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functions, we discuss how λL = 2π/β in ordinary two-dimensional holographic CFTs is re-

lated to properties of the OPE at strong coupling. We then rule out the existence of unitary,
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without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with

the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to

acausality. On the other hand, unitary CFTs with classical W∞[λ] symmetry, dual to 3D
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1 Introduction and summary

The study of quantum chaos has lent new perspectives on thermal physics of conformal

field theories and gravity [1, 2]. Geometric structure in the bulk may be destroyed by

small perturbations whose effects grow in time and spread in space, otherwise known as

the butterfly effect. This accounts for scrambling by black holes, destroys entanglement,

and, via holography, gives a view into Lorentzian dynamics of conformal field theories at

large central charge [1–18].

Inspired by the classical picture [19], a quantity that has been identified as a sharp

diagnostic of quantum chaos is the out-of-time-order (OTO) four-point correlation function

between pairs of local operators,

〈VW (t)VW (t)〉β . (1.1)

We use a common notation: V sits at t = 0, and the operators are separated in space.

The onset of chaos is seen as an exponential decay in time of this correlator, controlled by

exp(λLt). The rate of onset is set by λL, the Lyapunov exponent. Under certain conditions

that are easily satisfied by many reasonable thermal systems, λL is bounded above by [2]

λL ≤
2π

β
. (1.2)

The bound is saturated by Einstein gravity, nature’s fastest scrambler [20]. Understanding

how exactly this bound fits into the broader picture of CFT constraints and their relation

to the emergence of bulk spacetime, and studying the range of chaotic behaviors of CFTs

more generally, are the general goals of this paper.

This work touches on various themes in recent study of conformal field theory and

the AdS/CFT correspondence. The first is the delineation of the space of CFTs. An

abstract CFT is (perturbatively) specified by the spectrum of local operators and their

OPE coefficients: {∆i, Cijk}. As evidenced by the conformal bootstrap, imposing crossing

symmetry and unitarity leads to powerful constraints on this data. It is not yet known

what the precise relation is between {∆i, Cijk} and the chaotic properties of a generic CFT,

say, λL. One would like to use OTO correlators to constrain the CFT landscape: given the

existence of a bound on chaos, a natural goal is to exclude certain putative CFTs which

violate it. This tack would provide a Lorentzian approach to the classification of CFTs.

– 1 –
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The strong form of the AdS/CFT correspondence posits that every CFT is dual to a

theory of quantum gravity in AdS. At the least, a subspace of all CFTs can be mapped via

holography to the space of weakly coupled theories of gravity or string/M-theory in AdS.

Given that string and M-theory are tightly constrained by their symmetries, this suggests

that any consistent CFT possesses a level of substructure over and above the manifest

requirements of conformal symmetry. One might hope to enlist chaos in the quest to “see”

the structure of AdS string or M-theory compactifications from CFT.

At large central charge c and with a sufficiently sparse spectrum of light operators

∆i � c, a universality emerges: such CFTs appear to be dual to weakly coupled theories

of AdS gravity, that in the simplest cases contain Einstein gravity. These CFTs obey

certain other unobvious constraints: for example, corrections to a− c in four-dimensional

CFTs are controlled by the higher spin spectrum [21]. Identifying the set of sufficient

conditions for the emergence of a local bulk dual is an open problem. There is already

evidence that λL = 2π/β is at least a necessary criterion, but one would like to make a

sharper statement. Explicitly connecting the value of λL with the strong coupling OPE

data would permit a direct derivation of λL = 2π/β from CFT, which is presently lacking

in d > 2 and has been done under certain conditions on the operators V and W in d = 2 [7].

Not all weakly coupled theories of gravity are local: one can, for instance, add higher

spin fields. In AdSD>3, there are no-go results: namely, one cannot add a finite number of

either massive or massless higher spin fields, for reasons of causality [21] and — in the case

of massless fields — symmetry [22, 23]. In AdS3, the constraints are less strict. For one,

the graviton is non-propagating. Moreover, higher spin algebras, i.e. W-algebras, with a

finite number of currents do exist.

Consider theories which augment the metric with an infinite tower of higher spin gauge

fields. Other than string theory, these include the Vasiliev theories [24–26]; see [27, 28] for

recent reviews. These are famously dual to O(N) vector models in d ≥ 3 CFT dimensions

(and, in d = 3, Chern-Simons deformations thereof [29, 30]). One widely held motivation

for studying the Vasiliev theories in d dimensions is that they morally capture the leading

Regge trajectory of tensionless strings in AdS [31]. For the supersymmetric AdS3 Vasiliev

theory with so-called shs2[λ] symmetry, this is now shown to be literally true [32–34]: CFT

arguments imply that this super-Vasiliev theory forms a closed subsector of type IIB string

theory on AdS3 × S3 × T 4 in the tensionless limit, α′ → ∞. More generally, it is unclear

whether other, e.g. non-supersymmetric, Vasiliev theories are UV complete, or whether

they can always be viewed as a consistent subsector of a bona fide string theory.

In AdS3, there seem to be other consistent theories of higher spin gravity: to every W-

algebra arising as the Drinfeld-Sokolov construction of a Lie algebra G, one can associate

a pure higher spin gravity in AdS3 cast as a G × G Chern-Simons theory. This builds on

the original observation that general relativity in AdS3 can be written in this fashion with

G = SL(2,R) [35, 36]. Such pure Chern-Simons theories have been studied in the context

of AdS/CFT, especially for G = SL(N,R) and G = hs[λ]. The former contains a single

higher spin gauge field at every integer spin 2 ≤ s ≤ N which generate an asymptotic

WN symmetry [37]. The latter, a one-parameter family labeled by λ, contains one higher

spin gauge field at every integer spin s ≥ 2 which generate an asymptotic W∞[λ] symme-
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try [38–40]. The 3D Vasiliev theory [26] contains the hs[λ] theory as a closed subsector. All

of these theories should be viewed as capturing the universal dynamics of their respective

W-algebras at large central charge. These theories have been studied on the level of the

construction of higher spin black holes and their partition functions (e.g. [41–44]), entangle-

ment and Rényi entropies and Wilson line probes (e.g. [45–51]), conformal blocks [51, 52],

and flat space limits [53], among other things.

To introduce dynamics, one would like to consistently couple these pure higher spin

theories to matter, or embed them into string theory. However, it is far from clear that these

SL(N)-type theories, with finite towers of higher spin gauge fields, are not pathological.

The notion of a finite tower of higher spin fields feels quite unnatural, and is highly unlikely

to descend from string theory. A heuristic argument is that in a tensionless limit α′ →∞,

all operators on the lowest Regge trajectory would become massless, not only a finite set;

then if we are guided by the principle that every CFT is dual to (some limit of) a string

theory in AdS, or by some milder notion of string universality [54, 55], the notion of a

holographic, unitary 2d CFT with a finite number of higher spin currents seems suspicious.

As an empirical matter, the only known construction of a fully nonlinear AdS3 higher spin

gravity coupled to matter that is consistent with unitarity is the Vasiliev theory, which has

an infinite tower of higher spin currents; likewise, there are no known WN CFTs with the

aforementioned properties.

In this paper, we will initiate a systematic treatment of chaotic OTO correlators in

CFTs with weakly coupled holographic duals. We will realize some of the goals mentioned

above. Our results are in the spirit of the conformal bootstrap program: we exclude regions

of the CFT landscape by imposing consistency properties on correlation functions. In our

setting, we are working with Lorentzian, out-of-time-order correlators, relating dynamical

statements about the development of quantum chaos and scrambling in thermal systems [1,

2] to the question of UV completeness. Our work has a similar flavor to [56, 57], which

uses the Lorentzian bootstrap to enforce causality in shock wave backgrounds.

1.1 Summary of results

Our basic philosophy is, following [7], to study OTO four-point functions of the form (1.1)

in d-dimensional CFTs by computing vacuum four-point functions, and performing a con-

formal transformation to a thermal state. In d > 2, this yields the Rindler thermal state.

In d = 2, this yields the thermal state of the CFT on a line with arbitrary β. In the large

c limit, we diagnose chaos by looking at planar correlators; in particular, we study their

Regge limits. A conformal transformation leads to an OTO correlator of the form

〈VW (t)VW (t)〉β
〈V V 〉β〈W (t)W (t)〉β

≈ 1 +
eλLt

c
f(x) + . . . (1.3)

It follows that in these thermal states, the chaotic properties of the CFT can in principle

be inferred from OPE data at O(1/c). In this paper, we make this concrete. (This last

statement assumes that V and W are light operators, with conformal dimensions paramet-

rically less than c, but we will also treat the case of V and W being heavy in d = 2, with

similar results.)

– 3 –
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Chaotic correlators in holographic CFTs. In section 3, we consider chaos in CFTs

with weakly coupled local gravity duals, with no higher spin currents.1 We take V and W

to be arbitrary light scalar primaries. By recalling properties of the strongly coupled OPE

at O(1/c), we argue that for times β � t� β
2π log c,

〈VW (t)VW (t)〉β
〈V V 〉β〈W (t)W (t)〉β

∼ 1− i

cε∗12ε34
e

2π
β

(t−x)
f(x) + . . . (1.4)

where the εij parameterize the Euclidean times of the operators, in a notation explained

below and borrowed from [7]. f(x) is a function of the spatial separation whose general

form we determine; see equation (3.16), where η = exp(−4πx/β). (1.4) implies λL = 2π/β

and t∗ = λ−1
L log c, matching the Einstein gravity behavior.

The arguments used here are based on necessary conditions a prototypical CFT must

satisfy for the existence of an emergent local bulk theory, in the spirit of [58, 59], and as

such are rather general. This analysis is analogous to section 6 of [60], where the emergence

of bulk-point singularities is derived from properties of the OPE at strong coupling. We do

not, however, rigorously apply conformal Regge theory techniques [83] to derive sufficient

conditions for (1.4) using CFT arguments alone.

One way to phrase (1.4) is that λL may be read off from the stress tensor exchange

alone. A corollary of our result is a derivation of the butterfly velocity in Rindler space,

vB =
1

d− 1
(Rindler) (1.5)

This is determined by the exchange of the lowest-twist spin-2 operator, which is the stress

tensor. In appendix B, we give an example of (1.4) in strongly coupled N = 4 super-Yang-

Mills (SYM), where we take V = W = O20′ . Our analysis also clarifies the relationship

between the sparseness condition and λL = 2π/β: in particular, this result is somewhat

insensitive to the density of scalar and vector primary operators, and does not require the

strictest definition of sparseness.

Chaotic destruction of higher spin theories. In section 4 we focus on d = 2, and

upgrade the previous analysis to include higher spin currents of bounded spin s ≤ N , where

N > 2 is finite. The same principles imply that for generic V and W ,

〈VW (t)VW (t)〉β
〈V V 〉β〈W (t)W (t)〉β

∼ 1− i

cε∗12ε34
e

2π
β

(N−1)t
f(x) + . . . (1.6)

The Lyapunov exponent is

λL =
2π

β
(N − 1) (1.7)

This violates the chaos bound. It follows from our assumptions that unitary, holographic

2d CFTs with finite towers of higher spin currents do not exist. Not only would such CFTs

violate the chaos bound, but as we review, the results of [56] imply that they would be

acausal: that is, these higher spin CFTs would be too-fast scramblers.

1Throughout the paper, the phrase “weakly coupled gravity” means GN � 1 and generically includes a

coupling to a finite number of matter fields; if we wish to denote the gravitational sector alone, we refer to

“pure gravity.”

– 4 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
9

Figure 1. A weakly coupled theory of higher spin gravity in AdS3 may be viewed as matter

coupled to a G × G Chern-Simons theory for some Lie algebra G. The boundary gravitons of G

generate an asymptotic W-symmetry, WG. When rank(G) is finite, such theories are inconsistent.

To bolster these claims, we rigorously study the case where V and W have higher

spin charges that scale with large c. This was inspired by the analogous calculation in

the Virasoro context [7]. In sparse CFTs, correlators of such operators are computed

exactly, to leading order in large c, by the semiclassical vacuum conformal block of the

W-algebra [51, 52, 61–63]. Taking W = WN , the semiclassical WN vacuum block is now

known in closed form for any N [52], so we can compute its Regge limit explicitly. The

resulting function again violates the chaos bound. (See e.g. equation (4.35) for N = 3.)

The bulk dual statement is that weakly coupled higher spin gravities with finite towers

of higher spin gauge fields are inconsistent. This rules out the SL(N) higher spin gravities.

As we explain in section 4.3, our CFT calculations of the OTO correlators map directly to

the way one would calculate the same quantity in the bulk, via certain bulk Wilson line

operators studied in [45, 46, 51, 52, 64]; they therefore constitute a direct bulk calculation

as well. In purely bulk language, the problem can be equivalently phrased as an acausality

of a “higher spin shock wave” induced by a higher spin-charged perturbation of the planar

BTZ black hole. Alternatively, the Regge limit of AdS3 Mellin amplitudes grows too fast.

A corollary of our result is that SL(N)-type higher spin gravities cannot be coupled to

string or M-theory.

This result fits very nicely with known features of higher-dimensional gravity. Weakly

coupled theories of gravity in AdSD>3 with a finite number of higher spin fields suffer from

violations of causality [21]. In AdS3, this conclusion does not hold, as the bulk graviton is

non-propagating. However, upon introducing matter, the physics is the same. It is useful to

compare the status of SL(N)-type theories in AdS3 with Gauss-Bonnet theory in AdSD>3.

Whereas both require infinite towers of higher spin degrees of freedom to be completed

(though see [65]), Gauss-Bonnet comes with a coupling λGB ∼M2
GB, which determines the

energy scale E ∼MGB at which massive higher spin fields must appear to restore causality;

on the other hand, SL(N) gravity has no scale besides LAdS, and cannot be viewed as an

effective field theory.

– 5 –
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Altogether, this reduces various computations in SL(N) higher spin theories — in-

cluding entanglement entropies as Wilson lines, efforts to find gauge-invariant causal struc-

ture, and models of higher spin black hole formation — to algebraic statements about

W-algebra representation theory, rather than dynamical statements about actual unitary,

causal CFTs.2 For non-dynamical questions, the SL(N) theories may still be useful: for

example, they remain approachable toy models of more complicated theories of higher spin

gravity and of stringy geometry; some of their observables may be analytically continued

to derive results in hs[λ] higher spin gravity (e.g. [52, 66–69]); and W-algebras do appear

widely in CFT.3

This begs the question of what happens when an infinite tower of massless higher spin

fields is introduced.

Regge behavior in W∞[λ] CFTs and 3D Vasiliev theory. In section 5, we consider

chaos in 2d CFTs with W∞[λ] symmetry. We continue to apply the principle that the

W∞[λ] vacuum block at O(1/c) can be used to derive λL. Doing so requires deriving its

Regge limit. This in turn requires performing the infinite sum over single higher spin

current exchanges; see figure 5. The result is highly sensitive to the relations among OPE

coefficients, i.e. the higher spin charges of V and W . Taking both V and W to sit in

the simplest representation of W∞[λ], i.e. the fundamental representation (which obeys

unitarity for λ ≥ −1), we find a remarkably simple result for the W∞[λ] vacuum block:

Fvac,∞(z|λ) = 1 +
(1− λ2)

c

(
z 2F1(1, 1, 1− λ; z) + log(1− z)

)
+O

(
1

c2

)
. (1.8)

In the Regge limit, the O(1/c) term goes like a constant, which implies

λL = 0 . (1.9)

There is no chaos. The result λL = 0 is non-trivial, unlike higher spin CFTs in d > 2,

because CFTs with W∞[λ] symmetry are not necessarily free. We expect that (1.8) will

find other applications.

This has intriguing implications for the status of non-supersymmetric Vasiliev theory.

The quantum numbers of V and W chosen above are those of the Vasiliev scalar field. We

believe that our result encourages the tensionless string theory interpretation described ear-

lier. One especially relevant feature of string theory for our purposes is the phenomenon of

Regge-ization of amplitudes, in which infinite towers of massive string states sum up to give

soft high-energy behavior [74–76]. It is sometimes said that string theory is the unique the-

ory with a consistent sum over higher spin states. Our calculation suggests that this is not

strictly true: the non-supersymmetric 3D Vasiliev theory provides another, simpler exam-

ple. This suggests that the non-supersymmetric Vasiliev theory may be shown to be a limit

or subsector of string theory, as in the supersymmetric AdS3×S3×T 4 case described above.

