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the SU(2) sector of the N = 4 super Yang-Mills theory in the semi-classical regime at weak

coupling, which closely parallels the strong coupling analysis. The structure threading

two disparate regimes is the so-called monodromy relation, an identity connecting the

three-point functions with and without the insertion of the monodromy matrix. We shall

show that this relation can be put to use directly for the semi-classical regime, where the

dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces

the problem to a set of functional equations, which can be solved once the analyticity in

the spectral parameter space is specified. To determine the analyticity, we develop a new

universal logic applicable at both weak and strong couplings. As a result, compact semi-

classical formulas are obtained for a general class of three-point functions at weak coupling

including the ones whose semi-classical behaviors were not known before. In addition, the

new analyticity argument applied to the strong coupling analysis leads to a modification of

the integration contour, producing the results consistent with the recent hexagon bootstrap

approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the

weak coupling form.
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1 Introduction

In the preceding few years, a number of substantial advancement have been made con-

cerning the evaluation of the two- and three-point correlation functions in the N = 4

super Yang-Mills theory in the large N limit, not only in the weak and the strong coupling

regimes but also at finite couplings, with clever ideas and some assumptions.

As for the two-point functions, one can now compute them quite accurately at an

arbitrary coupling using the so-called quantum spectral curve [1], which is a vastly evolved

form of its precursor, the thermodynamic Bethe ansatz formalism [2–4].

Equally important have been the developments on the computation of the three-point

functions involving non-BPS operators, which are imperative in understanding the dynam-

ical aspects of the AdS/CFT correspondence [5–7].

At weak coupling, one can systematically study these objects by mapping them to

scalar products of the integrable spin chain as demonstrated in the pioneering works [8–11].

As for the strong coupling, due to the lack of the method of quantization for a string in

a relevant curved spacetime, only the semiclassical saddle-point computation appeared to

be feasible. However, the initial attempts for some fully non-BPS three-point functions

revealed that such a method is already rather challenging and only some partial results

were obtained [12, 13]. It was only after some non-trivial efforts that these difficulties were

overcome and finally rather general class of three-point functions in the SU(2) sector were

evaluated [14, 15].

Very recently, in a different vein, a nonperturbative framework capable of studying

these objects at finite coupling was put forward in [16]. The basic idea of this approach is

to decompose the three-point functions into more fundamental building blocks called the

hexagon form factors and determine them using assumed all-loop integrability.1 Although

quite powerful, as this method refers only to the magnon and its mirror excitations without

referring to their specific origins, it is difficult to see how the gauge theory and the string

theory are related. In this sense, our present work connecting the weak and the strong

coupling representations based on the known integrability properties should be considered

as complementary to such a universal approach.

Now concerning both the weak-coupling and the hexagon form factor methods, the

three-point functions are expressed in terms of the sums over partitions of rapidities,2 which

become increasingly more complicated as the number of magnons increases. However, it

turned out that, in the semiclassical limit, where both the number of magnons and the

length of the spin chain become very large, the result at weak coupling can be written in a

surprisingly concise form, namely a simple integral on the spectral curve, whose integrand

is expressed solely in terms of the so-called pseudo-momenta [19–21]. Now it is important

to recall at this point that also at strong coupling in the semiclassical approximation the

form of the three-point functions exhibits the same simple structure. A natural question

then is whether there is an underlying physical mechanism by which one can produce such

a simple expression more directly.

1An attempt in a similar spirit using the assumed all-loop integrability to determine the string field

theory vertex was made in [17].
2One can sometimes further simplify the expression into a determinant form [18]. However, such an

expression is known at the moment only for certain rank 1 sectors at weak coupling.
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In the case of the two-point functions, a similar question was addressed in [22, 23].

In the semiclassical limit, the collective dynamics of magnons is described by the so-called

Landau-Lifshitz model, a classically integrable nonrelativistic sigma model which can be

obtained as a continuum limit of the Heisenberg spin chain. This formulation allows one

to compute the semi-classical two-point function directly using the classical integrability

and moreover makes it possible to describe the weak and strong coupling computations in

a similar manner.

So the main purpose of the present work is to develop a formulation for the computation

of the three-point functions at weak coupling, which in the semiclassical limit produces in

a direct way the compact integral expressions similar to those in the strong coupling and to

understand its basic mechanism. This will not only be quite useful from the point of view

of the computation of the semiclassical limit, which is often physically most interesting, but

the understanding of its mechanism would also reveal an aspect of integrability common

to apparently disparate regimes. We will indeed see that a formulation extremely similar

to that of the strong coupling analysis performed in [14] is possible and it will not only

reproduce existing results in the literature but also make predictions for a class of three-

point functions whose semi-classical limit have not yet been computed.

Let us now describe the idea and the structure of our formulation more explicitly.

The basic starting point is the result of our previous paper [24] where the tree-level three-

point function in the SU(2) sector can be expressed as the overlap between the singlet

state and the three spin-chain states. By preparing a coherent state basis, we can then

express such an overlap as a product of integrals over the coherent state variables. Now

for the semiclassical situation of our interest, each spin chain reduces to a Landau-Lifshitz

string and, more importantly, the overlap can be evaluated by the saddle point method.

The situation is quite similar to the one at strong coupling, and just as in that case the

determination of the saddle point configuration is quite difficult. However, the similarity

to the strong coupling case goes further in the semiclassical situation. We also have the

monodromy relation identical in form, derived in [24, 25] for the weak coupling, which was

one of the crucial ingredients in the strong coupling case in determining the three-point

function without the knowledge of the saddle point configuration. This relation is natural

and powerful as it is a direct consequence of the classical integrability of the string sigma

model and encodes infinitely many conservation laws.

Now, with such a monodromy relation at hand, most of the crucial ingredients for the

strong coupling computation can be transplanted, with some modifications, to the present

weak coupling case. More precisely, what this means is the following:

• The semi-classical three-point functions can again be expressed in terms of the

“Wronskians” between the eigenvectors of the monodromy matrices.

• The monodromy relations, which are identical in form to the strong coupling case,

determine the product of the Wronskians in terms of the quasimomenta.

• The individual Wronskian can be projected out by solving the Riemann-Hilbert prob-

lem using the analyticity property concerning the positions of the zeros and the poles.

– 2 –
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It should be noted, however, that there is an important difference from the strong

coupling case, concerning the determination of the analyticity property of the Wronskians.

For the strong coupling case, the analyticity was determined by assuming the smoothness

of the worldsheet for the saddle-point configuration connecting the three strings. In the

present case, however, the three spin chains are glued together directly by the singlet

projector, which is nothing but a convenient way of performing the Wick contractions

dictated by the super Yang-Mills dynamics. There is no concept of worldsheet and hence

the smoothness argument above does not apply.

Therefore, in this paper we developed a new different argument, which is more powerful

and universal. The basic idea is to study the response of certain fundamental quantities

to an addition of a small number of Bethe roots. In the semiclassical context, such an

addition corresponds to the continuous variation of the filling fraction of the Bethe roots

and when applied to the (log of) the structure constant lnC123, it reveals that lnC123 plays

the role of the generating function of the angle variables and provides the key equation

for obtaining C123. On the other hand, as it will be elaborated fully in section 4, we

can also apply such a variation to the norm of the exact spin-chain eigenstate. When

the original and the deformed states are both on-shell Bethe eigenstates, they must be

orthogonal and we demand that this exact quantum property must be smoothly connected

to the semiclassical structure for consistency. This requirement will turn out to be powerful

enough to determine the configuration of the zeros and the poles on the spectral curve.

The Wronskians determined through this logic not only leads to the known semiclassical

results for the three-point functions in the literature but also allow us to compute more

general SU(2) correlators, which have not been computed before.

It is then extremely interesting to apply this new orthogonality argument to the strong

coupling case and see what happens. It turned out that this more universal argument lead

to the modification of the integration contours obtained in the previous investigation,

and the results with the modified contours are consistent with the hexagon form factor

approach of [16] and exactly match the Frolov-Tseytlin limit [26] in the weak coupling

regime. This indicates that, as already suspected and discussed in [14], the apparently

natural requirement of smoothness of the saddle-point worldsheet configuration in the

strong coupling case is not quite correct and our new logic for determining the analyticity

in the semiclassical spectral curve is more reliable.

The rest of the paper is structured as follows. In section 2, after reviewing the formu-

lation of the tree-level structure constant in terms of the overlap with the singlet projector,

we derive a path-integral representation for such an overlap using the coherent state basis,

which is subsequently evaluated by its saddle point in the semi-classical limit. We then

show that the variation of the semi-classical structure constant with respect to a conserved

charge of the spin chain states produces the angle variable which is canonically conjugate

to that charge. In section 3, we construct the angle variables for the Landau-Lifshitz model

using its classical integrability. Based on the results in the previous sections, we express, in

section 4, the semi-classical structure constant in terms of the Wronskians of the eigenvec-

tors of the monodromy matrices. In section 5, we evaluate such Wronskians, making use

of the monodromy relation and the orthogonality of two on-shell states. Putting together
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all the results in the preceding sections, we finally derive the explicit expression for semi-

classical structure constants at weak coupling in section 6. In section 7, we describe how

the argument developed in the present paper applied to the strong coupling computation

modifies the results obtained previously. We conclude in section 8 and indicate several

future directions. A few appendices are provided for technical details.

2 Semi-classical structure constant and the monodromy relation

2.1 Wick contraction represented as the singlet projection

We begin with a brief review of the two devices introduced in our previous work [28], namely

the double spin-chain representation for the SU(2) sector and the interpretation of the Wick

contraction as the group singlet projection, which greatly facilitate the construction of the

correlation functions.

The four scalar fields φi (i = 1, 2, 3, 4) forming the so-called the SU(2) sector of the

super Yang-Mills theory can be assembled into a 2 × 2 matrix Φãa given by

Φãa ≡

(
Z Y

−Ȳ Z̄

)
ãa

, (2.1)

where Z ≡ φ1 + iφ2, Y ≡ φ3 + iφ4 and Z̄ and Ȳ are their hermitian conjugates respectively.

Evidently, the symmetry of the SU(2) sector is actually SO(4)=SU(2)L× SU(2)R and the

matrix Φ transforms under these two SU(2) factors as Φ→ ULΦUR, where UL (UR) belongs

to SU(2)L (SU(2)R). This suggests that it is natural to consider the spin-chain consisting

of these basic fields as forming a tensor product of two spin-chains, which we called the

double spin-chain. Consider first the individual spin states |↑〉 and |↓〉 and denote them

by |↑〉 = |1〉 and |↓〉 = |2〉 for convenience. Then, from the transformation property above,

the basic fields correspond to the tensor product states as Z 7→ |↑〉L⊗|↑〉R = |1〉⊗ |1〉, etc.

It is easy to see that this mapping is succinctly summarized as

Φãa 7→ |ã〉 ⊗ |a〉 , ã, a = 1, 2 . (2.2)

To construct the correlation functions at the tree level, we need to Wick contract these

fields. For the Wick contraction of Φãa Φb̃b, the only non-vanishing ones are (suppressing

the coordinate dependence) Z Z̄ = 1 and X X̄ = 1. This gives the simple formula

Φãa Φb̃b = εãb̃εab . (2.3)

In terms of the corresponding spin states, this rule is equivalent to

|ã〉 |b̃〉 = εãb̃ , |a〉 |b〉 = εab . (2.4)

Now consider the general linear combination of states F = |f̃〉 ⊗ |f〉, with

|f̃〉 = f̃1|↑〉+ f̃2|↓〉 = f̃ ã|ã〉 , (2.5)

|f〉 = f1|↑〉+ f2|↓〉 = fa|a〉 . (2.6)

– 4 –
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(a) (b) (c)

Figure 1. The Wick contractions represented as the overlap with the singlet state. Here we

only depict the SU(2)R part. (a) The Wick contraction between two fields can be expressed as

the overlap between two spin states and the singlet, which is denoted by the black dot. (b) The

pictorial explanation of the formula for the two-point function (2.11). Here again each dot denotes

the overlap with the singlet state. (c) The three-point function expressed as the overlap with the

singlet state (2.12).

From the above rules, the Wick contraction between F1 and F2, where Fi = |f̃i〉⊗ |fi〉, can

be easily computed as F1 F2 = (f̃ ã1 εãb̃f̃
b̃
2)(fa1 εabf

b
2). This form shows that one can perform

the Wick contraction by taking the inner product with the singlet projection operator

〈1| = εab〈a| ⊗ 〈b|, for both SU(2)L and SU(2)R , (2.7)

namely

F1 F2 = 〈1|
(
|f̃1〉 ⊗ |f̃2〉

)
〈1|
(
|f1〉 ⊗ |f2〉

)
. (2.8)

This representation allows us to perform the Wick contractions for any complicated oper-

ators easily and systematically.3

Now let us apply this scheme to the single-trace operators. The contractions which

survive in the large N limit are the ones which connect the (L + 1 − i)-th field in the

operator O1 with the i-th field in the operator O2, where L is the length common to both

operators. Explicitly, an example of this structure looks like

O1 : tr
(
· · ·XZ

)
O2 : tr

(
Z̄X̄ · · ·

)
. (2.9)

This structure motivates us to consider the following tensor product of singlet states,

〈112| =
L∏
i=1

(
εab〈a|

(1)
L+1−i ⊗ 〈b|

(2)
i

)
, (2.10)

where 〈∗|(k)
i denotes the single-spin state living on the i-the site of the spin chain cor-

responding to the operator Ok. Then, the contractions between the operators can be

reproduced by taking the inner product

O1 O2 = 〈112|
(
|Õ1〉 ⊗ |Õ2〉

)
〈112|

(
|O1〉 ⊗ |O2〉

)
. (2.11)

Here |Õk〉 ⊗ |Ok〉 and |Õk〉 ⊗ |Ok〉 are the spin-chain states corresponding to the operators

Ok. For a pictorial explanation, see figure 1-(b).

3For the full PSU(2, 2|4) sector, the singlet projection operator has been constructed in [25, 28].
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Since the tree-level three-point function is essentially given by a product of Wick

contractions, one can also map the computation of the three point function to that in the

spin-chain Hilbert space:

〈O1O2O3〉 = 〈1123|
(
|Õ1〉 ⊗ |Õ2〉 ⊗ |Õ3〉

)
〈1123|

(
|O1〉 ⊗ |O2〉 ⊗ |O3〉

)
. (2.12)

As in the previous case, the structure of the singlet state 〈1123| is determined by the

structure of the Wick contraction, which is depicted in figure 1-(c). Explicitly, it is given by

〈1123|=

(
L12∏
i=1

εab〈a|
(1)
L1+1−i⊗〈b|

(2)
i

)
⊗

(
L23∏
i=1

εab〈a|
(2)
L2+1−i⊗〈b|

(3)
i

)
⊗

(
L31∏
i=1

εab〈a|
(3)
L3+1−i⊗〈b|

(1)
i

)
.

(2.13)

Here Lk is the length of the operator Ok and Lij = (Li+Lj−Lk)/2 is the number of Wick

contractions connecting Oi and Oj .
Now taking into account the normalization factors correctly, we arrive at the following

basic formula for the structure constant:4

C123 =

√
L1L2L3

Nc
〈1123|

(
|Õ1〉 ⊗ |Õ2〉 ⊗ |Õ3〉

)
〈1123|

(
|O1〉 ⊗ |O2〉 ⊗ |O3〉

)
. (2.14)

In the above, Nc denotes the rank of the gauge group.

An important consequence of this formalism is the so-called monodromy relation, which

is an identity connecting the structure constant with and without the insertion of the

monodromy matrix. It was derived in [24, 25] and, for the SU(2)R part, it reads5

〈1123|
((

Ω−1 (u)
)
ij
|O1〉 ⊗

(
Ω

+|−
2 (u)

)
jk
|O2〉 ⊗

(
Ω+

3 (u)
)
kl
|O3〉

)
= f123(u)δil〈1123|

(
|O1〉 ⊗ |O2〉 ⊗ |O3〉

)
.

(2.15)

Here Ω(u) is the monodromy matrix constructed from the Lax operator

Ω(u) ≡ L1(u)L2(u) · · ·LL(u) ,

Lk(u) ≡

(
1 + iSk3/u iSk−/u

iSk+/u 1− iSk3/u

)
,

(2.16)

and the superscripts Ω±,+|−(u) indicates the shift of the argument by ±i/2 (for a precise

definition, see figure 2). The constant factor f123(u) is given by

f123(u) =

(
1 +

1

u2

)(L1+L2+L3)/2

(2.17)

The identity (2.15) encodes infinitely many conservation laws for the structure constant.

As we will see in section 2.3, the semi-classical limit of (2.15) takes a form identical to the

one at strong coupling and will play a key role in the subsequent analysis.

4See [11] for the origin of the prefactor in (2.14).
5Here we adopt the normalization of Lk(u) to be such that Lk(∞) = 1, which is slightly different from

the one used in [24, 25]. The monodromy matrix in the present normalization can be naturally identified

with the monodromy matrix in the Landau-Lifshiz sigma model in the semi-classical limit.

– 6 –
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≪≏∱≩ ≪≏∲≩ ≪≏∳≩ ≪≏∱≩ ≪≏∲≩ ≪≏∳≩
Figure 2. The monodromy relation given in (2.15). The three-point function with and without

the monodromy matrix are equal up to the prefactor, which we omit writing here. The red lines

denote parts of the monodromy matrix with a −i/2 shift of the spectral parameter whereas the

blue lines denote parts of the monodromy matrix with a +i/2 shift of the spectral parameter.

2.2 On-shell Bethe states and polarization vectors

Before discussing the semi-classical limit, let us briefly explain how to characterize the

general SU(2) state in the double spin-chain representation.

In the Bethe-ansatz approach, we construct the general eigenstates of the Hamiltonian

by first considering the vacuum, which is typically taken to be tr
(
ZL
)
, and then introducing

the magnons (X or X̄) with a set of rapidities satisfying the Bethe ansatz equation. An

important property of such states, to be called the on-shell Bethe states, is that they

are the highest weight state [27] if the rapidities are all finite. In the double spin-chain

representation, this translates to

S̃+|Õ〉 = 0 , S+|O〉 = 0 , (2.18)

where S̃+ (S+) is the raising operator for the total spin in SU(2)L (SU(2)R).

In the case of three-point functions, we cannot take all the states to be the ones

constructed upon tr
(
ZL
)

since such three-point functions vanish owing to the charge

conservation. To study nonvanishing three-point functions, we have to consider the

states constructed upon more general vacua, which can be obtained from tr
(
ZL
)

by the

SU(2)L × SU(2)R rotations. As shown in [24], such vacua can be characterized in terms of

the polarization vectors6 n and ñ, in the following way:7

tr
(
(ñãnaΦãa)

L
)

(ã, a = 1, 2) . (2.20)

The highest weight condition satisifed by the on-shell Bethe states constructed upon this

rotated vacuum reads

S̃′+|Õ〉 = 0 , S′+|O〉 = 0 , (2.21)

6In the previous paper [14], they were called polarization spinors.
7More explicitly, (2.20) reads

tr
(

(n1ñ1Z + n2ñ1Y − n1ñ2Ȳ + n1ñ2Z̄)L
)
. (2.19)

– 7 –
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where S′+ and S̃′+ are rotated generators given by(
S̃′3 S̃′−
S̃′+ −S̃′3

)
= Ñ−1

(
S̃3 S̃−
S̃+ −S̃3

)
Ñ ,(

S′3 S′−
S′+ −S′3

)
= N−1

(
S3 S−
S+ −S3

)
N ,

(2.22)

with

N =

(
n1 −n2

n2 n1

)
, Ñ =

(
ñ1 −ñ2

ñ2 ñ1

)
. (2.23)

The highest weight condition (2.21) will play an important role when deriving the expres-

sion for the semi-classical structure constant in section 4.3.

2.3 Coherent-state representation and the semi-classical limit of C123

We will now study the semi-classical limit of the expression (2.14) for C123. Unlike the pre-

vious methods [11, 18, 20], where one first evaluates this quantity exactly and then take the

semi-classical limit, we shall take the semi-classical limit at the outset by deriving a path

integral representation of the structure constant and applying the saddle-point method.

This scheme will be seen to be valuable as a novel computational method universally appli-

cable for a large class of SU(2) three-point functions, including the cases which previously

could not be treated easily. Actually the more important aspect of this method is that it

reveals a cognate structure between the weak coupling computation under consideration

and the strong coupling counterpart performed in [14], as we shall see.

