 1)

Γ(∆n)Γ(∆n − n− d+ 1)

× Γ(∆n − d
2 − n)Γ(∆1 + n)Γ(∆2 + n)

Γ(∆n − d
2)Γ(∆1 + n+ 1− d

2)Γ(∆2 + n+ 1− d
2)

]1/2

(2.14)

and have the property that

∑

n

bn12Kn(O1O2)n(z, x) = KO1(z, x)KO2(z, x) ≡ φ
(0)
1 φ

(0)
2 (z, x). (2.15)

1These coefficients can be computed using (A.8) and the computation of cnjk in [29], or once we identify

them as in (2.15), from results in [30].
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The coefficients βk appearing in (2.11) are arbitrary and parametrize field redefinitions.

They correspond to a field redefinition

φ(z, x) → φ(z, x) +
1

N

∞
∑

k=0

βk(∇2 −m2
0)

kφ1φ2(z, x) (2.16)

It follows from these results that the bulk operator (2.10) obeys the equation of motion

(∇2 −m2
0)φ(z, x) = λφ

(0)
1 φ

(0)
2 (z, x) +

1

N

∞
∑

k=0

βk(∇2 −m2
0)

k+1φ
(0)
1 φ

(0)
2 (z, x) (2.17)

The choice βk = 0 corresponds to a minimal cubic vertex in the bulk.

3 A scalar example

We start from a scalar 4-point function

〈O(x)O1(y1)O2(y2)O3(y3)〉 (3.1)

We want to promote O(x) to a bulk operator, so we start as we did in the 3-point function

case by looking at

〈KO(z, x)O1(y1)O2(y2)O3(y3)〉 (3.2)

But unlike 3-point functions which are fixed by conformal symmetry, the form of a 4-point

function is not uniquely determined. So we do not have a general understanding of the

properties of (3.2). Instead the idea will be to use the OPE between two of the other

operators Oi, Oj to reduce the 4-point function to an infinite sum of 3-point functions.

In this section we make a simplifying assumption, that in the OPE of any pair of

operators Oi(yi) with Oj(yj) the only primary operators which appear are double-trace

scalars.2 In the bulk this corresponds to assuming that we only have 4-point contact

interactions. For instance we will assume that as y2 → y3 we get

O2(y2)O3(y3) =
∑

m

d
(1)
m23(y2−y3)(O2O3)m(y2)+

∑

k

f
(1)
k (y2−y3)(OO1)k(y2)+ · · · (3.3)

In counting powers of N , one has d
(1)
m23 ∼ 1 and f

(1)
k ∼ 1/N2.

3.1 Scalar example — OPE coefficients

In this subsection we assume that the dimensions of the operators are such that

1

2
(∆ +∆1 −∆2 −∆3) (3.4)

2We only need to worry about primary operators. We do not need to worry about global descendants

in the OPE expansion since they are obtained from the primaries by applying a local differential operator.

If the primaries obey causality then so will the descendants. This is true as long as the correlation function

with the sum of descendants converges. See the discussion at the end of section 3.1.

– 5 –
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is not an integer. (We will relax this assumption in the next subsection.) Then the first

term of (3.3) will violate causality when used in (3.2), due to a discontinuity across a cut

given in (A.4). But the last term in (3.3) respects causality to order 1/N2, since to this

order the combination

∆∗ =
1

2
(∆ +∆1 −∆k) = −k (3.5)

is a non-positive integer, which means the discontinuity across the cut (A.4) vanishes. We

are thus left with an infinite sum of three point functions each of which is of the form

〈O(x)O1(y1)(O2O3)m(y2)〉 =
cm23

|x− y1|∆+∆1−∆m |x−y2|∆+∆m−∆1 |y1−y2|∆1+∆m−∆
(3.6)

with ∆m = ∆2 +∆3 + 2m.

The coefficient cm23 is related to an OPE coefficient δCOO1

(O2O3)m
which is defined as

O(x)O1(y1) = δCOO1

(O2O3)m

(O2O3)m
(x− y1)∆+∆1−∆m

+ · · · (3.7)

Then with our choice of normalization of the 2-point function we get

cm23 = δCOO1

(O2O3)m

(2∆m − d)Γ(∆m)

πd/2Γ(∆m − d
2)

(3.8)

We know how to deal with a 3-point function if we want to promote O(x) to a local bulk

field φ(z, x). We need to add an infinite tower of appropriately-smeared higher-dimension

scalar primary operators made out of O1, (O2O3)m and derivatives. This tower of operators

will be labeled by (O1(O2O3)m)n with conformal dimension ∆m
n = ∆1 +∆m +2n. A local

bulk field is then given by

φ(z, x) = KO(z, x) +
1

N2

∑

m

∑

n

amn K(O1(O2O3)m)n(z, x) (3.9)

where the coefficients amn are chosen so that φ respects locality to this order. From the

results in the introduction (see (2.17)) we know the possible solutions for amn . The simplest

solution (corresponding to βk = 0) is such that the equation of motion obeyed by the local

bulk field becomes

(∇2 −m2
0)φ(z, x) =

1

N2
KO1(z, x)

∑

m

λm23K(O2O3)m(z, x) (3.10)

where from (2.12) we have
λm23

N2
=

cm23

γF (∆,∆1,∆m)
(3.11)

At this stage it seems there are no constraints on the OPE coefficients, and it looks

like one can always satisfy bulk locality. To see how constraints come about, note that

we have used the OPE between two of the operators to reduce the 4-point function to

a sum of 3-point functions. However the OPE only has a certain radius of convergence,

and the expression we got for the bulk field (3.9), (3.10) may not work in other limits.

– 6 –
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For instance we could take the OPE of two other operators, say O1 and O2. This will

give a different expansion of the 4-point function as a sum of 3-point functions. We could

build a local bulk operator in this channel, which however will produce a different-looking

expression for the bulk field. But since the two OPE expansions have an overlapping region

of convergence, the two expressions must agree. This is a “bulk” version of the conformal

bootstrap constraints that any CFT must obey. So we can take our expression for the

bulk operator in one channel and compare it to the expression that we get in a different

OPE channel. By demanding that the expressions agree, we get some constraints on the

OPE coefficients, which should be consistent with the constraints coming from the usual

conformal bootstrap.

It’s easier to compare equations of motion, rather than directly compare the bulk

operator one gets in each OPE channel. From (3.10) we see that the right-hand side of the

equations of motion in the different OPE channels are

y2 → y3 KO1(z, x)
∑

m

λm23Km(O2O3)m(z, x)

y1 → y3 KO2(z, x)
∑

m

λm13Km(O1O3)m(z, x) (3.12)

y1 → y2 KO3(z, x)
∑

m

λm12Km(O1O2)m(z, x)

We immediately see that the only solution is
∑

m

λmijKm(OiOj)m(z, x) = λKOi(z, x)KOj(z, x) (3.13)

For the coefficients λmij we simply get (for any spacetime dimension and any conformal

dimension)

λmij = λbmij (3.14)

where bmij are given by (2.14).