2A special case not covered by the above is pure higher spin gravity. We are skeptical that such theories

exist for small GN ; if they do, they are devoid of dynamics.
3Non-unitarity also has its place in the AdS/CFT dictionary, e.g. [67, 70–73], although ideally not

packaged with acausality.
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As an aside, using arguments independent of chaos, we show that unitary CFTs with

a classical (that is, large c) W∞[λ] chiral algebra with λ > 2 do not exist. Correspondingly,

3D Vasiliev and pure hs[λ] higher spin gravities with λ > 2 have imaginary gauge field

scattering amplitudes. This follows from the fact that, as we show, the classical W∞[λ]

algebra is actually complex for λ > 2.

AdS/CFT sans chaos. In section 6, we give a selection of chaotic computations in

familiar CFTs that are relevant to AdS/CFT: namely, chiral 2d CFTs, symmetric orbifold

CFTs, and CFTs with slightly broken higher spin symmetry. Chiral CFTs are non-chaotic.

We perform an explicit computation of an OTO correlator in the D1-D5 CFT at its orbifold

point, SymN (T 4), again finding an absence of chaos. Finally, we argue that in slightly

broken higher spin CFTs [77] in arbitrary dimension, the Lyapunov exponent in thermal

states on S1×Rd−1 should vanish to leading order in 1/c. This gives a physical motivation

to study λL to higher orders in 1/c.

The sections outlined above are bookended by a short section 2, in which we set up the

calculations and briefly review the Regge limit and the chaos bound; and by a discussion

in section 7. Finally, we include a handful of appendices with supplementary calculations.

2 Chaotic correlators

We will study OTO four-point functions of pairs of local primary operators in thermal

states of d-dimensional CFTs,

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

(2.1)

where operators are time-ordered as written. We achieve this by a conformal transformation

from the vacuum. We focus mostly on d = 2 CFTs on the cylinder with inverse temperature

β, so we set up the problem in those variables; the result for d-dimensional Rindler space

can be read off at the end by setting β = 2π.

Consider local scalar primary operators V,W with respective conformal weights hv =

hv and hw = hw, where more generally,

(h, h) =

(
∆ + s

2
,

∆− s
2

)
(2.2)

Conformal invariance constrains the vacuum four-point function of V and W to take the

form
〈V †(z1, z1)V (z2, z2)W †(z3, z3)W (z4, z4)〉
〈V †(z1, z1)V (z2, z2)〉〈W †(z3, z3)W (z4, z4)〉

= A(z, z) (2.3)

for some function A(z, z) of the conformally invariant cross-ratios,

z =
z12z34

z13z24
, z =

z12z34

z13z24
(2.4)

where zij ≡ zi − zj as usual. We refer to A(z, z) as a reduced amplitude. It is invariant

under the conformal map to the cylinder,

z = e
2π
β

(t−x)
, z = e

2π
β

(−t−x)
(2.5)

– 7 –
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with thermal periodicity t ∼ t + iβ. For Euclidean correlators, zi = z∗i , and time is

imaginary. In Lorentzian configurations, zi 6= z∗i , and time is complex.

As explained in [7], the OTO correlator (2.1) can be obtained by a particular analytic

continuation of (2.3) from the Euclidean regime. When z 6= z∗, correlators have a branch

cut running from z ∈ (1,∞), and the analytic continuation requires crossing this cut. This

leads to new singularities. The relevant limit for chaos has been studied before, known as

the Regge limit, and boils down to the following manipulations of A(z, z). First, take z

clockwise around the branch point at z = 1, leaving z alone:4

(1− z)→ e−2πi(1− z) (2.6)

This defines a Lorentzian amplitude in which z, but not z, lives on the second sheet of the

function A(z, z). Then take z and z to zero, holding their ratio fixed:

z → 0 , z → 0 ,
z

z
≡ η fixed (2.7)

This defines ARegge(z, η).

The appearance of the Regge limit is explained as follows. To obtain the OTO corre-

lator of interest from the Euclidean amplitude A(z, z), one assigns complex time ti + iεi to

each operator, then evolves the ti to the desired kinematic configuration. We take V and

V † to sit at t = x = 0, and W and W † to sit at t > x > 0:

z1 = e
2π
β
iε1 , z1 = e

− 2π
β
iε1

z2 = e
2π
β
iε2 , z2 = e

− 2π
β
iε2

z3 = e
2π
β

(t+iε3−x)
, z3 = e

2π
β

(−t−iε3−x)

z4 = e
2π
β

(t+iε4−x)
, z4 = e

2π
β

(−t−iε4−x)

(2.8)

The cross-ratio can be read off from (2.4). At t = x, W crosses the lightcone of V , and

z passes through the cut. See figure 2. Evolving to later times t − x � β puts us in the

Regge regime, with the desired time-ordering 〈V †W †VW 〉. In this regime,5

z ≈ −e
2π
β

(x−t)
ε∗12ε34 , z ≈ −e

2π
β

(−x−t)
ε∗12ε34 (2.9)

and

εij ≡ i
(
e

2π
β
iεi − e

2π
β
iεj
)

(2.10)

To preserve the operator ordering 〈V †W †VW 〉, the εi obey ε1 < ε3 < ε2 < ε4; when all εi
are distinct, all operators are separated in imaginary time.

4We occasionally will use the following notation: → means we pass to the second sheet, and ∼ means

that we keep the leading behavior near z = 0 on the second sheet, i.e. we take the Regge limit.
5In d = 2, one could opt to use Zamolodchikov’s q-variable, q = exp(iK(1 − z)/K(z)), where K(z) =

π
2 2F1( 1

2
, 1

2
, 1, z) [78]. This maps all sheets of the cut plane C\(1,∞) to the unit disk |q| ≤ 1. The Regge

limit corresponds to taking q → i. While we will not find occasion to use this variable anymore in this

paper, it is undoubtedly useful for studying Lorentzian correlators in generic CFTs [60].
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Figure 2. On the left, the analytic continuation of z onto the second sheet, passing clockwise

around z = 1. On the right, the canonical [9] diagram of the out-of-time-order arrangement of

operators along the Euclidean time circle. W (t) undergoes Lorentzian time evolution orthogonal

to the circle. We have placed the operators diametrically opposite from one another in pairs, as

in (2.14), with the two pairs separated by an angle θ. In terms of the imaginary time τ , θ = π
2 −

2π
β τ .

To summarize, the thermal, Lorentzian correlator relevant for chaos is

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

= ARegge(z, η) , where z = −e
2π
β

(x−t)
ε∗12ε34 , η = e

− 4π
β
x

(2.11)

V sits at t = 0. We will often refer to ARegge(z, η) when making statements about chaos,

with the identifications in (2.11) understood. Precisely the same formula applies for chaos

in d > 2 CFTs in Rindler space, setting β = 2π. The relation of z and z to the familiar

higher-dimensional cross ratios u and v is

u =
x2

12x
2
34

x2
13x

2
24

= zz , v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z) (2.12)

In the rest of this section and the next, we leave the † implicit.

2.1 A bound on chaos

An especially useful, and fairly general, choice for operator positions around the thermal cir-

cle is to place them diametrically opposite in pairs: ε2 = ε1 +β/2 and ε4 = ε3 +β/2. Fixing

ε1 = 0 without loss of generality, we define the angular displacement between the pairs as

θ ≡ 2π

β
ε3 . (2.13)

In this arrangement,

ε∗12ε34 = 4eiθ , where 0 ≤ θ ≤ π (2.14)

which implies the behavior

z ≈ −4eiθe
2π
β

(x−t)
(2.15)
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for t − x � β. The range of θ is bounded as indicated in order to preserve the ordering

VWVW . Note that Im (z) ≤ 0. When θ = π/2, the operators are spaced equally.6 We

also note the imaginary time parameterization used in [2],

θ =
π

2
− 2π

β
τ (2.16)

This pairwise arrangement of operators leads to a bound on the rate of chaotic time

evolution [2]. The authors prove a general statement about analytic functions bounded on

the half strip, which they then apply to OTO correlators. Consider a function of complex

time, f(t+iτ), which obeys the following conditions: i) f(t+iτ) is analytic in the half-strip

|τ | ≤ β/4, i.e. for 0 ≤ θ ≤ π, ii) f(t) is real, and iii) |f(t+ iτ)| ≤ 1 throughout the strip.

Then f(t) obeys

1

1− f

∣∣∣∣dfdt
∣∣∣∣ ≤ 2π

β
+O(e

− 4π
β
t
) (2.17)

We are ignoring possible sources of error in this bound that are carefully discussed in [2] and

reviewed in [17]; these are not important for the large c theories we will discuss. Actually,

f(t) need not be real; the generalization is

1

1− |f |

∣∣∣∣dfdt
∣∣∣∣ ≤ 2π

β
+O(e

− 4π
β
t
) (2.18)

This is necessary when f(t+ iτ) is an OTO correlator of non-Hermitian operators.

The bound may be applied to functions of the form

f(t) ≈ 1− ε eλLt + . . . (2.19)

where 0 < ε� 1 is a small parameter. Its sign ensures that f(t) decays rather than grows

as t increases. (2.18) implies λL ≤ 2π/β. This expression is valid for λ−1
L � t� λ−1

L log 1/ε.

The upper bound defines the scrambling time t∗, at which the ε-expansion breaks down;

resummation of higher-order effects in ε ensure a smooth descent towards zero. For complex

ε = ε1 + iε2,

|f | = 1− ε1 eλLt + . . . (2.20)

The bound requires ε1 > 0 and λL ≤ 2π/β, while ε2 is unconstrained.

In a large c CFT, ε ∝ 1/c. A corollary of the chaos bound in large c theories is a

bound on t∗,

t∗ ≥
β

2π
log c (2.21)

This is the (updated version of the) fast scrambling conjecture [20].

6One-sided correlators have ε12 = ε34 = 0, which leads to divergences in ARegge(z, η); these can be

regulated, most crudely by just not taking the εi strictly to zero.
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The origins of the bound. It is important to emphasize the fundamentality of the

physical inputs leading to the chaos bound. The analyticity requirement is the statement

that for operators separated along the thermal circle — that is, non-coincident in Euclidean

time — the correlator must not have any singularities. The boundedness requirement is

equivalent to the statement that the OTO correlator decays, rather than grows, due to

chaos. Moreover, there is a close connection between chaos and causality bounds [56, 57].

In the language of those papers, the correlator 〈V VWW 〉 is the two-point function V V in

the “shockwave state,” |W 〉 ≡W |0〉. “Causal” means that for any choice of V and W , the

commutator 〈W |[V, V ]|W 〉 vanishes for spacelike separated V operators:

〈W |[V (x1), V (x2)]|W 〉 = 0 for (x1 − x2)2 > 0 (2.22)

This happens if and only if the second-sheet correlator is analytic and bounded above by

1 in the half-strip, which are the same inputs as for the chaos bound.7

2.2 A toy model for violation of the chaos bound

A simple function that illustrates what the chaos bound is all about, and will be central

to our later analysis, is the following:

f(t+ iτ) = 1 +
iε

zn
+ . . . (2.23)

where |ε| � 1 is a real small parameter of either sign, and n ∈ Z+ for simplicity. The . . .

can denote terms of O(ε2), and/or higher powers of z. Viewing this function as a chaotic

correlator, the exponential map (2.15) implies a Lyapunov exponent

λL =
2πn

β
(2.24)

To get a feel for this function, take the relation between z and complex time to be that

in (2.15). Rescaling ε by positive t-independent coefficients,

f(t+ iτ) = 1 + iε e−inθe
2πn
β
t
+ . . . (2.25)

Its magnitude is

|f(t+ iτ)| = 1 + ε(−1)n sin(nθ)e
2πn
β
t
+ . . . (2.26)

Recall that 0 ≤ θ ≤ π.

When does this grow with t? Equivalently, when is |f(iτ)| ≥ 1? For n = 1, we have

|f(iτ)| = 1− ε sin θ (2.27)

When ε > 0, this is bounded from above by 1 for all admissible θ. But for general n > 1,

there are bn2 c sub-strips within the full strip 0 ≤ θ ≤ π in which the correlator grows

exponentially with t. This is true for either sign of ε.

7To get from [56] to here, take zthere = (1− z)here. Then σthere = −zhere = 4eiθe
2π
β

(x−t)
, and the region

Im(σthere) ≥ 0 is Im(zhere) ≤ 0, which is the half-strip. The semicircle of [56] has radius R = 4e
2π
β

(x−t)
; we

keep this small by going to (t− x)/β � 1, approaching z = 0 on the second sheet.
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Figure 3. Functions of the form (2.23) violate the chaos bound in portions of the half-strip

0 ≤ θ ≤ π. Here we take n = 2 (and ε < 0), suppressing coefficients. The modulus of f grows with

time in the lower (red) sub-strip.

One concludes that the function (2.23) cannot describe the OTO correlator in a con-

sistent chaotic system. This is equivalent to saying that λL = 2πn/β violates the bound

on chaos: for functions of the form (2.23), analyticity and boundedness of f(t+ iτ) follow

from λL ≤ 2π/β, and vice versa.8 The same function was recently discussed in [56] in the

context of causality violation in CFT, where f(t + iτ) was a correlator in the lightcone

limit, ε = η → 0 for fixed z.

3 Chaotic correlators in holographic CFTs

In general, the chaotic behavior of correlation functions is sensitive to the OPE data of

the CFT, the choice of thermal state, and to some extent on the choice of operators W,V .

However, calculations in classical Einstein gravity and in d = 2 CFT, performed for heavy

operators with ∆w � ∆v � 1, suggest that in typical holographic CFTs, chaotic correlators

of arbitrary local operators take a universal form, including a Lyapunov exponent λL =

2π/β, and scrambling time t∗ = λ−1
L log c.

The goal of this section is to connect this to knowledge of the OPE data of general

holographic CFTs. For general scalar primaries V and W in the light spectrum — that

is, with ∆w,∆v ∼ O(1) — one would like to show not only that λL = 2π/β, but that the

dependence on the spatial separation of V and W takes a universal form.

This is, in general, a difficult problem to analyze purely in CFT: it amounts to un-

derstanding sufficient conditions, currently unknown, on strongly coupled OPE data that

give rise to Regge scaling ARegge(z, η) ∼ z−1. A framework for this problem was put forth

in [83]. For the present setting, we will simply discuss the Regge behavior of holographic

correlators, translated into the language of chaos. This will also serve as a stepping stone

to the next sections, where we apply this analysis to 2d CFT’s with higher spin currents.

8Note that within the sub-strips in which the correlator does decay, one can derive a bound on λL.

Indeed, for a strip of vertical width β/2n, the bound on λL is λL ≤ 2πn/β. This follows from identical

arguments as in [2], again mapping the sub-strips each to a unit disc and using the Schwarz-Pick theorem.

However, the point is that the bound must apply over the full strip.
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We will also introduce a toy model which captures the essence of the physics, and uses only

general features of prototypical holographic CFTs with local bulk duals.

Known properties of holographic CFTs with Einstein gravity duals support the fol-

lowing picture of OTO correlators, to be elaborated upon below: Take V and W to be

arbitrary local primary operators in a CFTd with large central charge c, a sparse spectrum

of light operators, and no parametrically light single-trace operators of spin s > 2. This is

the characteristic spectrum of a CFTd with a weakly coupled Einstein gravity dual. Then

for such a CFTd in Rindler space, or a CFT2 on R× S1 with any β,

ARegge(z, η) ∼ 1 +
i

cz
f(η) + . . . (3.1)

where . . . includes terms subleading in the Regge limit and in the 1/c expansion. In terms

of x and t,
〈VW (t)VW (t)〉β
〈V V 〉β〈W (t)W (t)〉β

∼ 1− i

cε∗12ε34
e

2π
β

(t−x)
f(x) + . . . (3.2)

It follows that λL = 2π/β.

If we further define t∗ as the time at which the 1/c expansion breaks down, then (3.2)

also implies t∗ = λ−1
L log c. To obey the chaos bound, we must also have f(η) > 0 for

0 ≤ η < 1.

The main physical point of the result (3.1) is that z−1 = z1−2, where 2 is the spin of

the stress tensor, which is the highest-spin current in the theory.

In what follows, we will be able to somewhat constrain the functional form of f(η):

see (3.16). Moreover, (3.2) makes a prediction for the evaluation of 〈VWVW 〉 as a bulk

wave function overlap integral [9], for light fields V and W . We will say more about this

in the Discussion.

This result comes from studying the Regge limit of vacuum four-point functions

〈V VWW 〉. We take V and W to be scalar operators. In a general CFT, the reduced

amplitude A(z, z) can be expanded in s-channel conformal blocks of SO(d+ 1, 1) for sym-

metric tensor exchange, G∆,s(z, z):

A(z, z) =
∑
p

apG∆p,sp(z, z) (3.3)

where

ap ≡ CV V pCpWW (3.4)

is the product of OPE coefficients for exchange of the symmetric tensor primary Op with

conformal dimension ∆p and spin sp. In a unitary CFT, ap is real, but can have either

sign. This sum is infinite, but convergent for |z| < 1, |z| < 1 independently [56, 79]. We

consider CFTs in which both ap and ∆p admit expansions in 1/c,

ap = a(0)
p +

a
(1)
p

c
+ . . .