The semi-classical limit of our interest is a sort of the continuum limit of the Heisenberg

spin chain. More precisely, it is the following scaling limit,

L→∞ , M →∞ , Lp, L/M : fixed . (2.24)

Here L,M and p are, respectively, the length of the spin chain, the number of magnons and

the momentum of each magnon. As such it is efficiently described by some continuous field

along the chain, which should provide a representation of SU(2). The so-called coherent

state representation is ideal for such a purpose. It is a representation realized on the

coset space SU(2)/U(1), which is isomorphic to a unit sphere S2. As briefly reviewed in

appendix A, a coherent state representation for a single spin 1/2 state can be taken to be

|n〉 = exp

(
iθ

n0 × n

|n0 × n|
· ~S
)
|↑〉 = cos

θ

2
|↑〉 − eiφ sin

θ

2
| ↓〉 , (2.25)

where n0 = (0, 0, 1) is a unit vector in the z direction and n = (sin θ cosφ, sin θ sinφ, cos θ)

is a unit vector in a general direction. To express C123 in this basis, we just need to insert

the completeness relation

1 =

∫
Dn |n〉〈n|

(
Dn ≡ d3n δ(n2 − 1)

)
, (2.26)

– 8 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
2

to each inner product in (2.14). As a result, we obtain the following path-integral

expression:

C123 =

√
L1L2L3

Nc
Left× Right ,

Left =

∫
D~̃n1D~̃n2D~̃n3e

−S[~̃n1,~̃n2,~̃n3]Ψ̃1[~̃n1]Ψ̃2[~̃n2]Ψ̃3[~̃n3] ,

Right =

∫
D~n1D~n2D~n3e

−S[~̃n1,~̃n2,~̃n3]Ψ1[~n1]Ψ2[~n2]Ψ3[~n3] .

(2.27)

Here ~̃n and ~n denote a chain of coherent states

|~n〉 ≡ |n〉1 ⊗ |n〉2 ⊗ · · · ⊗ |n〉L . (2.28)

e−S[~n,~m,~l] is the overlap between the singlet and the coherent states

e−S[~n,~m,~l] ≡ 〈1123|
(
|~n〉 ⊗ |~m〉 ⊗ |~l〉

)
, (2.29)

while the wave functions Ψ̃ and Ψ are defined by

Ψ̃k[~̃nk] = 〈~̃nk|Õk〉 , Ψk[~nk] = 〈~nk|Ok〉 . (2.30)

Now in the semi-classical limit, this expression can be well-approximated by the saddle-

point of the integrand, which gives

C123 =

√
L1L2L3

Nc

(
e−S[~̃n∗1 ,~~n

∗
2 ,~~n
∗
3 ]Ψ̃1[~̃n∗1]Ψ̃2[~̃n∗2]Ψ̃3[~̃n∗3]

)(
e−S[~n∗1,~n

∗
2,~n
∗
3]Ψ1[~n∗1]Ψ2[~n∗2]Ψ3[~n∗3]

)
,

(2.31)

where ~n∗k (~̃n∗k) represents the saddle point of the D~n∗k (D~̃n∗k) integral. Evidently, the re-

sult (2.31) factorizes into the SU(2)L part and the SU(2)R part. In the discussions in

the following sections, we mainly focus on the SU(2)R part since the computation in the

SU(2)L part is similar.

Let us now study the semi-classical limit of the monodromy relation. Since the mon-

odromy matrix is an O(1) quantity, the insertion of the monodromy matrix does not affect

the saddle point. Thus, in the semi-classical limit, we can replace the monodromy matrix,

which is originally the quantum operator acting on the spin chain, with the classical value

evaluated on the saddle point given in (2.31). Furthermore, since we scale the spectral

parameter as u ∼ L in the semi-classical limit, the shifts of the arguments in Ω± etc. be-

come negligible and the factor f123 can be approximated by unity. Therefore we arrive at

the relation

Ω1(u)Ω2(u)Ω3(u)|saddle = 1 . (2.32)

Importantly, (2.32) has exactly the same form as the monodromy relation in the string

sigma model. This allows us to transplant most of the crucial ingredients for the strong

coupling computation as we shall see in the next section.
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2.4 lnC123 as the “generating function” of the angle variable

Once we choose the operators Oi of definite conformal dimensions for which to compute

the three-point function, each part of the expression in (2.31) can be explicitly computed

in principle with the judicious use of the integrability. This is indeed the approach taken in

the previous study at strong coupling [14]. However, in this brute-force method, we shall

encoutner extremely complicated intermediate expressions, most of which should cancel in

the final result. Therefore, below we shall devise an entirely different method, which at

the same time reveals the important meaning of lnC123 as a whole. This approach also

enables us to study the semi-classical states with arbitrary number of cuts in the spectral

curve, unlike the method in [14], which was restricted to the so-called one-cut solutions.

The basic idea is to see how lnC123 changes as we introduce a small number of addi-

tional Bethe roots. In the semi-classical context, this means to study the variation of the

structure constant with respect to the variation of the filling fraction8 S
(m)
i given by

∂ lnC123

∂S
(m)
i

, (2.33)

where the subscript i labels the filling fraction for the different cut belonging to the same

operator, while the superscript (m) labels the three different operators. By “integrating”

this quantity, one can determine the ratio between the structure constant involving non-

BPS operators and the one for three BPS operators, for which all the filling fractions vanish.

Specifically, the change of the filling fraction produces the following two effects: (i) a

slight change of the saddle point configuration ~n∗ and (ii) the direct small change of the

wave functions Ψ[Si,~n
∗] due to δSi. Actually, the contribution from (i) takes the form,

∂~n∗m

∂S
(m)
i

δ lnC123|saddle

δ~n∗m
, (2.34)

and hence it vanishes owing to the saddle-point equation δ C123|saddle /δ~n
∗
m = 0.

Now from the general theory, the wave function in the semi-classical limit is given by

the following WKB form

ln Ψ ∼ i
∑
k

∫
PkdQk , (2.35)

where in the present case Qk’s correspond to the coherent-state variables, ~n, and Pk’s to

their canonical conjugates. The right hand side of (2.35) can be regarded as the generating

function of the canonical transformation. Therefore, by differentiating with respect to the

filling fraction, which is known to be the conserved action variables, we obtain

∂

∂S
(n)
i

ln Ψ = i
∂

∂S
(n)
i

∑
k

∫
PkdQk = iφ

(n)
i , (2.36)

8The precise definition of the filling fraction will be given in section 3.2.
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where φ
(n)
i are the angle variables conjugate to S

(n)
i . Putting altogether, we find that lnC123

plays the role of the “generating function” giving the angle variable under the variation of

the filling fraction and we get the simple formula

∂ lnC123

∂S
(n)
i

= iφ
(n)
i . (2.37)

Concerning this formula, two comments are in order. First, as we have already indicated by

the use of quotation marks, the quantity lnC123 is not the generating function of the action

variables in the usual sense. The precise meaning is that at the saddle point it behavs as if

it were a generating function of the value of the angle variable under the variation of S
(m)
i .

The second comment concerns the normalization of the structure constant C123 or

rather the normalization of the operators making the three-point function. As it will

be discussed in the next section, in the general integral expressing the angle variable φi
in (3.21), we will not specify the initial point of integration. Therefore the expression (2.37)

is actually ambiguous as it stands. To fix this ambiguity, we require that the operators we

use produce the normalized two-point functions correctly. This can be achieved in practice

by replacing the right hand side of (2.37) by the difference between the angle variable for

the three-point function and the one for the two-point function in the following way:

∂ lnC123

∂S
(n)
i

= i
(
φ

(n)
i − φ

(n)
i,2pt

)
≡ iϕ(n)

i . (2.38)

Unlike (2.37), the expression (2.38) is entirely unambiguous and we will adopt thhis form

in the rest of this article.

3 Classical integrability of the Landau-Lifshitz model

We shall now apply the general formalism developed in the previous section more explicitly

to the semi-classical limit of the Heisenberg spin chain. It is well-known that such a limit

gives rise to so-called the Landau-Lifshitz model, a classically integrable field theory in

1 + 1 dimensions.

3.1 Landau-Lifshitz model, its Lax pair and the monodromy matrix

Let us briefly summarize the basic properties of the Landau-Lifshitz model and its inte-

grable nature. In the semi-classical limit, the coherent state variable ~n(m, τ), where m is

an integer specifying the position along the spin chain, becomes a continuous field ~n(σ, τ).

It is convenient to take the range of σ to be 0 ≤ σ ≤ L, where L is the length of the spin

chain. The action is given by9

SLL =
1

2

∫
dτdσ

∫ 1

0
ds~n · (∂τ~n× ∂s~n)− g2

2

∫
dτdσ ∂σ~n · ∂σ~n , (3.1)

9A review of the derivation is provided in appendix A.
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where g =
√
λ/4π is the ‘t Hooft coupling constant. The first term in (3.1) is the Wess-

Zumino term and the s-dependence of ~n is defined such that ~n(s = 1) = (0, 0, 1) and

~n(s = 0) = ~n. The equation of motion obtained by varying the above action reads

∂τ~n = 2g2~n× ∂2
σ~n . (3.2)

One of the important features of this model is its classically integrability, whose clearest

manifestation is the existence of the following Lax pair structure

[∂σ − Jσ , ∂τ − Jτ ] = 0 ,

Jσ =
i

2u
~n~σ =

i

2u

(
n3 n1 − in2

n1 + in2 −n3

)
, Jτ =

2ig2

u2
~n~σ +

2ig2

u
(~n× ∂σ~n)~σ ,

(3.3)

where u is the spectral parameter. From the above Lax pair, one can construct the mon-

odromy matrix in the usual way:10

Ω(u) ≡ P exp

(∫ L

0
dσJσ

)
. (3.4)

As in the case of the integrable string sigma model, one defines the quasi-momentum p(x)

as the logarithm of the eigenvalue of the monodromy matrix:

Ω(u) ∼

(
eip(u) 0

0 e−ip(u)

)
. (3.5)

The asymptotic properties of the quasi-momentum at u = 0 and u = ∞ can be easily

obtained from the above definitions and contain useful information: its residue at u = 0 is

related to the length of the spin chain [23] as

p(u) = − L

2u
+O(1) , (3.6)

while the leading behavior at infinity provides the information of the number M of magnon

excitations of the system:

p(u) =
2M − L

2u
+O(u−2) . (3.7)

The spectral curve is defined from the monodromy matrix as

det (y − Ω(u)) = (y − eip(u))(y − e−ip(u)) = 0 . (3.8)

Owing to the singular behavior of the quasi-momentum (3.6), the spectral curve contains

an infinite number of points satisfying e2ip(u∗) = 1. Such points are called the singular

points and can be regarded as the infinitesimal branch cut [29, 30] (see also figure 3).

10The monodromy matrix defined here can be identified with the semi-classical limit of the monodromy

matrix the Heisenberg spin chain (2.16).
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Figure 3. The structure of the spectral curve at weak coupling. In general, it has several branch

cuts and infinitely many singular points, denoted by black dots, which accumulate to u = 0. The

singular points can be regarded as degenerate branch points.

Now, it is well-known that the information contained in the non-linear Lax equation

can be recovered by the simultaneous solution of the auxiliary linear problem given by

(∂σ − Jσ)ψ = 0 , (∂τ − Jτ )ψ = 0 . (3.9)

In particular, for the i-th spin chain, the solutions which are at the same time the eigen-

functions of the monodromy matrix Ωi with eigenvalues e±ipi(u) will be denoted by i±, i.e.

Ωii± = e±ipii± , (3.10)

and they will be of great importance in what follows.

3.2 Action-angle variables

As was already indicated in section 2.4, the concept of action-angle variables plays an

essential role in the computation of the structure constant. Therefore in this subsection,

with the use of the method of Sklyanin [31] we shall construct the action-angle variables

for the Landau-Lifshitz model.

First, we must compute the Poisson bracket between the elements of the monodromy

matrix, which is characterized by the classical r-matrix in the form

{Ω(u)⊗, Ω(v)} = [Ω(u)⊗ Ω(v) , r(u− v)] . (3.11)

In the case of the Landau-Lifshitz sigma model, since the quantum R-matrix R(x) for the

XXX spin chain is well-known, a quick way11 to obtain the classical r-matrix is to take the

classical limit of R(x). Explicitly, we obtain

R(u) = I + i
P
u
7−→ I + ir(u) ,

⇒ r(u) =
P
u
, (3.12)

11For the first-principle derivation of the classical r-matrix, see appendix B.
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where I is the identity operator and P is the permutation operator. Using the form (3.12)

in (3.11), one can obtain the explicit form of the Poisson bracket between the individual

components of the monodromy matrix, which are denoted as usual in the form

Ω(u) ≡

(
A(u) B(u)

C(u) D(u)

)
. (3.13)

The resulting Poisson brackets obtained in this way are displayed in appendix C.

We now describe the Sklyanin’s approach [31] for the construction of the action-angle

variables. Consider the eigenfunctions ψ±(u) of the monodromy matrix Ω(u), with eigen-

values e±ip(u), i.e. defined by

Ω(u)ψ±(u; τ) = e±ip(u)ψ±(u; τ) . (3.14)

Such eigenstates are called Baker-Akhiezer vectors. Now an important information is

encoded in the normalized Baker-Akhiezer vector h(u; τ) defined to be proportional to

ψ+(u; τ) and satisfying the normalization condition

〈n , h〉 ≡ εabnahb = 1 , h =
1

〈n , ψ+〉
ψ+ . (3.15)

Here n = (n1, n2)t is a constant vector with unit norm. In the original formalism by

Sklyanin, n can be arbitrary as long as it is independent of the spectral parameter. However,

in the present context, we must choose it to be equal to the polarization vector diuscussed

in section 2.2 in order to guarantee the highest weight property of the semi-classical wave

function (see appendix C for a detailed explanation).

For general solutions, there are infinitely many poles in h(u, τ), the position of which

are denoted by γi, i = 1, 2, . . .. Sklyanin observed that to each such pole γi, which becomes

a dynamical variable through the relations (3.14) and (3.15), a canonical pair of variables

are associated. Relegating the details of the derivation to appendix D, the result is the

following set of commutation relations

{γi , γj} = {p(γi) , p(γj)} = 0 , −i{γi , p(γj)} = δij . (3.16)

where p(γi) is the quasi-momentum p(u) with the substitution u = γi. This shows that

(γi ,−ip(γi))’s are canonical pairs of variables.

Once the canonical pairs are obtained, one can easily construct the action variables,

which should be identified with the conserved filling fractions Si, as

Si ≡
1

2πi

∮
Ci
p(u)du . (3.17)

Here Ci denotes the i-th branch cut.

Now to construct the angle variables φi conjugate to Si, we need to to find the gen-

erating function of the type F (γi , Si), which effects the canonical transformation from

(γi ,−ip(γi)) to the action-angle variables. Such a function is defined by the properties

∂F

∂γi
= −ip(γi) ,

∂F

∂Si
= φi . (3.18)
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In the present context, the first equation should be viewed as defining the function F , while

the second equation should be regarded as the definition of φi. Therefore, to determine F ,

we need to integrate the first equation with Si fixed. As the filling fractions are given by

the integral of p(u) on the spectral curve, fixing all Si’s is equivalent to fixing the functional

form of p(u). Therefore, F can be determined as

F = −i
∑
i

∫ γi

p(u)du . (3.19)

Next we compute φi = ∂F/∂Si. This requires changing Si with all the other filling

fractions fixed. In the Heisenberg spin chain we started with, this corresponds to adding

a small number of Bethe roots to the branch cut Ci. As is clear from (3.5), this addition

of magnon inevitably changes the asymptotic behavior of p(u) at u = ∞. Therefore,

changing Si is precisely equivalent to adding to p(u)du a one-form whose period integral

is non-vanishing only for the cycle around Ci and the cycle at infinity. Such a one-form

should be proportional to a holomorphic differential ωi satisfying the following properties:∮
Cj
ωi = δij ,

∫
∞+

ωi = −1 =

∮
∞−

(−ωi) . (3.20)

Here ∞+ (∞−) denotes the infinity on the first (second) sheet. Using such ωi, the partial

derivative ∂F/∂Si is expressed as12

φi = 2π
∑
j

∫ γj

ωi . (3.21)

4 Angle variables and the Wronskians

In this section, we shall show that the angle variables constructed in the previous section

can be expressed in terms of the skew-symmetric product, to be called the Wronskians,

of the solutions of the auxiliary linear problem corresponding to the Lax pair and of the

polarization vectors. In what follows the Wronskian of any two-component vectors χa and

φa is defined as

〈χ, φ〉 ≡ χaεabφb . (4.1)

4.1 Normalization of the solutions to the auxiliary linear problems

By using the Wronskian, we shall conveniently normalize the solutions k± of the auxiliary

linear problem for the k-th spin chain as

〈k+, k−〉 = 1 . (4.2)

In addition to this condition, it is consistent to require that the two solutions k± are related

across the cut by

k+|2nd-sheet = −i k−|1st-sheet , k−|2nd-sheet = −i k+|1st-sheet . (4.3)

12This expression is a generalization of the so-called Abel map known in the theory of Riemann surfaces.

– 15 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
2

Then from (4.2) and (4.3), one can show that k± develop the following singularity at the

branch points of the spectral curve

k± ∝
1√

u− ub
(u→ ub) . (4.4)

Let us briefly explain how this comes about. As the eigenvectors of the monodromy matrix

are determined only up to an overall factor, we may first choose an eigenvector k0
+ which

remains non-singular even at the position of the branch points. Then the other eigenvector

k0
− can be obtained by the smooth analytic continuation of k0

+ to the second sheet, since

upon this operation the quasimomentum pk(u) flips sign and hence the eigenvalue changes

from eipk(u) to e−ipk(u). By this definition, k0
± clearly satisfy the following relations:

k0
+

∣∣
2nd-sheet

= k0
−
∣∣
1st-sheet

, k0
−
∣∣
2nd-sheet

= k0
+

∣∣
1st-sheet

. (4.5)

Now let us normalize these two eigenvectors so that they satisfy the normalization condi-

tion (4.2). This can be achieved by the rescaling

k+ ≡
1√

〈k0
+ , k

0
−〉
k0

+ , k− ≡
1√

〈k0
+ , k

0
−〉
k0
− . (4.6)

Since two eigenvectors k0
± become degenerate at the branch points, 〈k0

+ , k
0
−〉 has a simple

zero at such points. This yields the singularity structure given in (4.4).

Note that the aforementioned conditions do not completely fix the normalization, since

we can always “renormalize” the eigenvectors as

k+ → c(u)k+ , k− → k−/c(u) , (4.7)

without violating the conditions (4.2) and (4.3), if the function c(u) satisfies

c(u)|1st-sheet =
1

c(u)

∣∣∣∣
2nd-sheet

. (4.8)

In section 4.3, we will utilize this freedom to express the angle variable in terms of the

Wronskians.

4.2 Separated variables for two-point functions and orthogonality

In order to obtain the formula for the difference of the angle variables appearing in (2.38)

in terms of appropriate Wronskians, we must first clarify the structure of the separated

variables on the two-sheeted spectral curve. Similar information was crucial also in the case

of the strong coupling, treated by the string theory representation. In that case, certain

assumptions on the analyticity as a function on the string worldsheet helped determine

some important structure. However, in the present case there is no worldsheet and we

must devise a different logic to get a handle on the structure of the separated variables.

Before delving into the discussion of the case of the three-point function, it is necessary

to understand in detail the separated variables for the two-point functions. It will turn out
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that the logic that we shall employ is of such a general validity that it can also be applied

for strong coupling, as well as for the weak coupling that we are analyzing.

Let us consider the norm of a physical spin-chain state 〈Ψ|Ψ〉 (or equivalently a two-

point function) and perturb one of the states by adding a small number of Bethe roots to

produce the inner product 〈Ψ|Ψ + δΨ〉. Clearly 〈Ψ|Ψ + δΨ〉 should be non-vanishing for a

general perturbation. However, when the perturbed state is such that it becomes on-shell

again, 〈Ψ|Ψ + δΨ〉 must vanish because of the orthogonality of different eigenstates of the

spin Hamiltonian. Therefore we have

〈Ψ|Ψ + δΨ〉 = 0 , if |Ψ〉 and |Ψ + δΨ〉 are on-shell . (4.9)

It should be emphasized that this is an exact quantum statement.

