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1 Introduction

The precise computation of critical exponents in statistical mechanics or of anomalous

dimensions in quantum field theory is in general a difficult task. With the exception

of some two-dimensional models or some supersymmetric theories, the best results are

traditionally obtained by epsilon-expansion techniques or Monte Carlo calculations.

Assuming the theory under study conformally invariant, one can in some cases resort

to bootstrap equations [1] which provide constraints on the possible conformal field theory

(CFT) data, i.e. the spectrum of scaling dimensions of the local operators contributing

to a given n-point function and their operator product expansion (OPE) coefficients. A

numerical approach to these equations first described in [2], relying on convex optimization,

gave rise to a wealth of new nontrivial and impressive results on CFTs in d > 2 [3–25]. In

particular its application to 3d Ising model, initiated in [6] and based on unitarity to find

forbidden regions in the space of CFT data, led to very precise determinations of its bulk

critical exponents [25].

There is another numerical approach [26–28] in which one takes into account the contri-

bution to the bootstrap equations of just a handful of low-dimension operators, compared

to the hundreds of them contributing to the convex optimization, therefore it has been

sometimes called “a severe truncation” in the literature [29]. It yields less precise results in

the case of 3d Ising model, moreover there is no systematic way of taking into account the

error due to the truncation. However it applies also to non unitary theories. For instance

the scaling dimensions of low-lying local operators contributing to the Yang-Lee edge sin-

gularity in the whole range 2 ≤ D ≤ 6 have been evaluated this way [27]. The results agree

with strong coupling expansions and Monte Carlo simulations and were recently confirmed

by four loop calculations of φ3 field theory in six dimensions [30]. Similarly, an evaluation

of the relevant critical exponent of the ordinary surface transition of 3d Ising universality

class has been obtained [28] in perfect agreement with the most recent Monte Carlo esti-

mates [31]. Good results are also reached by applying this numerical method to the study
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of the Yang-Lee model as well as the critical Ising model on a three-dimensional projective

space [32].

Sometimes, though, the latter approach generates manifestly wrong results or, once

added new terms to truncation, free parameters arise in the solution, limiting its predictive

power. In this paper we discuss some different instances of it, characterized by the action

of a hidden algebraic mechanism, each time different, explaining such a behaviour.

In the cases of free-field bosonic theory in D dimensions or 2d CFTs , where surprising

exact results go along some erroneous consequences, the hidden mechanisms consist in

some unexpected algebraic identities among conformal blocks or their derivatives which

hold exactly at the symmetric point of the crossing symmetry. For instance, in the case

of free-field theory, the identities built with a three-term truncation allow to obtain the

exact spectrum of the whole infinite set of operators contributing to the scalar four-point

function. However, the linear system employed for computing the OPE coefficients turns

out to be ill-defined, so the standard numerical method to solve it gives erroneous results.

Applying the bootstrap equations to another point alleviates this pathological behaviour,

as explained in section 2.

The subsequent sections deal with boundary CFTs. Their truncated bootstrap equa-

tions are employed to evaluate the spectrum of the low-lying surface operators in terms

of the bulk spectrum, assumed to be known. At variance with the bulk case, one finds in

general solutions depending on free parameters [28] which strongly limit their predictive

power.

Here we want to emphasize that the appearance of free parameters is not an artifact

generated by the truncation method, but rather reflects an unavoidable physical property

of systems with conformal interfaces, i.e. scale invariant junctions of two CFTs, which

are described by the same bootstrap equations. They are generalizations of a conformal

boundary which corresponds to the case of a trivial theory in one side.

Excitations propagating in the bulk are reflected by boundaries, while interfaces can

be permeable, meaning that incident excitations are partly reflected and partly transmit-

ted. The “transmission coefficient”1 generally depends on one or more parameters. As a

consequence, boundary conditions on interfaces are more general than those on a bound-

ary, therefore the spectrum of surface operators is expected to be far richer than that on

the boundary and to depend on free parameters. Examples of such interfaces have been

discussed in condensed matter literature, see for instance [35–37].

In this paper we specialize on D = 3 boundary CFTs, where we find (section 3)

that the bootstrap equations can be written in a polynomial form, hence one can clearly

see when and why the solutions of these equations depend on a free parameter. As a

consequence, evaluating the relevant critical exponent of the ordinary transition in O(N)

models is reduced to solving a simple quartic equation.

In section 4, we point out that the surface exponents of the ordinary and special

transitions of 3d Ising model are two different solutions of the same polynomial equation.