At this point it becomes clear why the bulk bootstrap gave rise to a local bulk equation

of motion. It can be traced back to form of the equation of motion implied by a CFT

3-point function (2.17), which has a local form in terms of the two other operators.3 This

result, applied in different OPE channels, translates into a constraint that only a local bulk

equation of motion can solve. This result generalizes and holds whenever one has only

double-trace exchange, regardless of the spin of the exchanged operator (for an explicit

treatment see the next section). It explains the observation of [21, 22], of a connection

between the conformal bootstrap and bulk locality.

The case treated above corresponds to a quartic bulk coupling Lint =
λ
N2φφ1φ2φ3. The

computation of λmij from the bulk bootstrap is a computation of an OPE coefficient, which

when all Oi are distinct (so that disconnected diagrams do not contribute) is a number of

order 1/N2. For this simple case we get from (3.8), (3.14) the result

δCOO1

(O2O3)m
=

λ

N2

πd/2γF (∆,∆1,∆m)Γ(∆m − d
2)

(2∆m − d)Γ(∆m)
bm23 (3.15)

3From the results of [15] this behavior is generic and holds for any CFT 3-point function.

– 7 –
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The case ∆ = ∆1 and ∆2 = ∆3 was considered in [29]. Our result gives for this case

δCOO1

(O2O3)m
=

(−1)m+1λ

N2

Γ3(∆2 +m)

4πd/2Γ2(∆− d
2)

Γ(∆−∆2 −m)Γ(∆ +∆2 +m− d
2)

Γ(∆2 +m+ 1− d
2)Γ(2∆2 + 2m)

(3.16)

×
[

Γ(m+ d
2)Γ(2∆2 + 2m− d+ 1)Γ(2∆2 +m− d

2)

πd/2(2∆m − d)Γ(d/2)Γ(m+ 1)Γ(2∆2 +m− d+ 1)Γ(2∆2 + 2m)

]1/2

which agrees (up to an overall factor) with [29] after the different normalizations of the

2-point functions are taken into account.

One could consider a more complicated situation, where one allows for a field redefini-

tion (the parameters βk appearing in (2.17)). The field redefinition will change the equation

of motion, but the condition λmij = λbmij which fixes the CFT data will stay the same.

This means there’s no change in the OPE coefficients, as one would expect.

This example shows how CFT data — in this case OPE coefficients at order 1/N2

— directly builds up bulk interactions to the same order. We will see more examples of

this below.

Before moving on to another example we would like to go back and better understand

two issues. First, when using the OPE expansion we have neglected all descendant oper-

ators. Is this really justified? Second, from the bulk operator point of view, what does it

mean to say there is an overlapping region of convergence of the OPE expansion? In fact

these two questions are linked. To see this we use the recent observation [31, 32] that in

the OPE of two boundary operators (at boundary points y1 and y2), the contribution of a

particular conformal family (a primary and all of its descendants) can be represented by

integrating the bulk field we called φ(0)(z, x) over a bulk geodesic connecting y1 and y2.

From this point of view the singularity in (2.7) originates from the coincident or light-cone

singularity of the bulk two-point function 〈φ(0)φ(0)〉. From the CFT point of view, this sin-

gularity can be understood as coming from the sum over the infinite series of descendants

which appear in the OPE. This sum can diverge as y1 and y2 are changed and must be

defined outside its region of convergence by analytic continuation. Thus the approxima-

tion of neglecting descendants in a particular OPE channel means that we actually only

constructed a local bulk operator outside the causal development of the geodesic which

connects the two boundary points that participate in the OPE expansion. But when all

OPE channels are considered there is a common bulk region where the bulk operator should

be local in all channels. This is the region where we require the different representations

to agree. But once they agree in this region, it is clear from the different-looking but

equivalent representations in the different OPE channels that the bulk operator we have

constructed is local everywhere in the bulk.

3.2 Scalar example — anomalous dimensions

We saw in the previous subsection that the bulk equations of motion were fixed by the 1/N2

corrections to the OPE coefficients. This is true as long as there is no special relationship

between the conformal dimensions of the operators. In this subsection we will deal with

– 8 –
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the case that there is. As a simple example we start with the situation that (k1 and k2 are

any integers)

∆ +∆1 = ∆2 +∆3

∆+∆2 6= ∆1 +∆3 + 2k1 (3.17)

∆ +∆3 6= ∆1 +∆2 + 2k2

The first condition means that to O(1/N) the operators (OO1)m and (O2O3)m have the

same conformal dimension and can mix (see also the discussion in [22, 33]). To see where

this issue arises consider what happens if we follow the same procedure as before. Naively

it seems to O(1/N2) there won’t be a causality-violating discontinuity in a 3-point function

with either (OO1)m or (O2O3)m, since (A.4) vanishes for this case.4 But this should not be

the case, since tuning the masses of the bulk fields (the conformal dimensions of the corre-

sponding operators) cannot turn off interactions. Another way to see that something non-

trivial is happening is to note that in the result (3.15) γF diverges when (3.17) is satisfied.

The correct treatment is to note that while (OO1)m and (O2O3)m are primary opera-

tors at leading order in 1/N , at O(1/N2) they acquire an anomalous dimension and mix,

so by themselves they are not primary operators. As such they are not the operators that

appear in the OPE. Instead, in this simple case where only two operators mix at each level

and since the dilation operator acts as a symmetric real matrix in this subspace [33], the

primary operators are

(O2O3)
+
m =

1√
2
[(O2O3)m + (OO1)m]

(O2O3)
−
m =

1√
2
[(O2O3)m − (OO1)m] (3.18)

with dimensions ∆m + δ∆m and ∆m − δ∆m respectively. So in the OPE channel y2 → y3
there will appear now

O2(y2)O3(y3) =
∑

m

d
(+)
m23(y2 − y3)(O2O3)

+
m(y2) +

∑

m

d
(−)
m23(y2 − y3)(O2O3)

−
m(y2) (3.19)

where to leading order in 1/N we have d
(+)
m23(y2−y3) = d

(−)
m23(y2−y3). Inserting this into the

4-point function results in an infinite set of 3-point functions whose coefficients (see (3.6))

we will label by c+m23 and c−m23 respectively. We can now make these 3-point functions local

as before, by adding higher dimension operators to get an equation of motion

(∇2 −m2
0)φ(z, x) =

1

N2

∑

m

λ+
m23KO1(z, x)K(O2O3)

+
m(z, x)

+
1

N2

∑

m

λ−

m23KO1(z, x)K(O2O3)
−
m(z, x) (3.20)

Comparing to the other two channels that do not change in (3.12), we see that

λ+
m23 = λ−

m23 =
λ√
2
bm23, (3.21)

4∆∗ is either zero or a negative integer.
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and as before (see (3.11)) the relationship is

λ±

m23

N2
=

c±m23

γF (∆,∆1,∆m ± δ∆m)
. (3.22)

However now the CFT data that we get is different, since to leading order in 1/N we have

c+m23 = −c−m23 =
1√
2
COO1

(OO1)m

(2∆m − d)Γ(∆m)

πd/2Γ(∆m − d
2)

(3.23)

where COO1

(OO1)m
is the O(N0) OPE coefficient defined by

O(x)O1(y1) ∼ COO1

(OO1)m

(OO1)m
(x− y1)∆+∆1−∆m

+ · · · . (3.24)