Now we perform the same type of perturbation in the semi-classical regime. Specifi-

cally, consider the norm 〈Ψ|Ψ〉 of a semiclassical on-shell state and perturb only the ket

state |Ψ〉 by adding a small cut at the position of one of the singular points,13 u∗, which

corresponds to adding a small number of Bethe roots. When the added cut is small enough,

the log of this quantity (normalized by the original norm) can be expressed as

ln

(
〈Ψ|Ψ + δΨ〉
〈Ψ|Ψ〉

)
' ∂ ln〈Ψ|Ψ′〉

∂Su∗

∣∣∣∣∣
Ψ′=Ψ

δSus , (4.10)

where the derivative with respect to Su∗ acts only on |Ψ′〉. We have denoted the action

variable associated with the degenerate cut at the singular point u∗ by Su∗ and δSu∗ denotes

the filling fraction corresponding to the small cut added. Since the state |Ψ〉 is semiclassical,

we can evaluate the quantity ∂〈Ψ|Ψ′〉/∂Su∗ using the saddle point approximation. This

operation is exactly the same as the one performed on lnC123 previously, and taking into

account the saddle point equation itself the contribution that remains is

∂ ln〈Ψ|Ψ′〉
∂Su∗

∣∣∣∣∣
Ψ′=Ψ

= iφu∗ , (4.11)

where φu∗ is the angle variable evaluated on the unperturbed state. As the small cut added

in this regime is actually made of some number m of on-shell Bethe roots, with the positive

integer m being of O(1), we can identify δSu∗ as m and hence (4.10) together with (4.11)

can be written as14

ln

(
〈Ψ|Ψ + δΨ〉
〈Ψ|Ψ〉

)
' imφu∗ . (4.12)

This means that when the perturbed state |Ψ + δΨ〉 is again on-shell, according to the

exact quantum property (4.9), which must hold in the semi-classical regime as well, we

must have

〈Ψ|Ψ + δΨ〉
〈Ψ|Ψ〉

' eimφu∗ → 0 . (4.13)

13As discussed in [32, 33], the on-shell perturbation of the classical solution corresponds to the insertion

of an infinitesimal cut at singular points.
14Note that in the semi-classical limit, anything which does not scale as the length of the chain L can be

regarded as small numbers.
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To examine this, let us compute φu∗ using the formula (3.21) applied to this case. We have

φu∗ = 2π
∑
j

∫ γj

ωu∗ , (4.14)

where γj are the separated variables and ωu∗ is the holomorphic differential which satisfies

the following properties on the first and the second sheet.

1st sheet:

∮
u∗

ωu∗ = 1 ,

∮
∞
ωu∗ = −1 ,

∮
Ci
ωu∗ = 0 ,

ωu∗ ∼
1

2πi

1

u− u∗
(u→ u∗) ,

2nd sheet:

∮
u∗

ωu∗ = −1 ,

∮
∞
ωu∗ = 1 ,

∮
Ci
ωu∗ = 0 ,

ωu∗ ∼ −
1

2πi

1

u− u∗
(u→ u∗) .

(4.15)

This means that when one of the γj ’s is at u = u∗ on the first sheet, φu∗ behaves like

φu∗ ∼
1

i
ln(u− u∗) (u→ u∗) , (4.16)

while if such a situation occurs on the second sheet, we have

φu∗ ∼ −
1

i
ln(u− u∗) (u→ u∗) , (4.17)

Thus in order for eimφu∗ to vanish as dictated by (4.13), there must be a separated variable

at each singular point on the first sheet. This information will be of prime importance in

section 4.3 and 5.2: in section 4.3, it will provide the information of the zeros and poles

of the important quantity 〈n, ψ3pt
+ 〉. Such analyticity properties will in turn be imperative

in determining those of the Wronskians, in terms of which the correlation functions will

be expressed.

We once again stress that the preceding argument only uses the exact quantum prop-

erty and its validity for the semi-classical regime as a special case, it is applicable regardless

of the strength of the coupling constant.

4.3 Angle variables expressed in terms of the Wronskians

Using the properties discussed above, we now rewrite the angle variables in terms of the

Wronskians.

As described in section 3.2, to construct the angle variables, we need to know the

separated variables, which are associated to the poles of the normalized eigenvector of the

monodromy matrix given in (3.15). Clearly some of the zeros of 〈n , ψ+〉, where ψ+ is

the unnormalized eigenvector, correspond to such poles. However, 〈n , ψ+〉 may contain

additional zeros, which do not appear in the normalized eigenvector ψ+/〈n , ψ+〉 since ψ+

itself becomes a zero-vector at such points and the ratio becomes finite. In addition to zeros,

〈n , ψ+〉 in general has poles where ψ+ itself diverges. Likewise, these poles do not appear in
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the normalized eigenvector as they cancel between the numerator and the denominator. In

what follows, we call these zeros and poles spurious zeros and poles. It is important to note

that the positions of the spurious zeros and poles may move if we change the normalization

of the eigenvector as (4.7) whereas those of the separated variables do not.

With these properties in mind, let us study the analytic structure of the factor 〈n , ψ2pt
+ 〉

for the two-point function. When the spectral curve contains m-cuts, there are m “dynam-

ical” separated variables, which evolve in the worldsheet time [29]. In addition to those,

there are infinitely many non-dynamical separated variables which are trapped at the sin-

gular points on the first sheet of the spectral curve as discussed in the previous subsection.

Both of them must correspond to zeros of 〈n , ψ2pt
+ 〉. However, if we construct the solution

explicitly using the finite gap method [29], we do not find infinitely many zeros correspond-

ing to the nondynamical separated variables. This is because 〈n , ψ2pt
+ 〉 has spurious poles,

which cancel the zeros associated with those separated variables. Furthermore, it has a

square-root singularity at the branch points as shown in (4.4). Thus the divisor of 〈n , ψ2pt
+ 〉

is given by:15

(
〈n , ψ2pt

+ 〉
)

=
∑
k

γ2pt
k −

∑
l

sl −
1

2

∑
m

bm . (4.18)

Here γ2pt
k ’s correspond to the separated variables (both dynamical and nondynamical), sl’s

denote the singular points on the first sheet, and bm’s denote the branch points.

We now turn to the corresponding quantity for the three-point function 〈n , ψ3pt
+ 〉. To

compute the normalized three-point functions, it is convenient to use the same normal-

ization for the eigenvectors ψ2pt
+ and ψ3pt

+ . More precisely, we require ψ3pt
+ (and therefore

〈n , ψ3pt
+ 〉) to have the same spurious zeros and poles as ψ2pt

+ . This can always be achieved

by multiplying by an appropriate function of the spectral parameter as (4.7). However,

in that process, we often need to introduce extra spurious zeros and poles to 〈n , ψ3pt
+ 〉 in

order to make c(u) in (4.7) to be single-valued on the spectral curve. Therefore, the general

structure of the divisor takes the following form:(
〈n , ψ3pt

+ 〉
)

=
∑
k

γ3pt
k −

∑
l

sl −
1

2

∑
m

bm +
∑
n

(ηn − δn) . (4.19)

Here γ3pt
k are the separated variables for the three-point functions whereas the last term

(ηn and δn) correspond to the extra spurious zeros and poles alluded to above.

Let us make two important remarks regarding (4.19). First, owing to the normalization

condition 〈ψ3pt
+ , ψ3pt

− 〉 = 1, ψ3pt
− has zeros at δn and poles at ηn. Since ψ3pt

± are related to

each other by (4.3), ηn and δn must satisfy

ηn = σ̂δn , (4.20)

15The solution for the two-point function has moduli, and for generic values of the moduli 〈n , ψ2pt
+ 〉 can

have other spurious zeros and poles. However, on physical grounds, we expect that it is possible to choose

a solution for which such poles and zeros are absent (although the argument is not completely rigorous).

For a more detailed discussion on this point, see appendix E.
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where σ̂ is the holomorphic involution, which exchanges two sheets of the Riemann surface.

Second, as (4.19) shows, ψ3pt
+ becomes singular at the singular points on the first sheet. This

property plays a key role in the determination of the analyticity structure in section 5.2.

Taking into account the analyticity structure discussed above, we now compute the

right hand side of (2.38), which is the shift of the angle variables for the three-point function

relative to those of the two-point function. (In what follows, we suppress the indices

distinguishing operators until the very end when we write down the final expression (4.35).)

For this purpose, it is useful to introduce a one-form df defined by

df = d ln
〈n , ψ3pt

+ 〉
〈n , ψ2pt

+ 〉
, (4.21)

the divisor of which is given by

(df) =
∑
k

γ3pt
k − γ2pt

k +
∑
n

ηn − δn . (4.22)

Now, using the formula (3.21), we can express the shift ϕk as

ϕk = 2π
∞∑
j=1

∫ γ3ptj

γ2ptj

ωk . (4.23)

where ωk satisfies ∮
Cj
ωk = δjk ,

∫
∞+

ωk = −1 =

∮
∞−

(−ωk) . (4.24)

This expression can be simplified further using the generalized Riemann bilinear identity,16

which reads ∫ P

Q
ω̃RS;k =

∫ R

S
ω̃PQ;k . (4.25)

Here ω̃PQ;k and ω̃RS;k are normalized Abelian differentials satisfying17∮
P
ω̃PQ;k = 1 ,

∮
Q
ω̃PQ;k = −1 ,

∮
Cj
ω̃PQ;k = −δjk . (4.26)

Since ωk can be identified with −ω̃∞+∞−;k, we can use the Riemann bilinear identity to

rewrite ϕk as

ϕk = 2π

∞∑
j=1

∫ γ3ptj

γ2ptj

ωk = −2π

∫ ∞+

∞−

∞∑
j=1

ω̃
γ3ptj γ2ptj ;k

= i

∫ ∞+

∞−
(df − ek) (4.27)

16This form is given in [34] and was used in a similar manner as below in [14, 15].
17To make connection with the formulas in [34], we need to choose the basis of the a-cycle as the cycles

around the cuts except Ck. Then (4.26) coincides with the definition of the normalized Abelian differential

of the third kind.
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where the integration contour starts from ∞−, goes through the cut Ck and ends at ∞+,

and ek is the one-form uniquely characterized by the following conditions:

(ek) =
∑
n

(ηn − δn) , ek(σ̂u) = −ek(u) ,

∮
Cj
ek = 0 for j 6= k . (4.28)

Here the second property follows from (4.20). Finally, substituting the definition of df

into (4.27), we obtain18

ϕk = i ln
〈n , ψ3pt

+ 〉〈n , ψ
2pt
− 〉

〈n , ψ3pt
− 〉〈n , ψ

2pt
+ 〉

∣∣∣∣∣
x=∞+

− i
∫ ∞+

∞−
ek . (4.29)

This expression can be further rewritten in terms of the Wronskians by judicious use

of the highest weight condition. To see this, recall that the on-shell states constructed

upon the rotated vacuum with the polarization vector n is annihilated by the operator S′+,

given in (2.22). Such global charges can be read off from the asymptotic behavior of the

monodromy matrix as

Ω(u) = 1 +
i

u

(
S3 S−
S+ −S3

)
+O(u−2)

= 1 +
i

u
N

(
S′3 S′−
S′+ −S′3

)
N−1 +O(u−2) .

(4.30)

where the second equality follows from (2.22). This leads to the following asymptotic form

of the monodromy matrix in the semi-classical limit:

Ω(u)|saddle = 1 +
i

2u
N

(
L− 2M ∗

0 −(L− 2M)

)
N−1 +O(u−2) (u→∞+) . (4.31)

Note that this is true both for two-point functions and multi-point functions. From (4.31)

and the asymptotic form of the quasi-momentum (3.7), we can determine the asymptotic

behavior of the eigenvectors ψ± to be of the form

ψ−(∞+) = an , ψ+(∞+) = −a−1(iσ2n) + b n , (4.32)

where a, b are arbitrary and we have imposed the normalization condition 〈ψ+ , ψ−〉 = 1.

In the special case of two-point functions, by the explicit construction based on the finite-

gap method, we can check19 that a2pt = 1. Thus the ratio appearing in (4.29) can be

evaluated as

〈n , ψ3pt
+ 〉〈n , ψ

2pt
− 〉

〈n , ψ3pt
− 〉〈n , ψ

2pt
+ 〉

∣∣∣∣∣
x=∞+

= a−2
3pt . (4.33)

For three-point functions, the same quantity can be extracted from different combinations

of the Wronskians. For instance, it is easy to verify, using (4.32), that the following

combination gives the a−2
3pt for the operator Oi:

a−2
3pt

∣∣∣
Oi

=
〈ni , nj〉〈nk , ni〉
〈nj , nk〉

〈j− , k−〉
〈i− , j−〉〈k− , i−〉

∣∣∣∣
x=∞+

. (4.34)

18Here we used the relation that ψ+(∞−) = ψ−(∞+)/i which follows from (4.3).
19See also appendix E.
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Thus, restoring the indices for the operators, we arrive at the final expression,

ϕ
(i)
ki

= i ln

(
〈ni , nj〉〈nk , ni〉
〈nj , nk〉

〈j− , k−〉
〈i− , j−〉〈k− , i−〉

∣∣∣∣
x=∞+

)
− i
∫ ∞+

∞−
e

(i)
ki
. (4.35)

Here e
(i)
ki

is a one form defined on the spectral curve of the i-th operator Oi, which satisfies(
e

(i)
ki

)
=
∑
n

η(i) − δ((i)
n , e

(i)
ki

(σ̂iu) = e
(i)
ki

(u) ,

∮
C(i)s

e
(i)
ki

= 0 for s 6= ki , (4.36)

where σ̂i and C(i)
s denote the holomorphic involution and the branch cuts respectively, for

the spectral curve of Oi.
Let us make a remark on the nature of the angle variables for the general multi-cut

solutions that we are capable of dealing with in this paper, in comparison to the previous

work [14], where only the one-cut solution could be studied. In that work, the only allowed

perturbation is to vary the filling fraction associated with the unique cut and at the same

time the one at infinity, i.e. S∞, in the opposite direction for consistency. This is why the

angle variable conjugate to the global charge S∞ showed up in the previous work. However,

in the more general case of multi-cut solutions, we have to specify the cut to be perturbed

among many and the corresponding angle variable is not necessarily the one conjugate to

the global charge but the one associated with the more general filling fraction.

5 Evaluation of the Wronskians

Now that we have expressed the structure constant in terms of Wronskians, our final task

is to evaluate these Wronskians.

5.1 Products of Wronskians from monodromy relation

Let us recall that at strong coupling, the monodromy relation was of crucial importance and

it allowed us to express certain products of Wronskians in terms of quasi-momenta [12–14].

Since the relation derived in (2.32) is identical in form to the one in that analysis, one can

apply the same argument also to the present case.

First, take the basis in which Ω1 is diagonal of the form diag(eip1 , e−ip1). Since the

eigenvectors of different monodromy matrices are related with each other as

i± = 〈i±, j−〉j+ − 〈i±, j+〉j− , (5.1)

Ω2 in this basis is given by

Ω2 = M12 diag(eip2 , e−ip2) M21 , (5.2)

where Mij is the basis-transformation matrix defined by

Mij =

(
−〈i−, j+〉 〈i−, j−〉
〈i+, j+〉 〈i+, j−〉

)
. (5.3)
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Now, using the relation Ω1Ω2Ω3 = 1 (2.32), we can express the trace of the monodromy

matrix Ω3 as

tr Ω3 (= 2 cos p3) = trΩ−1
2 Ω−1

1 . (5.4)

Substituting the explicit expressions of Ω1 and Ω2 above to the right hand side of (5.4),

we get

cos p3 = cos(p1 − p2)〈1+, 2+〉〈1−, 2−〉 − cos(p1 + p2)〈1+, 2−〉〈1−, 2+〉 . (5.5)

Combining this equation with the Schouten identity,

1 = 〈1+, 2+〉〈1−, 2−〉 − 〈1+, 2−〉〈1−, 2+〉 , (5.6)

we can determine the products 〈1+, 2+〉〈1−, 2−〉 and 〈1+, 2−〉〈1−, 2+〉. Products of other

Wronskians can be computed in a similar manner and the results can be summarized as

〈i+, j+〉〈i−, j−〉 =
sin

pi + pj + pk
2

sin
pi + pj − pk

2
sin pi sin pj

,

〈i+, j−〉〈i−, j+〉 =
sin

pi − pj + pk
2

sin
pi − pj − pk

2
sin pi sin pj

,

(5.7)

where the cyclic permutation of (1, 2, 3) should be applied to (i, j, k).

5.2 Analytic properties of the Wronskians

Now to compute three-point functions, we need to know the individual Wronskians, not just

their products (5.7). For this purpose, below we need to determine the analytic properties

of the Wronskians as a function of the spectral parameter. This knowledge will later be

indispensable in decomposing the products into individual Wronskians.

Before proceeding, let us make one general remark: since each set of eigenvectors i±
live on a two-sheeted Riemann surface, Wronskians generally live on a 23-sheeted Riemann

surface. Each of these eight-fold sheets will be denoted as [∗, ∗, ∗]-sheet, where the n-th

entry ∗ is written as “u” for the upper sheet of pn(u) and “l” when it refers to the lower

sheet of pn(u). The determination of the analyticity on this eight-sheeted Riemann surface

may at first sight seem a formidable task. However, as the eigenvectors on different sheets

are related with each other by (4.3), once we know the analyticity of all the Wronskians on

the [u, u, u]-sheet, the analyticity on the other sheets can be automatically deduced. For

instance, the analyticity of 〈1+, 2+〉 on the [l, u, u]-sheet are the same as the analyticity

properties of 〈1−, 2+〉 on the [u, u, u]-sheet. Thus, in what follows, it suffices to determine

the analyticity on the [u, u, u]-sheet.

BPS correlators. We first study the simplest possible case, namely the three-point

function of BPS operators. A distinct feature of such correlators is that the quasi-momenta

do not contain any branch cuts. This simplifies the determination of the analyticity of

Wronskians drastically, as we see below.
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Figure 4. The analytic structure of 〈i+, j+〉 on the [u, u, u]-sheet when all the operators are BPS.

Left: in the limit pi → pj and pk → 0, the poles (denoted by black dots) and the zeros (denoted by

red dots) are on top of each other, and the Wronskians are free of singularities. Right: since there

are no branch cuts, even after pk becomes nonzero and pi starts to differ from pj , the zeros and the

poles cannot move away from the [u, u, u]-sheet.

Let us first consider the Wronskians with the same signs, 〈i+, j+〉 and 〈i−, j−〉. As (5.7)

shows, their products contain poles at sin pi = 0 and sin pj = 0, which are at the singular

points of the spectral curve. In our normalization of the eigenvectors, the plus solutions

i+ and j+ become singular at the singular points on the first sheet of the spectral curve

(see the discussion below (4.19)). This means that the poles on the [u, u, u]-sheet belong to

〈i+, j+〉 (and not to 〈i−, j−〉). In addition to poles, the right hand side of (5.7) has zeros at

sin(pi+pj +pk)/2 = 0 and sin(pi+pj−pk)/2 = 0. To determine which Wronskian contains

these zeros, we first consider the limit where pk → 0 and pi → pj . In this limit, the classical

solution for the three-point function approaches to the one for the two-point function. As

mentioned in section 4.3, for the two-point function, the eigenvectors are nonsingular even

at sin pi = 0 and so are the Wronskians. This means that in this limit the zeros of the

Wronskians must cancel the pole singularities. In order for such cancellations to occur, all

the zeros on the [u, u, u]-sheet must belong to 〈i+, j+〉 when pk is very small. Now, since

all the operators are BPS and there are no branch cuts connecting different sheets, those

zeros cannot leave the [u, u, u]-sheet even if we increase the value of pk (see figure 4). We

therefore conclude that all the zeros on the [u, u, u]-sheet must always belong to 〈i+, j+〉,
not to 〈i−, j−〉, when the three operators are BPS.

Next we consider the Wronskians with opposite signs 〈i+, j−〉 and 〈i−, j+〉. Also in

this case, the determination of the poles are straightforward since they are associated with

the eigenvectors themselves. By the same reasoning as above, we conclude that the poles

at sin pi = 0 belong to 〈i+, j−〉 whereas the poles at sin pj belong to 〈i−, j+〉. On the

other hand, the determination of zeros is more complicated and we need to resort to the

argument given in [14]. As reviewed in appendix G, it leads to the following general rules:

1. When a factor sin (
∑

i εi pi/2) vanishes, the Wronskians which vanish are the ones

among {1ε1 , 2ε2 , 3ε3} or the ones among {1−ε1 , 2−ε2 , 3−ε3}. (Here εi takes + or −.)

2. On the [u, u, u]-sheet, the Wronskians from the group which contains more than one

+ eigenvectors all vanish whereas the Wronskians from the other group do not.
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1/ sin pi 1/ sin pj sin
pi + pj + pk

2
sin

pi + pj − pk
2

〈i+, j+〉 X X X X

〈i−, j−〉

Table 1. The analytic properties of 〈i+, j+〉 and 〈i−, j−〉 on the [u, u, u]-sheet. The checked entries

indicate existence of poles/zeros.

1/ sin pi 1/ sin pj sin
pi − pj + pk

2
sin
−pi + pj + pk

2

〈i+, j−〉 X X

〈i−, j+〉 X X

Table 2. The analytic properties of 〈i+, j−〉 and 〈i−, j+〉 on the [u, u, u]-sheet.

Applying these rules, we can determine the analyticity on the [u, u, u]-sheet as given in

tables 1 and 2. As already mentioned, the analyticity on other sheets can be deduced from

the relations (4.3).