1A definition of the transmission coefficient T in terms of CFT data is available in 2d [33]. Recently it

was proven that this proposal obeys T ≤ 1 for unitary theories [34].
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Their interplay allows us to identify in the one-parameter family of solutions two points

corresponding respectively to the special and to the ordinary transitions of 3d Ising model.

Finally, in the last section we summarize and compare our results with those obtained

by field theoretical methods and Monte Carlo calculations. We obtain in particular a

precise evaluation of the leading magnetic exponents of ordinary and special transitions as

well as the next to the leading universal corrections. Likewise, estimates of several OPE

coefficients are also obtained. The two magnetic exponents agree with those of most recent

Monte Carlo estimates [31, 38], while we were unable to find in literature other reliable

estimates of the next to the leading exponents as well as of the OPE coefficients.

2 Exact truncations

In this section we shall study some examples of the conformal four-point function of iden-

tical scalar operators, which can be parametrized as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

(x2
12x

2
34)∆φ

, (2.1)

where ∆φ is the scaling dimension of φ, x2
ij is the square of the distance between xi and

xj , g(u, v) is a function of the cross-ratios u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

. Using conformal

invariance and OPE of φ(x)φ(y) in the limit x → y one can derive the decomposition

in conformal blocks G∆,`(u, v) i.e. eigenfunctions of the quadratic Casimir operator of

SO(D + 1, 1):

g(u, v) = 1 +
∑
∆,`

p∆,`G∆,`(u, v), (2.2)

with p∆,` = λ2
φφO, where λφφO is the coefficient of the primary operator O = [∆, `] of

scaling dimension ∆ and spin ` contributing to the OPE of φ(x)φ(y).

Invariance under permutations of the four xi’s implies the following functional equa-

tions

g(u, v) = g(u/v, 1/v) ; v∆φg(u, v) = u∆φg(v, u) . (2.3)

The first relation projects out the odd spins. The second one, after separating the identity

from the other contributions, can be written as the sum rule∑
∆,`

p∆,`
v∆φG∆,`(u, v)− u∆φG∆,`(v, u)

u∆φ − v∆φ
= 1 . (2.4)

It is useful to adopt the parametrization u = zz̄ and v = (1−z)(1− z̄) [39] which simplifies

the functional form of the conformal blocks. Following [6] we make also the change of

variables z = (a +
√
b)/2, z̄ = (a −

√
b)/2 and Taylor expand the sum rule around a = 1

and b = 0. It is easy to see that such an expansion will contain only even powers of

(a− 1) and integer powers of b. The truncated sum rule can then be rewritten as a single

inhomogeneous equation ∑
∆,`

p∆,` f
(0,0)
∆φ,∆`

= 1, (2.5)
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which is employed to normalize the OPE coefficients, and an infinite set of homogeneous

equations

f p ≡
∑
∆,`

f
(2m,n)
∆φ,∆`

p∆,` = 0, (m,n ∈ N, m+ n 6= 0), (2.6)

with

f
(m,n)
α,β =

(
∂ma ∂

n
b

vαGβ(u, v)− uαGβ(v, u)

uα − vα

)
a=1,b=0

. (2.7)

According to the numerical method described in [26] we truncate both the spectrum and the

number of homogeneous equations (2.6), keeping only the first M derivatives and the first

N operators. Choosing M ≥ N the truncated homogeneous system admits a non-trivial

solution only if all the minors of order N vanish.

In this section we shall describe some exact truncations, i.e. a set of M coinciding

zeros of minors of order N in which the spectrum [∆i, `i], (i = 1, . . . , N) of the N retained

operators turn out to be identical with a subset of N elements of the infinite-dimensional,

exact solution of the bootstrap equations.

As a first example, consider a CFT in D space-time dimensions in which the scalar

operator of eq. (2.1) has scaling dimension ∆ = D−2
2 . It is known that this scalar is

necessarily a free field (see for instance [40]), therefore using the explicit form of the free

four-point function we can write the exact fusion rule[
D − 2

2

]
×
[
D − 2

2

]
=

∞∑
k=0

[D − 2 + 2k, ` = 2k] (2.8)

describing the set of primary operators [∆, `] contributing to the OPE of φ(x)φ(y). On

general grounds one would expect that a finite truncation of (2.8) perturbs someway the

spectrum, therefore we write a N = 3 truncation in the form

[∆φ]× [∆φ] = [∆φ2 ] + [D, 2] + [∆4, 4] , (2.9)