In fact (3.21), (3.22) determine the anomalous dimensions of the double-trace opera-

tors. Using 1/Γ(−m− δ∆m

2 ) = (−1)m+1Γ(m+1) δ∆m

2 +O((δ∆m)2), one gets the relationship

λ

N2
bm23 =

πd/2(−1)mCOO1

(OO1)m
(2∆m−d)Γ(∆m)Γ(∆− d

2)Γ(∆1− d
2)Γ(m+1)

Γ(∆+m)Γ(∆1+m)Γ(∆+∆1+m− d
2)

δ∆m (3.25)

Using the known result [29], and taking into account the different normalizations, we have

COO1

(OO1)m
=

[

4Γ(d2)

π
d
2Γ2(∆− d

2)Γ
2(∆1 − d

2)

]
1
2
[

Γ(∆m −m− d+ 1)Γ(∆m −m− d
2)

Γ(∆m)Γ(∆m − d+ 1)(2∆m − d)

]
1
2

×
[

Γ(∆− d
2 + 1 +m)Γ(∆1 − d

2 + 1 +m)Γ(∆ +m)Γ(∆1 +m)

Γ(m+ 1)Γ(d2 +m)

]
1
2

(3.26)

and we get the result for the anomalous dimension

δ∆m =
λ

N2

Γ(d2 +m)

4πd/2Γ(d2)Γ(m+ 1)

Γ(∆m − d+ 1)Γ(∆m −m− d
2)

Γ(∆m)Γ(∆m −m− d+ 1)
×

[

Γ(∆ +m)Γ(∆1 +m)Γ(∆2 +m)Γ(∆3 +m)

Γ(∆ +m− d
2 + 1)Γ(∆1 +m− d

2 + 1)Γ(∆2 +m− d
2 + 1)Γ(∆3 +m− d

2 + 1)

]1/2

(3.27)

This agrees (up to an overall coefficient) with results in [21, 29, 30, 34]. Here it seems the

bulk bootstrap is more powerful since one does not need to know the conformal blocks.

One can also analyze other situations. For example suppose the first condition in (3.17)

is changed to ∆ +∆1 = ∆2 +∆3 + 2k. Then one can define for 0 ≤ m < k

(O2O3)
+
m =

1√
2
[(O2O3)m]

(O2O3)
−
m =

1√
2
[(O2O3)m] (3.28)
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and for m ≥ k

(O2O3)
+
m =

1√
2
[(O2O3)m + (OO1)m−k]

(O2O3)
−
m =

1√
2
[(O2O3)m − (OO1)m−k] (3.29)

The bulk bootstrap still implies (3.21), but now this translates for 0 ≤ m < k into a

condition on the O(1/N2) OPE coefficients, while for m ≥ k it gives a condition on the

anomalous dimensions of the operators (3.29).

4 All scalar S-channel solutions

The method used in the previous section was useful for cases where one has ansatze for

the bulk operator in different channels which are similar to each other and have a finite

number of spins involved. However it becomes less useful when the ansatze in different

channels are not similar, for instance when one exchanges a single-trace operator in one

channel but not in other channels.

Suppose one has a situation where in one channel only a few spins contribute while

in other channels many spins, or even all spins, are possible. If one just wants to deduce

the bulk operator, and not necessarily work out all the OPE coefficients or anomalous

dimensions, it turns out there is a simple way to proceed. Let us start with the assumption

that there is an OPE channel in which only primary scalars contribute to the 4-point

function (other channels can involve higher-spin primaries). Let us assume this channel is

the OPE between O2(y2) and O3(y3). With this in mind we take the OPE to be

O2(y2)O3(y3) = dχ(y2−y3)χ(y2)+
∑

m

dm23(y2−y3)(O2O3)m(y2)+
∑

n

ck(y2−y3)(OO1)k(y2)

(4.1)

where we’ve assumed that only one single-trace operator χ(y) contributes.5 In counting

powers of N , note that dχ ∼ 1/N , dn23 ∼ 1 and ck ∼ 1/N2.

We have an infinite sum of 3-point functions which we know how to deal with. For

each primary operator appearing in6

dχ(y2 − y3)χ(y2) +
∑

m

dm23(y2 − y3)(O2O3)m(y2) (4.2)

we need to add a tower of higher-dimension primary scalar operators composed from the

primary, O1 and derivatives, and add it to the definition of the bulk field. For instance

starting from

〈O(x)O1(y1)χ(y2)〉 (4.3)

with coefficient cχ, we can correct the zeroth-order bulk operator KO(z, x) to respect

locality by setting

φ(z, x) = KO(z, x) +
1

N

∑

n

anKn(O1χ)n(z, x) (4.4)

5Generalizations to more than one single-trace operator are straightforward.
6As before (OO1)k generically does not contribute causality-violating terms to this order.
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where the coefficients an are chosen to satisfy (2.11). The corrected bulk field obeys the

equation of motion

(∇2 −m2
0)φ(z, x) =

λχ

N
KO1(z, x)Kχ(z, x) +

1

N

l
∑

k=0

βk(∇2 −m2
0)

k+1KO1(z, x)Kχ(z, x)

(4.5)

with
λχ

N
=

cχ
γF (∆,∆1∆χ)

(4.6)

The coefficients βk are arbitrary and parametrize bulk field redefinitions.

Similarly we can start with a 3-point function

〈O(x)O1(y1)(O2O3)m(y2)〉 (4.7)

with coefficient cm23. To promote O(x) to a bulk operator which satisfies locality we must

define the bulk field as

φ(z, x) = KO(z, x) +
1

N2

∑

n

amn Kn(O1(O2O3)m)n(z, x) (4.8)

The coefficients amn are chosen to obey (2.11) with M2
n replaced by M2

n,m = ∆n,m(∆n,m−d),

where ∆n,m = ∆m + ∆1 + 2n and ∆m = ∆2 + ∆3 + 2m. The resulting local bulk field

solves the equation of motion

(∇2 −m2
0)φ(z, x) =

λm23

N2
KO1(z, x)K(O2O3)m(z, x)

+
1

N2

l
∑

k=0

β
(m)
k (∇2 −m2

0)
k+1KO1(z, x)K(O2O3)m(z, x) (4.9)

with
λm23

N2
=

cm23

γF (∆,∆1,∆m)
(4.10)

and β
(m)
k arbitrary.

To see how to proceed it is easier to consider a concrete example. Suppose we choose

βk = 0 and β
(m)
k = 0. This means we’ve defined a bulk operator, local in the y2 → y3 OPE

limit, so that it solves the equation of motion

(∇2 −m2
0)φ(z, x) =

λχ

N
KO1(z, x)Kχ(z, x) +

1

N2
KO1(z, x)

∑

m

λm23K(O2O3)m(z, x)

(4.11)

Now that we have an ansatz for the bulk operator in the S-channel, we could demand that

it be a local bulk operator in the full 4-point function (hence automatically in all OPE

channels). This however is a difficult condition to impose. So instead imposing it on the

bulk field directly, we impose it on (∇2−m2)φ(z, x): that is, on the combination appearing

on the right-hand side of (4.11). While this is not equivalent to demanding locality of the

bulk field, it is a necessary condition for the bulk field to be local.7

7Note that (4.11) may not be the full equation of motion for φ, if there are other non-trivial 4-point

functions that contribute.
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So let us evaluate

〈
(

λχ

N
KO1(z, x)Kχ(z, x) +

∑

m

λm23

N2
KO1(z, x)Km(O2O3)m(z, x)

)

O1(y1)O2(y2)O3(y3)〉

(4.12)

To leading order in 1/N this factorizes as

1

N
〈KO1(z, x)O1(y1)〉 〈(λχKχ(z, x) +

∑

m

λm23

N
Km(O2O3)m(z, x))O2(y2)O3(y3)〉 (4.13)

The first factor in (4.13) is a 2-point function which obeys causality. In the second factor,

we must distinguish between λχ = 0 and λχ 6= 0.