Extension to non-BPS. Now we turn to non-BPS correlators. Their analytic properties

can be inferred from those of the BPS correlators if we make the following physically

reasonable assumption:

Continuity assumption.

When all the branch cuts of the quasi-momenta pi(x) shrink to zero size, the clas-

sical solution for the non-BPS correlator smoothly goes over to those for the BPS

correlators.

This assumption implies in particular that the Wronskians for the BPS and the non-

BPS cases are also smoothly connected. Now, let us consider the three BPS correlator

discussed above and insert a very small cut to make it non-BPS. Because of the continuity

assumption, the zeros and the poles of the Wronskians cannot move to a different sheet

as long as the cut is sufficiently small and therefore the analyticity of Wronskians for such

non-BPS correlators must be the same as the one for the BPS correlators. If we gradually

increase the sizes of the cuts, at some point the zeros and the poles start crossing the branch

cuts and move over to a different sheet, leading to a change in the analytic property of

the Wronskians. A simple way to take such effects into account is to first compute the

correlators with small cuts and then analytically continue the final results with respect

to the sizes of the cuts. See figure 5. This analytic continuation to larger cuts will be

discussed in section 6.2, and we will comment on how it affects the integration contours.20

Thus, until then, we will restrict ourselves to the spectral curves with small cuts.

20A similar phenomenon was observed in the context of one-loop corrections to the classical energy both

at weak [35] and strong coupling [32, 33]. In both cases, as the sizes of the cuts become bigger, some of

the physical excitations cross the cuts. At weak coupling, this leads to the change in the distribution of the

Bethe roots. Nevertheless, the final result turns out to be a smooth function of the sizes of the cuts, and

we expect that this is also the case for three-point functions.
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Figure 5. The analyticity of the Wronskians for the non-BPS correlators. Under the continuity

assumption, the analyticity remains the same as the one for the BPS correlators as long as the cuts

are sufficiently small (left figure). As we increase the size of the cut, the zeros and the poles start to

move and, at some point, they cross the cut and cause the change in the analyticity (right figure).

Such effects affect the integration contours of the final result as we shall see in section 6.2.

Spurious zeros and poles. In addition to the structures we discussed so far, there are

extra spurious zeros and poles of the eigenvectors (ηn and δn in (4.19)). Owing to the

normalization condition 〈i+, i−〉 = 1, whenever i+ has such a zero i− has a pole, and vice

versa. Thus, these extra zeros and poles cancel out if we consider the products of the

Wronskians appearing on the left hand side of (5.7). Nevertheless we should keep in mind

that such poles and zeros are present as we solve for the individual Wronskians below. In

the next section, we first subtract such zeros and poles from the Wronskians and study the

Riemann-Hilbert problem for these subtracted quantities.

5.3 Solving the Riemann-Hilbert problem

Let us now use the analytic properties to set up and solve the Riemann-Hilbert problem

to determine the Wronskians. Here we will only discuss 〈i+, j+〉 and 〈i−, j−〉 since these

are the Wronskians relevant for the computation of the structure constant. (The argument

below can be straightforwardly generalized to other Wronskians but we will not elaborate

on it here.)

In what follows, we analyze the logarithmic derivative of the relation (5.7), namely

∂u ln〈i+ , j+〉+ ∂u ln〈i− , j−〉

= ∂u ln sin
pi + pj − pk

2
+ ∂u ln sin

pi + pj + pk
2

− ∂u ln sin pi − ∂x ln sin pj .
(5.8)

Since the Wronskians contain extra zeros and poles which are absent on the right hand

side of (5.8) as mentioned above, it is convenient to consider the following quantities from

which extra zeros or poles are subtracted:

W ij
++ = ∂u ln〈i+, j+〉 − e(i)

ki
− e(j)

kj
,

W ij
−− = ∂u ln〈i−, j−〉+ e

(i)
ki

+ e
(j)
kj
.

(5.9)

Here e
(i)
ki

is a one-form given by (4.36) in section 4.3. As explained there, it depends on the

choice of the cut C(i)
ki

, which we are perturbing. In terms of W ij
±±, (5.8) can be written as

W ij
++ +W ij

−−

= ∂u ln sin
pi + pj − pk

2
+ ∂u ln sin

pi + pj + pk
2

− ∂u ln sin pi − ∂x ln sin pj .
(5.10)

This is the Riemann-Hilbert problem we need to solve.
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Figure 6. Analytic continuation of the Wiener-Hopf integral. As a result of the analytic continu-

ation, the integral picks up a pole at x′ = x. This yields the first term in (5.13).

To uniquely characterize the solution to the Riemann-Hilbert problem, we have to

specify its period integrals in addition to its analyticity. In the case at hand, the period

integrals of W ij
±± are given by∮

C(i)s
W ij
±± = 0 (s 6= ki) ,

∮
C(j)s

W ij
±± = 0 (s 6= kj) . (5.11)

These properties can be shown as follows: since 〈i±, j±〉 is a single-valued function on the

Riemann surface, the integral of ∂u ln〈i±, j±〉 along any closed curve gives nπ where n is an

integer. As we are considering the spectral curves with small cuts, which are continuously

connected to the curves without cuts, n must be zero in such a case. Together with the

property of e
(i)
ki

given in (4.36), this leads to (5.11). This property will be later utilized in

checking the correctness of the expressions of W ij
±± we shall construct.

Wiener-Hopf method. Before solving (5.10), let us briefly review the standard Wiener-

Hopf method, which decomposes a function into the part regular on the upper-half plane

and the part regular on the lower-half plane. Suppose f(x) is a function which decreases

sufficiently fast at infinity and does not have a pole on the real axis. Then f(x) can be

decomposed as f(x) = f+(x) + f−(x) where f+ and f− are defined on the half planes by

f+(x) =

∫ ∞
−∞

dx′

2πi

1

x′ − x
f(x′) (Imx > 0) ,

f−(x) = −
∫ ∞
−∞

dx′

2πi

1

x′ − x
f(x′) (Imx < 0) .

(5.12)

Using (5.12), it is easy to verify that f+ is regular on the upper-half plane and f− is

regular on the lower-half plane. When x is not in the region specified in (5.12), we need to

analytically-continue these formulas. This leads, for instance, to the following expression

for f+(x) on the lower-half plane (Im x < 0)

f+(x) = f(x) +

∫ ∞
−∞

dx′

2πi

1

x′ − x
f(x′) = f(x)− f−(x) . (5.13)

Here the first term f(x) is produced by the integral along a small circle around x′ = x as

shown in figure 6. An important feature of this method is that the contour of integration

separates domains with different analyticity structures. This is true also in a more compli-

cated situation where functions are defined on a multi-sheeted Riemann surface as in (5.10).
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For later convenience, let us also present the version of (5.14) obtained by integration

by parts:

f+(x) = −
∫ ∞
−∞

dx′

2πi

1

(x′ − x)2
F (x′) (Imx > 0) ,

f−(x) =

∫ ∞
−∞

dx′

2πi

1

(x′ − x)2
F (x′) (Imx < 0) .

(5.14)

Here F (x) is the integral of f(x), i.e., F (x) =
∫ x

f(x′). It is this form of the Wiener-

Hopf decomposition that will be generalized below in order to deal with the multi-sheeted

Riemann surface on which pi(x)’s are defined.

Decomposition of the poles. We first study the factors ∂u ln sin pi and ∂u ln sin pj ,

which give rise to the poles of the Wronskians. Below we focus on ∂u ln sin pi since the case

for ∂u ln sin pj is completely similar.

As in the standard Wiener-Hopf decomposition, we should be able to decompose it

by considering a convolution integral whose contour separates the domains with different

analyticity. As summarized in table 1, the poles of 1/ sin pi belong to 〈i+, j+〉 when the

rapidity is on the first sheet of pi while they belong to 〈i−, j−〉 when it is on the second

sheet of pi. Obviously, these two regions are separated by the branch cuts of pi and so the

contour should be taken to go around the cuts. Now what we must properly deal with is

the choice of the convolution kernel, as we have a two-sheeted Riemann surface instead of

a simple complex plane. The natural generalization of the kernel (5.14) in the present case

is given by the bidifferential characterized by the properties listed below, which is often

called the Bergman kernel in physics literature.21 To define the Bergman kernel, we must

first pick a basis of cycles. Then, the Bergman kernel B(p, q) is a differential in both p and

q and is uniquely specified by the following properties;

1. Symmetry:

B(p, q) = B(q, p) . (5.15)

2. Normalization: ∮
p∈aj

B(p, q) = 0 , (5.16)

where {aj} is the basis of a-cycles.

3. Analyticity: B(p, q) is meromorphic in p with only a double pole at p = q with the

following structure:

B(p, q) ∼ 1

2πi(ζ(p)− ζ(q))2
dζ(p)dζ(q) . (5.17)

Here ζ is a local coordinate around p ' q.

21This quantity is introduced by J. Fay [36] as the bidifferential made from the prime form and is called

“the normalized bidifferential of the second kind” (see also [37]). Although in mathematics the Bergman

kernel, strictly speaking, refers to slightly broader notion, we shall follow the physics nomenclature. We

thank M. Jimbo and A. Nakayashiki for useful information on these matters.
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In addition to these properties, when the curve is hyperelliptic, it satisfies

4. Involution property:

B(σ̂p, σ̂q) = B(p, q) . (5.18)

This is because the kernel B(σ̂p, σ̂q) satisfies all three properties listed above, which specify

the Bergman kernel uniquely. In the present case, we can define the Bergman kernel for

each of the three spectral curves and we denote them by

B
(i)
ki

(p, q) i = 1, 2, 3 . (5.19)

Here the subscript ki designates our choice of the basis of the cycles; namely we choose the

a-cycles as the cycles that surround each cut except C(i)
ki

.22

Now, using these kernels, one can decompose ∂u ln sin pi as follows:

W ij
++du =

∮
u′∈Γi

B
(i)
ki

(u, u′) ln sin pi(u
′) + rest (u ∈ 2nd sheet of pi) ,

W ij
−−du = −

∮
u′∈Γi

B
(i)
ki

(u, u′) ln sin pi(u
′) + rest (u ∈ 1st sheet of pi) .

(5.20)

Here rest represents the terms coming from decomposition of the rest of terms on the right

hand side of (5.10). The integration contour Γi is on the 1st sheet of pi and goes along the

cuts C(i)
s as depicted in figure 7-(a). Let us now make a remark on the contour: unlike other

poles, the poles at the branch points are shared equally by ∂u ln〈i+, j+〉 and ∂u ln〈i−, j−〉,
since each eigenvector has a square-root singularity as shown in (4.4). To realize this

structure, one must average over different ways of avoiding the branch points as shown

in figure 7-(b). Apart from this small subtlety, these formulas are natural generalization

of (5.14) and more importantly they are consistent with the property of W ij
±± (5.11),

thanks to the normalization of the Bergman kernel (5.16). As in the standard Wiener-Hopf

method, the expressions in the other regions can be obtained by analytic continuation.

Before proceeding, let us rewrite (5.20) in a form where the action of the holomorphic

involution is more clearly seen. For this purpose, we first make a change of the integration

variable from u′ to σ̂iu
′, with σ̂i being the holomorphic involution for the spectral curve

of pi. This, of course, leaves the value of the integral intact, but its form gets slightly

modified. For instance, the integrand is transformed as

ln sin pi(σ̂iu
′) = ln

(
− sin pi(u

′)
)
, (5.21)

B
(i)
ki

(u, σ̂iu
′) = B̌

(i)
ki

(u, u′) . (5.22)

Here, the new kernel B̌
(i)
ki

(p, q) is defined by (5.22) and has a pole when p = σ̂iq,

B̌
(i)
ki

(p, q) ∼ 1

2πi(ζ(p)− ζ(σ̂iq))
dζ(p)dζ(σ̂iq) , (5.23)

22This means that the integration of the Bergman kernel around C(i)ki does not vanish,
∮
p∈C(i)

ki

B
(i)
ki
6= 0.
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(c)

Figure 7. The integration contours relevant to the decomposition of poles. (a) The contour Γi goes

along the branch cuts C(i)s on the first sheet of pi counterclockwise. (b) Near the branch point, one

must average over all possible ways to avoid the branch point as shown in the figure. The dashed

curve denotes the contour on the second sheet. (c) By the continuous deformation, one can move

the contour to the second sheet of pi. The contour on the second sheet has the opposite orientation

from the one on the first sheet. This leads to the minus sign on the right hand side of (5.24).

where ζ is a local coordinate around p and σ̂iq. Similarly, the integration contour is modified

as follows (see figure 7-(c) for more explanation):∮
Γi

d
(
σ̂iu
′) = −

∮
Γi

du′ (5.24)

From these transformation rules, we can rewrite the integral appearing in (5.20) as∮
u′∈Γi

B
(i)
ki

(u, u′) ln sin pi(u
′) = −

∮
u′∈Γi

B̌
(i)
ki

(u, u′) ln sin pi(u
′) . (5.25)

Here and below we neglect the term coming from ln(−1) since it changes the structure

constant only by an overall phase. Now, by averaging two sides of (5.25), we arrive at the

following expressions for W ij
±±:

W ij
++du =

∮
Γi

A
(i)
ki
∗ ln sin pi + rest (u ∈ 2nd sheet of pi) ,

W ij
−−du = −

∮
Γi

A
(i)
ki
∗ ln sin pi + rest (u ∈ 1st sheet of pi) .

(5.26)

Here A
(i)
ki

is the “anti-symmetrized” kernel defined by

A
(i)
ki

(p, q) ≡ 1

2

(
B

(i)
ki

(p, q)− B̌(i)
ki

(p, q)
)

=
1

2

(
B

(i)
ki

(p, q)−B(i)
ki

(p, σ̂iq)
)
, (5.27)

and the notation
∮
C F ∗ f denotes the convolution integral∮

C
F ∗ f =

∮
u′∈C

F (u, u′)f(u′) . (5.28)

The kernel A
(i)
ki

is odd under the holomorphic involution of each of the arguments:

A
(i)
ki

(p, σ̂iq) = −A(i)
ki

(p, q) , A
(i)
ki

(σ̂ip, q) = −A(i)
ki

(p, q) . (5.29)

The first equality follows immediately from the definition whereas the second equality can

be derived using the property of the Bergman kernel (5.18). This property is used in

section 6 when we write down the expression for the semi-classical structure constant.

– 30 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
2

Decomposition of the zeros. We now decompose ∂u ln sin(pi + pj + pk)/2 and

∂u ln sin(pi + pj − pk)/2, which are responsible for the zeros of the Wronskians. Since these

quantities are defined on the 23-sheeted Riemann surface, both the integration contour and

the convolution kernel must also be defined on the same eight-sheeted surface.

Let us first specify the integration contour. As in the previous case, the contour should

be taken such that it separates the domains with different analyticity. As stated in the

rules in section 5.2, when sin (
∑

i εipi) vanishes, the Wronskians that vanish are the ones

among {1ε1 , 2ε2 , 3ε3} or the ones among {1−ε1 , 2−ε2 , 3−ε3}. Depending on which of the two

groups contain vanishing Wronskians, the eight-sheeted Riemann surface is divided into two

regions. Then the integration contour, denoted by Γε1ε2ε3 , will be placed at the boundary

of the two regions. For instance, for the case of sin(p1 +p2 +p3)/2, the two regions and the

contour are depicted in figure 8. To find the analyticity structure and the contour of other

factors, one just needs to exchange the sheets appropriately, thanks to the property (4.3).

For example, the analyticity structure and the contour of sin(p1 + p2 − p3)/2 are given by

those in figure 8 with [∗, ∗, u]-sheets and [∗, ∗, l]-sheets swapped.

We next determine the convolution kernel. To carry out the desired decomposi-

tion, we use the kernel Ball(p, q), which satisfies the first and the third properties, (5.15)

and (5.17) respectively, of the Bergman kernel and the following slightly different normal-

ization condition:

Normalization: ∮
p∈C(i)s

Ball(p, q) = 0 , s 6= ki , i = 1, 2, 3 . (5.30)

Using this kernel, we can, for instance, decompose ∂u ln(pi + pj + pk)/2 in the following

way:

W ij
++du = −

∮
u′∈Γ+++

Ball(u, u
′) ln sin

pi + pj + pk
2

(u′) + rest

(u ∈ gray region in figure 8) ,

W ij
−−du =

∮
u′∈Γ+++

Ball(u, u
′) ln sin

pi + pj + pk
2

(u′) + rest

(u ∈ white region in figure 8) .

(5.31)

Again, in virtue of the normalization condition (5.30), this is consistent with the prop-

erty of W ij
±± (5.11). The decomposition of ∂u ln sin(pi + pj − pk) can be performed in a

similar manner.

Let us make a clarifying remark. Although the existence of the kernel Ball with the

properties listed above has not been explicitly proven, the convolution integral (5.31) can

be rewritten entirely in terms of the standard Bergman kernel, the existence of which is

firmly established. To show this, we again make use of the holomorphic involution. To

illustrate the idea, let us consider the following terms that appear in the expression for

W 12
++ and W 12

−−:∮
u′∈Γ+++

Ball(u, u
′) ln sin

p1 + p2 + p3

2
(u′) +

∮
u′∈Γ++−

Ball(u, u
′) ln sin

p1 + p2 − p3

2
(u′) . (5.32)
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Figure 8. The analyticity structure and the integration contour for the decomposition of sin(pi +

pj +pk)/2. In the region depicted in white, the Wronskians among {1+, 2+, 3+} have zeros, whereas

in the region depicted in gray, the Wronskians among {1−, 2−, 3−} have zeros. The integration

contour Γ+++, denoted in red, separates the white region from the gray region.

If we change the integration variables from u′ to σ̂3u, the integrand and the contour of (5.32)

transform as

ln sin
p1 + p2 ± p3

2
(σ̂3u

′) = ln sin
p1 + p2 ∓ p3

2
(u′) ,

Ball(u, σ̂3u
′) = B

(3)
all (u, u′) ,∮

Γ++±

d(σ̂3u
′) =

∮
Γ++∓

du′ ,

(5.33)

where the new kernel, B
(3)
all (p, q), has a pole at p = σ̂3q. Using this transformation rule, we

can re-express the integral (5.32) as∮
u′∈Γ+++

B
(3)
all (u, u′) ln sin

p1+p2+p3

2
(u′) +

∮
u′∈Γ++−

B
(3)
all (u, u′) ln sin

p1+p2−p3

2
(u′) . (5.34)

Considering all possible combinations of holomorphic involutions, we obtain 23 different

expressions for (5.32). Then averaging over these 23 expressions, we get

1

8

∮
u′∈Γ+++

K(u, u′) ln sin
p1 + p2 + p3

2
(u′) + (4 other terms) , (5.35)

with

K(p, q) ≡
(
Ball +B

(3)
all −B

(12)
all −B

(123)
all

)
(p, q) ,

B
(12)
all (u, u′) ≡ Ball(u, σ̂1σ̂2u

′) , B
(123)
all (u, u′) ≡ Ball(u, σ̂1σ̂2σ̂3u

′) .
(5.36)

Now the kernel K(p, q) has four double poles as shown in table 3. As is clear from table 3,

the analytic properties of K(p, q) are identical to those of A
(1)
k1

+A
(2)
k2

, which are expressed in

terms of the usual Bergman kernels. Thus we can replace K(p, q) in (5.35) with A
(1)
k1

+A
(2)
k2

.
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q σ̂1q σ̂2q σ̂3q σ̂1σ̂2q σ̂1σ̂3q σ̂2σ̂3q σ̂1σ̂2σ̂3q

K(p, q) +1 +1 −1 −1

A
(1)
k1

(p, q) +1/2 −1/2 +1/2 +1/2 −1/2 −1/2 +1/2 −1/2

A
(2)
k2

(p, q) +1/2 +1/2 −1/2 +1/2 −1/2 +1/2 −1/2 −1/2

Table 3. The structure of the poles of the kernels K, A
(1)
k1

and A
(2)
k2

. The first row designates the

position of the double pole as a function of p and the numbers within the table are the coefficient

of each pole. One can easily see that K and A
(1)
k1

+A
(2)
k2

have the same pole structure.