∆p = ∆(0)
p +

γp
c

+ . . .

(3.5)
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where zeroth order quantities may be computed in mean field theory. G∆,s is independent

of c.

In general, one can only take the Regge limit of A(z, z) if it is known in closed form,

which is rarely the case at strong coupling. Passage to the second sheet term-by-term in

the conformal block expansion of A(z, z) generically requires a resummation: in particular,

higher spin operators contribute more strongly in the Regge limit, and all CFTs contain

operators with arbitrarily large spin. These include descendant operators, like ∂µ1 . . . ∂µsV ,

or the “double-trace” operators appearing in the lightcone bootstrap. This is the essential

challenge for which the tools of [83] were developed.

However, it is somewhat useful to introduce a toy model for prototypical holographic

CFTs, inspired by [58], in which one can derive the above result directly. Before doing so,

let us establish some useful facts.

First, the Regge limit of G∆,s behaves like a spin-s exchange, even though G∆,s includes

descendant contributions of unbounded spin. In general d, the conformal Casimir equation

for G∆,s simplifies, admitting a closed-form hypergeometric solution [80]

GRegge
∆,s (z, η) = iz1−sG∆,s(η) (3.6)

where

G∆,s(η) ≡ C(∆, s)η
∆−s

2 2F1

(
d− 2

2
,∆− 1,∆− d− 2

2
, η

)
(3.7)

with C(∆, s) a positive prefactor given in appendix A. Note the z1−s behavior as advertised.

This can be easily checked against the Regge limit of the closed-form blocks in even d. See

appendix A for details.

The following two additional properties of G∆,s(η) are significant. One,

G∆,s(η) > 0 (0 ≤ η < 1) (3.8)

for all d ≥ 2 and s > 0, assuming ∆ satisfies the unitarity bound ∆ ≥ d − 2 + s. And

two, the expansion around η = 0 is organized by the twists of the operators living in the

conformal family (∆, s).

The result (3.6) implies that whenever the conformal block sum is restricted to a sum

over primaries of bounded spin, its Regge limit can be taken block-by-block. Recall that

to compute λL, we are interested in the O(1/c) part of the amplitude. This takes the form

A(z, z)
∣∣
1/c

=
∑
p

a(1)
p G

∆
(0)
p ,sp

(z, z) + a(0)
p γp ∂∆G∆

(0)
p ,sp

(z, z) (3.9)

Now we note that holographic CFT spectra have a generalized free field structure. Let us

enumerate their light operators9 appearing in (3.9) at O(1/c):

i) A sparse spectrum of light single-trace operators of ∆ ∼ O(c0) and s ≤ 2. This

includes the stress tensor, with ∆ = d and s = 2.10

9We ignore heavy exchanges, which are suppressed as aHeavy ∼ e−∆ and decouple at large c ∼ ∆.
10In [62], a precise notion of sparseness has been proposed for CFT2: for all ∆ . c/12 (where the vacuum

has ∆ = 0), the density of states obeys d(∆) . e2π∆.
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Figure 4. The decomposition of the connected piece of 〈V VWW 〉 into s-channel conformal blocks,

to leading order in 1/c. The first term stands for the exchanges of single-trace operators O. In

prototypical holographic CFTs with local bulk duals that obey causality, L = 2; more generally,

such CFTs may also have L = ∞, but a Regge limit that corresponds to an exchange of effective

spin Leff = 2. For holographic CFTs with higher spin currents of spins 3 ≤ s ≤ N , the above

picture holds with 2 replaced by N .

ii) Double-trace operators [V V ]n,s and [WW ]n,s. These take the schematic form

[V V ]n,s ≈ V ∂2n∂µ1 . . . ∂µsV (3.10)

and likewise for [WW ]n,s. These are indexed by a spin s = 0, 1, . . . L, where L is a

maximum spin, and n = 0, 1, . . . ,∞. Their dimensions are

∆(n, s) ≈ ∆(0)(n, s) +
γ(n, s)

c
+ . . . , where ∆(0)(n, s) = 2∆v + 2n+ s (3.11)

See figure 4.

To proceed, we introduce a toy model prototype of a holographic CFT, of the sort

studied in [58]: in particular, consider a bulk theory of a graviton interacting with two

scalar fields φv and φw, dual to V and W , respectively, with quartic interactions of the

form φ2
vφ

2
w, (∂φv)

2φ2
w, and (∂φv)

2(∂φw)2. This theory is local and causal [21, 56]. Its

spectrum takes a generalized free field structure above, but the only single-trace operator

appearing in the OPE is the stress tensor.

First, let us temporarily ignore the graviton. Computing the tree-level four-point

amplitude holographically as a sum of quartic contact Witten diagrams, its connected

piece has only double-trace exchanges; this is a known fact about contact diagrams. By

construction, L = 2: thus, the total spin sum in (3.9) is bounded from above, and is

dominated in the Regge limit by spin-2 exchanges. Using the form of GRegge
∆,2 , we see that

ARegge(z, η) = 1 +
i

cz
f(η) + . . . (3.12)

where f(η) is determined by the sum over single- and double-trace spin-2 primary ex-

changes,

f(η) ≡
∑
p

a(1)
p G∆p,2(η) + a(0)

p γp ∂∆G∆p,2(η) (3.13)

and . . . includes the subleading spin-0,1 exchanges, and terms suppressed by powers of 1/c.

What changes when we turn on gravity? For distinct operators V 6= W in our four-

point function, only a single new bulk diagram contributes to A(z, z) at tree-level, namely,
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the graviton exchange in the φvφv−φwφw channel. In the dual CFT conformal block decom-

position in the V V −WW channel, this is known to add the exchange of the stress tensor,

and to contribute to the exchange of the double-trace operators [V V ]n,s and [WW ]n,s of

spins s ≤ 2 only (e.g. [80, 81]). Therefore, at O(1/c) we still exchange only operators of

spin s ≤ 2, and ARegge(z, η) is dominated by the spin-2 exchanges whose contributions we

can compute block-by-block. Said another way, the graviton exchange gives the universal

dominant contribution. This completes the argument for (3.1).

This toy model is an oversimplification of full-fledged holographic CFTs, in which

the sum over spins will not generically truncate (L = ∞). These high-spin double-trace

exchanges come from crossed-channel exchange diagrams in the bulk. As noted above, in

these cases ARegge(z, η) has an effective spin Leff = 2 at strong coupling, and more refined

methods must be employed to compute it [80, 82, 83]. Nevertheless, this emergence of

“graviton dominance” at strong coupling makes the above toy model somewhat useful.

The form of f(η). We can say more about f(η). The first term in (3.13) runs over single-

and double-trace primaries. This includes the stress tensor. For single-trace primaries,

a
(0)
p = 0 due to large c factorization. Whether the anomalous dimension terms turn on

depends on the relative values of ∆v,∆w [84]:

a
(0)
[V V ]n,2

, a
(0)
[WW ]n,2

6= 0 iff ∆v −∆w ∈ Z (3.14)

The coefficients a
(0)
[V V ]n,2

were determined in [85]. Noting that

∂∆G∆,2(η) =
1

2
G∆,2(η) log η + (non-log terms) , (3.15)

the double-trace anomalous dimensions lead to a log η term in f(η) if (3.14) is satisfied.

Altogether, then, f(η) can be written in the form

f(η) = η
d−2

2 (f1(η) + f2(η) log η) (3.16)

We have pulled out the leading twist stress tensor contribution. Both f1(η) and f2(η) are

analytic near η = 0, obeying f1(0) 6= 0 and f2(0) = 0. f2(η) reflects the double-trace

anomalous dimensions, and vanishes unless (3.14) holds.

While we derived (3.16) by focusing on spin-2 exchanges only, it may also apply to

cases in which L =∞ but Leff = 2. Appendix B presents one such computation in strongly

coupled N = 4 SYM.

Positivity. As for positivity of f(η), proving this in full generality would take us some-

what astray from the main thread of this paper. However, we make the following observa-

tions. Any single-trace operator with a
(1)
p > 0 contributes positively to (3.16), given (3.8).

The stress tensor clearly contributes positively:

a
(1)
T = #(d)∆v∆w > 0 (3.17)

where #(d) is a positive d-dependent coefficient that depends on whether we parameterize

c in terms of CT , N , or a trace anomaly coefficient.
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The double-trace operators also contribute positively. This essentially follows from

results of [58]: their contributions sum up into D-functions, which are associated with

tree-level contact diagrams in AdS with four derivatives. For example, one can easily show

using the method of [58] that a λ(∂φv)
2(∂φw)2 term in the bulk Lagrangian contributes to

the reduced amplitude as

A(z, z) ⊃ λu∆v(1 + u+ v)D̄∆v+1∆v+1∆w+1∆w+1(z, z) (3.18)

where D̄∆v+1∆v+1∆w+1∆w+1 is the reduced D-function. For integer ∆v,∆w, one may check

the sign-definiteness of the Regge limit of this object using the expression for D̄1111(z, z)

given in appendix B, together with D-function identities (see e.g. the appendix of [86]).

(Essentially this same point was made in [60]; see also [87] for a similar constraint on

the sign of λ.) But, contact diagrams do not account for the full spin-2 double-trace

contributions: graviton exchange diagrams also contribute at O(1/c). One can show using

the results of section 5.7 of [81] that these contributions to the amplitude take the same

sign as the contact terms.11

Example: N = 4 SYM. In appendix B, we perform an explicit computation of

ARegge(z, η) in N = 4 SYM at large λ. We take V = W both to be the 1/2-BPS scalar

operator in the 20’ of the SU(4) R-symmetry. The features described above are all visible

there, and may be cleanly interpreted in terms of the 20′ × 20′ OPE at large λ.

3.1 Lessons and implications

Before moving on, let us extract some key points from the above.

3.1.1 λL from the vacuum block alone

A main message of (3.1) is that the stress tensor exchange is sufficient to read off λL = 2π/β

and t∗ = λ−1
L log c, while the remaining exchanges simply modify the x-dependence of

〈VWVW 〉. In the language of Regge theory, this is just the statement that in a strongly

coupled CFT dual to Einstein gravity, the Reggeon spin j = 2, which is also the spin of

the stress tensor.

It is important to note that, in general, the lightcone limit of A(z, z) cannot be used to

read off λL. In a CFT dual to string theory, for example, where one must sum over infinite

towers of higher spin operators dual to massive string states in the bulk, λL < 2π/β [9]. We

have shown that the η � 1 expansion of ARegge(z, η) at O(1/c) is a lightcone expansion, a

feature which is special to holographic CFTs with local bulk duals.

3.1.2 Butterfly velocity in Rindler space

Taking V and W to have large spatial separation x � 1, but still obeying x � t, defines

the butterfly velocity, vB:

〈VW (t)VW (t)〉β
〈V V 〉β〈W (t)W (t)〉β

∣∣∣∣∣
x�1

∼ 1− i

cε∗12ε34
e

2π
β

(
t− x

vB

)
+ . . . (3.19)

11In particular, equation 4.18 there also holds for arbitrary spin exchanges. For s > 0 exchanges, the

right-hand side of 4.18 is positive due to the unitarity bound.

– 17 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
9

vB parameterizes the spatial growth of chaotic effects under time evolution. Since η =

exp(−4πx/β), this is the η → 0 limit of ARegge(z, η). So in any holographic CFT, vB is

determined by the spin-2 operator of lowest twist, which is of course the stress tensor. Its

contribution is, ignoring constants,

ARegge(z, η → 0) ≈ 1 +
i

cz
(η

d−2
2 + . . .) (3.20)

Trading (z, η) for (x, t) yields

vB =
1

d− 1
(Rindler) (3.21)

The result can be derived by an Einstein gravity calculation using shock wave techniques

in a hyperbolic black hole background [88].

In CFTs with Einstein gravity duals, the butterfly velocity on the plane is [1]

vB =

√
d

2(d− 1)
(Planar, any β) (3.22)

The planar and Rindler velocities need not, and do not, agree.

The Rindler result is robust under local higher-derivative corrections to the Einstein

action. Rindler space is conformal to the hyperbolic cylinder Hd−1 × S1 with β = 2π.

If we consider chaos in hyperbolic space for β 6= 2π, we have no right to use vacuum

correlators, and our derivation does not apply. In planar geometries, vB does change as a

function of higher derivative couplings [6]. Thus we expect that vB in hyperbolic space is

actually temperature-dependent in higher-derivative gravity. It should be possible to check

this using shock waves in hyperbolic black hole backgrounds; to verify this in CFT, one

would need to compute OTO correlators not in the vacuum, but on Hd−1×S1 with generic

β. This is similar to the difference between computing entanglement entropy and Rényi

entropy across a sphere.

3.1.3 On sparseness

The value of λL is sensitive to the spectrum of spins, not conformal dimensions, present in

the CFT. Since sparseness refers to the latter, it is not directly related to the value of λL.

First,

λL =
2π

β
; Sparseness (3.23)

Consider adding, say, 10100 scalar operators of fixed ∆ � c to an otherwise sparse CFT.

This leaves λL = 2π/β intact, but spoils sparseness.12 Admittedly, this is a weak violation

of sparseness: near ∆ ≈ c, the density of states is still sub-Hagedorn, so this modification

does not ruin the validity of the 1/c expansion, and remains consistent with the existence

of a bulk dual with Einstein gravity thermodynamics.13

12On the other hand, it is logically possible that imposing a gap for s > 2 operators implies sparseness;

in other words, that all non-sparse CFTs must have an infinite tower of light higher spin operators. This is

the operating assumption in [58].
13We thank Ethan Dyer for discussions on this point.
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Conversely, and more definitively,

Sparseness ; λL =
2π

β
(3.24)

For example, the presence of higher-spin operators in the light spectrum will change the

value of λL. We will see explicit examples of sparse CFTs with λL 6= 2π/β in section 4,

where we consider symmetric orbifold CFTs, and in the next section, where we consider

sparse 2d CFTs with higher spin currents.

3.1.4 Are pure theories of AdS3 gravity chaotic?

V and W are primary operators dual to bulk fields carrying local degrees of freedom. In

D > 3 bulk dimensions, such processes do not require the introduction of matter: gravitons

can create geometry, and destroy entanglement. In D = 3, unlike in higher dimensions [89],

there are no gravitational waves: gravitons in AdS3 live at the boundary, and the dynamics

of the stress tensor alone are not chaotic. This is to say that we should not consider

λL = 2π/β as a feature of pure AdS3 gravity: only when mediating interactions between

matter fields do the gravitons behave chaotically.

It may well be that pure semiclassical AdS3 gravity does not exist [90]. In any case,

coupling the theory to matter, as in string or M-theory embeddings, is the only way to

introduce non-trivial dynamics, including chaos. This is the sense in which we consider

λL = 2π/β to be a property of weakly coupled theories of 3D gravity.

4 Chaotic destruction of higher spin theories

We now add higher spin currents to the CFT. In d > 2, higher spin CFTs have correlation

functions that coincide with those of free theories [23] so we take d = 2. We will first

consider correlators 〈V †W †VW 〉β of generic V and W , generalizing the analysis of the

previous section, and then take V and W to have charges scaling like c in a semiclassical

large c limit. The latter will be more rigorous, as it allows us to compute some correlators

exactly, at leading order in large c. The upshot is simple to state: in putative large c 2d

CFTs with currents of spins s ≤ N for some finite integer N > 2, OTO correlators of local

scalar primary operators violate the chaos bound.

The holographic dual of our conclusion is that would-be dual theories of AdS3 higher

spin gravity with finite towers of higher spin currents are pathological.

4.1 Chaotic correlators in higher spin 2d CFTs

Consider a set of holomorphic single-trace currents {Js(z)}, where s ≤ N for some N ∈ Z.

We normalize our currents as

〈Js(z)Js′(0)〉 =
cNsδs,s′

z2s
(4.1)

for some Ns. Altogether, the currents generate a W-algebra. There may be multiple

currents of a given spin, but we leave this implicit. All but J2(z) = T (z) are Virasoro

primaries.
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As in previous section, we will use vacuum four-point functions to diagnose chaos in

the thermal state on the cylinder with arbitrary β. V and W are W-primaries carrying

charges q(s) under the higher spin zero modes,

Js,0|W 〉 = q(s)
w |W 〉 , Js,0|V 〉 = q(s)

v |V 〉 (4.2)

In this notation, q(2) = h, the holomorphic conformal weight. Generically, q(s) 6= 0 for all s.