First we treat the case λχ = 0. Then the second factor in (4.13) is local if

λm23 =

kmax
∑

k=0

ρkM
2k
m bm23 (4.14)

with arbitrary coefficients ρk. (We have introduced a cutoff kmax to avoid unbounded

numbers of derivatives below.) Assuming 1
2(∆ + ∆1 − ∆2 − ∆3) is not an integer,

from (4.10), (4.14), (3.8) one gets the OPE coefficients

δCOO1

(O2O3)m
=

1

N2

π
d
2 γF (∆,∆1,∆m)Γ(∆m − d

2)

(2∆m − d)Γ(∆m)
bm23

kmax
∑

k=0

ρk(∆m(∆m − d))k (4.15)

Taking ρ0 = λ and ρk = 0 for k > 0 we recover the results of the previous section. Again

the relationship between the bootstrap and bulk locality is clear. Indeed (4.14) corresponds

to a local bulk interaction of the form

kmax
∑

k=0

ρkφφ1∇2kφ2φ3(z, x). (4.16)

Alternatively, if 1
2(∆+∆1−∆2−∆3) is an integer, then what gets fixed by the bootstrap are

the anomalous dimensions, as in the previous section. For instance for ∆+∆1 = ∆2 +∆3

one simply gets the result (3.27) multiplied by
∑kmax

k=0 ρk(∆m(∆m − d))k.

On the other hand if λχ 6= 0 then the right-hand side of (4.13) has the form of a

bulk-boundary 3-point function, where the bulk field is

λχKχ(z, x) +
1

N

∑

m

λm23Km(O2O3)m(z, x) (4.17)

We know from (2.11) that for this to be local one needs to have (taking for simplicity βk = 0)

1

N

λm23

λχ
= αχ

bm23

M2
m −m2

χ

(4.18)

with M2
m = (∆2 +∆3 + 2m)(∆2 +∆3 + 2m− d). The coefficient αχ is

αχ =
c
(23)
χ

γF (∆χ,∆2,∆3)
(4.19)
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where c
(23)
χ is the coefficient appearing in the 3-point function 〈χ(x)O2(y2)O3(y3)〉. The

OPE coefficient8 for this case is now

δCOO1

(O2O3)m
=

1

N

λχαχ

M2
m −m2

χ

π
d
2 γF (∆,∆1,∆m)Γ(∆m − d

2)

(2∆m − d)Γ(∆m)
bm23 (4.20)

Of course one can add to this result the terms in (4.15). We see that in the simple case

with no extra contact interaction

δCOO1

(O2O3)m
(cχ 6= 0) ∼ 1

M2
m −m2

χ

δCOO1

(O2O3)m
(cχ = 0) (4.21)

This relationship was recently noted in [35], from computations of bulk geodesic Witten

diagrams representing conformal blocks.

The solution (4.18) corresponds to a bulk cubic coupling

φφ1χ(z, x) + φ2φ3χ(z, x) (4.22)

To see this consider the equations of motion for the fields φ(x, z) and χ(x, z).

(∇2 −m2)φ(x, z) =
1

N
φ1χ(x, z)

(∇2 −m2
χ)χ(x, z) =

1

N
(φ1φ(x, z) + φ2φ3(x, z)) (4.23)

Let us now expand the bulk fields as

φj(x, z) = φ
(0)
j +

1

N
φ
(1)
j + · · · (4.24)

where φ
(0)
j = KOj(x, z). To O(1/N) one has

(∇2 −m2)φ(1)(x, z) = φ
(0)
1 χ(0)(x, z) (4.25)

(∇2 −m2
χ)χ

(1)(x, z) = φ
(0)
1 φ(0)(x, z) + φ

(0)
2 φ

(0)
3 (x, z)

These equations are solved by

φ(1)(z, x) =
∑

n

bn1χ
M2

n −m2
K(O1χ)n(z, x)

M2
n = ∆n(∆n − d), ∆n = ∆1 +∆χ + 2n (4.26)

and

χ(1)(z, x) =
∑

n

bn1φ

(M
(1)
n )2 −m2

χ

K(O1O)n(z, x) +
∑

n

bn23

(M
(23)
n )2 −m2

χ

K(O2O3)n(z, x)

(M (1)
n )2 = ∆(1)

n (∆(1)
n − d), ∆(1)

n = ∆1 +∆+ 2n (4.27)

8Alternatively this procedure could determine anomalous dimensions, if the dimensions of the operators

involved obey relations such as (3.17).
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Then to O(1/N2) one gets

(∇2 −m2)φ(2)(x, z) = φ
(0)
1 χ(1)(x, z) + φ

(1)
1 χ(0)(x, z) (4.28)

The 4-point function and solution in (4.11) and (4.18) corresponds to the second term on

the right of (4.27) inserted in the first term on the right of (4.28), plus of course the O(1/N)

term (4.25). Other solutions for λm23 are possible. We know from [15] that multiplying

λm23 in (4.18) by ((M
(23)
m )2/m2

χ)
k also works, and corresponds to bulk interactions

φφ1χ(z, x) + χ(z, x)

(∇2

m2
χ

)k

φ2φ3(z, x) (4.29)

5 Vector exchange

In this section we repeat the previous analysis of scalar exchange for the case where the

exchanged operator is a primary non-conserved current with spin one.

5.1 Preliminaries

We start with a 3-point function involving a scalar of dimension ∆, another scalar of

dimension ∆j , and a primary current jµ with dimension ∆v > d− 1.