Performing similar analysis to other 4 terms, we obtain the following expression for W 12
++:

W 12
++du = rest

− 1

8

(∮
Γ+++

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 + p3

2
+

∮
Γ++−

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 − p3

2

+

∮
Γ+−+

(A
(1)
k1
−A(2)

k2
) ∗ ln sin

p1−p2+p3

2
+

∮
Γ−++

(−A(1)
k1

+A
(2)
k2

) ∗ ln sin
−p1+p2+p3

2

)
. (5.37)

As in the standard Wiener-Hopf decomposition, this integral expression is valid in the

region where W 12
++ does not have any poles, which in this case correspond to the

[l, l, ∗]-sheets.23

Finally, let us discuss the simplification of the integration contours. The contours

of (5.37) are defined on the eight-sheeted Riemann surface. However, for comparison

with the results in the literature, it is more convenient to convert them into integrals

defined purely on the [u, u, u]-sheet. This can be achieved again by making use of the

holomorphic involution: for instance, take the integral along Γ+++ in (5.37) and consider

the portion of the integral on the [u, l, u]-sheet. If we perform the holomorphic involution σ̂2

to the integrated variable u′, this contribution becomes identical to the third term in (5.37)

evaluated on the [u, u, u]-sheet. Repeating the same analysis for the other relevant integrals,

we arrive at the expression

W 12
++du = rest

− 1

2

(∮
γ+++

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 + p3

2
+

∮
γ++−

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 − p3

2

+

∮
γ+−+

(A
(1)
k1
−A(2)

k2
) ∗ ln sin

p1−p2+p3

2
+

∮
γ−++

(−A(1)
k1

+A
(2)
k2

) ∗ ln sin
−p1+p2+p3

2

)
, (5.38)

where γε1ε2ε3 is a portion of Γε1ε2ε3 on the [u, u, u]-sheet. It is clear from figure 8 that Γ+++

does not have any portion on the [u, u, u]-sheet, and thus γ+++ = ∅. The other contours

are along the cuts of some of the quasi-momenta as shown below:

γ++− = Γ1 ∪ Γ2 , γ+−+ = Γ1 ∪ Γ3 , γ−++ = Γ2 ∪ Γ3 . (5.39)

23As discussed in section 5.2, when the spectral parameter is on these sheets, 〈1+, 2+〉 does not have any

poles or zeros except for extra poles and zeros which are now subtracted. See tables 1 and 2.
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Here Γi’s are the contours given in figure 7-(a). Substituting (5.39) into (5.38) and restoring

the terms coming from the decomposition of poles, we finally obtain

W 12
++du =∮

Γ1

A
(1)
k1
∗ ln sin p2 +

∮
Γ2

A
(2)
k2
∗ ln sin p1 −

1

2

(∮
Γ1∪Γ2

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 − p3

2

+

∮
Γ1∪Γ3

(A
(1)
k1
−A(2)

k2
) ∗ ln sin

p1−p2+p3

2
+

∮
Γ2∪Γ3

(−A(1)
k1

+A
(2)
k2

) ∗ ln sin
−p1+p2+p3

2

)
. (5.40)

Similarly, we can write down the expression for W 12
−−, which is valid when the spectral

parameter is on the [u, u, ∗]-sheets:

W 12
−−du =

−
∮

Γ1

A
(1)
k1
∗ ln sin p1 −

∮
Γ2

A
(2)
k2
∗ ln sin p2 +

1

2

(∮
Γ1∪Γ2

(A
(1)
k1

+A
(2)
k2

) ∗ ln sin
p1 + p2 − p3

2

+

∮
Γ1∪Γ3

(A
(1)
k1
−A(2)

k2
) ∗ ln sin

p1−p2+p3

2
+

∮
Γ2∪Γ3

(−A(1)
k1

+A
(2)
k2

) ∗ ln sin
−p1+p2+p3

2

)
. (5.41)

The expressions for the other W ij
++’s and W ij

−−’s can be obtained from (5.40) and (5.41)

by the permutation of the indices.

6 Results at weak coupling

Now we combine the results of sections 2, 4 and 5 and write down the explicit integral

expression for the structure constant.

6.1 Integral expression for the semi-classical structure constant

As shown in (4.35), the variation of the semi-classical structure constant is given in terms

of the Wronskians. To compute those Wronskians, we integrate the results obtained in the

previous section (5.40) and (5.41). The net effect of integration is to replace the kernels

A
(i)
ki

(u, u′) by their integrals
∫ v=u
v=v0

A
(i)
ki

(v, u′). This is, however, still ambiguous since the

initial point of the u-integration v0 is not fixed. To determine v0, we impose the following

condition which comes from the normalization of the eigenvectors (4.3):

〈i−, j−〉(σ̂iσ̂ju) = −〈i+, j+〉(u) . (6.1)

In terms of the logarithm of the Wronskians, this reads

ln〈i−, j−〉(σ̂iσ̂ju) = ln〈i+, j+〉(u) . (6.2)

As in the previous analyses, we have neglected the minus sign in (6.1), which only affects

the overall phase of the final result. We shall now show that (6.2) is satisified if we choose

v0 to be the branch point of C(i)
ki

, which we denote by bki (see figure 9). Under this choice,
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the Wronskians are given by

ln〈i+, j+〉 = E
(i)
ki

+ E
(j)
kj

+

∮
Γi

α
(i)
ki
∗ ln sin pi +

∮
Γj

α
(j)
kj
∗ ln sin pj

−

(∮
Γi∪Γj

(α
(i)
ki

+α
(j)
kj

) ∗ ln sin
pi+pj−pk

2
+

∮
Γi∪Γk

(α
(i)
ki
− α(j)

kj
) ∗ ln sin

pi − pj + pk
2

+

∮
Γj∪Γk

(−α(i)
ki

+ α
(j)
kj

) ∗ ln sin
−pi + pj + pk

2

)
, (6.3)

ln〈i−, j−〉 = −E(i)
ki
− E(j)

kj
−
∮

Γi

α
(i)
ki
∗ ln sin pi −

∮
Γj

α
(j)
kj
∗ ln sin pj

+

∮
Γi∪Γj

(α
(i)
ki

+ α
(j)
kj

) ∗ ln sin
pi + pj − pk

2
+

∮
Γi∪Γk

(α
(i)
ki
− α(j)

kj
) ∗ ln sin

pi − pj + pk
2

+

∮
Γj∪Γk

(−α(i)
ki

+ α
(j)
kj

) ∗ ln sin
−pi + pj + pk

2
, (6.4)

with E
(i)
ki

and α
(i)
ki

given by

E
(i)
ki
≡
∫ v=u

v=bki

e
(i)
ki

(v) , α
(i)
ki

(u, u′) ≡
∫ v=u

v=bki

A
(i)
ki

(v, u′) . (6.5)

As with the expressions in the previous section, (6.3) and (6.4) are valid on the [l, l, l]-

sheet and on the [u, u, u]-sheet respectively. To see that (6.3) and (6.4) indeed satisfy the

condition (6.1), we just need to use the fact that e
(i)
ki

and A
(i)
ki

are odd while the branch

point bki is invariant under the holomorphic involution (see (4.36) and (5.29)). Using these

properties, we can express E
(i)
ki

and α
(i)
ki

in a more symmetric way as follows:24

E
(i)
ki

=
1

2

∫ v=u

v=σ̂iu
e

(i)
ki

(v) , α
(i)
ki

(u, u′) =
1

2

∫ v=u

v=σ̂iu
B

(i)
ki

(v, u′) . (6.7)

Here, the precise integration contour is the one given in figure 9.

Having determined the Wronskians, we can now compute the angle variable by eval-

uating (6.4) at u = ∞ and substituting them into (4.35). It turns out that the terms

E
(i)
ki

(u =∞) precisely cancel the last term in (4.35). Thus, as anticipated, the contribution

from extra zeros and poles do not appear in the final expression, which takes the form

ϕ
(i)
ki

= i

(
ln
〈ni, nj〉〈nk, ni〉
〈nj , nk〉

+ 2

∮
Γi

ᾱ
(i)
ki

ln sin pi −
∮

Γi∪Γj

ᾱ
(i)
ki

ln sin
pi + pj − pk

2

−
∮

Γi∪Γk

ᾱ
(i)
ki

ln sin
pi − pj + pk

2
+

∮
Γj∪Γk

ᾱ
(i)
ki

ln sin
−pi + pj + pk

2

)
.

(6.8)

24For instance, the expression for E
(i)
ki

can be derived as follows:

E
(i)
ki

=

∫ v=u

v=bki

e
(i)
ki

(v) =
1

2

(∫ v=u

v=bki

e
(i)
ki

(v) +

∫ σ̂iv=u

σ̂iv=bki

e
(i)
ki

(σ̂iv)

)

=
1

2

(∫ v=u

v=bki

e
(i)
ki

(v) +

∫ v=σ̂iu

v=bki

e
(i)
ki

(σ̂iv)

)
=

1

2

∫ v=u

v=σ̂iu

e
(i)
ki

(v) .

(6.6)
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Figure 9. The branch point bki
and the integration contour in (6.7).

Here the one form ᾱ
(i)
ki

is defined by

ᾱ
(i)
ki

(u′) ≡ α(i)
ki

(∞, u′) =
1

2

∫ v=∞

v=σ̂i∞
B

(i)
ki

(v, u′) . (6.9)

From the properties of the Bergman kernel, one can show that ᾱ
(i)
ki

has the following

analytic properties:

Res
u=∞

ᾱ
(i)
ki

= −1

2
, Res

u=σ̂i∞
ᾱ

(i)
ki

= +
1

2
,∮

C(i)s
ᾱ

(i)
ki

= 0 (s 6= ki) ,

∮
C(i)ki

ᾱ
(i)
ki

= +
1

2
.

(6.10)

Now, it is easy to check that the one form25

∂ (pidu/4πi)

∂S
(i)
ki

(6.11)

also satisfies the same analytic properties. Since (6.10) specifies the one form uniquely, this

means that ᾱ
(i)
ki

is identical to (6.11). Using this fact and the identity,∫ x

0
dx′ ln sinx′ =

i

2

(
Li2(e2ix)− π2

6

)
+ ln(i/2)x− i

2
x2 , (6.12)

we can integrate the relation ∂ lnC123/∂S
(i)
ki

= iδφ
(i)
ki

to get the following integral expression:

ln

(
C123

CBPS
123

)∣∣∣∣
SU(2)R

=
∑

{i,j,k}∈cperm{1,2,3}

[
(Mk−Mi−Mj) ln〈ni, nj〉+

1

2

∮
Γi∪Γj

du

2π
Li2
(
eipi+ipj−ipk

)]

− 1

2

3∑
k=1

Li2(e2ipk) . (6.13)

25One can show (6.11) using the argument similar to the one given in section 3.2: to perturb S
(i)
ki

, one

needs to add to pidu a one form whose period integral does not vanish only along the cycle at infinity and

the cycle around C(i)ki . By comparing the residues carefully, we arrive at (6.11).
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Figure 10. Two examples of type I-I-II three-point functions. In both figures, the fields denoted

by black letters correspond to the vacuum and the fields denoted by red letters correspond to the

magnons. (a) The configuration studied in most of the literature (see e. g. [11]). It amounts to

choosing the polarization vectors as n1 = n3 = ñ1 = ñ3 = (1, 0)t and n2 = ñ2 = (0, 1)t (b)

The configuration used in [16]. Z̃ and ˜̄Y are given by Z̃ = Z + Z̄ + Y − Ȳ and ˜̄Y = Ȳ − Z̄

respectively. The polarization vectors in this case are given by n1 = ñ1 = (1, 0)t, n2 = ñ2 = (0, 1)t

and n3 = ñ3 = (1, 1)t.

Here the summation in the first line denotes the sum over the cyclic permutation (abbrevi-

ated as “cperm”) of {1, 2, 3} and Mi is the total number of magnons in pi. Note that (6.13)

is the contribution from the SU(2)R sector only. For the complete result for the structure

function for the distinct types of three-point functions, to be analyzed in the next section,

it must be combined with the contribution from the SU(2)L sector as well.

6.2 Results and comparison with the literature

The operators forming the three-point functions we are studying transform under a single

group SO(4) = SU(2)L × SU(2)R. For such correlators, there are two distinct classes, as

discussed in [14].

Type I-I-II three-point function. The first class of such three-point functions is called

type I-I-II. These are the ones for which two of the operators have magnon excitations in the

same SU(2), whereas the magnons for the third operator are in the other SU(2). Examples

of such configurations are depicted in figure 10. This class of three-point functions were

studied extensively in the literature and it was shown in [18, 38] that they can be expressed

as a product of two Izergin-Korepin determinants [39, 40]. From such exact expressions,

the semi-classical limit was extracted in [19–21]. In what follows, we shall reproduce it

from our result (6.13).

Let us, for simplicity, consider the case where O1 and O2 belong to SU(2)R and O3

belongs to SU(2)L. The structure constant factorizes into the left and the right parts as

explained in section 2 and each part can be expressed in terms of integrals of the type given

in (6.13). To get an explicit expression for C123 from (6.13), we also need to know the BPS
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three-point functions CBPS
123 . This can be easily computed as they are just a simple product

of Wick contractions. The result is

lnCBPS
123 =

∑
{i,j,k}∈cperm{1,2,3}

Li + Lj − Lk
2

(ln〈ni, nj〉+ ln〈ñi, ñj〉) . (6.14)

Using this expression, we can write down the result for the type I-I-II three-point function as

lnC123 = K + L+R+N , (6.15)

where each part is given by

K =
∑

{i,j,k}∈cperm{1,2,3}

(Qi +Qj −Qk) ln〈ni, nj〉+ (Q̃i + Q̃j − Q̃k) ln〈ñi, ñj〉 , (6.16)

L =
1

2

(∮
Γ3

du

2π
Li2

(
eip3+(L1−L2)/2u

)
+

∮
Γ3

du

2π
Li2

(
eip3+(L2−L1)/2u

))
, (6.17)

R =
1

2

(∮
Γ1∪Γ2

du

2π
Li2

(
eip1+ip2−iL3/2u

)
+

∮
Γ1

du

2π
Li2

(
eip1−ip2+iL3/2u

)
+

∮
Γ2

du

2π
Li2

(
e−ip1+ip2+iL3/2u

))
, (6.18)

N = −1

2

∑
k

∮
Γk

du

2π
Li2
(
e2ipk

)
. (6.19)

Here K denotes the contribution determined purely by kinematics and the SU(2)L,R global

charges li and ri are given by

Q̃1 =
L1

2
, Q̃2 =

L2

2
, Q̃3 =

L3

2
−M3 ,

Q1 =
L1

2
−M1 , Q2 =

L2

2
−M2 , Q3 =

L3

2
.

(6.20)

The second and the third terms L and R contain the dynamical information of the three-

point functions and come from SU(2)L and SU(2)R respectively. The last term N is the

part corresponding to the norms of the Bethe states in the exact quantum expression (see

for instance [11]). To make a direct connection with the results in [21], we now rewrite the

second and the third terms in R by pushing the contour onto the second sheet as we did

in figure 7-(c). Then the two terms read

−
∮

Γ1

du

2π
Li2

(
e−(ip1−ip2+iL3/2u)

)
−
∮

Γ2

du

2π
Li2

(
e−(−ip1+ip2+iL3/2u)

)
. (6.21)

Now using the dilogarithm identity,

Li2

(
1

x

)
= −Li2(x)− π2

6
− 1

2
ln2(−x) , (6.22)

we can show26 that (6.21) is identical to the first term in (6.18). By performing similar

manipulation, we can also show that the first and the second terms in (6.17) are equivalent.

In this way, we can obtain the following alternative expression for L+R:

L+R =

∮
Γ1∪Γ2

du

2π
Li2

(
eip1+ip2−iL3/2u

)
+

∮
Γ3

du

2π
Li2

(
eip3+(L2−L1)/2u

)
. (6.23)

Together with the norm part N , this perfectly agrees with the result in [21].

26The terms coming from the second and the third terms in the identity (6.22) vanish.
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Figure 11. An example of the type I-I-I three-point functions studied in the [16]. Ỹ in the figure

represents Y + Z̄. The polarization vectors are given by n1 = ñ1 = (1, 0)t, n2 = ñ2 = (0, 1)t and

n3 = ñ3 = (1, 1)t.

Type I-I-I three-point function. Let us now turn to the case where all the three

operators have magnons in the same SU(2)-sector. They are called type I-I-I in [24]. An

example of this class of correlators is given in figure 11. As compared to the type I-I-II

correlators, they have much more complicated structure and the exact results known at

weak coupling are given either in terms of the sum of the triple product of determinants [24]

or in terms of the multiple-integral expression based on the separation of variables [41].

Both of these expressions are hard to deal with and their semi-classical limit has not

been computed. Despite such complications for the exact result, the semiclassical result

we derive below turned out to take a remarkably simple form. It would certainly be a

challenging future problem to reproduce it from the expressions given in [24] and [41].

For definiteness, let us consider the case where all the operators belong to SU(2)R. In

this case, there is no dynamical contribution from SU(2)L and we can write down the full

expression using (6.13) as

lnC123 = K +R+N , (6.24)

with each part given by

K =
∑

{i,j,k}∈cperm{1,2,3}

(Qi +Qj −Qk) ln〈ni, nj〉+ (Q̃i + Q̃j − Q̃k) ln〈ñi, ñj〉 , (6.25)

R =
1

2

∑
{i,j,k}∈cperm{1,2,3}

(∮
Γi∪Γj

du

2π
Li2
(
eipi+ipj−ipk

))
, (6.26)

N = −1

2

∑
k

∮
Γk

du

2π
Li2
(
e2ipk

)
. (6.27)
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⊢
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Figure 12. The deformation of the contour due to the branch-point singularities. When the branch

point (denoted by a black dot in the figure) crosses the cut, the contour around it must be deformed

such that it avoids the point.

Here the definitions of li and ri are modified from (6.20) in the following manner:

Q̃1 =
L1

2
, Q̃2 =

L2

2
, Q̃3 =

L3

2
,

Q1 =
L1

2
−M1 , Q2 =

L2

2
−M2 , Q3 =

L3

2
−M3 .

(6.28)

As advertized, the expression above for the structure constant is as simple as the one for

the I-I-II type.

Remark on the integration contour. So far, we have been assuming that the cuts

in pi are sufficiently small. In particular, we used this assumption when we derive the

analyticity of the Wronskians. Let us briefly explain what we expect when we gradually

increase the sizes of the cuts in the integral expression (6.13).

Since the dilogarithm Li2(x) has a branch cut emanating from x = 1, the integrands

of (6.13) contain infinitely many branch-point sigularities at ei(pi+pj−pk) = 1 and e2ipi = 1.

These correspond to the zeros and the poles of the Wronskians respectively. As we increase

the size of the cut, at some point, they start crossing the cut. When this happens, we need

to deform the contour as depicted in figure 12 in order to keep the final result continuous

with respect to the size of the cut. Thus, if we consider the operators with large cuts, the

integration contours will be substantially deformed and will no longer be given by the ones

around the cuts. This would explain the observation made in [21] that one must deform the

contours appropriately in order to reproduce the value obtained by numerics. It would be

important to perform detailed numerical computation and confirm the claim we made here.

7 Application to the strong coupling

One of the important findings of the present work is that, as far as the semi-classical

behaviors are concerned, the same structure and the logic underlie the three point functions

both at weak and strong couplings. In this section we shall apply the machineries developed

so far to the computation at strong coupling.
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7.1 Classical integrability of string sigma model on S3

Let us first give a brief review27 of the classical integrability of the string sigma model

on S3 emphasizing the similarity to and the difference from the Landau-Lifshitz model

discussed in section 3.

For the string sigma model on S3, we can define two sets of Lax pairs as[
∂ +

jz
1− x

, ∂̄ +
jz̄

1 + x

]
= 0 ,

[
∂ +

xj̃z
1− x

, ∂̄ − xj̃z̄
1 + x

]
= 0 . (7.1)

Here x is the spectral parameter and the currents j and j̃ are defined using the embedding

coordinate Yi (i = 1, . . . 4) as

j = G−1dG , j̃ = dGG−1 , G ≡

(
Y1 + iY2 Y3 + iY4

−Y3 + iY4 Y1 − iY2

)
. (7.2)

For each Lax pair, we have an auxiliary linear problem and a monodromy matrix:(
∂+

jz
1− x

)
ψ = 0 ,

(
∂̄+

jz̄
1+x

)
ψ = 0 , Ω(x) ≡ Pexp

[
−
∮ (

jzdz

1−x
+
jz̄dz̄

1+x

)]
, (7.3)(

∂+
xj̃z

1− x

)
ψ̃ = 0 ,

(
∂̄+

xjz̄
1+x

)
ψ̃ = 0 , Ω̃(x) ≡ Pexp

[
−
∮ (

xj̃zdz

1−x
− xj̃z̄dz̄

1+x

)]
. (7.4)

Note that the two sets of quantities defined above are related with each other by j̃ = GjG−1,

ψ̃ = Gψ and Ω̃ = GΩG−1. As with the Landau-Lifshitz model, the quasi-momentum p(x) is

given by the logarithm of the eigenvalue of the monodromy matrix Ω ∼ Ω̃ ∼ diag(eip, e−ip).