What is the spectrum of a putative holographic higher spin 2d CFT? Like all holo-

graphic CFTs, the spectrum is inferred from the properties of a weakly coupled theory of

gravity in AdS. In the present case, the bulk theory would be a higher spin gravity in AdS3

which has GN � 1, a set of higher spin gauge fields {ϕs} whose boundary modes give rise

to an asymptotic W symmetry algebra generated by {Js}, and some perturbative matter

fields whose density is fixed as a function of GN .

At O(1/c), we may repeat the analysis of section 3. The prototypical higher spin CFT

now has higher spin currents, but is otherwise structurally unchanged. In our toy model,

decomposing A(z, z) in the V V −WW channel yields the same class of operator exchanges

as in the non-higher spin CFT, only now including operators up to a maximum spin L = N

(see figure 4).14 This captures the fact that, generalizing the “graviton dominance” of non-

higher spin theories, the universal contributions come from the exchange Witten diagrams

of {ϕs}, whose conformal block decomposition leads only to exchanges of spin s ≤ N .15

Given this spectral data, the argument of the previous section immediately implies

that for generic V and W ,

ARegge(z, η) = 1 +
i

czN−1
f(η) + . . . (4.3)

The function f(η) is real and smooth, but need not be positive. In terms of x and t,

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

= 1− i

cε∗12ε34
e

2π(N−1)
β

(t−x)
f(x) + . . . (4.4)

This function is precisely of the form of our toy function (2.23). Therefore, it violates the

chaos bound:

λL =
2π

β
(N − 1) (4.5)

Likewise, the correlator implies a scrambling time

t∗ =
β

2π(N − 1)
log c (4.6)

14Note that when W is finitely generated (i.e. the set {Js} is finite), a primary under W branches into

. exp(2π
√

rank(W)∆/6) Virasoro primaries in the Cardy regime ∆ � c. This gives an upper bound on

the scaling near ∆ ≈ c. Since the d = 2 sparseness condition on the density of light states is exponential in

∆, the distinction between Virasoro primary and W-primary is irrelevant.
15The bulk may also contain contact interactions; their contributions to A(z, z) would only modify the

double-trace contributions, leaving the single-trace current exchanges alone. In particular, they could only

serve to increase the effective spin Leff in the Regge limit; so as to retain universality, we will ignore them.
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As N increases, the correlator grows in an increasing number of sub-strips of the half-strip,

arrayed in regular intervals with spacing linear in N . For N = 3, we drew this behavior

in figure 3.

It follows that:

Unitary, holographic 2d CFTs with finite towers of higher spin currents do not exist.

In other words, the only finitely generated W-algebra consistent with unitarity in a large

c CFT is the Virasoro algebra. This also rules out non-sparse CFTs of the sort discussed

in section 3.1, which violate the sparseness condition with only low-spin operators. If

infinitely-generated W-algebras with currents of bounded spin exist, then CFTs with these

symmetries, too, are ruled out. Recalling the discussion in section 2.1, we may phrase this

chaos bound violation in another way: holographic higher spin CFTs are non-unitary and

acausal.

Are there exceptions? One family of large c CFTs with WN symmetry is the WN

minimal models at negative level k = −N − 1, the so-called “semiclassical limit” [67, 72];

but these are non-unitary.

A large N symmetric orbifold SymN (X), where the seed CFT X has W-symmetry

WX and finite central charge, has a much larger chiral algebra, (WX)N/SN , which becomes

infinitely generated in the large N limit; it also has “massive” higher spin operators besides

the currents.

There is one hypothetical class of CFTs that escape our conclusion: a CFT with no non-

chiral light operators V and W . This would be dual to pure higher spin gravity, for example,

which has onlyW-gravitons and black hole states. Given the difficulty in constructing duals

of pure AdS3 Einstein gravity, the viability of these theories is nevertheless dubious; we

will return to this in the AdS/CFT context in section 4.3.

4.2 Chaos for heavy operators in WN CFTs

Given the extended conformal symmetry W, one may form conformal blocks with respect

to W, rather than SO(3, 1). Instead of (3.3), we could have expanded in the s-channel as

A(z, z) =
∑
p

apFp,W(z)Fp,W(z) (4.7)

where Fp,W(z) are the holomorphic blocks for exchange of a W-primary operator Op. A

nice feature of Fvac,W(z) is that at O(1/c), the only exchanges are the simple current

exchanges:

Fvac,W(z) = 1 +
1

c

∑
s

q
(s)
v q

(s)
w

Ns
gs(z) +O(c−2) (4.8)

where

gs(z) ≡ zs2F1(s, s, 2s, z) (4.9)

is the holomorphic global block for dimension-s exchange. (See figure 5.) We are assuming

that the OPE coefficients q(s) do not scale with c. (4.8) follows from the fact that 〈Js|Js〉 ∼
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Figure 5. At O(1/c), aW-algebra vacuum block (left side) branches into a sum of global blocks for

simple current exchanges. All composite operator exchanges are suppressed by higher powers of 1/c.

c, and that all composite operators in the vacuum module of W (e.g. :JsJs:) have norms

of O(c2) or greater. This explains why, for our chaotic correlators involving light operators

V and W , none of the complication of the W-algebra blocks Fvac,W was necessary.

To gather more data on what goes wrong in holographic higher spin CFTs, we now

consider operators V and W whose charges scale with c in the large c limit:

q(s)
v,w →∞ , c→∞ ,

q
(s)
v,w

c
fixed ,

q
(s)
v

c
� 1 (4.10)

In this limit, (4.8) is insufficient, because higher orders in 1/c come with positive powers

of the charges. However, the point of computing these heavy correlators is that the sum

over blocks simplifies: in particular, (4.7) is dominated by the semiclassical vacuum block,

Fvac,W , up to exponential corrections in c:

A(z, z) = Fvac,W(z)Fvac,W(z) (4.11)

The vacuum dominance follows from the definition of a sparse CFT, and has been supported

by many computations [51, 52, 61, 63].

To be concrete, we now take W = WN . The semiclassical vacuum block, which we call

Fvac,N , is known in closed-form for any N [52]. Then in the Regge limit,

ARegge(z, η) = FRegge
vac,N (z) (4.12)

Compared to the case where V and W are light, this “re-sums” an infinite set of global

blocks for multi-Js exchange. The resulting expressions for ARegge(z, η), exact to leading

order in large c, are more intricate than our result (4.3). Nevertheless, they still violate

the chaos bound.

Our calculations are directly inspired by those of Roberts and Stanford [7] in the

Virasoro case. We begin by reproducing, then reinterpreting, their calculation.16

4.2.1 Warmup: Virasoro

We want to compute FRegge
vac , the Regge limit of the semiclassical Virasoro vacuum block

Fvac ≡ Fvac,2. More precisely, we choose operators V and W whose holomorphic conformal

16In the remainder of this section, Fvac,W(z) refers to the blocks in the semiclassical limit (4.10), and we

use the common convention Fvac,W(z) ≈ z−2hv (1 + . . .) for ease of comparison to previous works.
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dimensions scale as in (4.10):

hv,w →∞ , c→∞ ,
hv,w
c

fixed ,
hv
c
� 1 (4.13)

In this semiclassical limit, the Virasoro vacuum block is [91]

Fvac(z) =

(
α(1− z)

−1+α
2

1− (1− z)α

)2hv

(4.14)

where

α =

√
1− 24

hw
c

(4.15)

Actually, the same result holds even in the “heavy-light limit” of [92], in which hv is held

fixed as c becomes large. (And even in this regime, the vacuum dominance of the correlator

is believed to hold [63].) [7] studies this object at small hw/c, whereby

α ≈ 1− 2ε , where ε ≡ 6hw
c
� 1 (4.16)

Imposing this limit on Fvac and keeping only the terms inside the parenthesis that would

contribute to linear order in ε, [7] write

Fvac(z) ≈
(

(1− z)−ε

1− (1− z)1−2ε

)2hv

(4.17)

In the Regge limit,

FRegge
vac (z) =

(
1

z − 4πiε

)2hv

(4.18)

In the Lorentzian variables, this reads

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

∼

 1

1 + hw
c

24πi
ε∗12ε34

e
2π
β

(t−x)

2hv

(4.19)

The initial decrease in time is exponential, with λL = 2π/β. Note that the sign in the

denominator is crucial: it ensures that the magnitude of the correlator decreases in time,

for any choice of the εij . At even later times, the correlator has lost an order one fraction

of its original value; this happens at t ≈ t∗ + x, where t∗ = β
2π log(c/hw).

As noted in [7], there is some subtlety in this interpretation. One point regards the

scrambling time. In using the semiclassical conformal block, one holds hw/c fixed. Then

strictly speaking, t∗ as defined above is parametrically smaller than the scrambling time

one expects from Einstein gravity, t∗ = β
2π log c. This is presumably an artifact of the semi-

classical limit. To wit, if one analytically continues (4.19) to a regime in which hw is held

fixed but large in the large c limit, it exactly matches a shock wave calculation in 3D gravity

in the same regime of dimensions. This suggests that (4.19) captures the correct physics

even when W and V are not parametrically heavy, and that we may extrapolate (4.19) to

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

∼

 1

1 + 24πihw
ε∗12ε34

e
2π
β

(t−t∗−x)

2hv

(4.20)
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with t∗ = β
2π log c. Then at early times t� t∗ + x, the correlator decreases as exp(2πt/β),

and at late times t ≈ t∗ + x decays to zero as exp(−4πhvt/β).

A more obvious point is that [7] only expanded α to linear order in ε ∝ hw/c, but

don’t fully expand the block to linear order. Doing so, one finds

FRegge
vac (z) = z−2hv

(
1 +

8πihvε

z
+O(ε2)

)
(4.21)

Expanding near ε� 1 commutes with going to the second sheet, so the term of O(ε) should

simply be the Regge limit of the stress tensor exchange. Indeed,

aT g2(z) =
2hvhw
c

z2
2F1(2, 2, 4, z) ∼ 48πihvhw

cz
+ . . . (4.22)

where we use the hypergeometric monodromy around z = 1,

2F1(s, s, 2s, z) → 2F1(s, s, 2s, z)+
2πi

(2s− 1)

Γ2(2s)

Γ4(s)
z1−2s

2F1(1−s, 1−s, 2(1−s), z) (4.23)

where s ∈ Z. We also note that expanding Fvac(z) to all orders in ε and keeping only

the leading term in small z at each order, the result re-sums to (4.18); this gives a partial

justification for the method of [7].

4.2.2 WN

We now perform the calculation of (4.12) for WN with charges (4.10). Fvac,N was derived

in [51, 64] for N = 3, and for arbitrary N in [52]. Its bulk interpretation is of a “heavy”

field W generating a classical background with higher spin charge, in which the “light”

operator V moves. Moreover, there is evidence that the WN vacuum blocks given below

are also valid for q
(s)
v held fixed in the large c limit, and that even in that case, Fvac,N is

still the dominant saddle point of the correlation function [52]. As we discussed earlier,

this is the case for Virasoro.

We will first do the computation for N = 3, where a single spin-3 current is added

to the CFT. This case demonstrates all of the essential physics present at general N , an

assertion we support with computations at N = 4 and at arbitrary N in appendix C.

In W3, there is only one higher spin charge, so we drop the superscript on q
(3)
v , q

(3)
w .

The semiclassical W3 vacuum block is [51, 52]17

Fvac,3(z) = ((1− z)2m1m2)−hv/2
(
m2

m1

)3qv/2

(4.24)

where

m1 =
2

n12n23n31

(
n12(1− z)n3 + cyclic

)
,

m2 =
2

n12n23n31

(
n12(1− z)−n3 + cyclic

) (4.25)

17We ignore irrelevant factors of the UV cutoff of the CFT. Also, in this subsection, we use the normal-

ization of [51], in which N3 = 5/6.
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with nij ≡ ni − nj . The ni are roots of the cubic equation

n3 − α2n− 4q = 0 , (4.26)

where we have defined a rescaled charge,

q ≡ 6

c
qw (4.27)

Note the absence of a quadratic term in (4.26), which implies
∑

i ni = 0. Note also

that under q → −q, one root has odd parity while the product of the other two roots has

even parity. At small q,

n1 ≈ −
4

α2
q − 64

α8
q3 +O(q5)

n2 ≈ α+
2

α2
q − 6

α5
q2 +

32

α8
q3 − 210

α11
q4 +O(q5)

n3 ≈ −α+
2

α2
q +

6

α5
q2 +

32

α8
q3 +

210

α11
q4 +O(q5)

(4.28)

When q = 0, one recovers the Virasoro block (4.14).

We want to take (4.24) to the chaos regime. We study each piece of (4.24) in turn,

starting with the term ((1 − z)2m1m2)−hv/2. This is the only surviving term for an un-

charged probe, qv = 0. To first non-trivial order in q,

((1−z)2m1m2)−1 =
α4z2α−2

(zα − 1)4

[
1 +

12q2

α6(zα − 1)4

(
6α2

(
z2α + 1

)
zα log2 z

+ α
(
z4α−14z3α+14zα−1

)
log z−(zα−1)2(5z2α−22zα+5

))
+O(q4)

]
z→1−z

(4.29)

Taking the Regge limit, we find

((1− z)2m1m2)−1 ∼
(

1

z − 4πiε

)4
[

1− (24πq)2

(
1

z − 4πiε

)4

+O(q4)

]
(4.30)

It is straightforward to proceed to higher orders. Perturbation theory through O(q16) is

consistent with the following result:

((1− z)2m1m2)−1 ∼
(

1

z − 4πiε

)4 1

1− Y
(4.31)

with

Y ≡ (24πiq)2

(
1

z − 4πiε

)4

(4.32)

Turning now to the (m2/m1)3qv/2 term in (4.24), the first few orders read

m2

m1
≈ 1 + 2

√
Y + 2Y + 2Y 3/2 +O(Y 2) (4.33)

– 25 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
9

Perturbation theory through O(q16) is consistent with the following result:

m2

m1
∼ 1 +

√
Y

1−
√
Y

(4.34)

Putting this all together, restoring the c-dependence and plugging the block into (4.12),

we find the OTO correlator to be

ARegge(z, η) =

(
(1− 24πihw

cz )2 + 144πiqw
cz2

)3qv

(
(1− 24πihw

cz )4 +
(

144πqw
cz2

)2
)hv+3qv

2
(4.35)

where z is given in (2.9).

Not unexpectedly, this violates the bound on chaos. The essential point is that every

qw appears with a 1/cz2. This implies that the decay rate is exponential, controlled by a

“spin-3 Lyapunov exponent”

λ
(3)
L =

4π

β
(4.36)

As in the Virasoro case, the calculation breaks down at late enough times, signifying the

decrease of the correlator. Introducing the “spin-3 scrambling time” t
(3)
∗ ,

t
(3)
∗ ≡

β

4π
log c (4.37)

the OTO correlator is thus

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

=

(
(1 + 24πihw

ε∗12ε34
e

2π
β

(t−2t
(3)
∗ −x)

)2 + 144πiqw
(ε∗12ε34)2 e

4π
β

(t−t(3)
∗ −x)

)3qv

((
1 + 24πihw

ε∗12ε34
e

2π
β

(t−2t
(3)
∗ −x)

)4

+ (144πqw)2

(ε∗12ε34)4 e
8π
β

(t−t(3)
∗ −x)

)hv+3qv
2

(4.38)

Scrambling sets in when t ≈ t
(3)
∗ + x — long before t = t∗ + x — at which point the

correlator decays to zero as exp (−4πhvt/β).

As we reviewed in section 2, because λ
(3)
L > 2π/β, either the correlator is not analytic in

the entire half-strip, and/or it grows in time rather than decaying. Either is a fatal outcome

for a theory. To put the problem in sharpest relief, we take t ≈ t
(3)
∗ + x (or hw → 0) and

qv → 0, and place the operators in the arrangement (2.15), with a displacement angle

θ = π/4. Then (ε∗12ε34)4 = −44, and the correlator reads

〈V †W †(t)VW (t)〉β
〈V †V 〉β〈W †(t)W (t)〉β

=
1(

1−
(

3πqw
4

)2
e

8π
β

(t−t(3)
∗ −x)

)hv
2 (4.39)

The correlator grows in time. Indeed, it diverges for t ≈ x + t
(3)
∗ . More generally, for

operators diametrically opposite on the thermal circle, the correlator will diverge for any

θ ∈ [0, π] such that Re (e4iθ) < 0. This carves out two substrips, θ ∈ [π8 ,
3π
8 ] and θ ∈ [5π

8 ,
7π
8 ],
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of the full strip in which the correlator is non-analytic. Turning on qv 6= 0 does not evade

this conclusion.

One can also check that to linear order in small qw/c, the result18

ARegge(z, η) ≈ 1 +
432πiqwqv

cz2
+ . . . (4.40)

matches the Regge limit of the spin-3 current exchange block, g3(z) = z3
2F1(3, 3, 6, z),

using (4.23) and N3 = 5/6.