〈O(x)Oj(y1)jµ(y2)〉 =
(

(y1 − y2)µ
(y1 − y2)2

− (x− y2)µ
(x− y2)2

)

(5.1)

× γ(v)

(y1 − x)∆+∆j−∆v+1(y1 − y2)∆j+∆v−∆−1(x− y2)∆−∆j+∆v−1

We want to promote O(x) to a local bulk field so we start with

〈KO(z, x)Oj(y1)jµ(y2)〉 (5.2)

This 3-point function does not obey bulk locality, but we can make it local by adding a

tower of appropriately-smeared higher-dimension primary scalar operators, built from Oj ,

jµ and derivatives, to the definition of the bulk field. The coefficients of these operators

are fixed by requiring bulk causality. Then we can compute (∇2−m2
0)φ(z, x) and find (see

appendix B and [15])

(∇2 −m2
0)φ(z, x)=− γ(v)

γF (∆,∆j + 1,∆v)

∆v

(∆j− d
2)(∆v+∆−∆j−1)

∂MKOj(z, x)A
(0)
M (z, x)

(5.3)

where M = (z, x) and A
(0)
M (z, x) is a bulk massive vector field given in terms of CFT

operators by [9]

A(0)
z (z, x) =

1

d−∆v − 1
K∆v(∂

µjµ)(z, x) (5.4)

zA(0)
µ (z, x) = K∆vjµ(z, x) +

z

2(∆v − d
2 + 1)

1

d−∆v − 1
K∆v+1∂µ(∂

νjν)(z, x)

Here we have indicated by K∆ the smearing appropriate to a scalar of dimension ∆.
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We will need another result, developed in appendix C.1. Start with two single-trace

scalar primaries Oj and Ok of equal dimension, ∆j = ∆k. We can build to leading order

in 1/N an infinite tower of double-trace non-conserved primary currents out of Oj , Ok

and derivatives. We label the resulting current of dimension ∆m = ∆j +∆k + 1 + 2m by

(OjOk)
m
µ . We can smear these currents as in (5.4) to obtain bulk operators whose 2-point

functions coincide with the 2-point function of a free massive vector field. We label this

bulk operator by K(OjOk)
m
M (z, x), where M = (z, x) is a bulk spacetime vector index.

Then there is a set of coefficients b̃
(v)
mjk such that

(2∆j−d)
∑

b̃
(v)
mjkK(OjOk)

m
M (z, x) = φ

(0)
k (z, x)∂Mφ

(0)
j (z, x)−φ(0)

j (z, x)∂Mφ
(0)
k (z, x) (5.5)

5.2 Vector example

Here we solve the bootstrap in an example where in one channel non-conserved primary

double-trace currents can be exchanged. We assume for simplicity that in a different

channel y2 → y3 only scalar double-trace operators contribute. This means the equation

of motion for the bulk field has the general form

(∇2 −m2
0)φ(z, x) =

1

N2
KO1(z, x)

∑

m

λ(1)
m K(O2O3)m(z, x) (5.6)

+
1

N2

l1
∑

k=1

(∇2 −m2
0)

k

(

KO1(z, x)
∑

m

β
(1)
(k)mK(O2O3)m(z, x)

)

Here β
(1)
(k)m parametrize field redefinitions and are not determined by CFT data, while λ

(1)
m

is related to CFT data as in (3.11). In the OPE channel y1 → y3 we assume that both

scalar and vector double-trace operators contribute. Vector double-trace operators have a

3-point function

〈O(x)O2(y1)(O1O3)
m
µ (y2)〉 =

(

(x− y2)µ
(x− y2)2

− (y1 − y2)µ
(y1 − y2)2

)

(5.7)

× γ
(v)
m

(x−y1)∆+∆2−∆m+1(y1−y2)∆2−∆+∆m−1(x−y2)∆−∆2+∆m−1

where ∆m = ∆1 +∆3 + 2m+ 1. Thus in this channel the equation of motion for the bulk

field is (see section 5.1)

(∇2 −m2
0)φ(z, x) =

1

N2
KO2(z, x)

∑

m

λ(2)
m K(O1O3)m(z, x)

+
1

N2

l2
∑

k=1

(∇2 −m2
0)

k

(

KO2(z, x)
∑

m

β
(2)
(k)mK(O1O3)m(z, x)

)

+
1

N2
∂MKO2(z, x)

∑

m

λ(v)
m Am

M (z, x) (5.8)

Here Am
M (z, x) is the appropriate smearing of the non-conserved primary current (O1O3)

m
µ

of dimension ∆m = ∆1 + ∆3 + 2m + 1 to make a bulk free massive vector. Again β
(2)
(k)m
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parametrizes field redefinitions and is not determined by CFT data, while λ
(2)
m is given by

(see (3.11))

λ
(2)
m

N2
=

cm13

γF (∆,∆2,∆1 +∆3 + 2m)
(5.9)

and λ
(v)
m is given by (see (5.3))

λ
(v)
m

N2
= − γ

(v)
m

γF (∆,∆2 + 1,∆m)

∆m

(∆2 − d
2)(∆−∆2 +∆m − 1)

. (5.10)

If we assume a similar expansion in the y1 → y2 channel we will get the same result

with 2 ↔ 3.

Comparing (5.6) and (5.8), we see that for them to agree (which they must according to

the bootstrap) all the sums over m must give local bulk expressions in terms of KOi(z, x).

As a simple example we limit ourselves to expressions that have at most two bulk derivatives

on the right-hand side of the equation of motion for φ, and we take β
(1)
(k)m = 0. A solution

to the bulk bootstrap is then parametrized by (we assume ∆1 = ∆3)

∑

m

λ(1)
m K(O2O3)m(z, x) = λ1KO2(z, x)KO3(z, x) + λ2∇2KO2(z, x)KO3(z, x)

∑

m

λ(2)
m K(O1O3)m(z, x) = α1KO1(z, x)KO3(z, x) + α2∇2KO1(z, x)KO3(z, x)

∑

m

β
(2)
(1)mK(O1O3)m(z, x) = βKO1(z, x)KO3(z, x) (5.11)

∑

m

λ(v)
m Am

M (z, x) = γ(KO1(z, x)∂MKO3(z, x)−KO3(z, x)∂MKO1(z, x))

This means that

λ(1)
m = λ1bm23 + λ2(M

(23)
m )2bm23

λ(2)
m = α1bm13 + α2(M

(13)
m )2bm13 (5.12)

β
(2)
(1)m = βbm13

λ(v)
m = γ(2∆1 − d)b̃

(v)
m31

where (M
(ij)
m )2 = (∆i +∆j + 2m)(∆i +∆j + 2m− d) and b̃

(v)
m31 is described in (5.5). After

a little algebra one finds that the two expressions for the equation of motion agree if

α1 = λ2

(

m2
3 +

m2
0 +m2

2

2

)

+ λ1

−α2 = β =
γ

2
=

λ2

2
(5.13)

which implies a bulk quartic interaction

λ1φφ1φ2φ3(z, x) + λ2φφ1∇2(φ2φ3)(z, x) (5.14)
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This solution for the bootstrap computes a variety of OPE coefficients to order 1/N2,

since all λ
(∗)
m are linearly related to some OPE coefficient. In fact λ

(1)
m and λ

(2)
m are related

to the OPE coefficients for two scalars going to a double-trace primary scalar, as shown

in (3.8), (3.11). But λ
(v)
m on the other hand is a new entity. To see its connection to an

OPE coefficient we look at the OPE of O(x) and O2(y2) producing primary currents.