where we only assumed the conservation of the energy-momentum tensor associated with

the conformal block [∆2, 2], which entails ∆2 = D. This truncation depends on the three

unknowns ∆φ,∆φ2 ,∆4. We look for solutions of the first M = 5 homogeneous equations

with n+m ≤ 2. We can perform with them 10 different subsystems made with 3 equations

and 3 unknowns. A plot of the different solutions is drawn in figure 1. Since there are more

independent minors than unknowns we would expect a set of scattered solutions. Against

all expectations, such a truncation admits a unique exact solution with ∆φ = D−2
2 ,∆φ2 =

D−2,∆4 = D+2, like in the exact fusion rule (2.8). This can be easily verified by plugging

in the homogeneous system (2.7) the conformal blocks of the free theory in the cases with

integer D where a closed form is known. In particular for D = 4 and D = 6 we used

the explicit formulae found in [39] and in D = 3 the closed formula found in [29] on the

diagonal z = z̄ = a/2. In the latter case a conformal block g`(z) ≡ G`+1,`(u, v)|b=0 of spin

` and scaling dimension ∆ = `+ 1 becomes simply

g`(z) =

(
4z

(1 +
√

1− z)2

)`+1 (1 +
√

1− z)4

(1 +
√

1− z)4 − z2
. (2.10)
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Figure 1. Setting D = 3 and ∆4 = ∆φ2 +2 in (2.9) we get a two-dimensional section of the zeros of

the 10 3×3 minors made with the first 5 derivatives specified in the text. The common intersection

selects the exact solution of the free field theory.

We want now to manage the found solution in a fashion that will allow us to reconstruct

the whole spectrum contributing to the fusion rule (2.8) for any D. The mentioned 10

different 3× 3 subsystems (2.6) are associated with 10 different matrices fi (i = 1, . . . , 10).

At the solution these fi’s admit a non-vanishing co-kernel or left null space, i.e. vifi = 0 (no

sum on i and vi 6= 0). The left eigenvectors vi span a 3d subspace of the 5d linear space

of derivatives f
(2m,n)
α,β , (m + n ≤ 2) defined in (2.7). Choosing a basis, we obtain, for each

conformal block contributing to the solution, three linearly independent relations

1

2
f
(2,0)
∆φ,∆`

− D − 1

3
f
(0,1)
∆φ,∆`

= 0 ; (2.11)

D(4−D)

2
f
(2,0)
∆φ,∆`

− 5

8
f
(4,0)
∆φ,∆`

+
(D2 − 1)

2
f
(0,2)
∆φ,∆`

= 0 ; (2.12)

3D f
(2,0)
∆φ,∆`

+ (D2 − 1) f
(0,2)
∆φ,∆`

− 3(D − 1)

2
f
(2,1)
∆φ,∆`

= 0 . (2.13)

Although by construction we would expect that they are only identically satisfied by the

conformal blocks retained in the N = 3 truncation, it turns out, unexpectedly, that the

whole infinite set of conformal blocks listed in (2.8) satisfies them. These surprising iden-

tities may be easily verified for the mentioned cases with integer D, as for instance (2.10).

For arbitrary D a straightforward check may be obtained by directly applying the above

relations to the function g(u, v) defined in (2.1), which in a free field theory in D dimen-
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sions is

g(u, v) = 1 +
(u
v

)D−2
2

+ u
D−2

2 .

It is also easy to check that this solution does not depend on the specific form of the OPE

coefficients by replacing g(u, v) with P (C2) g(u, v), where P is an arbitrary polynomial of

the Casimir operator C2.

To sum up, we have described an example of truncation that in some sense is exact

seeing that it reproduces the true spectrum contributing to a four-point function. There is

however a price to be paid. The sum rule (2.4) tells us that truncating it to a finite number

of terms while keeping the true spectrum can not give the exact OPE coefficients. Actually

the coefficients obtained solving the truncated equations for D > 3 differ substantially

from the exact values and the solution worsens as D increases.2 Adding new terms to the

truncation does not help very much. In fact, the above identities imply simple zeros for the

3×3 minors, double zeros for the 4×4 minors and so on. In other terms the inhomogeneous

system with N > 3 depends on N−3 free parameters and loses part of its predictive power.

It is worth noting that the above identities hold true only at the symmetric point z = z̄ = 1
2 .