The spectral curve is defined also in a similar way as

det
(
y − Ω(x)

)
= det

(
y − Ω̃(x)

)
= (y − eip)(y − e−ip) = 0 . (7.5)

The asymptotic behavior of the quansi-momentum around 0 and ∞ encodes the infor-

mation of the global charges28 as

p(x) ∼ −Q
g

1

x
(x→∞) , p(x) ∼ Q̃

g
x (x→ 0) , (7.6)

where Q and Q̃ are the charges of the SU(2)R and SU(2)L respectively. We should note

that, unlike the Landau-Lifshitz model, the quasi-momentum does not have a pole at

x = 0. Instead, it has poles at x = ±1 with residues given by the worldsheet29 energy E
and momentum P:

p(x) ∼ −
√

(E ± P)/2g

x∓ 1
(x→ ±1) . (7.7)

Owing to this pole structure, the singular points of the spectral curve accumulate to x = ±1

as shown in figure 13.

27For a more detailed account, see [14, 23, 29, 30, 34].
28In the most general situation, the quasi-momentum around x = 0 behaves as p(x) ∼ 2πm+xQ̃/g+ · · · ,

where m is an integer called the winding number. Here we are considering the m = 0 case for simplicity.
29E and P defined here are the energy and the momentum of the S3 sigma model in the conformal

gauge. They therefore do not have definite physical meaning. In particular E is in general different from

the lightcone energy of the string sigma model in AdS5 × S5.
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Figure 13. The structure of the spectral curve at strong coupling. In addition to the branch cuts,

it has infinitely many singular points, denoted by black dots, which accumulate to x = ±1. Those

singular points should be regarded as degenerate branch points.

As in the Landau-Lifshitz sigma model, the filling fractions are given by contour inte-

grals on the spectral curve. However, their explicit forms are slightly modified:

Sk ≡
1

2πi

∮
Ck
p(x)du(x) . (7.8)

Here u(x) is the rapidity variable, given by

u(x) = g

(
x+

1

x

)
, (7.9)

and the integration contour goes around the k-th branch cut30 Ck counterclockwise on the

first sheet.

7.2 SU(2)L and SU(2)R excitations at strong coupling

One of the conspicuous differences from the Landau-Lifshitz model is that the filling frac-

tions given by (7.8) can be negative at strong coupling, and it turns out that the signs of

the filling fractions are tied to whether the state has excitations in the SU(2)L sector or in

the SU(2)R sector.

To understand this point, let us consider the perturbation around the BMN vacuum.

It was shown in [32, 33] that the quasi-momentum receives the following correction when

an infinitesimal cut is inserted at x = x∗:

δp(x) = n
dx

du

1

x− x∗
= n

x2

g(x2 − 1)

1

x− x∗
. (7.10)

30As in the Landau Lifshitz sigma model, we should consider the (infinitely many) singular points satis-

fying e2ip(x) = 1 also as (degenerate) branch cuts.
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Here n is the filling fraction inserted at x = x∗ and the factor dx/du in (7.10) is necessary

due to the definition of Sk in (7.8). We can also compute the energy shift using the results31

in [32, 33] as

δ∆ =
2n

x2
∗ − 1

. (7.11)

In (7.11), the quantity 1/(x2
∗−1) is positive when |x∗| > 1, while it is negative when |x∗| < 1.

Since all the physical excitations around the BMN vacuum must have the positive energy

shift,32 this means that n must be positive if |x∗| > 1 whereas it must be negative when

|x∗| < 1. This is in marked contrast with the situation in the Landau-Lifshitz model, where

we always needed to take n to be positive to describe the physical states. Physically, this

is because the Bethe roots in the region |x∗| < 1 correspond to anti-particles: in order to

construct a physical state from the anti-particles, we need to insert “holes” just as in the

Dirac’s fermi sea.

We can show more generally that the filling fraction defined by (7.8) must be positive

whenever the cut is outside the unit circle whereas they must be negative whenever the

cut is inside the unit circle. Now, to understand the physical meaning of these two types

of cuts, let us consider the relation33 between the global charges and the filling fractions:

Q− Q̃+
∑
k

Sk = 0 . (7.13)

For the BMN vacuum, all the filling fractions are zero and Q and Q̃ are equal. Now, if

we insert cuts outside the unit circle, which have positive filling fractions, we must either

decrease Q or increase Q̃ in order to satisfy (7.13). However, since the BMN vacuum

has the maximal34 Q and Q̃, the only way to achieve this is to decrease Q. This clearly

tells us that those states correspond to the ones with excitations in SU(2)R. By a similar

argument, we can show that the states with cuts inside the unit circle correspond to the

states with SU(2)L excitations. For a summary, see figure 14. In appendix F, we provide an

interpretation of the SU(2)L- and SU(2)R-sectors from the point of view of the full spectral

curve of the AdS5 × S5 sigma model.

7.3 Angle variables, lnC123 and Wronskians at strong coupling

With this knowledge, we now construct the angle variables which compute the derivative

of lnC123, and express them in terms of the Wronskians. Below we shall treat the SU(2)R-

sector and the SU(2)L-sector separately.

31The argument roughly goes as follows: as is clear from (7.10), the perturbation modifies the behavior

around x = ±1. Owing to the Virasoro constraint, the AdS quasi-momentum p̂ around x = ±1 must also

be deformed in the same way. Once we understand how p̂ is modified, we can then read off the energy shift

from its asymptotic behavior at x =∞.
32In other words, one cannot lower the energy starting from the BMN vacuum.
33(7.13) follows from the fact that r and l can be expressed as

Q =
1

2πi

∮
x=∞

p(x)du(x) , Q̃ = − 1

2πi

∮
x=0

p(x)du(x) . (7.12)

34This is clear in particular at weak coupling. Whenever we excite magnons on the spin chain, the total

global charge must always decrease as shown in (3.7).
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Figure 14. The spectral curves for SU(2)R- and SU(2)L-sectors. The curve for SU(2)R (left figure)

contains branch cuts outside the unit circle and the filling fractions are positive. On the other hand,

the curve SU(2)L (right figure) has branch cuts inside the unit circle and the filling fractions are

negative.

SU(2)R-sector. Let us first discuss the states with SU(2)R excitations. To construct

the angle variables, we should study the normalized eigenvectors of the monodromy matrix

as in the Landau-Lifshitz model. One important difference in the present situation is

that we now have two sets of linear problems and monodromy matrices. For the SU(2)R,

the appropriate one to use is (7.3). This is because (7.4) is invariant under the SU(2)R
transformations and is therefore insensible to the SU(2)R excitations.

As in section 3.2, the separated variables can be constructed from the poles γi of the

normalized eigenvector h(x),

h(x) ≡ 1

〈n , ψ+〉
ψ+ . (7.14)

Here ψ± are the solutions to the auxiliary linear problem (7.3) satisfying

Ω(x)ψ±(x) = e±ip(x)ψ±(x) . (7.15)

As shown in [30], a pair of canonically conjugate variables at strong coupling is given not

by (γi,−ip(γi)) but by (u(γi),−ip(γi)), where u(x) is the rapidity defined by (7.9). This

explains the form of the filling fraction given in (7.8).

Now, to construct the angle variables, we need to consider the generating function

of the canonical transformation (3.19) and then differentiate it with respect to Sk. As

explained in the previous subsection, we should simultaneously decrease the global charge

Q when we vary Sk. This amounts to adding to p(x)du(x) a one form whose integral does

not vanish only for the cycle around Ck and the cycle at infinity. As a result, we get

φk = 2π
∑
j

∫ γ3ptj

γ2ptj

ωk , (7.16)

where ωk is the one form satisfying∮
Cj
ωk = δkj ,

∮
0
ωk = 0 ,

∮
∞
ωk = −1 . (7.17)
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Let us next express the derivative of lnC123 in terms of the angle variables. The

arguments leading to (2.38) are by and large applicable also to the present case, except

for one important point. At strong coupling, in addition to the contribution from the S3

part of the sigma model, we should also include the contribution from the AdS part. In

particular, whenever we perturb the filling fraction in the S3 part, we inevitably change

the conformal dimension ∆i, which is a global charge in AdS. This leads to the following

modification of (2.38):

∂ lnC123

∂S
(i)
ki

= iφ
(i)
ki

+ i
∂∆i

∂S
(i)
ki

φ
(i)
∆ . (7.18)

Here φ
(i)
∆ is the angle variable conjugate to ∆i, whose definition is given in appendix H.

Now, following the argument in section 4.3, we can express the angle variable φ
(i)
ki

in

terms of the Wronskians and the result takes the same form as (4.35). We can perform

similar analysis also to the AdS part (see appendix H for details) to get the following

expression of the angle variable φ
(i)
∆ :

φ
(i)
∆ =

i

2
ln

(
|xi − xj |2|xk − xi|2

|xj − xk|2
〈j− , k−〉

〈i− , j−〉〈k− , i−〉

∣∣∣∣
x=∞

〈j+ , k+〉
〈i+ , j+〉〈k+ , i+〉

∣∣∣∣
x=0

)
. (7.19)

Here xi denotes the position of the operator Oi and the eigenvectors i+’s and ĩ+’s are the

solutions to the auxiliary linear problems of the AdS3 sigma model.

SU(2)L-sector. For the SU(2)L-sector, the linear problem we should consider is (7.4),

as it is the one that transforms nontrivially under the SU(2)L transformation.

In this case, the separated variables in the SU(2)L sector can be constructed from the

poles γ̃i of the normalized eigenvector h̃(x),

h̃(x) ≡ 1

〈ñ , ψ̃+〉
ψ̃+ . (7.20)

Here ψ̃+ is the solution to the auxiliary linear problem (7.4) satisfying

Ω̃(x)ψ̃±(x) = e±ip(x)ψ̃±(x) . (7.21)

Then the separated variables can be constructed from the poles at γ̃i as (u(γ̃i),−ip(γ̃i)).
From the separated variables, we can construct the angle variables in the same manner

as for the SU(2)L-sector. The only modification in the present case is that, when we change

the filling fraction Sk, we need to change l but not r as discussed in section 7.2. This can

be achieved by adding to p(x)du(x) a one form whose integral does not vanish only for the

cycle around Ck and the cycle around x = 0. Then we get the expression,

φ̃k = 2π
∑
j

∫ γ3ptj

γ2ptj

ωk , (7.22)

where ωk is the one form satisfying35∮
Cj
ωk = δjk ,

∮
0
ωk = −1 ,

∮
∞
ωk = 0 . (7.23)

35Here the contour for the second integral goes around x = 0 on the first sheet counterclockwise.
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Using these angle variables, we can express the derivative of lnC123 as36

∂ lnC123

∂S
(i)
ki

= iφ̃
(i)
ki

+ i
∂∆i

∂S
(i)
ki

φ
(i)
∆ . (7.24)

Here, as in the previous relation (7.18), φ
(i)
∆ is the AdS angle variable (7.19).

Let us next express the angle variables in terms of the Wronskians. Although the basic

logic in section 4.3 applies also to the present case, we have to modify (4.29) and (4.35)

appropriately as follows:

φ̃k = 2π
∑
j

∫ γ3ptj

γ2ptj

ωk = −2π

∫ 0+

0−

∑
j

ω̃
γ3ptj γ2ptj ;k

= i

∫ 0+

0−
d ln
〈ñ , ψ̃3pt

+ 〉
〈ñ , ψ̃2pt

+ 〉
− ek

= i ln

(
〈ñ , ψ̃3pt

+ 〉〈ñ , ψ̃
2pt
− 〉

〈ñ , ψ̃3pt
− 〉〈ñ , ψ̃

2pt
+ 〉

)∣∣∣∣∣
x=0

− i
∫ 0+

0−
ek .

(7.25)

Here the one forms ω̃PQ;k and ek are defined by (4.26) and (4.28) respectively.

To express (7.25) in terms of Wronskians, we use the highest weight condition again.

In this case, we should study the behavior of the monodromy matrix Ω̃(x) around x = 0

on the first sheet,

Ω̃(x) = 1 + ix

(
S̃3 S̃−
S̃+ −S̃3

)
+ · · · . (7.26)

Applying the argument similar to the one in section 4.3, we arrive at the following form of

the eigenvectors at x = 0 (on the first sheet):

ψ̃+(0) = añ , ψ̃−(0) = a−1iσ2ñ+ bñ . (7.27)

Using (7.25) and (7.27), we finally get the expression for the angle variables in terms

of the Wronskians:

φ̃
(i)
ki

= i ln

(
〈ñi , ñj〉〈ñk , ñi〉
〈ñj , ñk〉

〈j+ , k+〉
〈i+ , j+〉〈k+ , i+〉

∣∣∣∣
x=0

)
− i
∫ 0+

0−
e

(i)
ki
. (7.28)

Here the Wronskians are evaluated on the first sheet and φ̄
(i)
ki

denotes the angle variable

of the operator Oi associated with the ki-th cut whereas ñi is the SU(2)L polarization

vector for Oi. To derive (7.28), we used the fact that the Wronskians among i+’s are

equivalent to the Wronskians among ĩ+’s, 〈i+ , j+〉 = 〈̃i+ , j̃+〉. This is because two sets of

eigenvectors are related with each other by the similarity transformation, ĩ+ = Gi+, and

the Wronskians are invariant under such transformation.

36We shall not present the derivation here since it closely parallels the one for the SU(2)R.

– 46 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
2

⊣⊣

⊣⊣

⊢⊢⊢ ⊢ ⊢ ⊢⊢⊢⊢⊢⊢⊢

⊢⊢⊢ ⊢ ⊢⊢⊢⊢
Figure 15. The positions of the separated variables for two-point functions at strong coupling.

From the orthogonality of on-shell states (7.29), we conclude that the separated variables are either

at the singular points outside the unit circle on the first sheet, or at the singular points inside the

unit circle on the second sheet.

7.4 Semi-classical orthogonality of on-shell states at strong coupling

The key ideas for determining the analyticity of the Wronskians in the Landau-Lifshitz

model were the requirement of the semi-classical orthogonality between two different on-

shell states and the assumption of the continuity between the BPS correlators and the

non-BPS correlators. Here we apply these two ideas to the analysis at strong coupling.

Just as for weak coupling, one can construct, at strong coupling, a different on-shell

state by introducing an infinitesimal cut at the position of the singular point. We should,

however, be careful about whether the perturbation is physical or not: as explained in

section 7.2, in order to obtain a physical state, we should insert a positive filling fraction

when the singular point is outside the unit circle, whereas we should insert a negative filling

fraction when the singular point is inside the unit circle. With this in mind, we now impose

the orthogonality condition

〈ψ|ψ + δψ〉 = 0 . (7.29)

Here δψ must correspond to a physical perturbation in the sense explained above. Now

it is not so hard to verify that the argument in section 4.2 applied to the present case

leads to the conclusion that the separated variables are at the singular points outside

the unit circle on the first sheet, or at the singular points inside the unit circle on the

second sheet (see figure 15). Then, repeating the argument37 given in section 5.2, with the

above modification taken into account, we can determine the poles and the zeros of the

Wronskians. The results are summarized in table 4.

Now, using these analyticity properties, we can solve the Riemann-Hilbert problem

and determine the individual Wronskians as described in section 5.3. The main difference

in the present case is that the Wronskians change the analyticity when they cross |x| = 1.

37Since the monodromy relation at strong coupling takes exactly the same form as (2.32), the

equation (5.7) holds without modification.
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1/ sin pi 1/ sin pj sin
pi + pj + pk

2
sin

pi + pj − pk
2

|x| > 1 〈i+, j+〉 X X X X

〈i−, j−〉
|x| < 1 〈i+, j+〉

〈i−, j−〉 X X X X

1/ sin pi 1/ sin pj sin
pi − pj + pk

2
sin
−pi + pj + pk

2

|x| > 1 〈i+, j−〉 X X

〈i−, j+〉 X X

|x| < 1 〈i+, j−〉 X X

〈i−, j+〉 X X

Table 4. The analytic properties of 〈i±, j±〉 on the [u, u, u]-sheet at strong coupling.

This leads to extra integration contours around the unit circle. Once the Wronskians are

determined, we can compute the angle variable and then determine the structure constants

using (7.18) and (7.24). The results will be given explicitly in the next subsection.

7.5 Results and discussions

We now write down the results for the three-point functions at strong coupling explicitly

and compare them with the results in [14].

Type I-I-II three-point functions. Let us first consider the type I-I-II three-point

functions. Below we assume that O1 and O2 belong to SU(2)R while O3 belongs to SU(2)L.

For such a three-point function, the result has the following structure:

lnC123 = K +DS −DAdS . (7.30)

Here K is the kinematical part given by

K =
∑

{i,j,k}∈cperm{1,2,3}

(Qi +Qj −Qk) ln〈ni, nj〉+ (Q̃i + Q̃j − Q̃k) ln〈ñi, ñj〉

− (∆i + ∆j −∆k) ln |xi − xj | ,
(7.31)

where Qi and Q̃i are the S3 global charges of the operator Oi, and the term in the second

line comes form the AdS part. DS and DAdS denote the dynamical parts coming from the

S3 part and AdS3 part respectively. Both DS and DAdS consist of several factors as

DS = (L+R)S +NS , DAdS = (L+R)AdS +NAdS , (7.32)

– 48 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
2

⊣ ⊣

≾≾≾ ≾≾ ≾≾≾≾≾
≾≾≾≾≾ ≾≾≾≾≾
≾≾≾ ≾≾≾≾≾ ≾≾

⊡∱⊡∲
⊡∳
≕

Figure 16. Integration contours for the type I-I-II three-point functions. Γ1 and Γ2 encircle

counterclockwise the branch cuts of p1 and p2 respectively, whereas Γ3 goes around the branch cuts

of p3 clockwise. U is the contour which goes counterclockwise around the unit circle.

and each factor is given as follows:

(L+R)S =
1

2

(∮
2U

du

2π
Li2
(
eip1+ip2+ip3

)
+

∮
Γ1∪Γ2∪2U

du

2π
Li2
(
eip1+ip2−ip3)

+

∮
Γ1∪Γ3∪2U

du

2π
Li2
(
eip1−ip2+ip3

)
+

∮
Γ2∪Γ3∪2U

du

2π
Li2
(
e−ip1+ip2+ip3

))
,

NS = −1

2

∑
k

∮
Γk∪2U

du

2π
Li2
(
e2ipk

)
,

(7.33)

(L+R)AdS =
∑

{i,j,k}∈cperm{1,2,3}

∮
U

du

2π
Li2

(
eip̂i+ip̂j−ip̂k

)
,

NAdS = −
∑
k

∮
U

du

2π
Li2

(
e2ip̂k

)
.

(7.34)

The contours of integration are depicted in figure 16 and p̂i is the AdS quasi-momentum

given by

p̂i =
∆ix

2g(x2 − 1)
. (7.35)

A few remarks are in order. Firstly, as shown in (7.33), the integrals along the unit

circle are multiplied by the extra factor of 2 (denoted by 2U) as compared to the integrals

along the cuts.38 This factor can be deduced by carefully applying the argument given in

section 6 to the strong coupling analysis. Roughly speaking, this is because the integrals

along the unit circle exist on every sheet of the eight-sheeted Riemann surface whereas the

integrals along the cuts exist only on some (roughly the half) of the sheets (see figure 8).

Secondly, each integral along U is actually divergent owing to the poles in pi at x = ±1.