O(x)O2(y2) = · · ·+
∑

m

δCOO2

(O1O3)mµ

(y2 − x)ν

(x− y2)∆+∆2+1−∆m
(O1O3)

m
ν (x) + · · · (5.15)

Comparing this to (5.7) and with the normalization used in (5.10)

〈(O1O3)
m
µ (x)(O1O3)

m
ν (y2)〉 =

(2∆m − d)Γ(∆m)

πd/2Γ(∆m − d
2)

(

ηµν − 2
(x−y2)µ(x−y2)ν

(x−y2)2

)

(x− y2)2∆m
(5.16)

we find that the OPE coefficient is just

δCOO2

(O1O3)mµ
= −γ(v)m

πd/2Γ(∆m − d
2)

(2∆m − d)Γ(∆m)
(5.17)

which gives

δCOO2

(O1O3)mµ
=

γ

N2

πd/2(∆2− d
2)Γ(∆m− d

2)

(2∆m−d)Γ(∆m+1)
γF (∆,∆2+1,∆m)(∆m+∆−∆2−1)(2∆1−d)b̃

(v)
m31

(5.18)

5.3 All spin-1 S-channel solutions

In this section we analyze a scalar 4-point function where in one channel the exchange is

limited to spin one, either single-trace or double-trace, but in other channels the spins are

unbounded. We start with the 4-point function

〈KO(z, x)O1(y1)O2(y2)O3(y3)〉 (5.19)

We assume that the OPE of O2(y2) with O3(y3) has the form

O2(y2)O3(y3) = βµ(y2 − y3)χµ(y2) +
∑

m

αµ
m(y2 − y3)(O2O3)

m
µ (y2) + · · · (5.20)

where χµ is the only single-trace primary non-conserved current present in the OPE, and

(O2O3)
m
µ is a tower of double-trace non-conserved primary currents.

The OPE reduces the original 4-point function to an infinite sum of 3-point functions

involving two scalars and a non-conserved primary current. We know from section 5.1

that for each primary current we can add an infinite tower of smeared triple-trace primary

scalars to KO(z, x), constructed from O1, the primary current and derivatives, to make

each 3-point function local. The resulting bulk operator, which appears local in this OPE

limit, obeys the equation of motion (see (5.3))

(∇2 −m2)φ(z, x) =
λ
(v)
χ

N
∂MKO1(z, x)A

(χ)
M (z, x) +

1

N2

∑

m

λ
(v)
m23∂

MKO1(z, x)A
(m)
M (z, x)m

(5.21)
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Here A
(χ)
M (z, x) is the bulk massive vector one gets by smearing the single-trace primary

current χµ as in (5.4). Likewise A
(m)
M (z, x) is the bulk massive vector one gets by smearing

the double-trace primary current (O2O3)
m
µ as in (5.4). Finally λ

(v)
χ and λ

(v)
m23 are given by

λ
(v)
χ

N
= − c

(v)
χ

γF (∆,∆1 + 1,∆χ)

∆χ

(∆1 − d
2)(∆−∆1 +∆χ − 1)

λ
(v)
m23

N2
= − c

(v)
m23

γF (∆,∆1 + 1,∆m)

∆m

(∆1 − d
2)(∆−∆1 +∆m − 1)

(5.22)

Here c
(v)
χ and c

(v)
m23 are the coefficients of the 3-point function (as in (5.1)) of O(x), O1(y1)

and either χµ(y2) or (O2O3)
m
µ (y2). However this construction gives a local bulk field in

a particular OPE limit y2 → y3. We are not guaranteed that the field will be local away

from this limit, or that the sum over the infinite series of 3-point functions will converge.

One way to check that everything works is to insert the expression for φ(z, x) into

the full 4-point function and see what we get. A simpler but necessary condition is to

impose bulk locality, not on φ itself, but on (∇2 −m2)φ(z, x). So we will require that the

4-point function

〈(∇2 −m2)φ(z, x)O1(y1)O2(y2)O3(y3)〉 (5.23)

obeys bulk causality. To leading order in 1/N and using (5.21) we find that this 4-point

function factorizes as

〈∂MKO1(z, x)O1(y1)〉 〈
(

λ
(v)
χ

N
A

(χ)
M (z, x) +

∑

m

λ
(v)
m23

N2
A

(m)
M (z, x)m

)

O2(y2)O3(y3)〉 (5.24)

The first factor is a 2-point function that obeys bulk causality, so we only need to worry

about the second factor. If λ
(v)
χ = 0 then the condition that the second factor in (5.24)

obeys bulk causality has a simple solution,

λ
(v)
m23 = λb

(v)
m23 (5.25)

where b
(v)
m23 are the coefficients defined in appendix C. If λ

(v)
χ 6= 0, the condition for the

second factor to obey causality is just that

λ(v)
χ A

(χ)
M (z, x) +

1

N

∑

m

λ
(v)
m23A

(m)
M (z, x)m (5.26)

behaves as a local bulk massive vector field inside a 3-point function. The condition for

this is analyzed in appendix C. If we label the coefficient in the 3-point function 〈χµO2O3〉
by d

(v)
χ , then the result for ∆2 = ∆3 is that

λ
(v)
m23

N
= d(v)χ λ(v)

χ

b
(v)
m23

∆m(∆m − d)−∆χ(∆χ − d)
(5.27)

produces a local bulk massive vector field.
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Finally let’s see how the coefficients λ
(v)
m23 are related to OPE coefficients in the CFT.

As in (5.17) the OPE coefficient is just

δCOO1

(O2O3)mµ
= −c

(v)
m23

πd/2Γ(∆m − d
2)

(2∆m − d)Γ(∆m)
(5.28)

We can now find an expression for the OPE coefficient. If λv
χ = 0 then

δCOO1

(O2O3)mµ
=

πd/2Γ(∆m − d
2)

(2∆m − d)Γ(∆m)

(∆1 − d
2)(∆m + 1)

∆m
γF (∆1,∆1 + 1,∆m)

λb
(v)
m23

N2
(5.29)

while if λv
χ 6= 0 then in (5.29) we need to replace

λb
(v)
m23

N2
→ d

(v)
χ λ

(v)
χ

N

b
(v)
m23

∆m(∆m − d)−∆χ(∆χ − d)
(5.30)

Again the bootstrap gave us quite easily the OPE coefficients to O(1/N2). We also see

very explicitly how these OPE coefficients build up the bulk equations of motion.

6 Conclusions

In this paper we further developed the construction of local bulk operators in the CFT.

We extended our previous work on 3-point functions and constructed bulk operators which

obey locality inside a 4-point function. This was done by using the OPE to reduce the

4-point function to an infinite sum of 3-point functions. Our previous results on 3-point

functions [15] guarantee that in each OPE channel one can define a local bulk operator.

However consistency conditions, stemming from the overlap of OPE expansions in different

channels, require that all these seemingly-different bulk operators actually agree up to bulk

field redefinitions. These consistency conditions, which we refer to as the bulk bootstrap,

turn out to determine either OPE coefficients or anomalous dimensions of double-trace

operators, in agreement with results in the literature. Thus the bulk bootstrap not only

determines the CFT expression for a bulk operator, it also provides a way to fix CFT

data. In many situations the bulk bootstrap is simpler to solve than the regular confor-

mal bootstrap, in part because to satisfy bulk locality we only need to consider primary

fields, which means expressions for conformal blocks are not required. In situations where

only double-trace operators are exchanged, our analysis makes it clear that the bootstrap

conditions can only be solved by bulk fields which obey local equations of motion. Thus

the bootstrap implies that the CFT has a local gravity dual [21]. Our analysis also simply

and directly connects CFT data (OPE coefficients or anomalous dimensions of double-trace

operators) to bulk equations of motion.

We also analyzed a class of examples where, in addition to double-trace primaries, a

single-trace operator (either scalar or vector) can contribute in one channel of the OPE.