In a different point it is no longer possible to reconstruct the true spectrum, the minors do

not longer have multiple zeros and for large enough truncations one may obtain reasonable

values of the spectrum and OPE couplings.

As an aside, it is instructive to note that equations (2.11), (2.12) and (2.13) are analytic

examples of linear functionals whose zeros define the exact spectrum of a whole sector of a

CFT. They bear some similarity to the linear functional discussed in [2, 9] in relation with

the upper bound set by unitarity. Notice however that our functionals are not positive,

with the only exception of eq. (2.11) in D = 4 which coincides, up to a suitable change of

variables, with the one mentioned in [3], showing that the 4d free field theory belongs to

the unitarity upper bound.

Another kind of pathological truncation may be found in 2d CFTs. Here it is known

that the identity, the stress tensor as well as an infinite set of operators of known scaling

dimension and spin are grouped into a single Virasoro conformal block, therefore part of

terms contributing to the sum rule (2.4) is already known and one might envisage to ap-

ply the truncation method to get an approximate evaluation of the unknown part of the

spectrum. It turns out that in a sufficiently large truncation all the minors of the homo-

geneous system (2.6) made only with a derivatives vanish identically, irrespective of the

scaling dimensions and spin of the unknown terms, so they do not provide any information

about the unknown part of the spectrum. The explanation of this unexpected behaviour

resides in an erratic identity among some terms of the mentioned Virasoro conformal block.

Precisely, in the limit b→ 0 we have

G4,0(u, v)− 3

700
G8,0(u, v)− 1

45
G6,2(u, v)−G4,4(u, v) +

25

6237
G8,4(u, v) = O(b). (2.14)

Thus all minors containing, besides other entries, only a derivatives of the above five confor-

mal blocks are zero identically. In order to obtain useful information from the homogeneous

system (2.6) we have to always include b derivatives.

2This problem was pointed out to the authors of [27] by Yu Nakayama.
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3 Encoding bootstrap constraints into polynomial equations

The constraints imposed by conformal symmetry on correlation functions near a boundary

were studied in [41] and the boundary bootstrap program was set up in [7].

The study of surface transitions of the 3d Ising and other O(N) models through nu-

merical solutions of truncated bootstrap equations [28] resulted particularly fruitful in the

ordinary transition, where the knowledge of the low-lying bulk spectrum allowed to evalu-

ate the scaling dimension of the relevant surface operator which compares well with known

results of two-loop calculations [42] and nicely agree with the more precise Monte Carlo

estimates [31].

In this section we show that these equations may be written in a simple algebraic form,

thereby enabling an analytic study of the solution.

A CFT in a semi-infinite D-dimensional space bounded by a flat (D − 1)-dimensional

boundary is characterized by the spectra of the bulk primary operators associated with

representations of the conformal group SO(D + 1, 1) as well a that of the boundary pri-

maries, associated with representations of SO(D, 1). The two point function of identical

scalar primaries can be parametrised as

〈φ(x)φ(x′)〉 =
ξ−∆φ

(4yy′)∆φ
g(ξ), (3.1)

where ξ is the invariant combination

ξ =
(x− x′)2

4yy′
. (3.2)

x denotes a point in the D dimensional space and y its distance from the boundary.

g(ξ) can be expanded either in terms of bulk conformal blocks or in terms of boundary

blocks. More precisely we can write

g(ξ) = 1 +
∑
O
aOλφφOfbulk(∆O, ξ), (3.3)

or

g(ξ) = ξ∆φ

a2
φ +

∑
Ô

µ2
Ôfbdry(∆Ô, ξ)

 , (3.4)

where we denoted the boundary quantities with a hat. Only scalar primaries contribute

to both expansions. λφφO is the OPE coefficient already introduced in the four point

function (2.1) and similarly µÔ is the bulk-to-surface OPE coefficient; aO parametrises the

one point function 〈O(x)〉 = aO
(2y)∆O . The conformal blocks fbulk(∆, ξ) and fbdry(∆, ξ) are

eigenfunctions of the bulk and the boundary quadratic Casimir operators, namely

C2 fbulk(∆, ξ) = c∆fbulk(∆, ξ), c∆ = ∆(D −∆), (3.5)

Ĉ2 fbdry(∆, ξ) = b∆fbdry(∆, ξ), b∆ = ∆(D − 1−∆). (3.6)

These conformal blocks are completely fixed once their asymptotic behaviour is given:

fbulk(∆, ξ) ∼ ξ
∆
2 (ξ → 0); fbdry(∆, ξ) ∼ ξ−∆ (ξ →∞). (3.7)

– 7 –
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Later we shall need the explicit form of C2 and Ĉ2. They can be easily obtained using the

embedding formalism of [39] and [7]

C2 = −4ξ2(1 + ξ)
d2

dξ2
− 4ξ(ξ + 1−D/2)

d

dξ
; (3.8)

Ĉ2 = −ξ(1 + ξ)
d2

dξ2
−D

(
ξ +

1

2

)
d

dξ
. (3.9)

The bootstrap constraint simply expresses the equality of the two above expansions.