4.2.3 General spins

These pathologies of the W3 result only get worse as we add higher spins. For explicit

calculations at N = 4 and at arbitrary N , see appendix C. The results are consistent with

general expectations: when V and W are charged under a spin-s primary, its contribution

to the onset of chaos is characterized by the “higher spin Lyapunov exponent”

λ
(s)
L =

2π(s− 1)

β
(4.41)

and to the onset of scrambling by the “higher spin scrambling time”

t
(s)
∗ =

β

2π(s− 1)
log c (4.42)

When V and W carry charges of spins s ≤ smax, the leading chaotic behavior is controlled

by smax.

4.3 In the bulk: ruling out AdS3 higher spin gravities

Let us now invoke AdS/CFT. The dual higher spin gravities would contain the gauge fields

{ϕs} coupled to some matter. The gauge sector may be succinctly packaged as a G × G
Chern-Simons theory for some Lie group G ⊃ SL(2,R). With AdS3 boundary conditions,

the boundary “gravitons” of G generate a W-algebra, call it WG, which is the Drinfeld-

Sokolov reduction of G [93]. See figure 1.

The bulk dual of our CFT conclusion is:

Weakly coupled higher spin gravities with finite towers of higher spin fields are

inconsistent.

This includes the oft-studied G = SL(N,R) theories [37], where WSL(N,R) = WN .

In fact, our WN calculations of section 4.2 double as direct bulk calculations. This

follows from a series of recent works [45, 46, 51, 52, 64]. It has been firmly established

that the semiclassical vacuum block Fvac,N is computed as a certain bulk Wilson line

operator constructed from the SL(N) connections. On the other hand, this Wilson line

also computes holographic four-point functions of two heavy and two light operators in

18Here we are assuming that these formulas hold even for qv of order c0, as motivated above, so that we

can treat qwqv/c as small.
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precisely the semiclassical limit (4.10). We may schematically write these relations, valid

at leading order in large c, as

SL(N) Wilson line ≈ 〈OH |OLOL|OH〉 ≈ |Fvac,N |2 (4.43)

Importantly for us, this relation is believed to hold for any potential theory of SL(N) gauge

fields coupled to matter, as a matter of gauge invariance [45]. Given this, the CFT and bulk

calculations are identical, and the inconsistency of SL(N) higher spin gravity is explicitly

established by our calculations. An analogous statement holds for any bulk algebra G.

Higher spin shock waves. An equivalent way of computing the OTO correlator in the

bulk is not via analytic continuation of a Euclidean correlator, but by directly probing a

backreacted shock wave solution [1].

At early times, consider perturbing a planar BTZ black hole by an operator (W )

carrying higher spin charge. Our calculation shows that the infalling higher spin quanta

generate a “higher spin shock wave” that, in the absence of an infinite tower of higher spin

gauge fields, acts acausally. For the two-sided BTZ black hole, the shock wave destroys

the entanglement of the thermofield double state too fast. Said another way, these higher

spin gravities are too-fast scramblers.

Note that, like a higher spin black hole [94], a higher spin shock wave is no longer

purely geometric: the higher spin fields ϕs are sourced by W . Just as the shock wave

line element picks up a guu component along the null direction u, the spin-s tensor fields

ϕs = ϕµ1µ2...µs should acquire components of schematic form

ϕuu...u = q(s)
w h(s)(u, x) (4.44)

with spin-dependent profiles h(s)(u, x) determined by the field equations. These couple to

null spin-s currents Juu...u ∝ q
(s)
w induced by the motion of W . In a higher spin shock of

a two-sided BTZ black hole, acausality will be manifest as a causal connectivity between

the left and right CFTs in the perturbed thermofield double state, similar to the effect of a

time-advance in higher derivative gravity.19 This would be visible in the analytic structure

of a two-sided correlator of a probe dual to V , in the shock wave background.20

The properties of scattering through shock waves may also be phrased using ampli-

tudes.21 The effect of a particle traveling through a shock wave is determined by the high-

energy behavior of four-point, tree-level, high-energy scattering amplitude, call it Atree

(e.g. [80]). In flat space or AdS gravity in d > 3 dimensions, finite numbers of higher spin

fields, massive or massless, lead to unacceptably fast growth of Atree in the high energy

regime of large s and fixed t [21]. The tree-level amplitude for exchange of a spin-J field

grows at large s like

A(J)
tree(s, t) ∼ GNsJ (4.45)

19See e.g. [21], section 6. We thank Aitor Lewkowycz for discussions on this point.
20A more tractable construction of the higher spin shock wave would use the Chern-Simons description.

In that language, a two-sided correlator would be computed as a two-sided Wilson line. In carrying out such

a calculation, one must choose an appropriate gauge for the shock wave connections; [95] motivates a specific

gauge choice for the pure thermofield double state, which would also be useful in the shock wave context.
21Note also the recent work in massive 3D gravity, [96].
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Figure 6. Four-point, tree-level Mellin amplitudes for scalar scattering in AdS3 higher spin gravity

grow like sN , where N is the spin of the highest-spin field that couples to the scalars. This is the

bulk dual of (4.3).

whereas the total amplitude Atree must not grow faster than

Atree(s, t) . GNs
2 (4.46)

In AdSd>3, the sJ behavior holds for spin-J exchange between external fields of any

spin, including pure graviton scattering. In AdS3, pure gauge field scattering is trivial.

However, spin-J exchange between external matter fields still behaves as Atree ∼ GNsJ . In

other words, AdS3 Witten diagrammatics with external matter have the same high-energy

scaling as in higher dimensions. In the Regge limit, the Mellin amplitude for massless spin-J

exchange between pairs of scalars V and W in AdS3 may be read off from the results of [97]:

M
(J)
tree(s, t)∼−GNsJ

(
2q

(J)
v q

(J)
w

3NJ

21−2JΓ(2J)(J − 1)J
Γ(∆v)Γ(∆w)Γ4(J)

)
3F2

(
1−∆v, 1−∆w,− t

2 ; J, 1− t
2 ; 1
)

t

(4.47)

where s and t are Mellin variables in the conventions of [97], and the quantities q
(J)
v,w and

NJ were defined in (4.1)–(4.2). (Note that for J = 2, the coefficient of GNs
2 is positive

when t < 0 for all ∆v,∆w ≥ 0, consistent with causality.) A theory with fields of spin

J ≤ N with finite N > 2 violates (4.46), see figure 6. This growth with s is the AdS3

manifestation of the CFT violation of the chaos bound in (4.3).

Higher spin gravitational actions from CFT. An open question in the higher spin

community has been whether one can consistently couple matter to SL(N) higher spin

gravity. The only example we know is SL(N) Vasiliev theory — that is, Vasiliev theory

at λ = ±N with the gauge fields of spin s > N truncated — which contains a scalar

field. This theory is holographically dual to the “semiclassical limit” of the WN minimal

models, as recently reviewed in [52]; this is a non-unitary limit. Our result shows that

it is impossible to construct other, non-Vasiliev theories of SL(N) gauge fields coupled to

matter that are actually consistent with CFT unitarity.

Pure higher spin gravity. Pure AdS3 higher spin gravity, with no matter, is not ruled

out by our arguments. The discussion of section 3.1 could be applied essentially verbatim
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to this case. While pure higher spin gravity, like pure Einstein gravity, is a conceptually

interesting theory to consider, it has no dynamics. Based partly on interpretational diffi-

culties in pure gravity, we suspect that weakly coupled pure higher spin gravities, and their

would-be CFT duals, do not exist.22

An obvious question is what happens when there is an infinite tower of massless higher

spin fields. This will be the subject of the next section.

5 Regge behavior in W∞[λ] CFTs and 3D Vasiliev theory

We turn now to the most interesting case of a higher spin theory: one with an infinite tower

of currents. In particular, we consider a 2d CFT with a current at each spin s = 2, 3, . . . ,∞,

that altogether furnish a classical W∞[λ] symmetry. This is the asymptotic symmetry

algebra of hs[λ] Chern-Simons theory in AdS3, which also forms the gauge sector of 3D

Vasiliev theory [39, 40].

With the same justification as in earlier sections, we assume that the W∞[λ] vacuum

block at O(1/c) in the Regge limit is sufficient to read off λL. In fact, we will be able to

derive the vacuum block for all z, not only in the Regge limit. Due to the infinite tower of

spins, we need to perform a resummation. The result will therefore be highly sensitive to

the interrelations among the coefficients of the different terms in the sum, which are fixed

by the higher spin charges of V and W . These are constrained to furnish a representation

of W∞[λ]. Happily, we will find that the sum over spins “Regge-izes” to give a result

consistent with the chaos bound: λL = 0.

5.1 Resumming higher spins in W∞[λ]

With normalization (4.1), the block reads

Fvac,∞(z|λ) = 1 +
1

c
F (1)

vac,∞(z|λ) +O

(
1

c2

)
(5.1)

where

F (1)
vac,∞(z|λ) ≡

∞∑
s=2

q
(s)
v q

(s)
w

Ns
zs2F1(s, s, 2s, z) (5.2)

To evaluate this, we need to fix q
(s)
v , q

(s)
w . V and W are primary operators, which means

that they furnish a highest-weight representation of W∞[λ]. Highest-weight representations

of W∞[λ] can be specified by Young tableaux; these may be thought of as SU(N) Young

tableaux, analytically continued to non-integer N . The simplest choice is to take V = W

in the so-called “minimal” representation, or fundamental representation, which we denote

V = W = f . This is an especially pertinent choice: the single-particle states of the scalar

field in the Vasiliev theory carry these quantum numbers.23 For the representation f , the

22For a somewhat different perspective, see [98], which claims to compute the exact SL(N,C) higher spin

gravitational path integral over manifolds with solid torus topology. We only note that the result is strongly

constrained by several assumptions about the allowed saddle points in the path integration; also, the result

is only determined up to an additive constant which is critical for distinguishing among possible dual CFTs.
23There are also conjugate representations with charges obtained by taking λ→ −λ. In Vasiliev language,

this is the scalar in alternate quantization.
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higher spin charges for arbitrary s were derived in section 5 of [99]. The ratio q
(s)
v q

(s)
w /Ns,

which is invariant under rescaling Js, is

q
(s)
v (f)q

(s)
w (f)

Ns
=

(1− λ2)Γ(1− λ)

Γ(1 + λ)

Γ2(s)Γ(s+ λ)

Γ(2s− 1)Γ(s− λ)
(5.3)

Note that in a normalization in which N2 = 1/2, as is typical for the Virasoro algebra,

the conformal dimension is h(f) = q(2)(f) = (1 + λ)/2. So it only makes sense to consider

λ > −1 in this calculation, otherwise V and W have negative norm.24

We now plug (5.3) into (5.2) and perform the sum. We do this by using the integral

representation of the hypergeometric function,

2F1(s, s, 2s, z) =
Γ(2s)

Γ2(s)

∫ 1

0
dt(t(1− t))s−1(1− zt)−s , (5.4)

then exchanging the order of the sum and integral:

F (1)
vac,∞(z|λ) =

(1− λ2)Γ(1− λ)

Γ(1 + λ)

∫ 1

0
dt(t(1− t))−1

[ ∞∑
s=2

(2s− 1)Γ(s+ λ)

Γ(s− λ)

(
zt(1− t)

1− zt

)s]
(5.5)

For various rational values of λ, the sum can be done. Upon integrating, we infer the

following elegant result for general λ:

F (1)
vac,∞(z|λ) = (1− λ2)

(
z 2F1(1, 1, 1− λ, z) + log(1− z)

)
(5.6)

This formula admits a nifty proof. Labeling our two representations of F (1)
vac,∞(z|λ) as

A =
∞∑
s=2

(
(1− λ2)Γ(1− λ)

Γ(1 + λ)

Γ2(s)Γ(s+ λ)

Γ(2s− 1)Γ(s− λ)

)
zs2F1(s, s, 2s, z) ,

B = (1− λ2)
(
z 2F1(1, 1, 1− λ, z) + log(1− z)

) (5.7)

where A is (5.2) and B is (5.6), we want to prove that A = B. Writing out the series

expansion of the hypergeometric functions in A, collecting terms of a given power of z, and

performing the sum over s, one finds

A =

∞∑
p=2

Apz
p , where Ap =

3(p− 1)

p(p+ 1)
(1 + λ)2

4F3

(
1, 5

2 , 2− p, 2 + λ
3
2 , 2 + p, 2− λ

∣∣∣− 1

)
(5.8)

On the other hand, the series expansion of B reads

B =

∞∑
p=2

Bpz
p , where Bp =

(1− λ2)

p

(
Γ(p+ 1)Γ(1− λ)

Γ(p− λ)
− 1

)
(5.9)

24Note, though, that setting λ = −N for N ∈ Z, all charges q(s>N) vanish and we recover our previous

result λL = 2π(N − 1)/β for WN . This is to be expected from the fact that W∞[±N ] ∼= WN after modding

out generators of spins s > N .
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To show that Ap = Bp, we use the following welcome identity for a closely related 4F3 (see

e.g. [100], p.561):

4F3

(
1, 3

2 , 1− p, 1 + λ
1
2 , 1 + p, 1− λ

∣∣∣− 1

)
=

Γ(1 + p)Γ(1− λ)

Γ(p− λ)
(5.10)

Note that all of its parameters besides the 1 are shifted by 1 relative to the 4F3 of interest

in (5.8). In fact, the two 4F3’s share a simple relation, which is clear by series expansion:

4F3

(
1, 3

2 , 1− p, 1 + λ
1
2 , 1 + p, 1− λ

∣∣∣− 1

)
= 1−3

(1− p)(1 + λ)

(1 + p)(1− λ)
4F3

(
1, 5

2 , 2− p, 2 + λ
3
2 , 2 + p, 2− λ

∣∣∣− 1

)
(5.11)

Ap = Bp follows.

With F (1)
vac,∞(z|λ) in hand, we can now take its Regge limit with ease. For λ /∈ Z, the

monodromies under (1− z)→ e−2πi(1− z) are

z 2F1(1, 1, 1− λ, z) → z 2F1(1, 1, 1− λ, z)− 2πiλe−πiλ
(

z

1− z

)1+λ

log(1− z) → log(1− z)− 2πi

(5.12)

Taking the Regge limit z → 0, and recalling that we restrict to λ > −1, the leading term

is the constant coming from the log:

F (1)
vac,∞(z|λ) ∼ −2πi(1− λ2) + . . . (5.13)

That is, the Regge limit of the W∞[λ] vacuum block for charges (5.3) reads

FRegge
vac,∞(z|λ) = 1− 2πi(1− λ2)

c
+ . . . (5.14)

The sum over spins gives a softer behavior than any term in the sum; indeed, the result

does not grow at all!

Thus, we conclude that the OTO correlator 〈V †W †VW 〉β is characterized by a van-

ishing Lyapunov exponent:

λL = 0 . (5.15)

5.1.1 Redux: conformal Regge theory

It was somewhat remarkable that the infinite sum over higher spin exchanges defining

F (1)
vac,∞(z|λ) could be performed, yielding the simple expression (5.6) whose Regge limit

was trivial to extract. We now perform a different computation: we instead take the Regge

limit of each global conformal block appearing in the sum (5.2), before performing the sum,

then keep the leading term near z = 0. This is essentially a realization of conformal Regge

theory [83].

We start from (5.2) with charges (5.3). The monodromy of 2F1(s, s, 2s, z) around z = 1

is given in (4.23). We have s ≥ 2, so the second term dominates as z → 0. Keeping only

the leading order term at each spin and plugging into (5.2), the sum we want to perform is

F (1),Regge
vac,∞ (z|λ)

?
= 2πi

(1− λ2)Γ(1− λ)

Γ(1 + λ)

[ ∞∑
s=2

Γ(s+ λ)

Γ(s− λ)

Γ(2s)

Γ2(s)
z1−s

]
z→0

(5.16)
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Each term is more divergent than the next. Performing the sum, the right-hand side

of (5.16) becomes

− 2πi(1− λ2)

(
1− 2F1

(
3

2
, 1 + λ, 1− λ, 4

z

))
(5.17)

At small z,

1− 2F1

(
3

2
, 1 + λ, 1− λ, 4

z

)
≈ 1− z3/2 iΓ(1− λ)Γ

(
λ− 1

2

)
8Γ
(
−λ− 1

2

)
Γ(1 + λ)

+ z1+λ (−1)−λ2−2λ−1Γ(1− λ)Γ
(

1
2 − λ

)
√
πΓ(−2λ)

+ . . .

(5.18)

Recalling that λ > −1, the leading term precisely agrees with (5.14).