Since in this case one expects that in other channels double-trace operators of all spins will

contribute, it was more efficient to consider the bulk operator constructed in this channel

only, and to demand that it satisfy bulk locality away from this particular OPE limit. This
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procedure enabled us to determine the bulk operator, and to read off the OPE coefficients

of the double-trace operators in this channel, in a much wider class of examples.

Note that in all cases the bulk bootstrap provides a simple method to determine the

O(1/N2) corrections to either OPE coefficients or anomalous dimensions. What we mean

by this is that the equation of motion (or the bulk interaction) directly encodes these

quantities. For generic operator dimensions the bootstrap determines OPE coefficients,

and to O(1/N2) there are no anomalous dimensions. But when operator dimensions differ

by integers the bootstrap turns out to determine anomalous dimensions, as described in

section 3.2. In this case there are also corrections to OPE coefficients at O(1/N2), however

these corrections are not encoded in a simple way in the bulk interaction. This does not

mean that they are not determined by the bootstrap: the anomalous dimensions already

determine the bulk interaction, so one could use this knowledge to compute the boundary

4-point function, and from this deduce the corrections to OPE coefficients. This is in line

with results in [21], where corrections to OPE coefficients could be computed from results

for anomalous dimensions.

In this paper we studied examples involving exchanges of scalars and non-conserved

currents. As directions for future work clearly generalizing to higher spin exchange is

important, but also note that we did not treat exchange of a conserved current which brings

in additional subtleties. The construction of bulk operators was carried out in cases where

the dual bulk diagrams are tree level 4-point functions. From the construction it seems clear

that treating higher-point functions at tree level is straightforward. A more challenging

question is how to treat effects that result from bulk loops. We hope to comment on this in

the near future. Finally it is generally believed that a local bulk theory can emerge only if

there is a large gap in the spectrum of the single-trace operator dimensions [21]. It would

be interesting to understand where this requirement appears in the approach followed here.
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A Scalar 3-point function

We want to promote O(x) to a bulk operator inside a 3-point function, so we start with

〈φ(0)(z, x)Oj(y1)Ok(y2)〉 =
1

(y1 − y2)2∆j

[

z

z2 + (x− y2)2

]∆k−∆j

I(χ) (A.1)
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Here

χ =
[(x− y1)

2 + z2][(x− y2)
2 + z2]

(y1 − y2)2z2
(A.2)

and

I(χ) =
γ̃

2∆− d

(

1

χ− 1

)∆∗
F

(

∆∗, ∆∗ − d

2
+ 1, ∆i −

d

2
+ 1,

1

1− χ

)

(A.3)

with ∆∗ = 1
2(∆+∆j −∆k). If ∆∗ or ∆−∆∗ are either zero or a negative integer then the

hypergeometric series terminates and (A.3) is analytic about χ = 1. But otherwise this

expression does not obey bulk causality, due to the cut at 0 < χ < 1 which corresponds to

bulk spacelike separation. The discontinuity across the cut is given by (dropping a factor

of 2πi)

Idiscont =

γ̃
2∆−d

(1−χ)
d
2
−1

Γ(∆− d
2 + 1)

Γ(∆∗)Γ(∆−∆∗)Γ(2− d
2)

F

(

∆∗ −
d

2
+ 1, 1 +∆∗ −∆, 2− d

2
, 1− χ

)

(A.4)

To restore bulk causality we need to change the definition of the bulk operator. The

change is given by adding to the zeroth order definition (2.1) a tower of higher-dimension

primary double-trace operators built fromOj , Ok and derivatives. Let us label the resulting

double-trace primary scalar of dimension ∆n = ∆j + ∆k + 2n as (OjOk)n. The 3-point

function 〈K(OjOk)n(z, x)Oj(y1)Ok(y2)〉 has a coefficient cnjk, so we have

〈K(OjOk)n(z, x)Oj(y1)Ok(y2)〉 =
1

(y1 − y2)2∆j

[

z

z2 + (x− y2)2

]∆k−∆j

I(n)(χ) (A.5)

where I(n)(χ) is obtained from I(χ) by replacing ∆→∆n, γ̃ → cnjk (likewise for I
(n)
discont(χ)).

We can then choose coefficients anjk such that

Idiscont(χ) = − 1

N

∞
∑

n=0

anjkI
(n)
discont(χ). (A.6)

Defining

bnjk = anjk(∆n(∆n − d)−∆(∆− d)), (A.7)

it was found in [15] that (A.6) is satisfied (with the normalizations used here) provided

1

N

bn12cn12
2∆n−d

=
λ(s)

πd

(−1)n

Γ(∆1− d
2)Γ(∆2− d

2)

Γ(∆1+n)Γ(∆2+n)Γ(n+∆1+∆2− d
2)

Γ(n+ 1)Γ(2n+∆1 +∆2 − d
2)

(A.8)

where

λ(s) =
γ̃

γF (∆,∆j ,∆k)
. (A.9)

This means that if we define a corrected bulk operator by

φ(z, x) = φ(0)(z, x) +
1

N

∞
∑

n=0

anjkK(OjOk)n(z, x) (A.10)
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it will give inside a 3-point function an expression obeying bulk causality. In fact there are

infinitely many solutions for anjk that satisfy (A.6). They are differ from the above by the

substitution

bn12 → bn12 +
∞
∑

l=1

βl(M
2
n −m2

0)
lbn12 (A.11)

Here βl are arbitrary. They parametrize bulk field redefinitions that are compatible with

the 1/N counting rules to this order.

Another useful result from [15] is the sum

1

N

∞
∑

n=0

bnjkI
(n)(χ) =

Γ(∆j)Γ(∆k)

πdΓ(∆j − d
2)Γ(∆k − d

2)

λ(s)

χ∆j
(A.12)

This implies that

∞
∑

n=0

bnjkK(OjOk)n(z, x) = λ(s)KOj(z, x)KOk(z, x) (A.13)

B Bulk scalar — scalar — vector 3-point function

We start with the 3-point function of a primary scalar of dimension ∆, another primary

scalar of dimension ∆j and a non-conserved primary current of dimension ∆v.

〈O(x)Oj(y1)jµ(y2)〉 =
(

(y1 − y2)µ
(y1 − y2)2

− (x− y2)µ
(x− y2)2

)

(B.1)

× γ(v)

(y1 − x)∆+∆j−∆v+1(y1 − y2)∆j+∆v−∆−1(x− y2)∆−∆j+∆v−1

This can be written as9

γ(v)

∆v +∆−∆j − 1

[

(y1 − y2)
2∂y2

µ − 2∆v(y1 − y2)µ
]

〈∆,∆2 + 1,∆v〉 (B.2)

where 〈∆,∆2 + 1,∆v〉 is the canonical 3-point function of three scalars with unit coeffi-

cient. We know that to promote O(x) to a local bulk operator we must add a tower of

appropriately-smeared higher-dimension scalar primaries. In appendix A this was done

in (A.10) to restore causality in a scalar 3-point function. From (B.2) we see that we can

borrow this result to restore causality in this case as well. Indeed adding smeared higher-

dimension primaries with the appropriate coefficients results in a bulk operator obeying

〈(∇2 −m2
0)φ(z, x)Oj(y1)jµ(y2)〉 = (B.3)