It can be written again as a sum rule

ξ∆φ

a2
φ +

∑
Ô

µ2
Ôfbdry(∆Ô, ξ)

−∑
O
aOλφφOfbulk(∆O, ξ) = 1. (3.10)

We want now apply such a constraint to the study of surface transitions in D = 3. First, we

rewrite this functional equation in the form of infinitely many linear equations, one for each

coefficient of the Taylor expansion around, say, ξ = 1. Then, we truncate the two sums

keeping only nbulk terms in the bulk channel and nbdry terms in the boundary channel.

We also truncate the Taylor expansion by keeping a finite number M of derivatives. We

denote this truncation by the triple (nbulk, nbdry, s), where s = 1 if the considered surface

transition allows aφ 6= 0, otherwise we set s = 0. Using obvious shorthand notations, the

truncated system may be written in the form

a2
φ +

nbdry∑
i

qi fbdry(∆i, ξ = 1)−
nbulk∑
k

pk fbulk(∆k, ξ = 1) = 1, (3.11)

nbulk + nbdry + s = N

∂nξ

[
ξ∆φ

(
a2
φ +

nbdry∑
i

qi fbdry(∆i, ξ)

)
−
nbulk∑
k

pk fbulk(∆k, ξ)

]
|ξ=1

= 0. (3.12)

n = 1. . . . ,M .

This truncation becomes predictive if one can find solutions of the homogeneous sys-

tem (3.12) withM ≥ N . Interesting solutions have been found for M = N+1 orM = N+2,

while truncations with M > N + 2 do not yield reliable solutions [28].

The simplest solution analyzed in [28] is associated with the truncation (2, 1, 0). It has

been shown to give the scaling dimension of the relevant surface operator of the ordinary

transition in terms of the scaling dimensions of φ, ε and ε′, where φ is the fundamental

scalar,ε the energy operator, and ε′ its first recurrence (related to the correction-to-scaling

exponent ω) of the 3d O(N) theory.

We want to rewrite this solution in an algebraic form. First, note that the Casimir

operators (3.8) and (3.9) enable us to write the nth derivative of the bulk or boundary

conformal blocks as a linear combination of the conformal block and its first derivative

dn

dξn
fbulk = Pn(c)fbulk + Qn−1(c)f ′bulk;

dn

dξn
fbdry = P̂n(b)fbdry + Q̂n−1(b)f ′bdry, (3.13)

where Pn,Qn, P̂n and Q̂n are polynomials of degree [n2 ] on their argument.

– 8 –
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In D = 3 fbdry(∆, ξ) can be expressed as elementary algebraic functions [28], namely

fbdry(∆, ξ) =
1

2
√
ξ

(
4

1 + ξ

)∆− 1
2

[
1 +

√
ξ

1 + ξ

]−2(∆−1)

. (3.14)

It will entail a dramatic simplification of the bootstrap equations. We only need to take

advantage of the following two identities

z ≡
f ′bdry(∆, ξ)|ξ→1

fbdry(∆, 1)
= −3− 2(1−∆)

√
2

4
; b ≡ (2−∆)∆ = −1

8
− 3z − 2z2, (3.15)

to express dn

dξn fbdry as a polynomial in ∆ (or in z). As a consequence, the homogeneous

system (3.12) associated with the (2,1,0) truncation can be written as

x pεQn−1(cε) + y pε′Qn−1(cε′) + pεPn(cε) + pε′Pn(cε′) = qPn(∆φ,∆), (3.16)

where Pn is a polynomial of degree n in its arguments and we set

x ≡
f ′bulk(∆ε, ξ)|ξ→1

fbulk(∆ε, 1)
, y ≡

f ′bulk(∆ε′ , ξ)|ξ→1

fbulk(∆ε′ , 1)
. (3.17)

We can even eliminate x and y in (3.16) by combining the derivatives in such a way to

form a power of C2, so to have

pε c
m
ε + pε′ c

m
ε′ = qQ2m(∆φ,∆), (3.18)

where Q2m is another polynomial of degree 2m in its arguments.