In conformal Regge theory, knowledge of the spectrum of exchanges and their couplings

to the external operators is sufficient to compute the Regge limit of the correlation function,

in the form of an effective “Regge pole” of spin j living in the complex spin plane. We have

traded an infinite sum over higher spin current exchanges for a single effective exchange

of j = 1. Presumably the same result could have been reached by directly employing the

techniques developed in [83], although we did not use them here.

The analogous computation in CFTs with string theory duals — a sum over higher

spin states dual to Regge trajectories of the closed string — is a hallmark of their UV

finiteness. It is tantalizing to see a similar structure operating here.

5.1.2 Comments

Holographic interpretation. Unlike the case of SL(N)-type higher spin gravities, a

weakly coupled hs[λ] higher spin theory is causal. It obeys the chaos bound, with λL = 0

for all λ. Despite the fact that a dual CFT need not be free, these bulk theories behave

similarly to Vasiliev theories in d > 2: their dynamics is non-chaotic, and thus, in a specific

sense, integrable.

The 3D Vasiliev theory is the only known theory of hs[λ] higher spins that couples to

matter. Our results suggest that the higher spin black holes of [101], with an infinite tower

of higher spin charges, cannot be formed in Vasiliev theory by throwing higher spin quanta

into a BTZ black hole. Perhaps they cannot form at all.

In our calculation, an infinite sum over higher spin exchanges yields a result with a

causal Regge limit. The Vasiliev theory has far fewer fields than string theory — indeed, it

has no massive higher spin states at all — but nevertheless exhibits a stringy structure, as

discussed in the introduction. It would be fascinating to try to find a specific string theory

in which the non-supersymmetric Vasiliev theory embeds.

Other representations of W∞[λ]. λL is supposed to be independent of the choice

of V,W . However, since our calculation is sensitive to the precise choice of charges, we

repeat the derivation for a different choice. In appendix D, we take V and W to be

distinct operators, with V = f in the minimal representation as before, and W now in
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the antisymmetric two-box representation, asym2. With these charges, the result for

F (1)
vac,∞(z|λ) on the first sheet is inferred to be

F (1)
vac,∞(z|λ) =

∞∑
s=2

q
(s)
v (f)q

(s)
w (asym2)

Ns
zs2F1(s, s, 2s, z)

= 2(1− λ2) (z 3F2(3, 1, 1; 2, 1− λ; z) + log(1− z))

(5.19)

Taking its Regge limit, the constant term from the log again dominates, giving λL = 0.

λ = 1 and free bosons. The case λ = 1 is special:

F (1)
vac,∞(z|1) =

z2

(1− z)2
(5.20)

It has trivial monodromy, going like z2, not z0, in the Regge limit. This is related to the

fact that at λ = 1, the algebra linearizes. The linear algebra, often known as WPRS
∞ [102],

may be realized by a theory of c free bosons. The operator with charges (5.3) is the

marginal bilinear ∂φ∂̄φ. In this way, the λ = 1 case is reminiscent of the free O(N) vector

models in d > 2, where V and W are the d = 2 analogs of the bilinear O(N) singlet operator

J0 = φiφi. Indeed, the four-point function of J0 in the d-dimensional free O(N) model [103],

〈J0(x1)J0(x2)J0(x3)J0(x4)〉
〈J0(x1)J0(x2)〉〈J0(x3)J0(x4)〉

= 1 + ud−2 +
(u
v

)d−2

+
4

N

(
ud/2−1 +

(u
v

)d/2−1
+ ud/2−1

(u
v

)d/2−1
) (5.21)

has a simple monodromy, and the connected part leads to a negative Lyapunov exponent,

λL = −2bd−1
2 c.

Note also that if one performed the Regge summation in (5.16) at fixed λ = 1, one

would find a leading term of O(z3/2), as opposed to the correct scaling O(z2). This is

secretly because the constant term of (5.14) vanishes at λ = 1, and in the Regge analysis,

the subleading terms are not to be trusted. This example highlights the fact that the Regge

technique is not always applicable: in particular, the same mismatch happens for the free

O(N) bosons in all d [104]. This may be true of free theories in general.

An upper bound on λ? Note that the sign of (5.14) depends on whether λ > 1.

Because there is no z-dependence, and because it is imaginary, this term is not constrained

by the chaos bound to be sign-definite. Nevertheless, in section 5.3 we do derive a bound

on λ, without using chaos. Namely, we prove that unitary, large c CFTs with W∞[λ]

symmetry can only exist for λ ≤ 2.

WN minimal models. One family of known, unitary CFTs with large c and W∞[λ] sym-

metry is the ‘t Hooft limit, introduced by Gaberdiel and Gopakumar, of the WN minimal

models [105, 106] . The limit CFTs have W∞[λ] symmetry with 0 ≤ λ ≤ 1. As this is a large

N limit of a soluble CFT, it is unsurprising that it would have λL = 0. What we have shown

is that this is a feature of the W∞[λ] algebra, independent of any particular CFT realization.
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5.2 λL = 0 at finite c

One might worry that in the presence of an infinite tower of higher spin currents, using the

vacuum block alone to diagnose chaos misses something. We now provide evidence to the

contrary, in the specific context of the ‘t Hooft limit of the WN minimal models. These

may be defined via the coset construction

SU(N)k ⊕ SU(N)1

SU(N)k+1
(5.22)

where

c = (N − 1)

(
1− N(N + 1)

(N + k)(N + k + 1)

)
(5.23)

Correlation functions in the 3D Vasiliev theory may be computed using the WN minimal

models in the ‘t Hooft limit,

N, k →∞ , λ ≡ N

N + k + 1
fixed (5.24)

where λ is identified with the λ of the bulk. The bulk scalar field, which has m2 = −1+λ2,

is taken in standard quantization, and is dual to the minimal model primary (f, 0).25 Note

that 0 ≤ λ ≤ 1. Euclidean correlators in the WN minimal models are known for all values

of N and k (e.g. [108–110]). We can analytically continue these to compute the OTO

correlators of interest, which contain all exchanges, vacuum and otherwise.

The calculation to follow supports many of the statements in this paper: namely, that

we can use the 1/c vacuum block alone to diagnose λL; and that higher orders in 1/c do

not compete with λL so derived. As in section 5.1, we take V and W both in the minimal

representation. This identifies them with the minimal model primaries

V = (f, 0) , W = (f, 0) (5.25)

The (f, 0) operator, a scalar, has conformal dimension

∆ =
(N − 1)(2N + k + 1)

N(N + k)
(5.26)

which becomes ∆ ≈ 1 + λ in the limit. In [108], the four-point function 〈V V †WW †〉 was

computed to be

〈V (∞)V †(1)W (z, z)W †(0)〉 = |z(1− z)|−2∆
(
h1(z)h1(z) +N1h2(z)h2(z)

)
(5.27)

where we define

h1(z) ≡ (1− z)
k+2N
k+N 2F1

(
k +N + 1

k +N
,− 1

k +N
,− N

k +N
, z

)
h2(z) ≡ z

k+2N
k+N 2F1

(
k +N + 1

k +N
,− 1

k +N
,
2k + 3N

k +N
, z

) (5.28)

25That λ is defined this way, and not as λ = N/(N+k), is required by the choice of standard quantization.

This ensures the consistency of the bulk 1-loop free energy with the O(N0) CFT central charge [107].
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and

N1 ≡ −
Γ
(
k+2N−1
k+N

)
Γ
(
−N
k+N

)2
Γ
(

2k+3N+1
k+N

)
Γ
(
−k−2N−1
k+N

)
Γ
(

1−N
k+N

)
Γ
(

2k+3N
k+N

)2 (5.29)

We want to take the Regge limit of (5.27) normalized by the two-point functions, i.e.

of the reduced amplitude26

A(z, z) = 〈V (∞)V †(1)W (z, z)W †(0)〉 |z(1− z)|2∆

|z|2∆ + |1− z|2∆

=
1

|z|2∆ + |1− z|2∆
(h1(z)h1(z) +N1h2(z)h2(z))

(5.30)

To begin, consider the h2 terms. In the Regge limit, this will vanish: up to monodromy

coefficients,

1

|z|2∆ + |1− z|2∆
h2(z)h2(z) ∼ z

k+2N
k+N z

k+2N
k+N

(
z1− 2k+3N

k+N + . . .
)

= z
k+2N
k+N + . . .

(5.31)

The exponent is positive for all physical N, k. In the ‘t Hooft limit, k+2N
k+N → 1 +λ+O( 1

N ).

Turning now to the h1 terms

1

|z|2∆ + |1− z|2∆
h1(z)h1(z) ∼ e−2πi( k+2N

k+N
−∆)(1 +O(z, z)) (5.32)

Using k+2N
k+N −∆ = 1/(N − λ), in the large N limit, this becomes

ARegge(z, η) = 1− 2πi

N
+ . . . (5.33)

where . . . includes higher order terms in 1/N and in z, z. Noting that c = N(1−λ2)+O(N0)

in the ‘t Hooft limit, the 1/c expansion of the chaotic correlator is therefore

ARegge(z, η) = 1− 2πi(1− λ2)

c
+ . . . (5.34)

which precisely matches our result from F (1)
vac,∞ alone. Moreover, we learn something im-

portant: the leading term (5.32) has an expansion to all orders in 1/c. This strongly

supports the notion that λL = 0 can indeed be read off by taking large c first.

Furthermore, if we expand in s-channel conformal blocks, we can trace (5.34) back to

the W∞[λ] vacuum block. Consider the reduced amplitude

A(z, z) = |z|2∆〈V (∞)V †(1)W (z, z)W †(0)〉
= |1− z|−2∆(h1(z)h1(z) +N1h2(z)h2(z))

(5.35)

26We have accounted for both possible Wick contractions, since V = W . With this convention, A(z, z)→
1 in the ‘t Hooft limit.
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In the V V –WW channel, this decomposes into W∞[λ] conformal blocks Fp,∞(z|λ), as

in (4.7), in the ‘t Hooft limit. Focusing on the holomorphic pieces to save space, we find

(1− z)−∆h1(z) ≈ 1 +
1− λ2

c

(
log(1− z)− λ2∂(3)

2F1(0, 1,−λ, z)

+ λ(∂(2) − ∂(1))2F1(0, 1,−λ, z)
)

+O(1/c2)

(1− z)−∆h2(z) ≈ z1+λ (1 +O(1/c))

(5.36)

where ∂(i) acts on the i’th parameter. The last line of (5.36) encodes the contribution

of double-trace operators [V V ]n,s and [WW ]n,s, which have holomorphic weights h =

1 + λ + n + s. Together with its anti-holomorphic part, this is subleading in the Regge

limit, cf. (5.31), so we focus on the first lines. The derivatives can be simplified easily,

using the series representation of the hypergeometric function. One finds

∂(3)
2F1(0, 1,−λ, z) = 0

∂(2)
2F1(0, 1,−λ, z) = 0

∂(1)
2F1(0, 1,−λ, z) = − z

λ
2F1(1, 1, 1− λ, z)

(5.37)

Plugging in above, we get

(1− z)−∆h1(z) ≈ 1 +
1− λ2

c

(
z 2F1(1, 1, 1− λ, z) + log(1− z)

)
+ . . . (5.38)

The 1/c piece is precisely F (1)
vac,∞(z|λ). This example provides evidence that the 1/c vacuum

block is sufficient to determine λL in general holographic CFTs.

5.3 No unitary W∞[λ] CFTs for λ > 2

This section has nothing to do with chaos. However, we include it because it provides a

complementary constraint on the space of large c higher spin theories.

We now prove the following claim:

Unitary, large c 2d CFTs with a W∞[λ] chiral algebra with λ > 2 do not exist.

The proof is simple. We observe that while the classical (i.e. large c) W∞[λ] algebra is

defined for any λ, it is actually complex for λ > 2.27 Mathematically, this is perfectly

acceptable. However, if a chiral algebra describes the current sector of a CFT, its structure

constants are identified with three-point coefficients of currents. In a diagonal basis of two-

point functions with real and positive norms, unitarity forces these coefficients to be real.

CFT three-point functions are holographically computed as cubic scattering amplitudes

in AdS. So the dual claim is that

3D Vasiliev and pure hs[λ] higher spin gravities with λ > 2 have imaginary gauge field

scattering amplitudes.
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Figure 7. In hs[λ] higher spin gravity, which also forms the pure gauge sector of 3D Vasiliev theory,

an infinite set of three-point scattering amplitudes is imaginary for any value λ > 2. This follows

from the existence of a classical W∞[λ > 2] asymptotic symmetry algebra, which is complex.

This statement is independent of the matter sector, and extends to any bulk theory, known

or unknown, containing a hs[λ] subsector of higher spin gauge fields.

Onto the proof. In [67], the structure of the quantum (i.e. finite c) W∞[λ] algebra was

studied, and several structure constants Ckij — that is, the three-point coefficients of higher

spin currents of spins i, j and k — were determined. It was convincingly argued that all Ckij
are determined in terms of two free parameters, which can be taken to be c and C4

33. In the

diagonal basis (4.1), normalizing the currents as Ns = 1/s,28 C4
33 is related to λ and c as [67]

γ2 ≡ (C4
33)2 =

64(c+ 2)(λ− 3)(c(λ+ 3) + 2(4λ+ 3)(λ− 1))

(5c+ 22)(λ− 2)(c(λ+ 2) + (3λ+ 2)(λ− 1))
(5.39)

For fixed c, there is a range of values for which γ2 < 0. Taking c→∞ yields the value of

γ in the classical algebra, which we denote W cl
∞[λ]:

lim
c→∞

γ2 =
64

5

λ2 − 9

λ2 − 4
(5.40)

Clearly,

γ2 < 0 when 2 < λ < 3 (5.41)

As explained above, this rules out W cl
∞[2 < λ < 3] as the chiral algebra of a unitary CFT.

We can now starting climbing our way up the spin ladder. [67] also derive the structure

constant C5
34. At large c,

lim
c→∞

(C5
34)2 =

375

112
lim
c→∞

γ2 − 25 =
125

7

λ2 − 16

λ2 − 4
(5.42)

We now have

(C5
34)2 < 0 when 2 < λ < 4 (5.43)

This rules out W cl
∞[2 < λ < 4] as the chiral algebra of a unitary CFT.

27For λ = ±N , we can truncate to W cl
∞[±N ]/χN ∼= W cl

N , where χN is the ideal consisting of generators

of spins s > N . The latter algebra obviously exists, and is real. Our statement applies to the W cl
∞[±N ]

algebra before truncating, when it is still an infinite-dimensional algebra.
28Note that the choice Ns = 1/s is the same normalization as in [67], but their use of the symbol Ns is

different.
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The pattern at higher spins is clear. In appendix E we exclude the entire range λ > 2,

as OPE coefficients involving successively higher spins become imaginary for successively

higher λ. In particular, we show, using only general properties of the algebra, that

(Cs+1
3s )2 =

λ2 − s2

λ2 − 4
× (Positive) (5.44)

Taking s→∞ proves our claim.

When λ → ∞, one should be more careful. For example, if one takes the limit λ →
∞, c→∞ with c/λ3 fixed, the structure constants are all real (see e.g. section 4.2 of [111]).

Indeed, there is a well-known unitary theory which realizes these structure constants as

three-point couplings: namely, the d = 6, (2,0) superconformal field theories with Lie

algebra su(N), where N = λ → ∞. The aforementioned limit of W cl
∞[λ] is the chiral

algebra of the protected sector of the (2,0) theory at large N , and thus determines its

OPE. It seems likely that CFTs with vector-like growth c ∝ λ→∞ cannot exist.

6 AdS/CFT sans chaos

So far, we have studied theories with varying amounts of chaos. Vasiliev theory aside, the

landscape of AdS/CFT contains other interesting and more familiar examples of theories

with λL far below its upper bound. We present some cases here.

6.1 Chiral CFTs

Chiral CFTs are d = 2 CFTs with cR = 0 and cL = 24k where k ∈ Z. These are perhaps the

most symmetric of all CFTs: every operator is either a current or a descendant of a current.

In other words, the CFT consists solely of the vacuum module of an exotic W-algebra with

c = 24k. Due to the high degree of symmetry, such theories should not be chaotic, for any

value of k. Indeed, given some holomorphic primary current Js(z) with conformal weight

h = s ∈ Z, its four-point function is constrained to take the form [112, 113]

〈Js(∞)Js(1)Js(z)Js(0)〉 = z−2s

b2s/3c∑
n=0

cn
z2n(1− z + z2)2s−3n

(1− z)2s−2n
(6.1)

where the constants cn are determined by the OPE. This has trivial monodromy around z =

1, hence λL = 0. The same conclusion obviously holds for holomorphically factorized CFTs.

It has been suggested that the CFT dual to pure AdS3 quantum gravity holomorphi-

cally factorizes [114]. This would imply a hidden infinite-dimensional symmetry among

the tower of BTZ black hole states. The result λL = 0 for factorized CFTs would seem to

be in tension with a value λL = 2π/β associated to chaotic evolution in Einstein gravity.