However, such divergences cancel out when we combine all the terms in (7.30). To illustrate

this point, let us consider the integral∫
U

du

2π
Li2

(
ei(p1+p2+p3)

)
. (7.36)

38S.K. would like to thank Y. Jiang, I. Kostov and D. Serban for the correspondence related to this point.
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Since we are interested in the behavior around x = ±1, where the integrand develops

singularities, we can approximate the quasi-momenta by their asymptotic form just as

in (7.35), namely pi(x) ∼ ∆ix/(2g(x2 − 1)). To see the behavior in the vicinity of x = ±1

on the unit circle, we parametrize the Zhukowsky variable as x = eiθ near x = +1 and as

x = −e−iθ near x = −1 and expand the expression for pi(x) above with respect to θ. In

both cases, the result reads

pi(x) ∼ − i

2θ
+O(θ) . (7.37)

Plugging this expression into the dilogarithm, we obtain

Li2

(
ei(p1+p2+p3)

)
∼ Li2

(
e(∆1+∆2+∆3)/(4gθ)

)
. (7.38)

Since Li2(0) is finite, there will be no singularity when θ approaches zero from below (i.e.

when the integration variable is on the lower semi-circle). On the other hand, when θ

approaches zero from above, the argument of the dilogarithm diverges and we need to use

its asymptotic expression

Li2(z) ∝ −1

2
log2(−z)− π2

6
+O(z−1) (|z| → ∞) , (7.39)

to obtain

Li2

(
ei(p1+p2+p3)

)
∼ −1

2

(
∆1 + ∆2 + ∆3

4gθ
± πi

)2

. (7.40)

Here the sign in front of πi depends on the choice of the branch of the logarithm. However,

as we see below, the final result does not depend on the choice of this sign. As can be seen

clearly, this expression contains a double pole and a single pole with respect to θ. Now if

we combine all the terms contained in (7.30), we get

−1

2

[(
∆1 + ∆2 + ∆3

4gθ
± πi

)2

+

(
∆1 + ∆2 −∆3

4gθ
± πi

)2

+

(
∆1 −∆2 + ∆3

4gθ
± πi

)2

+

(
−∆1 + ∆2 + ∆3

4gθ
± πi

)2

−
(

2∆1

4gθ
± πi

)2

−
(

2∆2

4gθ
± πi

)2

−
(

2∆3

4gθ
± πi

)2
]
,

(7.41)

which add up to the finite result −(π2)/2. This confirms the absence of the singularities

in the full expression (7.30). Thirdly, as in the weak coupling, the integrals along the cuts

can be re-expressed by pushing some of the contours onto the second sheet:

(L+R)S|along Γi
=

∮
Γ1∪Γ2

du

2π
Li2
(
eip1+ip2−ip3)+

∮
Γ3

du

2π
Li2
(
eip3+ip1−ip2) . (7.42)

Here the first term can be interpreted as the contribution from the SU(2)R whereas the

second term can be regarded as coming from the SU(2)L. However, such factorization is not

complete at strong coupling since the integrals along the unit circles cannot be rewritten

in a similar manner.
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Relation with the hexagon form factor. Let us make a comment on the relation

with the hexagon form factor approach. As given in [16], the result from the hexagon

form factor consists of two parts: one is the asymptotic part, which is given by the sum

over partitions of the physical rapidities, and the other is the wrapping correction, which

is the contribution from the mirror particles. In [16], they showed in simple cases that the

integration along the branch cuts arises from the asymptotic part whereas the integration

along the unit circle contains the first leading wrapping correction. More recently, it was

demonstrated in [42] that, by partially resumming the mirror particle contributions, one

could get an integral of the dilogarithm along the unit circle and correctly reproduce a

part of our results (7.30). It would be an very interesting future problem to try to resum

all the hexagon form factors at strong coupling and reproduce our full result, which would

account for various more complicated processes involving the mirror particles.

BPS limit and Frolov-Tseytlin limit. We now study several limits of the result (7.30)

and perform the consistency checks. Let us first consider the three-point functions of the

BMN vacuum. As the quasi-momentum for the BMN vacuum does not have any branch

cuts, we only have integrals around the unit circle in that case. Furthermore, since the

quasi-momenta in S3 and AdS3 coincide for the BMN vacuum, the two dynamical factors

become identical, i.e. DS = DAdS, and cancel out in (7.30). Therefore we only have a

contribution from the kinematical part in the final answer. This is consistent with the fact

that the BPS three-point function does not receive quantum corrections.

Let us next study the Frolov-Tseytlin limit [26] by taking the charges r and l to be

much larger than the coupling constant g while keeping the mode numbers of the cuts to

be finite. In terms of the spectral curve, this amounts to pushing the branch cuts far away

from the unit circle. More precisely, the branch cuts for p1 and p2 are pushed out into the

region |x| � 1 whereas the branch cuts of p3 are confined to the region |x| � 1. In such

a limit, we can approximate the quasi-momenta on the unit circle by the quasi-momenta

of the BMN vacuum. As explained above, for the BMN vacuum, integrals along the unit

circle cancel out between S3 and AdS3. Thus, in the Frolov-Tsyetlin limit, the integrals

along the unit circle become negligible.

To study the remaining contributions, it is convenient to express the result (7.30) in

terms of p̄3 defined by

p̄3(x) ≡ −p3(1/x) . (7.43)

As explained in appendix F, p̄ can be interpreted as the quasi-momentum defined on a

different sheet in the full eight-sheeted spectral curve and the relation (7.43) is nothing but

the Z4 automorphism of the string sigma model in AdS5 × S5. It is p̄3 that is connected

to the quasi-momentum for the SU(2)L-sector at weak coupling. Now, to write down

the expression in the Frolov-Tseytlin limit, we need to know the limiting forms of the

quasi-momenta and the rapidity variable. In the region |x| � 1, p1(x) and p2(x) become

the quasi-momenta in the Landau-Lifshitz model, whereas if |x| � 1 they approach their
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asymptotic forms around x = 0,

p1,2 ∼
Q̃1,2

g
x . (7.44)

Similarly, p̄3(x) becomes the quasi-momentum of the Landau-Lifshitz model if |x| � 1

whereas it approaches

p̄3 ∼
Q3

g
x , (7.45)

in the region |x| � 1. As for the rapidity variable, it takes the following asymptotic form:

u(x) ∼

{
gx |x| � 1

g/x |x| � 1
. (7.46)

Using these asymptotic forms and replacing the global charges Qi and Q̃i with the spin-

chain variables as given in (6.20), we can verify that (7.30) in the Frolov-Tseytlin limit

coincides with the result at weak coupling (6.15).

One can also study the next-leading order correction to the Frolov-Tseytlin limit and

compare it with the results in [43]. In [43], based on the previous results at strong cou-

pling [14], they concluded that the next-leading order correction to the Frolov-Tseytlin

limit agrees with the one-loop structure constant at weak coupling except for integration

contours. Since we now have contours39 which coincide with the weak coupling ones in the

Frolov-Tseytlin limit, the results match also at this order. For details, see section 6 of [43].

Type I-I-I three-point functions. Next we consider the Type I-I-I three-point func-

tions. As in section 6.2, we consider the case where all the operators belong to SU(2)R.

Also in this case, the result can be expressed as

lnC123 = K +DS −DAdS . (7.47)

Here K and DAdS are given by the same expressions as before, namely (7.31), (7.32)

and (7.34). On the other hand, DS for the Type I-I-I three-point function is given by

DS = (L+R)S +NS , (7.48)

with

(L+R)S =
1

2

∑
{i,j,k}∈cperm{1,2,3}

(∮
Γi∪Γj∪2U

du

2π
Li2
(
eipi+ipj−ipk

))
,

NS = −1

2

∑
k

∮
Γk∪2U

du

2π
Li2
(
e2ipk

)
.

(7.49)

The integration contours in (7.49) are depicted in figure 17.

We can study the Frolov-Tseytlin limit also in this case and the result again matches

with the result at weak coupling (6.24).

39The relation between the results in this paper and the results in [14] will be briefly discussed later.
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Figure 17. Integration contours for the type I-I-I correlators. Γi encircles the branch cuts of pi
counterclockwise. Here again U is the contour that goes counterclockwise around the unit circle.

Comparison with the result in [14]. Before ending this section, let us comment on

the relation with the previous results for the three-point functions at strong coupling [14].

In [14], we determined the analyticity of the Wronskians assuming that the saddle-point

configuration of the worldsheet is smooth except at the positions of the vertex operators.

The integration contours obtained under this assumption are more complicated than what

we have found in this paper and the result in the Frolov-Tseytlin limit did not quite

agree with the result at weak coupling. This implies that the assumption of smoothness

is not quite correct and the saddle-point configuration has extra singularities. Although

counterintuitive it may seem at first thought, such extra singularities are not so uncommon

as already pointed out in [14]. For instance, consider the finite gap solution for the two-

point function whose spectral curve contains more than one cuts. Such a solution is given

in terms of the ratio of the theta functions defined on the higher-genus Riemann surface.

Although those ratios are free of singularities on the Lorentzian worldsheet, they have

infinitely many poles40 on the Euclidean worldsheet, which is more appropriate for studying

the correlation functions. Such extra poles, if present, can affect the argument in [14] and

change the integration contours. By contrast, the logic presented in this paper is based

on the orthogonality of the on-shell states, which is the exact quantum property of the

system, and therefore would be more universal and reliable.

8 Conclusion and prospects

In this paper, we studied the semi-classical three-point function in the SU(2)-sector of

N = 4 super Yang-Mills theory in four dimensions at weak coupling. The key idea was to

express it as a saddle-point value of the coherent-state path integral and utilize the classical

integrability of the Landau-Lifshitz model. This revealed the nature of the semi-classical

structure constant as a generating function of the angle variables. For the computation

of the angle variables, many of the machineries developed for the strong coupling analysis

could be transplanted, the most important among which are the expression of the angle

variables in terms of the Wronskians and the functional equation for the Wronskians. To

solve the functional equation, we developed a new logic to determine the analyticity, which

40Such poles do not correspond to the insertion of vertex operators and do not affect the monodromy

relation.
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is based on the orthogonality of two different on-shell states. The final results agree with

the results in the literature and also make predictions for as-yet-unknown semi-classical

structure constants for certain types of three-point functions.

We then re-examined the strong coupling analysis based on our new logic. It led to

a modification of the integration contours of the result obtained in [14] and rendered the

result in the Frolov-Tseytlin limit to be in agreement with the weak coupling one. In

addition, the new result is consistent with the recent hexagon form factor approach [16].

As for the prospects, of paramount importance is to further explore the implication of

the cognate integrability structure at weak and strong coupling, which we discussed in this

paper. Given the importance of the monodromy relation at the tree level and at strong

coupling, a natural next step is to study it at higher loops. This may lead to a first-principle

derivation of the integrable structure for three-point functions at finite coupling. Another

important structure worth mentioning in this regard is the striking similarity between our

functional equations (5.7), which are the direct consequence of the monodromy relation, and

the relations41 constraining the lightcone string vertex in the pp-wave background [17]. It

would be interesting to figure out the reason for this similarity. More generally, clarifying

the integrable structure threading gauge and string theories would be a cornerstone for

deeper understanding of the AdS/CFT correspondence. It may also yield practical merit if

it leads to a new formulation of integrability for structure constants, which is more powerful

than the existing approaches.

Apart from such challenging and far-reaching questions, there are numerous future

directions that could be explored with the results and the techniques developed in this

paper. Below we briefly address some of them.

Semi-classical limit of type I-I-I three-point functions. In this paper, we made

predictions for the semi-classical limit of type I-I-I three-point functions at weak cou-

pling (6.24). It would be an interesting problem to reproduce it from the exact quantum

expression given in [24, 41]. Since the result in [24, 41] has a more complicated struc-

ture than the type I-I-II three-point function, we probably need to develop new tools for

studying it.

Resummation of the hexagon form factor at strong coupling. Another interesting

direction of research is to analyze the strong-coupling semiclassical limit using the hexagon

form factor formalism. It was shown in [16, 42] that a part of our result can be reproduced

from the resummation of the hexagon form factor at strong coupling. It is important to

further push this line of research and try to obtain the full strong coupling result from the

hexagon form factor. This would be a litmus test for the hexagon form factor approach.

One-loop corrections at strong coupling. In the spectral problem, the power of the

classical integrability and the associated spectral curve was not limited to the leading

strong coupling limit. It also provided an efficient framework to study one-loop corrections

around the classical solution [32, 33]. The main idea there was to describe fluctuations

as infinitesimal cuts inserted in the classical spectral curve. In this paper, we employed

41See (5.26) and (5.27) in [17].
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a very similar idea to determine the analytic properties of the Wronskians. It would

then be extremely interesting, by extending our argument, to try to include the one-loop

corrections. As a first step, it may be simpler to first analyze the weak coupling limit

since the next-leading correction in the semi-classical limit was already computed by other

means [44].

Application to other quantities. It would also be interesting to apply the method

discussed here to other quantities in N = 4 SYM. Of particular interest among them is the

four-point function. The four-point function at the tree-level was studied in the paper [45]

using integrability. However, even at that level, the resultant expression is rather involved

owing to the complicated combinatorics of Wick contractions. In order to uncover a hidden

structure, it might be helpful to study their semi-classical limit using our formalism. Such

a structure is already known at strong coupling where it was shown that the four-point

function of semi-classical operators can be described by the functional equation called χ-

system [46]. It would be interesting to try to construct the weak-coupling counterpart

of the χ-system. In addition, it might also be possible to use our framework to study

non-planar observables such as the non-planar dilatation operator.

Entanglement entropy in integrable spin chains and field theories. Another

interesting possibility is to apply the ideas and the techniques of this paper to the com-

putation of entanglement entropy in general integrable spin chains and field theories. To

compute the entanglement entropy, one must first construct a reduced density matrix. In

the case of spin chains, this can be achieved by preparing two identical states, cutting them

into two halves and gluing the left (or the right) halves. This procedure is similar to the

tailoring method for the three-point function [11]. Thus, it may be possible to study the

entanglement entropy of the semi-classical state, which contains a large number of long

wave-length excitations, using the formalism developed in this paper. This would be of

particular interest since the entanglement entropy for such a highly excited state is difficult

to compute by other methods.

We hope to revisit some of these questions in the future.
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A From Heisenberg spin chain to the Landau-Lifshitz model

In this appendix, we shall give a brief description of how to obtain the Landau-Lifshitz

model from the Heisenberg spin chain in the semi-classical limit.

Coherent state representation of SU(2). To pave our way, we shall quickly review

the coherent state representation of a Heisenberg spin chain (see [47] for the description

relevant to the present context) and comment on its physical meaning. As mentioned in the

main text, it is a representation of SU(2) on the functions on the coset space SU(2)/U(1),

which is isomorphic to a unit sphere.

In this subsection we shall focus on a single spin 1/2 state. Let |↑〉 be the eigenstate

of S3 with the eigenvalue 1/2. Then, a U(1) operator h = eiαS3 around this direction only

produces a phase and an arbitrary SU(2) element g can be decomposed as g = Ωh, where

Ω belongs to the coset SU(2)/U(1). Thus, g|↑〉 = Ω|↑〉eiα/2. On general grounds, Ω can be

parametrized using the remaining generators S± = S1 ± iS2 as Ω(η) = exp (ηS+ − η̄S−),

where η is a complex parameter. For the Landau-Lifshitz model, one usually adopts the

representation where the target space is easily seen to be a unit sphere. This is achieved

by the choice of the parametrization42 η = −(θ/2)e−iφ. Then

Ω(η)|↑〉 = exp (−iθ(S2 cosφ− S1 sinφ)) |↑〉 . (A.1)

Now let n0 = (0, 0, 1) be a unit vector in the z direction and n = (sin θ cosφ, sin θ sinφ, cos θ)

be a unit vector in a general direction. Then, it is easy to see that |n0 × n| = sin θ and

n0 × n

|n0 × n|
= (− sinφ, cosφ, 0) . (A.2)

Comparing with (A.1) we find

|n〉 ≡ Ω(η)|↑〉 = exp

(
−iθ n0 × n

|n0 × n|
· ~S
)
|↑〉 = cos

θ

2
|↑〉+ eiφ sin

θ

2
|↓〉 . (A.3)

At this point an alert reader may have noticed that the pair of coefficients (cos(θ/2),

eiφ sin(θ/2)) coincide with the components of the so-called monopole harmonics, introduced

in [48, 49] as Yq,l,m defined on a unit sphere, in the case where q = eg = 1
2 , with e and g,

respectively, being the electric charge of a particle on the sphere and the magnetic charge

of a monopole situated at the origin. Actually, as it is a section of a non-trivial U(1) bundle

and it has to be defined in two overlapping open sets, like those around the northern and

the southern hemispheres, separately in such a way that in the overlap its expressions are

connected by a non-trivial gauge transformation. What is happening is that in order to

produce a spin 1/2 representation out of a vector n, which obviously carries spin 1, it must

be combined with an extra spin of magnitude 1/2, which can be interpreted as provided

by a “minimum” charge-monopole system.

The monopole harmonics associated with the vector n as above corresponds to

Y 1
2
, 1
2
,m(n), (m = ±1

2). As described in [48], an important property of the monopole har-

monics is that under the action of a rotation matrix D(n′)m′m around the direction n′,

42The minus sign in front in η is a convention to conform to the one in [48].
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the monopole harmonics does not simply rotate into a linear combination of monopole

harmonics. This is because, under the rotation, while the open sets with respect to which

the monopole harmonics is defined get rotated into different regions, the gauge connection

Aµ(x) is not changed. Therefore in order to recover the same relative configuration of the

open sets and the form of the connection one must make a suitable gauge transformation of

Aµ(x). This produces an extra U(1) phase factor of the form exp(iΦ(n, n′)q), where Φ(n, n′)

is the area of the triangle on the unit sphere the vertices of which are defined by n, n′ and

the vector n0. It is clear from the preceding discussions that this phase, to be called the

Wess-Zumino phase, is an essential ingredient in realizing the spin 1
2 representation in

terms of the coherent states |n〉.
An important quantity in which this phase appears is the inner product of the coherent

states. One can show by direct calculation that

〈n′|n〉 = cos
θ

2
cos

θ′

2
+ ei(φ−φ

′) sin
θ

2
sin

θ′

2

= exp

(
i
Φ(n′ , n)

2

)√
1− (n− n′)2

4
, (A.4)

where

tan
Φ(n′ , n)

2
=

(n′ × n) · n0

1 + n0 · n + n0 · n′ + n · n′
. (A.5)

More intuitive expression of the Wess-Zumino phase will also be given shortly.

Before leaving this subsection, let us record two basic relations we will use. One is the

(over)completeness relation which reads

1 =
1

2π

∫
d3n δ(n2 − 1)|n〉〈n| . (A.6)

This can be readily verified by substituting the explicit form of |n〉 given in (A.3) and

performing the integration. One then obtains that the r.h.s. is indeed equal to |↑〉〈↑ | +
|↓〉〈↓ | = 1. Another basic relation of use is 〈n|~S|n〉 = 1

2n, which can also be checked

with ease.

Brief derivation of the Landau-Lifshitz model. Making use of the coherent state

representation of the SU(2) spin 1/2 state explained above, we now briefly describe how

the Landau-Lifshitz model arises from the Heisenberg spin chain in the semiclassical limit.

Let us denote by |~n〉 = |n1〉⊗ · · · ⊗ |nL〉 a coherent state of the spin chain and consider

the transition amplitude 〈~nfinal|e−iHt|~ninitial〉 from the initial state to the final state, through

the Hamiltonian of the Heisenberg spin chain given (up to a convenient constant) by

H = 4g2
L∑
i=1

(
1

4
− ~Si~Si+1

)
. (A.7)

By the standard procedure, namely by performing the time evolution in infinitesimal steps

with the insertions of the completeness relation (A.6) at each step, one obtains the coherent
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state path-integral representation

〈~nfinal|e−iHt|~ninitial〉 =

∫
D~n(t)eiS , (A.8)

with the action S given by

S =
∑̀
i=1

∫
dt

[
(ni × ∂tni) · n0

2(1 + ni · n0)
− g2

2
(ni − ni−1)2

]
. (A.9)

By taking the continuum limit of this expression, we obtain the well-known action of the

Landau-Lifshitz model.

S =

∫
dt

∫ `

0
dσ

[
(n× ∂tn) · n0

2(1 + n · n0)
− g2

2
∂σn · ∂σn

]
. (A.10)

The first term on the r.h.s. represents the Wess-Zumino phase produced through the inner

product as given in (A.4) and (A.5).

Just as in the Wess-Zumino-Novikov-Witten model, for example, such a Wess-Zumino

term has a representation in terms of an integral one dimension higher (in this case as a

three dimensional integral) of the form

1

2

∫ 1

0
ds

∫
dt

∫ L

0
dσ n · (∂tn× ∂sn) , (A.11)

where s-dependence of n is defined such that n(s = 1) = (0, 0, 1) and n(s = 0) = n. The

expression (A.11) has a rather intuitive meaning. Since n is a unit vector, ∂tn and ∂sn are

perpendicular to n. Therefore the exterior product ∂tn × ∂sn is in the direction of n and

n · (∂tn× ∂sn) dtds is nothing but the infinitesimal area element. Hence the integration

gives the area and together with the factor of 1/2, which is the value of q = eg discussed

in the previous subsection, we get the exponent of the Wess-Zumino phase factor.

B Poisson brackets and the r-matrix for the Landau-Lifshitz model

As described in section 3.2, the classical r-matrix for the Landau-Lifshitz model can be

obtained quickly as the classical limit of the well-known form of the quantum R-matrix of

the Heisenberg spin chain.

However, it would be of interest to supply the first principle derivation of the r-matrix

from the computation of the Poisson brackets among the coherent state variables ni(σ, τ).

Below we give a sketch of such a derivation.