In order to find a solution of the (2,1,0) truncation we have to choose three equations

among the two sets (3.16) and (3.18), with the constraint that the order of the maximal

derivative acting on fbulk and fbdry should not exceed nbulk + nbdry + s+ 2 = 5, therefore

one equation, at least, should be of the type (3.16). We pick two equations of type (3.18)

with m = 1, 2 and one of type (3.16) with n < 5. In this way we can form four different

subsystems of three equations in three unknowns. Note that the associated minors are

linear in x and y. Taking any two of them we can solve for x and y. Remarkably, the

solution does not depend on the pair chosen. We have

2

cε
x ≡

2f ′bulk(∆ε, ξ)|ξ→1

cε fbulk(∆ε, 1)
=

A(cε′ ,∆φ, z)

B(cε′ ,∆φ, z)
, (3.19)

with

A

(
c,
f

4
, z

)
= 4− (3 + 2c)f + f2− f3− (1 + 2c+ f + 3f2)4z− (2 + 3f)(4z)2− (4z)3 (3.20)

and

B

(
c,
f

4
, z

)
= 21 + 2c− 6(3 + c)f + (17 + 2c)f2 − 2f3 + f4 − 16(1 + c− (6 + c)f − f3)z

+ 2(5 + c+ 3f + 3f2)(4z)2 + 4(1 + f)(4z)3 + (4z)4. (3.21)
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Clearly the above relation defines an algebraic equation of degree four in ∆, hence it can be

solved exactly. Replacing the bulk quantities ∆φ,∆ε,∆ε′ with the known values of the 3d

O(N) models one gets at once an estimate of the scaling dimension of the relevant surface

operator of the ordinary transition, which is almost identical with that obtained in [28]

using numerical means.

Being eq. (3.19) a quartic equation, it has other three roots. In the 3d Ising model one

is at ∆ ' 3.08 (it could have some to do with the extraordinary transition, where ∆ = 3

exactly, however it requires aφ 6= 0 and is described by the truncation (2,1,1)). The other

two are complex conjugate with a real part <e(∆) ' 0.35, close to the expected value of

the leading critical exponent of the special transition. One has to add more terms to the

truncation in order to describe a full-fledged special transition.

Besides eq. (3.19) there is another similar equation generated by the present analytical

method. It suffices to exchange ε ↔ ε′ in (3.19). The estimate of ∆ obtained this way

is slightly shifted. Again, in order to reduce the spread between these two estimates one

may try to find more accurate solutions by adding new bulk and/or boundary terms to the

truncation, however this addition transforms the isolated solution discussed in this section

into a one-parameter family of solutions. This issue will be discussed in the next section.

4 Ordinary versus special transition

The algebraic method described in the previous section does not apply to other viable

truncations, as it requires in general too high derivatives. For example, the (4,1,1) trun-

cation utilized in [28] to describe the extraordinary transition would require 10 derivatives

at least. A similar conclusion applies to the one-parameter family of solutions of (3,3,0) or

(4,3,0) studied in [28], or of (4,4,0) analyzed here, in relation with the special transition.

Nevertheless in the latter case the peculiar algebraic properties of fbdry will help us to clar-

ify some features of this kind of truncation. Eventually, it will lead to a precise estimate

of the scaling dimensions of the relevant surface operators in both special and ordinary

transitions.

Notice that one-parameter solutions of truncated bootstrap equations were also en-

countered in the study of four-point functions [27], however in that case the choice of the

low-lying bulk spectrum fixed uniquely the value of the free parameter, while in the case

of boundary CFTs the knowledge of the bulk spectrum does no longer suffice to fix the

surface spectrum.

As already explained in the Introduction, a physical motivation of such a behaviour

may be found in the fact that the boundary bootstrap equations coincide with interface

bootstrap equations, where the conformal interface is the domain wall between the critical

Ising model and another CFT. The main difference between a simple boundary or a more

general conformal interface of 3d Ising model resides in the boundary conditions, which

are necessarily Dirichlet or Neumann in the former and more general in the latter. The

case where there is a free field theory in one side of the interface has been analytically

worked out in [28]. It turns out that its boundary conditions depend on a free parameter

interpolating continuously between Dirichlet an Neumann conditions.
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Likewise the free parameter of the mentioned solutions is presumably a direct conse-

quence of these more general boundary conditions. This is also supported by the fact that

the solutions of the different truncations (3,3,0), (4,3,0) and (4,4,0) depend always on a

single parameter, though they deal with different numbers of unknowns. Thus the problem

of estimating the low-lying surface operators in the special transition can be reformulated,

within this way of reasoning, in that of finding the value of the free parameter corresponding

to the Neumann conditions (the boundary conditions characterizing the special transition

in the φ4 field theory).