Likewise for the behavior of two-interval mutual information after a global quench [115]:

whereas chiral and factorized CFTs exhibit a “dip” in their entanglement entropy after

the quench, classical AdS3 gravity shows no such effect, as the entanglement “scrambles”

maximally.29 As explained in section 3.1, this tension is illusory, for the same reason that

29The presence of strong chaos and entanglement scrambling have recently been argued to be different

manifestations of the same underlying physics [12].
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factorization of the dual CFT is not patently false: pure quantum gravity is topological.

Analogous comments apply to chiral gravity.

6.2 The D1-D5 CFT

Consider a symmetric orbifold CFT, SymN (X) CFT, for some seed CFT X. All such CFTs

have a large chiral algebra that becomes infinitely generated at large N . We again expect

these theories to be non-chaotic for generic choices of V and W . We note that all SymN

CFTs are sparse in the precise sense of [62].

Technology for correlators in SymN CFTs has been developed in e.g. [116–118]. We

now perform an OTO correlator calculation in a CFT especially relevant for holography,

namely, the D1-D5 CFT at the symmetric orbifold point, SymN (T 4). This is a N = (4, 4)

SCFT with a global SO(4)I ∼= SU(2)I1 × SU(2)I2 symmetry, and central charge c = 6N .

In terms of the dual string description, N = N1N5, where N1 and N5 count D1- and D5-

branes, respectively. Each of the N copies is a c = 6 theory of four real bosons Xi and

their fermionic superpartners, where i = 1 . . . 4.

In [118], a four-point function of two twist operators and two non-twist operators

(among others) was computed in this theory. In particular, consider the following two

Virasoro primary operators:

Od(z, z) = εABG
−A
− 1

2

G̃−̇B− 1
2

σ++̇
2

Φdil(z, z) =

N∑
κ=1

∂X i
(κ)∂̄X

i
(κ)

(6.2)

Od is an exactly marginal scalar primary, which is a superconformal descendant of a certain

twist operator. A,B = 1, 2 are indices of the SU(2)I1 . Φdil is the BPS operator dual to the

dilaton in the bulk; the index κ denotes the copy of (T 4)N . See [118] for further details. [118]

viewed the four-point function 〈OdOdΦdilΦdil〉 as a second-order perturbation of the two-

point function 〈ΦdilΦdil〉 under the exactly marginal deformation away from the orbifold

point. Thinking of V = Od and W = Φdil, we are simply interested in this correlator

as a quantity in SymN (T 4) itself. Including combinatoric factors of N , the SN -invariant

correlator, normalized by the disconnected piece, is

〈Od(0)Od(z, z)Φdil(1)Φdil(∞)〉
〈Od(0)Od(z, z)〉〈Φdil(1)Φdil(∞)〉

=
N − 2

N
+

1

N

[
1 + 2−2

∣∣∣∣ 2− z√
1− z

∣∣∣∣2
+ 2−4

(
z2(2− z)

(1− z)3/2

)(√
1− z(2− z)

)
+ 2−4

(
z2(2− z)

(1− z)3/2

)(√
1− z(2− z)

)
+ 2−4

∣∣∣∣ z2

(1− z)3/2

∣∣∣∣2 + 2−4

∣∣∣∣ z2

√
1− z

∣∣∣∣2
− 2−5

(
z2

(1− z)3/2

)(
z2

√
1− z

)
− 2−5

(
z2

(1− z)3/2

)(
z2

√
1− z

)]
(6.3)

We now take its Regge limit. Except for the constant terms, every term picks up a

minus sign as we cross the cut. Expanding near z, z = 0 on the second sheet, there is no
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divergence, and hence no chaos. This is consistent on general grounds with the existence of

a higher spin symmetry enhancement of the tensionless type IIB string in AdS3×S3×T 4.

6.3 Slightly broken higher spin theories and 1/c corrections

An obvious question is whether λL receives 1/c corrections, and whether this idea is even

sensible. (A first pass in d = 2 CFT was recently taken in [17].) One affirmative argument

comes from considering slightly broken higher spin CFTs. We use this term in the original

sense of [77]: these are CFTs with some large parameter Ñ ∼ c and a coupling λ̃, with

higher spin symmetry breaking of the schematic form

∂ · J =
λ̃√
Ñ
JJ (6.4)

This maps to a quantum breaking of bulk higher spin gauge symmetry. The canonical

family of such theories is the set of d = 3 bosonic and fermionic O(N) models at large N

and their Chern-Simons deformations [29, 30], where Ñ ∝ N and λ̃ is fixed by the ‘t Hooft

coupling λ ≡ N/k.

How does chaos develop in these CFTs? We assert that, for finite temperature states

on the cylinder S1 × Rd−1, such theories have

λL(λ̃) ≈ f(λ̃)

Ñ
+O

(
1

Ñ2

)
(6.5)

This motivates an extension of the usual definition of λL to higher orders in 1/N . In

contrast, CFTs with “classical” higher spin symmetry breaking, like planar N = 4 SYM,

have λL ≈ f(λ) +O(1/N). One way to understand (6.5) for the O(N) models is from the

bulk 4D Vasiliev description. The scalar and higher spin gauge fields pick up mass shifts

only through loops. But a shock wave calculation is classical. (6.5) may be generalized to

other spatial manifolds, such as Hd−1, where λL 6= 0 in the free theory at λ̃ = 0:

λL(λ̃)− λL(0) ≈ f(λ̃)

Ñ
+O

(
1

Ñ2

)
(6.6)

This allows us to perform an explicit check: we consider the d = 3 critical O(N) model

in Rindler space, reading off λL for the vacuum four-point function of the scalar operator

J0 using the techniques of this paper. This correlator has been computed in both the free

(cf. (5.21)) and critical models [119]; in the latter,

〈J0(x1)J0(x2)J0(x3)J0(x4)〉
〈J0(x1)J0(x2)〉〈J0(x3)J0(x4)〉

= 1 + u2 +
(u
v

)2

+
1

N

(
u2
(
u−3/2(1 + u− v) + v−3/2(1 + v − u)− (uv)−3/2(1− u− v)

)) (6.7)

Under the Lorentzian continuation (2.6), the half-integer powers of v pick up a minus sign;

in the Regge limit, both (5.21) and (6.7) give 〈J0J0J0J0〉 ∼ z2, i.e. λL = −2, confirm-

ing (6.6) for this particular case.
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A related statement pertains to any two holographic large c CFTs related by a double-

trace flow, as obtained by swapping standard (∆+) for alternate (∆−) boundary conditions

of a bulk field in AdS. If we denote these CFTs’ respective Lyapunov exponents as λ
∆±
L ,

then a natural claim is that

λ
∆+

L − λ∆−
L ≈ O

(
1

c

)
(6.8)

where c ∼ 1/GN . It would be interesting to verify this explicitly, and (if true) to determine

the sign of the correction.

7 Discussion

We conclude with some additional directions for future work, and final reflections on the

potential power of chaos in classifying conformal field theories.

Strings from chaos, and the CFT landscape. We have explored the way in which λL
depends on the OPE data, and seen that demanding λL ≤ 2π/β constrains the spectrum

of higher spin currents. What about other higher spin operators? String theory and

AdS/CFT suggest that, at least for a wide class of CFTs, primary operators may be

arranged in Regge trajectories. Given the sensitivity of λL to the spin spectrum, it seems

possible that demanding Reggeization of OTO correlators would lead to a CFT derivation

of this picture.30 Quite generally, it would be extremely useful to discover the path of least

action between the set of spectral data and λL. This would create a manifest link between

the Euclidean bootstrap built on crossing symmetry, and the Lorentzian bootstrap built

on causality and chaos.31

Recently, it has been argued that a kind of “average” measure of chaotic behavior of

general 2d CFTs can be directly related to the second Rényi entropy, S2, for two disjoint

intervals separated in space and time [12]. Given that S2 for two intervals is known to be

proportional to the torus partition function, this implies that the spectrum alone, and not

the OPE coefficients, can determine λL and perhaps other broad features of chaos.32 It

would be fruitful to better understand the relation between S2 and chaos in purely CFT

terms. On the other hand, while an average notion of chaos would be useful, so would

understanding the distribution of leading Lyapunov exponents over the space of possible

OTO correlators in a given CFT. In generic CFTs, unlike in holographic CFTs, the value

of λL does depend on the choice of V and W .

If λL is hiding in S2, where else is it hiding? How does λL relate more generally to

entanglement measures? In 2d CFT, do correlators on surfaces of higher topology contain

complementary information about chaos?

We also would like to understand the evolution of chaotic data as we move through

the space of CFTs via RG flows or marginal deformations. Along a conformal manifold,

30We thank Tom Hartman, Dan Roberts and Douglas Stanford for conversations on this topic.
31Some recent papers in this direction in the context of rational 2d CFT are [120, 121].
32In contrast, entanglement entropy in the vacuum is not directly related to λL: while the Ryu-Takayanagi

result for intervals in vacuum follows from sparseness and a mild assumption about large c growth of OPE

coefficients [61], λL = 2π/β does not.
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λL will be a smooth function of the moduli. In the D1-D5 CFT with T 4 or K3 target,

for instance, there is a marginal deformation which triggers passage from the orbifold

point to the supergravity point in the moduli space. Along these lines of fixed points, λL
is a function of the marginal coupling λ, interpolating between SymN and supergravity

regimes: 0 ≤ λL(λ) ≤ 2π/β. Obtaining λL(λ) in closed form is a distant goal, but a

perturbative calculation near λ = 0 seems within reach. (See [122] for a recent perturbative

spectral calculation.) It is inspirational to consider what role OTO correlators could play

in revealing the emergence of a classical spacetime description from CFT.

Higher spin AdS3/CFT2. While SL(N)-type higher spin gravities may capture some

crude aspect of how stringy geometry works, their acausality and dual CFT non-unitarity

render them unfit for studying dynamical processes, the black hole information paradox,

singularity resolution, and so on. Still, it is perhaps worth quantifying in some detail what

goes wrong when trying to directly construct an effective gravitational action coupling

SL(N) gauge fields to matter. For comments based on experience with the Vasiliev formal-

ism, see [123]. Seeking explicit violations of causality via two-sided Wilson lines in higher

spin shock wave backgrounds would also be worthwhile.

We have also shown that 3D Vasiliev theory has imaginary scattering for all λ > 2.

There are reasons to suspect that the range 1 < λ < 2 is inconsistent too, based on repre-

sentation theory [124] and the absence of known, unitary holographic CFTs in this range of

λ.33 Such an inconsistency must come from the scalar coupling to the higher spins. For this

reason and others, it would be useful to compute the four-point function of the 3D Vasiliev

scalar. Expanding it in conformal blocks would presumably reveal any non-unitarity.

A natural question raised by our results is how large the space of higher spin 2d CFTs

actually is. For example, at large c, are there CFTs with W∞[λ] symmetry besides the WN

minimal models in the ‘t Hooft limit?

Another natural question is whether demanding λL ≤ 2π/β uniquely determines the

higher spin algebra of a single infinite tower of currents, with one current at each spin

s ≥ 2, to be W∞[λ]. This is a baby version, phrased in 2d CFT, of the question of whether

string theory is unique.

Slightly broken higher spin chaos. We would like to check whether (6.5) is correct.

If so, then computing the leading nonzero term in λL in slightly broken higher spin CFTs

would seem to require knowing connected correlators at O(1/Ñ2). This is a tall order: even

in the critical O(N) model, this is not known. A concrete calculation would be to adapt

the ladder diagram techniques of [13], where 1/Ñ is the small parameter. In principle,

λL should be extractable directly from the spectrum of anomalous dimensions and OPE

coefficients. In this way, determining λL in these theories would be connected to the slightly

broken higher spin bootstrap of [125].

A prediction for shock wave scattering in AdS. The result (3.16) makes a prediction

for the bulk scattering problem of W and V quanta in the background of the hyperbolic AdS

33We thank Matthias Gaberdiel for discussions on this point.
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black hole at β = 2π, or the planar BTZ black hole at arbitrary β. An integral representa-

tion for 〈VWVW 〉 was derived in [9]. It was only explicitly evaluated for heavy operators.

More precisely, there are two approximations used in the evaluation of the integral in [7, 9]:

one, that ∆w � ∆v, and two, that ∆v � 1. The former permits an interpretation of V

moving in a fixed shock wave background generated by W of sharply peaked momentum;

the latter allows a geodesic approximation to 〈V V 〉 evaluated in the shock wave back-

ground. For ∆v,∆w ∼ O(1), neither of those assumptions holds. It would be worthwhile

to try to evaluate the overlap integral for light fields and match the functional form of the

CFT prediction, and to see whether it also extends to planar black holes in d > 2.
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A Conformal blocks in the Regge limit

Here we present the leading Regge behavior of d-dimensional conformal blocks for symmet-

ric tensor exchange. These can be derived in a number of ways, but most easily by solving

the conformal Casimir equation in the Regge limit [80]. The result is

GRegge
∆,s (z, η) = iz1−sG∆,s(η) (A.1)

where

G∆,s(η) ≡ C(∆, s)η
∆−s

2 2F1

(
d− 2

2
,∆− 1,∆− d− 2

2
, η

)
(A.2)

We have defined

C(∆, s) ≡
Γ(d− 2)Γ

(
s+ d−2

2

)
Γ
(
d−2

2

)
Γ(s+ d− 2)

C0(∆ + s) (A.3)

where

C0(x) ≡ 2π
Γ(x)Γ(x− 1)

Γ4
(
x
2

) (A.4)

Note that C0(x) equals −i times the off-diagonal entry of the monodromy matrix of

2F1

(
x
2 ,

x
2 , x, z

)
around z = 1; see (4.23). Here we are assuming a certain normalization of

the blocks which is made explicit below.

One way to understand why GRegge
∆,s ∼ z1−s is that conformal blocks G∆,s in CFTd are

equivalent to geodesic Witten diagrams in AdSd+1 for spin-s exchange [81]. The Regge limit

of an ordinary Witten diagram for spin-s exchange scales as z1−s. The geodesic Witten

diagram, being essentially a restricted amplitude, has the same high energy behavior.
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For d = 2, 4, the Regge blocks are given by (A.1) with

d = 2 : G∆,s(η) =
1 + δs,0

2
η

∆−s
2 C0(∆ + s)

d = 4 : G∆,s(η) =
1

1 + s

η
∆−s

2

1− η
C0(∆ + s)

(A.5)

These results may be easily checked using the closed-form expressions for the blocks, in

conjunction with the hypergeometric monodromy (4.23):

d = 2 : G∆,s(z, z) =
1

2

(
gh(z)gh(z) + (z ↔ z)

)
d = 4 : G∆,s(z, z) =

1

s+ 1

1

z − z
(
zgh(z)zgh−1(z) + (z ↔ z)

) (A.6)

where gh(z) is the SL(2,R) global block. Similar simplification occurs in all even d. The

fact that G∆,s has a hypergeometric representation in even d gives a natural explanation

for the appearance of the C0(∆ + s) factor; interestingly, this factor appears in all d.

There is one exception to the above formulas: in d = 2 when s = 0, (A.1) is actually

not correct when ∆ = 2h < 1. Looking at the full blocks (A.6) and the monodromy of the

hypergeometric function, one sees that the term in (A.1) is actually subleading. Instead,

when ∆ < 1, the Regge limit is simply

d = 2 : GRegge
∆<1,0(z, η) ≈ (zz)h(1 +O(z1−∆)) ≈ z∆η

∆
2 (A.7)

A peculiarity in 3d CFT. Note that for 2 < d < 4, G∆,0(η) is negative for some

portion of the region 0 ≤ η < 1 when d−2
2 < ∆ < 1, as allowed by unitarity. In particular,

this includes d = 3. On the other hand, in looking at examples of 3d CFTs with ∆ < 1

scalars — the Ising model, critical Gross-Neveu model, and all O(N) models with exactly

one relevant scalar in each of the O(N) singlet and vector representations [126] — such

exchanges do not appear in the OPE of identical operators. It is not clear whether ∆ < 1

scalars can ever appear in an O × O OPE for an arbitrary scalar operator O.34 It would

be nice to understand this better.

B Chaos in N = 4 super-Yang-Mills

In this section, we derive an OTO four-point function in Rindler space in planar N = 4 SYM

at large λ, by analytic continuation of the vacuum four-point function of the 20’. Regge

limits of N = 4 correlators have been studied in some detail before (e.g. [82, 83, 128–130]).

Here we wish only to present a result in the language of chaos. Our calculation explicitly

exhibits the position-dependence ascertained in (3.16) on general grounds.