γ(v)

∆v +∆−∆j − 1

[

(y1 − y2)
2∂y2

µ − 2∆v(y1 − y2)µ
γF (∆,∆j + 1,∆v)

]

× (scalar result)

where

(scalar result) =
Γ(∆v)Γ(∆j + 1)

πdΓ(∆v − d
2)Γ(∆j + 1− d

2)

(

z

(x− y1)2 + z2

)∆j+1( z

(x− y2)2 + z2

)∆v

(B.4)

9Correcting a typo in [15]
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Thus after some computations we can identify

(∇2 −m2
0)φ(z, x) =

−γ(v)∆v

γF (∆,∆j + 1,∆v)(∆j − d
2)(∆v +∆−∆j − 1)

∂MKOjAM (z, x)

(B.5)

where M = (z, x) and AM (z, x) is a bulk massive vector field expressed in terms of CFT

operators by [9]

A(0)
z (z, x) =

1

d−∆v − 1
K∆v(∂

µjµ)(z, x) (B.6)

zA(0)
µ (z, x) = K∆vjµ(z, x) +

z

2(∆v − d
2 + 1)

1

d−∆v − 1
K∆v+1∂µ(∂

νjν)(z, x)

We have adopted a normalization in which

1

d∆v

〈zAν(x, z)jµ(y1)〉 =
∆−1

∆
ηµν

(

z

(x−y1)2+z2

)∆

− z∆

2∆(∆−1)
∂x
µ∂

x
ν

(

1

(x−y1)2+z2

)∆−1

1

d∆v

〈Az(x, z)jµ(y1)〉 =
1

∆
∂xµ

(

z

(x− y1)2 + z2

)∆

d∆v =
Γ(∆v)

π
d
2Γ(∆v − d

2)
(B.7)

C Bulk vector — scalar — scalar 3-point function

We start with the 3-point function of a primary non-conserved current of dimension ∆v

and two scalars with dimensions ∆j = ∆k = ∆.

〈jµ(x)Oj(y1)Ok(y2)〉 =
(

(y1−x)µ
(y1−x)2

− (y2−x)µ
(y2−x)2

)

γ(v)

(y1−y2)2∆−∆v+1(y1−x)∆v−1(y2−x)∆v−1

(C.1)

We can smear the non-conserved current as in (5.4) to get [13]

〈AM (x, z)Oj(y1)Ok(y2)〉=
1

2

(

∂x
M ln

(x− y2)
2 + z2

(x− y1)2 + z2

)

(C.2)

×
γ(v)

2∆v−d

(y1−y2)2∆(χ−1)
∆v−1

2

F

(

∆v−1

2
,
∆v−d+1

2
,∆v−

d

2
+1,

1

1−χ

)

The first line of (C.2) is independent of the operators involved, while the second line is (up

to a coefficient) the 3-point function of a smeared scalar operator of dimension ∆v with

two other scalars of dimension ∆ and ∆ + 1. To make a local massive vector in the bulk

we need to correct the zeroth order definition by adding a tower of massive vectors [13].

These operators are built from Oj , Ok and derivatives, and we label the operator with

dimension ∆m = 2∆ + 2m + 1 as (OjOk)
m
µ . This double-trace primary current has a

non-trivial 3-point function with Oj Ok, with a coefficient we denote c
(v)
mjk.

10 We label

10c
(v)
mjk can be computed from results in [29].
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the zeroth order smearing of these operators as in (5.4) by A
(m)
M (z, x). Then we have the

3-point function [9, 13]

〈A(m)
M (x, z)Oj(y1)Ok(y2)〉 =

1

2

(

∂x
M ln

(x− y2)
2 + z2

(x− y1)2 + z2

)

(C.3)

×
c
(v)
mjk

2∆m−d

(y1 − y2)2∆(χ− 1)
∆m−1

2

F

(

∆m − 1

2
,
∆m − d+ 1

2
,∆m − d

2
+ 1,

1

1− χ

)

From the relation to the scalar case noted above, we know that if we define a corrected

bulk massive vector by (here we are assuming γ(v) ∼ 1/N)

AM (z, x) = A
(0)
M (z, x) +

1

N

∑

m

b
(v)
mjk

∆m(∆m − d)−∆v(∆v − d)
A

(m)
M (z, x) (C.4)

with b
(v)
mjk obeying

1

N

b
(v)
mjkc

(v)
mjk

2∆m − d
=

γ(v)

γF (∆v,∆,∆+ 1)πd

(−1)m

Γ(∆− d
2)Γ(∆ + 1− d

2)
(C.5)

× Γ(∆ +m)Γ(∆ + 1 +m)Γ(m+ 2∆+ 1− d
2)

Γ(m+ 1)Γ(2m+ 2∆+ 1− d
2)

then (C.4) will obey locality inside 3-point functions.

C.1 Vector sum

In this section we wish to show the following. We start with the infinite tower of primary

non-conserved currents (OjOk)
m
µ defined above, with dimension ∆m = 2∆ + 2m + 1. We

then smear each one appropriately as in (5.4) and label it A
(m)
M (z, x) = K(OjOk)

m
M (z, x),

where M = (z, x). Then there are coefficients b̃
(v)
mjk which obey (to leading order in 1/N)

the following.

(2∆− d)
∑

b̃
(v)
mjk(KOjOk)

m
M (z, x) = φk(z, x)∂Mφj(z, x)− φj(z, x)∂Mφk(z, x) (C.6)

To show this we insert both sides of (C.6) into a 3-point function with Oj(y1) and

Ok(y2).
11 On the right we get

〈(φk∂µφj − φj∂µφk)(z, x)Oj(y1)Ok(y2)〉 = 2∆
Γ2(∆)

πdΓ2(∆− d
2)

(C.7)

×
(

z

(x− y1)2 + z2

)∆( z

(x− y2)2 + z2

)∆( (x− y2)µ
(x− y2)2 + z2

− (x− y1)µ
(x− y1)2 + z2

)

11Here we treat the case where M = µ, a coordinate parallel to the boundary. A similar argument holds

for the z coordinate.
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On the left we can use the result (C.3) for the 3-point function of a primary non-

conserved current of dimension ∆m = 2∆ + 2m + 1 with two scalars of dimension ∆j =

∆k = ∆. From the scalar case (A.12) we know that for b̃
(v)
mjk such that

b̃
(v)
mjk =

1

N
b
(v)
mjk

γF (∆v,∆,∆+ 1)

γ(v)
(C.8)

we have

b̃
(v)
mjkc

(v)
mjk

2∆m − d

1

(χ− 1)
∆m−1

2

F

(

∆m − 1

2
,
∆m − d+ 1

2
,∆m − d

2
+ 1,

1

1− χ

)

=
∆Γ2(∆)

πd(∆− d
2)Γ

2(∆− d
2)

1

χ∆
(C.9)

So the left-hand side of (C.6) inserted into the 3-point function gives

∆Γ2(∆)

πdΓ2(∆− d
2)

1

(y1 − y2)2∆

(

∂x
M ln

(x− y2)
2 + z2

(x− y1)2 + z2

)

1

χ∆
(C.10)

which exactly agrees with (C.7).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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