There is another element to be taken into account. Notice that the bootstrap equations

of the special transition are the same of those describing the ordinary transition. The

solution is different, as the latter corresponds to Dirichlet boundary conditions. Therefore

it should exist another value of the free parameter of the solution of, say, (4,4,0), describing

also such a surface transition.

The numerical approach to solve truncated bootstrap equations is based on the Newton

method, which requires as input a starting point with an approximate guess of the solution,

thus it is not suitable for an exhaustive search. Here we describe a way out which takes

advantage of the algebraic properties of the boundary conformal blocks.

In any CFT on a manifold with a boundary there is a short distance expansion express-

ing local bulk operators in terms of boundary operators. In the case of special transition

of the critical 3d Ising model we have the fusion rule

σ ∼ σ̂ + Ôs + . . . (4.1)

where σ is the lowest scalar in the bulk, σ̂ the corresponding surface operator and Ôs the

next-to-leading surface primary. Applying the direct numerical method of [28] to (3,4,0)

or (4,4,0) truncations one may verify that unitary solutions exist only for 0.3 ≤ ∆σ̂ ≤ 0.45

and 2 ≤ ∆Ôs ≤ 2.6. We have two other surface operators whose role is to provide more

stable solutions.

Every solution defines a left null eigenvector v of the 8×8 matrix f of the homogeneous

system (3.12) such that v f = 0. Define now the vector

f(∆) = (∂ξ ξ
∆σfbdry, ∂

2
ξ ξ

∆σfbdry, . . . , ∂
8
ξ ξ

∆σfbdry), (4.2)

which is a column of f. According to (3.13), the scalar product v · f is a polynomial of 8th

degree in ∆, therefore it vanishes not only at the four points of the chosen solution, but also

at other four values (some of them are plotted in figure 2). Actually every subset of four

roots of this polynomial defines a solution. Most of them are uninteresting as they reveal

some non-unitary features. There is however a solution which is physically interesting. Its

fusion rule in the boundary channel can be written as

σ ∼ dσ̂

dy
+ (Ôs) + Ôo + . . . (4.3)

where the lowest surface operator is identified with the one of the ordinary transition since

it has similar scaling dimensions and similar OPE coefficients of the solution found in the

previous section.
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Figure 2. The scalar product v ·f of a null left eigenvector of the 8×8 minor f associated with the

truncation (4,4,0) as a function of the scaling dimension of the surface operators. f is the column

vector defined in eq. (4.2). Notice that v · f is a polynomial of 8th degree in ∆, so it has more zeros

than the four values that form a solution of (4,4,0). The additional zeros may be employed to form

other solutions.

The term Ôs coincides with that of (4.1). We put it within parentheses seeing that its

square coupling µ2
Ôs

changes sign as we scan the family of solutions.

Actually the point where µ2
Ôs

= 0, corresponding to the fusion rule σ ∼ dσ̂
dy + Ôo + . . . ,

selects the sought after solution, as it can be argued putting together the following three

statements:

i) According to the fusion rule (4.1), Ôs is non-vanishing on surfaces with Neumann

boundary conditions, seeing that it is always present whenever σ̂ is there.

ii) There is no reason to believe that an operator contributing to a surface transition

with, say, Neumann boundary conditions could survive, with the same scaling dimen-

sion, on a surface with Dirichlet boundary conditions.

iii) The fusion rule (4.3) with µ2
Ôs

= 0 is the only solution compatible with Dirichlet

boundary conditions. The corresponding value of ∆Os is the only one compatible

with pure Neumann boundary conditions in (4.1).

In conclusion, we have selected in the one-parameter family for Ising conformal interfaces

a pair of solutions describing the special and the ordinary transition.