We take V and W to be the 1/2-BPS scalar operator in the 20’ of SU(4), with ∆20′ = 2.

Its vacuum four-point function was computed using supergravity in [131]. We introduce

34An exception is the line of parity-breaking Chern-Simons-matter fixed points connecting the free O(N)

and critical Gross-Neveu models at large N . 3d bosonization [127] implies that at O(1/N), the scalar

bilinear must have ∆ < 1 for at least some range of λ, so as to smoothly match onto the Gross-Neveu

result. Then a result of [127] implies a nonzero OPE coefficient.
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only the most basic aspects of formalism needed to present the result. We follow the

conventions of [132], see also [133] for a streamlined review. The 20’ transforms in the [0,2,0]

representation of SU(4) ∼= SO(6), and is typically written as a symmetric traceless rank-two

tensor of SO(6). Introducing a null vector ti, where i = 1 . . . 6 and t2 = 0, we define

O20′(x, t) ≡ O20′;ij(x)titj (B.1)

The four-point function is written as

〈O20′(x1, t1)O20′(x2, t2)O20′(x3, t3)O20′(x4, t4)〉 =

(
t1 · t2t3 · t4
x2

12x
2
34

)2

G(z, z;α, ᾱ) (B.2)

where z, z are the usual coordinates in (2.12), α, ᾱ are defined in terms of the SU(4)

invariants

αᾱ ≡ t1 · t3 t2 · t4
t1 · t2 t3 · t4

, (1− α)(1− ᾱ) ≡ t1 · t4 t2 · t3
t1 · t2 t3 · t4

(B.3)

and the t subscript refers to the n’th operator. The function G(z, z;α, ᾱ) is constrained

by superconformal symmetry to take the following form:

G(z, z;α, ᾱ) = (αz − 1)(ᾱz − 1)(αz − 1)(ᾱz − 1)H(z, z)

+
(ᾱz − 1)(αz − 1)(F (z, α) + F (z, ᾱ))− (αz − 1)(ᾱz − 1)(F (z, ᾱ) + F (z, α))

(α− ᾱ)(z − z)
− k

(B.4)

where k is a constant. The second line is fixed solely by the exchange of SUSY-protected

operators, hence is independent of the coupling. The first line depends on a free function

H(z, z), which receives contributions from both protected and unprotected operator

exchanges. The conformal block decomposition of H(z, z) includes exchanges of SU(4)

singlets only, which is why H(z, z) does not depend on α, ᾱ.35

The correlator 〈O20′O20′O20′O20′〉 at large N and large λ was computed from super-

gravity in [131]. The 20’ is the lowest KK mode of a linear combination of gµν and Cµνρσ
with legs along S5 [134, 135]. Focusing on H(z, z), the result is [136]

H(z, z) = − 4

N2
(zz)2D̄2422(z, z) (B.5)

where D̄2422(z, z) is the reduced D-function. It may be given a closed-form expression by

using D-function identities (e.g. [86]) to write

D̄2422(z, z) = ∂u∂v(1 + u∂u + v∂v)D̄1111(z, z) (B.6)

and using the explicit expression for D̄1111(z, z),

D̄1111(z, z) =
1

z − z

(
2Li2(z)− 2Li2(z) + log zz log

1− z
1− z

)
(B.7)

Recall that u = zz and v = (1− z)(1− z) were defined in (2.12)

35For generic four-point functions of, say, the higher SU(4) representations [0, p, 0], H also depends

polynomially on α, ᾱ, with degree fixed by the size of the representations of SU(4) allowed in the

[0, p, 0]× [0, p, 0] OPE.
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We now take the Regge limit of (B.6). Using the monodromies

Li2(z) → Li2(z) + 2πi log z

log(1− z) → log(1− z)− 2πi ,
(B.8)

analytic continuation to the second sheet yields

D̄2422(z, z)→ D̄2422(z, z) + ∂u∂v(1 + u∂u + v∂v)

[
1

z − z
2πi log

(z
z

)]
(B.9)

Taking the Regge limit and expressing the result in terms of x and t (and recalling that

β = 2π),

HRegge(x, t) = − πi

8N2ε∗12ε34

et

sinh7 x

(
e4x + 28e2x − 28e−2x − e−4x − 24x

(
e2x + 3 + e−2x

))
(B.10)

This passes the obvious consistency checks: namely, λL = 2π/β = 1, and

Re(HRegge(x, t)) < 0 for operators in the Euclidean time configuration (2.14). Note that

vB = 1/3, consistent with (1.5).

Expanding at large x, each term can be explained by an accounting of the SU(4)

singlet, spin-2 operators appearing in the O20′ ×O20′ OPE at O(1/N2). The list of such

operators is relatively short: including their twists [137, 138],

Tµν : τ = 2

[O20′O20′ ]n,2 : τ = 4 + 2n− 2(1 + n)(2 + n)(3 + n)

3N2

(B.11)

This matches the general structure of f(η) in section 3.

C More on chaos in WN CFTs

We repeat the W3 calculation of section 4 for W4. We also do a computation at arbitrary

N . In both cases, we find chaos bound-violating behavior consistent with (4.41).

C.1 N = 4

The semiclassical W4 vacuum block was derived in [52] for general charges, following the

derivation in [64] for the uncharged case. Fvac,4(z) is

Fvac,4(z) = ((1− z)5m1m2m3)−hv/5
(
m1

m3

)q(3)
v /2( m2

(m1m3)2/3

)q(4)
v

(C.1)
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where the mi are

m1 = −6

(
(1− z)−n1

n12n13n14
+ cyclic

)
m2 = 12

(
(1− z)−n1−n2

n13n14n23n24
+

(1− z)−n1−n3

n12n14n32n34
+

(1− z)−n1−n4

n12n13n42n43
+

(1− z)−n2−n3

n21n24n31n34

+
(1− z)−n2−n4

n21n23n41n43
+

(1− z)−n3−n4

n31n32n41n42

)

m3 = −6

(
(1− z)n1

n12n13n14
+ cyclic

)
(C.2)

with nij ≡ ni − nj . The ni are roots of the quartic equation

n4 − 5α2

2
n2 + 24q3n+ 36q4 +

9

16
α4 = 0 (C.3)

where we have defined rescaled charges,

q3 ≡
6

c
q(3)
w , q4 ≡

6

c
q(4)
w (C.4)

and α =
√

1− 4ε was defined in (4.15).

For simplicity, we take V to be uncharged, so that q
(3)
v = q

(4)
v = 0. To streamline the

result, we turn on either q3 or q4, but not both at once. Let’s also define

Z(ε) ≡ z − 4πiε (C.5)

For q3 6= 0, we find

ARegge(z, η) = z2hv

(
− 1

Z(ε)2
(
Z(ε)4 − 1728π2q2

3

) (
Z(ε)4 + 5184π2q2

3

))hv/5 (C.6)

For q4 6= 0, we find

ARegge(z, η) = z2hv

(
Z(ε)9 + 345600π2q2

4Z(ε)3 − 55296000π3iq3
4

Z(ε)10 (Z(ε)3 − 240πiq4)2 (Z(ε)3 + 480πiq4)

)hv/5
(C.7)

Both results have been obtained by resummation of perturbation theory through O(q16).

The features that plagued the W3 result are also present here. In equation (C.6), every

power of q3 comes with a 1/cz2, and the correlator is non-analytic in parts of the half-strip.

In (C.6), every power of q4 comes with a 1/cz3, which implies a spin-4 Lyapunov exponent

and associated scrambling time

λ
(4)
L =

6π

β
, t

(4)
∗ =

β

6π
log c (C.8)

For various choices of ε∗12ε34 within the half-strip, the correlator diverges at times t ≈ x+t
(4)
∗ .

For instance, (ε∗12ε34)3 = i leads to a divergence from the Z(ε)3 − 240iπq4 denominator

factor.
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C.2 Arbitrary N

We can also extend these arguments to arbitrary N . Consider an uncharged probe

(q
(s>2)
v = 0) and allow W to have arbitrary higher spin charges q

(s)
w . Expanding Fvac,N (z)

perturbatively in the q
(s)
w using the results of [52], one finds36 the result for general N is

Fvac,N (z) ≈ Fvac(z)

[
1 +

N2 − 4

5

6hv
α6(zα − 1)4

(
6α2

(
z2α + 1

)
zα log2 z

+α
(
z4α−14z3α+14zα−1

)
log z−(zα−1)2(5z2α−22zα+5

))
(q(3)
w )2+O((q(4)

w )2)

]
z→1−z

(C.9)

Comparing to (4.29), the only N -dependence is in a coefficient. We conclude that when W

carries spin-3 charge in a WN CFT, the OTO correlator evolves in time with λ
(3)
L = 4π/β,

independent of N . It follows from the general analysis in [52] that the same notion of

N -independence is true under a perturbation of any spin.

D W∞[λ] vacuum block for V = f, W = asym2

Here we compute F (1)
vac,∞(z|λ) for V and W in the representations indicated. This is a

supplement to section 5.1.

The V charges may be read off from (5.3). The W charges were derived in [52]; with

the normalization37 such that N2 = 1/2, one has

qs(asym2) =
1

Γ (2 + λ)

(s2 − s+ 2(1 + λ))Γ (s)2 Γ (s+ λ)

Γ (2s− 1)
(D.2)

We now want to compute the W∞[λ] vacuum block at O(1/c) for these charges:

F (1)
vac,∞(z|λ) =

∞∑
s=2

q
(s)
v (f)q

(s)
w (asym2)

Ns
zs2F1(s, s, 2s, z) (D.3)

where we think of this as running in the s-channel of 〈V VWW 〉. As in the V = W = f

case, we evaluate this by using (5.4) and swapping the sum and integral. We evaluate this

in closed form for certain rational λ. With inspiration from the V = W = f case, we infer

the following structure:

F (1)
vac,∞(z|λ) = 2(1− λ2) (z 3F2(3, 1, 1; 2, 1− λ; z) + log(1− z)) (D.4)

36This comes from eq. 6.30 of [52]. First, pass to the plane. Then use SEE ≈ − logF0 − F2/F0, where

the subscript denotes the order in q
(3)
w , and hv = c/12 for the twist field in the conventions of [52].

37That is,

Ns =
1

(1− λ2)Γ(1− λ)Γ(1 + λ)

Γ2(s)Γ(s− λ)Γ(s+ λ)

Γ(2s− 1)
(D.1)

.
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Presumably this can be proven using generalized hypergeometric identities. For reference,

we give the results at λ = 0, 1/2, 1:

F (1)
vac,∞(z|0) =

1

(1− z)2
− 1 + 2 log(1− z)

F (1)
vac,∞

(
z
∣∣∣1
2

)
=

3(5− 2z)z3/2 arcsin
√
z

8(1− z)5/2
+

z(4− z)

8(1− z)2
+

3

2
log(1− z)

F (1)
vac,∞(z|1) =

2z2(3− z)

(1− z)3

(D.5)

To take the Regge limit, we need to know the monodromy of 3F2 around z = 1. Moving

around the branch point yields a linear combination of the three linearly-independent

solutions of the hypergeometric equation near z = 0. For parameters {a1, a2, a3; b1, b2},
the solutions are

3F2(a1, a2, a3; b1, b2; z) ,

z1−b1
3F2(a1 + 1− b1, a2 + 1− b1, a3 + 1− b1; 2− b1, b2 + 1− b1; z) ,

z1−b2
3F2(a1 + 1− b2, a2 + 1− b2, a3 + 1− b2; 2− b2, b1 + 1− b2; z)

(D.6)

In our case, the parameters are {3, 1, 1; 2, 1− λ}, and the three solutions are

3F2(3, 1, 1; 2, 1; z) ,

z−1
3F2(2, 0, 0; 0,−λ; z) = 0 ,

zλ 2F1(3 + λ, 1 + λ; 2 + λ; z)

(D.7)

Expanding near z = 0, it follows that (D.4) has the same scaling as in the V = W = f case:

the −2πi from the log dominates. This yields λL = 0. Note that at λ = 1, the solution has

trivial monodromy again. One can confirm the result at λ = 1/2 using the monodromy

arcsin
√
z → − arcsin

√
z + π around z = 1.

E W cl
∞[λ > 2] is complex

Here we derive (5.44). The W cl
∞[λ] structure constants are known in the so-called primary

basis — i.e. the diagonal basis (4.1) of primary currents Js — in closed, but very compli-

cated, form [93, 139]. Rather than analyze the expression for Cs+1
3s directly, we will deduce

its form from general principles.

We begin with the relation between W∞[λ] and WN : namely,

W∞[±N ]/χN ∼= WN (E.1)

The quotient algebra sets all currents of spins s > N to zero. More importantly for us, it

also means that when we set λ = ±N , the OPE of two currents of spins s1, s2 ≤ N must

reduce to the OPE of WN . (Indeed, this is essentially how γ2 was derived in [67].) This im-

plies that any structure constant Cs3s1s2 for which max(s1, s2, s3) = s3 must vanish at integer

values of λ in the range max(s1, s2) ≤ λ ≤ s3−1. The algebra is invariant under λ→ −λ, so

(Cs3s1s2)2 ∝ (λ2 − (max(s1, s2))2) . . . (λ2 − (s3 − 1)2) (E.2)
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To determine whether/how this becomes negative, we need to know what the denominator

looks like.

We now focus on Cs+1
3s . Let us write this as

(Cs+1
3s )2 = (λ2 − s2)× fs(λ) (E.3)

We want to determine fs(λ) using the following facts about the W cl
∞[λ] algebra:

i) In the normalization of [67], all (Cs3s1s2)2 are rational functions of λ2.

ii) For λ ∈ R, the only degeneration points of W cl
∞[λ] are at λ ∈ Z.

iii) The denominator of (Cs+1
3s )2 includes a λ2 − 4 factor. This reflects the fact that at

λ = ±2, all of the generators J3, Js, Js+1 are in the ideal. This is clear from the

analysis of [67].

The above properties imply that the zero at λ = ±s, and the pole at λ = ±2, are the

only real zeros and poles, respectively, of (Cs+1
3s )2. Putting these facts together, we can

write

(Cs+1
3s )2 =

λ2 − s2

λ2 − 4
× fs(λ2) (E.4)

where fs(λ
2) is a rational function which has no zeroes or poles for λ ∈ R. This further

implies its sign-definiteness for λ ∈ R.

To complete the proof, we need to show that fs(λ
2) > 0 for all λ ∈ R. Since fs(λ

2) is

sign-definite for λ ∈ R, it suffices to evaluate its sign for a single real value of λ. At λ = 1,

we have the isomorphism W cl
∞[1] ∼= WPRS

∞ , and the latter has real structure constants [67].

Since λ2−s2
λ2−4

is positive at λ = 1, this implies that

fs(λ
2) > 0 (E.5)

for all s and λ ∈ R. Actually, f3(λ2) and f4(λ2) are constant, which strongly suggests that

fs(λ
2) is constant for all s.

In any case, having established positivity of fs(λ
2), it directly follows from (E.4) that

(Cs+1
3s )2 < 0 when 2 < λ < s (E.6)

A final comment: W cl
∞[λ] inherits a triality symmetry from the quantum W∞[λ] alge-

bra [67], which under which algebras with three different values of λ are isomorphic. One

might wonder whether this plays a hidden role in invalidating our conclusions: namely,

whether for λ > 2, either of the triality images of λ is less than 2. But they aren’t. If we

denote T(λ) as the triality orbit of the quantum W∞[λ] algebra, then it follows from [67],

equation 2.20, that

lim
c→∞

T(λ) = {λ,−λ,−c} (E.7)

This is related to property ii).
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[123] P. Kessel, G. Lucena Gómez, E. Skvortsov and M. Taronna, Higher spins and matter

interacting in dimension three, JHEP 11 (2015) 104 [arXiv:1505.05887] [INSPIRE].

[124] S. Monnier, Finite higher spin transformations from exponentiation, Commun. Math. Phys.

336 (2015) 1 [arXiv:1402.4486] [INSPIRE].

[125] L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin

symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

[126] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago,

JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

[127] O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N

Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028

[arXiv:1207.4593] [INSPIRE].

[128] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string

duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

[129] L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL Pomeron

at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

[130] M.S. Costa, J. Drummond, V. Goncalves and J. Penedones, The role of leading twist

operators in the Regge and Lorentzian OPE limits, JHEP 04 (2014) 094 [arXiv:1311.4886]

[INSPIRE].

[131] G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM4 in

supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].

[132] F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point

functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].

[133] L.F. Alday and A. Bissi, Generalized bootstrap equations for N = 4 SCFT, JHEP 02 (2015)

101 [arXiv:1404.5864] [INSPIRE].

[134] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2

D = 10 supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

[135] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT

correspondence, hep-th/0201253 [INSPIRE].

[136] F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the

operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].
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