Poisson brackets. First we derive the Poisson (Dirac) bracket structure of the Landau-

Lifshitz model. The most straightforward way is to start from the action (3.1), regard ~n as

the fundamental variable and derive the Dirac brackets, taking into account the constraints

~n2 = 1. However, in practice it turned out to be much easier to first parametrize the 2-

sphere by θ and φ and then compute the Dirac brackets. In terms of these angle variables,

the action of the Landau-Lifshitz sigma model takes the form

S = −
∫
dτdσ

[
1

4
(cos θ∂τφ+ φ sin θ∂τθ) +

g2

2

(
∂σθ∂σθ + sin2 θ∂σφ∂σφ

)]
. (B.1)
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From this action, the conjugate momenta can be determined as

Πφ = −1

4
cos θ , Πθ = −1

4
φ sin θ . (B.2)

Evidently, these two equations should be regarded as the constraints. The commutation

relation of these two constraints is given by{
Πφ +

1

4
cos θ

∣∣
σ
,Πθ +

1

4
φ sin θ

∣∣
σ′

}
= −sin θ

2
δ(σ − σ′) . (B.3)

Thus, the Dirac bracket for any dynamical variables A and B for this system is given by

{A,B}D = {A,B}+

∫
dσ

2

sin θ

({
A,Πφ +

1

4
cos θ

}{
Πθ +

1

4
φ sin θ,B

}
−
{
A,Πθ +

1

4
φ sin θ

}{
Πφ +

1

4
cos θ,B

})
. (B.4)

Applying this formula to the variables ni(σ) and nj(σ) at equal time yields

{ni(σ) , nj(σ
′)}D = 2εijknkδ(σ − σ′) , (B.5)

which is nothing but the classical commutation relations for the spin variables. (In what

follows, we omit writing the subscript D.)

Classical r-matrix. Having derived the commutation relations for the variables ~n, we

can now derive the Poisson bracket between the Lax matrices and determine the classical

r-matrix. The Poisson bracket between Jσ given in (3.3) can be calculated as

{Jσ(σ|u) ⊗, Jσ(σ′|v)} = − 1

16π2uv
{n(σ) · ~σ ⊗, n(σ′) · ~σ}

= −δ(σ − σ′) 1

8π2uv
εijknk(σ)σi ⊗ σj . (B.6)

One can simplify this expression by using the Fiertz identity

(σa)ij(σb)kl =
∑
c,d

tr (σcσaσdσb)

4
(σc)il(σd)kj , (B.7)

where the indices c and d run from 0 to 3 and σ0 is defined to be equal to 1. Applying this

identity, the factor εijkσi ⊗ σj can be re-expressed as

εijk(σi)αβ(σj)γδ =
i

2
((σk)αδδβγ − (σk)βγδαδ) . (B.8)

Utilizing such formulas, we can arrive at the following expression43 for the Poisson bracket:

{Jσ(σ|u) ⊗, Jσ(σ′|v)} = δ(σ − σ′) [r(u− v) , − (Jσ(u)⊗ 1 + 1⊗ Jσ(v))] . (B.9)

43To arrive at the expression (B.9), we use (uv)−1 =
(
v−1 − u−1

)
(u− v)−1.
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In this expression, r(u) is the so-called classical r-matrix, which in this case is given by

r(u) =
P
u
. (B.10)

The symbol P denotes the operator which permutes the two spaces in the tensor product:

V1 ⊗ V2 7−→ V2 ⊗ V1. It is well-known44 that when the Poisson bracket between the Lax

matrices can be expressed in terms of the classical r-matrix as in (B.9), the Poisson bracket

between the monodromy matrices can also be expressed by the classical r-matrix as

{Ω(u)⊗, Ω(v)} = [Ω(u)⊗ Ω(v) , r(u− v)] . (B.11)

C Highest weight condition on the semi-classical wave function

Here we study constraints from the highest weight condition on the semi-classical wave func-

tion and show that the constant vector n appearing in the normalization condition (3.15)

must be equal to the polarization vector.

As explained in section 2.2, the states constructed on the rotated vacuum characterized

by the polarization vector n = (n1, n2)t satisfy the highest weight condition

S′+|Ψ〉 = 0 , (C.1)

with S′+ given in (2.22). To understand the consequence of this condition in the semi-

classical limit, let us recall the form of the semi-classical wave function (in the action-angle

basis),

Ψ = exp

(
i
∑
k

Skφk

)
. (C.2)

As explained in section 3.2, the angle variables φk can be constructed from the poles of

the factor 〈n′, ψ+〉, where n′ is a constant vector which defines the normalization condi-

tion.45 Thus, in order to gurantee the highest weight property of the semi-classical wave

function, we need to choose n′ such that 〈n′, ψ+〉 is invariant under the transformation

generated by S′+.

For this purpose, let us first go back to the Heisenberg spin chain. In the Heisenberg

spin chain, the Lax operator is given by

L(u) =

(
1 + iS3/u iS−/u

iS+/u 1− iS3/u

)
. (C.3)

By the straightforward computation, one can show that it transforms under eaS
′
+ as

eaS
′
+L(u)e−aS

′
+ =AL(u)A−1 , (C.4)

44A proof of (B.11) below can be found in page 106–107 of [50].
45Thus in literature this vector is usually referred to as the normalization vector.
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where the matrix A is given by

A = N

(
1 −a
0 1

)
N−1. (C.5)

Now, since the Landau-Lifshitz sigma model is obtained by taking the continuum limit

of the Heisenberg spin chain, (C.4) implies the following transformation rule of the Lax

matrix of the Landau-Lifshitz sigma model:

eaS
′
+

(
Jσ

)
= AJσA

−1 . (C.6)

This means that a solution ψ+ to the auxiliary linear problem transforms as ψ+ → Aψ+

in order to compensate for the transformation (C.6). Thus the Wronskian 〈n′, ψ+〉 gets

transformed as

〈n′, ψ+〉 7→ 〈n′, Aψ+〉 = 〈A−1n′, ψ+〉 , (C.7)

where the equality follows from the SL(2) invariance of the skew-symmetric product. It is

then easy to see that the invariance under the transformation requires n′ = A−1n′ and this

leads to the identification n′ = n.

D Construction of the separated variables

In this appendix, we will describe how the separated variables are obtained for the Landau-

Lifshitz model.

Expressions of the Poisson brackets obtained from the r-matrix. First, let us

give a list of Poisson bracket relations between the components of the monodromy matrix

written as

Ω(u) ≡

(
A(u) B(u)

C(u) D(u)

)
. (D.1)

With the form of the r-matrix given in (3.12) and the basic Poisson bracket formula (3.11)

involving the r-matrix, the Poisson bracket relations between the components of Ω(u) can

be easily computed as

{A(u),B(v)}=
−1

u−v
(A(u)B(v)−A(v)B(u)), {A(u), C(v)}=

1

u−v
(A(u)C(v)−A(v)C(u)),

{A(u),D(v)}=
1

u−v
(B(u)C(v)−B(v)C(u)), {B(u), C(v)}=

1

u−v
(A(u)D(v)−A(v)D(u)),

{B(u),D(v)}=
1

u−v
(B(u)D(v)−B(v)D(u)), {C(u),D(v)}=

−1

u−v
(C(u)D(v)−C(v)D(u)),

{A(u),A(v)}={B(u),B(v)} = {C(u), C(v)} = {D(u),D(v)} = 0 . (D.2)

These basic relaitions will be utilized in what follows.
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Separated variables à la Sklyanin. Having displayed the explicit expression for the

Poisson brackets, we now construct the separated canonically conjugate variables by the

so-called Sklyanin’s magic recipe [31]. In this method, such variables are obtained as

associated to the poles of the normalized eigenvector h of the monodromy matrix, defined

in the following way:46

Ω(u)h(u) = eip(u)h(u) , 〈n , h〉 = 1 . (D.3)

Here n = (n1, n2)t is the polarization vector. To simplify the construction it turns out to be

convenient to first transform the monodromy matrix Ω̃(x) by a similarity transformation

into the form

Ω̃(x) ≡

(
n2 n1

−n1 n2

)
Ω(x)

(
n2 −n1

n1 n2

)
≡

(
Ã(x) B̃(x)

C̃(x) D̃(x)

)
. (D.4)

As the Lax pair equations are invariant under such a transformation, the components of Ω̃

satisfy the same Poisson-bracket relation as those of the components of Ω displayed in (D.2).

Let us denote the poles of h by γi. Then the components of Ω̃ satisfy the following

relation.47

B̃(γi) = 0 , D̃(γi) = Ã(γi)
−1 = eip(γi) . (D.5)

In what follows, we make use of these relations to derive the commutation relations between

γi’s and p(γi)’s.

We start from the analysis of {B̃(u) , B̃(v)} = 0. Since B̃ has zeros at γi and γj
(i 6= j), it can be expressed in the form B̃(u) = (u − γi)B′(u) or B̃(u) = (u − γj)B′′(u).

The functions B′(u) and B′′(u) are not known but what is important is that they have the

properties B′(γi) 6= 0 and B′′(γj) 6= 0. Then the commutation relation between B̃(u) and

B̃(v) can be rewritten as

(u− γi)(v − γj){B′(u) ,B′′(v)} − (v − γj)B′(u){γi ,B′′(v)}
− (u− γi)B′′(v){B′(u) , γj}+ B′(u)B′′(v){γi , γj} = 0 . (D.6)

Now at this stage, we can safely take the limit u → γi and v → γj . Then the first three

terms vanish the last term gives the relation

{γi , γj} = 0 . (D.7)

46In Sklyanin’s original formulation, the normalization condition is expressed in terms of the ordinary

inner product as n′ · h = 1. Here we are instead using the skew-symmetric inner product in order to make

connection with the Wronskian. It is equivalent to the original formulation under the identification of n′

with iσ2n.
47To see this, it is helpful to consider the relation between the normalized eigenvector h and the unnor-

malized eigenvector ψ+. The normalized eigenvector can be constructed from the unnormalized eigenvector

by h = ψ+/〈n , ψ+〉. Therefore the poles of the normalized eigenvector arise when the unnormalized eigen-

vector satisfy 〈n , ψ+〉 = 0. Thus, at the poles of the normalized eigenvector, the vector parallel to n

becomes the eigenvector of the monodromy matrix. Then, it is easy to see that (D.5) follows.
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Next consider the commutation relation between Ã(u) and B̃(v). Here again, we should

substitute the expansion Ã(u) = Ã(γi) + (u − γi)A′(u) as well as the ones for B′ and B′′.
Then similarly to the previous case, the limit u→ γi and v → γj can be easily taken and,

making use of the relation (D.7), we can deduce the important relation

{Ã(γi) , γj} = Ã(γi)δij . (D.8)

As the last step, a similar calculation for {Ã(x) , Ã(x′)} = 0 leads to

{Ã(γi) , Ã(γj)} = 0 . (D.9)

Using the expression of Ã(γi) and p(γi) given in (D.5) and the equations (D.7)–(D.9), we

can obtain the commutation relations among γi’s and p(γj)’s as

{γi , γj} = {p(γi) , p(γj)} = 0 , −i{γi , p(γj)} = δij . (D.10)

This shows that (γi ,−ip(γi))’s are the separated canonical pairs of variables associated to

the poles of the normalized eigenvector.

E Baker-Akhiezer vectors for the two-point functions

In the case of two-point functions, the explicit solutions can be constructed by the finite

gap method [29]. For the general spectral curve with genus g, the solutions to the auxiliary

linear problem evaluated at (τ, σ) = (0, 0) reads48

ψ0
+(u) =

(
k−(u)

k+(u)

)
, ψ0

−(u) =

(
k−(σ̂u)

k+(σ̂u)

)
, (E.1)

where σ̂ is the holomorphic involution and the functions k−(u) and k+(u) are characterized

uniquely by their divisors and the normalization at infinity:

(k+) =∞+ +

g∑
i=1

γ′i −
g+1∑
j=1

γ̂j , k+(∞−) = 1 ,

(k−) =∞− +

g∑
i=1

γi −
g+1∑
j=1

γ̂j , k−(∞+) = 1 .

(E.2)

Here γ′i are the initial values of the separated variables parametrizing the moduli for two-

point functions, and γi and γ̂i are the divisors satisfying49

{γ̂j} ∼ {∞−, γi} ∼ {∞+, γ′i} . (E.3)

As noted in [29], the solutions (E.1) describe the highest weight eigenstate of S3. This

means that the corresponding polarization vector is n = (1, 0)t. The solutions for more

general rotated vacua can be obtained by the global rotation.

48See (4.13) in [29].
49The symbol a ∼ b means that there is a single-valued function on the Riemann surface which has poles

at a and zeros at b.
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The solutions (E.1) do not satisfy the normalization conditions 〈ψ0
+ , ψ

0
−〉 = 1. To

normalize the solutions, we need to divide them by
√
〈ψ0

+ , ψ
0
−〉 as in (4.6). After the

division, we obtain

ψ+(u) = C(u)

(
k−(u)

k+(u)

)
, ψ−(u) = C(u)

(
k−(σ̂u)

k+(σ̂u)

)
, (E.4)

with C(u) given by

C(u) =
1√

〈ψ0
+ , ψ

0
−〉

=
1√

k−(u)k+(σ̂u)− k+(u)k−(σ̂u)
. (E.5)

Now, owing to (E.2), C(u) contains 2(g + 1) square-root zeros at γ̂i and σ̂γ̂i. In addition,

as argued in section 4.1, it must contain the square-root singularity at the positions of the

branch points bk. Thus the divisor of C(u) is given by

(C) =
1

2

g+1∑
j=1

γ̂j +
1

2

g+1∑
j=1

σ̂γ̂j −
1

2

2(g+1)∑
k=1

bk . (E.6)

Combined with (E.2), this determines the divisor of the factor 〈n , ψ+〉 to be

(〈n , ψ+〉) =∞+ +

g∑
i=1

γ′i +
1

2

g+1∑
j=1

(σ̂γ̂j − γ̂j)−
1

2

2(g+1)∑
k=1

bk . (E.7)

This shows that 〈n , ψ+〉 has spurious zeros and poles at γ̂j and σ̂γ̂j unless we choose γ̂j to

be invariant under the holomorphic involution.

For the genus 0 solutions including the ones corresponding to the BPS operators, we

can confirm that it is always possible to choose γ̂j to be invariant under σ̂ by analyzing the

explicit form of the solution. On the other hand, the situation for the higher genus solutions

is less obvious since it is in general not clear if we can choose γ̂j to be invarint under σ̂

without violating the relation (E.3). However, when the cuts are sufficiently small, the

solution would be very close to the BPS one, and, therefore from the continuity argument

similar to the one used in section 5, we expect that it is possible to choose γ̂j to be invariant

under the involution (at least for some appropriate choices50 of γ′j .)

F Quasi-momentum in the full spectral curve

In this appendix, we shall clarify the relation (7.43).

For this purpose, consider the monodromy matrix for the full AdS5×S5 is a (4|4)×(4|4)

matrix given by

ΩAdS5×S5(x) ∼ diag
(
eip̃1 , eip̃2 , eip̃3 , eip̃4 |eip̂1 , eip̂2 , eip̂3 , eip̂4

)
. (F.1)

Here p̃i and p̂i denote the quasi-momenta for the S5 part and for the AdS5 part respectively.

50Different choices of γ′j in the moduli of two-point functions only change the overall phase of the structure

constant. Thus, for the computation of the three-point functions, we can choose a convenient one.
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Figure 18. The S5 part of the full eight-sheeted spectral curve. The cuts denoted in the same color

are related with each other by the Z2 automorphism. The SU(2)L and SU(2)R sectors discussed in

this paper correspond to the first and the fourth, and the second and the third sheets respectively.

The quasi-momenta in the SU(2)L×SU(2)R sector, which we studied in this paper, are

identified with those in the full AdS5 × S5 as follows (see figure 18 above):

p(x)|SU(2)R
= p̃2 − p̃3 , p(x)|SU(2)L

= p̃1 − p̃4 . (F.2)

As explained in [51], owing to the Z2 automorphism of the coset, the quasi-momenta obey

the following involution relation,

p̃1,2(1/x) = −p̃2,1(x) , p̃3,4(1/x) = −p̃4,3(x) . (F.3)

In terms of the SU(2)L×SU(2)R quasi-momenta, this reads

p(1/x)|SU(2)R
= − p(x)|SU(2)L

, p(1/x)|SU(2)L
= − p(x)|SU(2)R

. (F.4)

The quasi-momentum p(x) used in the strong-coupling analysis in section 7 is the

SU(2)R quasi-momentum. On the other hand, at weak coupling, the result factorizes into

the SU(2)R and the SU(2)L sectors and the contribution from the SU(2)R (SU(2)L) sector

is expressed purely in terms of SU(2)R (SU(2)L) quasi-momenta. Thus in order to make

direct comparison between the weak-coupling and the strong-coupling results in the Frolov-

Tseytlin limit, we need to rewrite a part of the strong-coupling result in terms of the SU(2)L
quasi-momentum. This is precisely what we did in (7.43) and p̄ defined there corresponds

to the SU(2)L quasi-momentum.

G Zeros of 〈i+, j−〉

Here we explain how to determine the zeros of the Wronskian for eigenfunctions with

opposite sign eigenvalues, namely 〈i+, j−〉, by applying the argument given in [14].

As shown in (5.7), the product of 〈i+, j−〉 and 〈i−, j+〉 contains zeros at

sin(pi − pj + pk)/2 = 0 and sin(−pi + pj + pk)/2 = 0. For definiteness, we focus on zeros
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at sin(pi − pj + pk)/2 = 0 in what follows since the generalization to the zeros associated

with sin(−pi+pj +pk)/2 = 0 is straightforward. When sin(pi−pj +pk)/2 = 0, all possible

products of Wronskians which vanish are

〈i+, j−〉〈i−, j+〉 , 〈j−, k+〉〈j+, k−〉 , 〈i+, k+〉〈i−, k−〉 . (G.1)

An important feature of (G.1) is that all the Wronskians that appear are the ones between

the eigenstates in the same group, S1 = {i+, j−, k+} or S2 = {i−, j+, k−}. Now, let us first

note that the following lemma holds:

Lemma. In each product of two Wronskians in (G.1), only one of the Wronskians

can vanish.

This is because, if both of them vanish simultaneously, the product will have a double zero,

and contradicts the fact that sin(pi − pk + pk)/2 only has simple zeros. Now, using this

lemma, we will prove the following main theorem:

Theorem. There are only two distinct possibilities concerning the zeros of the

Wronskians in (G.1): either (a) all the Wronnskians among the members of S1 are

zero and those among S2 are nonzero, or (b) all the Wronskians among S2 are zero

and those among S1 are nonzero.

A proof goes as follows. As stated in the Lemma, there are three distinct Wronskians

which vanish at sin(pi − pj + pk)/2. This means that at least two of such Wronskians will

be between the members of the same set, which can be S1 or S2. When the Wronskians

vanish, the two eigenvectors in the Wronskian become parallel to each other. Since each

set contains only three vectors, if two different Wronskians among the same set vanish, all

three eigenvectors in that set become parallel simultaneously. Then, the third Wronskian

in that set must also vanish. This argument shows that all the Wronskians among one of

two sets, S1 or S2, vanish simultaneously. Now, using the Lemma, we can conclude that

the Wronskians among the other set must not vanish. This proves the theorem.

Since we already know the analyticity of the Wronskians of the same sign type, i.e.

〈i+, k+〉 and 〈i−, k−〉, it is now straightforward to determine the zeros of the Wronskians

with opposite signs using the Theorem above. This leads to the rule given in section 5.2.

H Angle variable for the AdS part

In this appendix, we sketch the construction and the evaluation of the angle variable for

the AdS part given in (7.19)(see also section 6.2 of [14]).

Since we are studying the solutions with no nontrivial motion in AdS, the quasi-

momentum for the AdS part does not have any cut:

p̂i =
∆ix

2g(x2 − 1)
. (H.1)
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However, for the analysis of the angle variables, it turns out to be convenient to first

consider the one-cut solution and then shrink the cut to get the result for (H.1). For

one-cut solutions, there are two independent action variables,

S∞ =
1

2πi

∫
∞
p(x)du(x) , S0 =

1

2πi

∫
0
p(x)du(x) . (H.2)

Since the conformal dimension ∆ is given by S0 − S∞, the angle variable conjugate to

∆ is given by (φ0 − φ∞)/2, where φ0 and φ∞ are the variable conjugate to S0 and S∞
respectively.

Each angle variable φ0 and φ∞ can be constructed and evaluated in the similar manner

as for the S3 part. As a result, we obtain

φ
(i)
0 = i ln

(
〈ñi , ñj〉〈ñk , ñi〉
〈ñj , ñk〉

〈j+ , k+〉
〈i+ , j+〉〈k+ , i+〉

∣∣∣∣
x=0+

)
,

φ(i)
∞ = i ln

(
〈ni , nj〉〈nk , ni〉
〈nj , nk〉

〈j− , k−〉
〈i− , j−〉〈k− , i−〉

∣∣∣∣
x=∞+

)
.

(H.3)

As discussed in section 6.2 of [14], the polarization vectors in the AdS part are identified

with the insertion points of the operators as

ni =

(
1

xi

)
, ñi =

(
1

x̄i

)
. (H.4)

Substituting (H.4) to (H.3) and computing φ∆ = (φ0 − φ∞)/2, we arrive at the

expression (7.19).
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