5 Numerical results and concluding remarks

In the previous section we described a method to get numerical estimates of the low-lying

spectrum of surface operators in ordinary and special transitions of 3d Ising universality

class in terms of the bulk spectrum. In table 1 we report the most significant quantities

generated by the (4,4,0) truncation.
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Ordinary surface transition in 3d Ising bulk universality class

ref year method yh = 2−∆ dσ̂
dy

∆Oo

[43] 1981 ε-expansion 0.762

[42] 1998 3d two-loop exp. 0.714

[46] 2005 Monte Carlo 0.7374(15)

[31] 2011 Monte Carlo 0.7249(6)

[28] 2015 Bootstrap 0.724(2)

this work 2016 Bootstrap 0.72558(18) 5.13(20)

Special surface transition in 3d Ising bulk universality class

ref year method yh = 2−∆σ̂ yt ∆Os

[44, 45] 1983 ε-expansion 1.65 1.08

[42] 1998 3d two-loop exp. 1.583 0.856

[46] 2005 Monte Carlo 1.636(91) 0.715(1)

[38] 2011 Monte Carlo 1.6465(6) 0.718(2)

[28] 2015 Bootstrap 1.55÷ 1.7 2÷ 2.6

this work 2016 Bootstrap 1.6460(20) 2.54(2)

Surface transition aελσσε aε′λσσε′ µ2
1 µ2

2

Ordinary −0.7862(2) 0.0413(1) 0.7560(1) 0.000049(6)

Special 1.216(13) 0.081(3) 2.06(1) 0.0251(7)

Table 1. In the first two tables we compare our results with those obtained by field theoretic

methods and Monte Carlo studies. The last table collects the most relevant OPE coefficients. In

the ordinary transition µ1 = µ dσ̂
dy

and µ2 = µÔo , while in the special transition µ1 = µσ̂ and

µ2 = µÔs . The first three OPE coefficients in the ordinary transition agree with those computed

in [28].

The input parameters are the scaling dimensions of the bulk operators σ, ε, ε′, ε′′ and

ε′′′, namely,

∆σ = 0.5181489(10); ∆ε = 1.412625(10),

taken from [25], ∆ε = 3.8303(18) taken from [11], and ∆ε′′ = 7.316(14); ∆ε′′′ = 13.05(4)

from the truncation (4,1,1) studied in [28].

In the first two tables we compare our results for the relevant surface exponents of

the two transitions with those obtained with perturbative expansions in φ4 field theory

or computed in Monte Carlo simulations. Following the literature, here we replaced the

scaling dimension ∆ with the surface renormalization group exponent yh = 2 − ∆. The

– 13 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
7

field-theoretic approach to critical behaviour near free surfaces is rather challenging, mainly

because the breakdown of translational invariance gives rise to serious computational dif-

ficulties. As a matter of fact expansions in 4-ε dimensions [43–45] or 3d expansions in a

massive model [42] do not exceed second order, so large truncation effects are expected.

Better results are obtained with Monte Carlo simulations [31, 38, 46].

The error quoted in our bootstrap results is due to the uncertainty of the input param-

eters. The errors and the central values do not vary sensibly when we replace the values

of ∆σ and ∆ε with the estimates obtained in Monte Carlo simulations [47]. Our results

are also affected by a systematic error due to the truncation of the bootstrap equations

which is in general difficult to evaluate. However in the case of ordinary transition the

two bootstrap estimates (see the first table) correspond to two very different truncations,

namely (2,1,0) used in [28] and (4,4,0) used in the present work. Remarkably, there is a

perfect agreement of the two estimates within the errors, thus suggesting a negligible effect

of these truncations on the central values, while the more accurate truncation produces a

drastic reduction of the error, as expected. An analogous conclusion can be reached by

comparing the first three OPE coefficients (see the last table) with those computed in [28].

In the case of special transition a similar analysis of the truncation effects can not be made

because the standard approach of [28] yields only solutions depending on a free parameter,

which is responsible for a large uncertainty of the estimates (see the second table). Since

here we use the same (4,4,0) truncation to study both surface transitions, we can reason-

ably suppose that the truncation effects are small also in the latter case. An “a posteriori”

argument in support of the irrelevance of the truncation effects in both surface transitions

is the impressive agreement between our results with the most recent, very precise Monte

Carlo estimates [31, 38].

In our results the major sources of error are the uncertainties of the scaling dimensions

of ε′′ and ε′′′ coming from a (4,1,1) truncation of the extraordinary transition [28]. The re-

sults are substantially stable if we replace these two scaling dimensions with those obtained

from the (4,2,1) truncation discussed in [28], even if the errors are a bit larger because of

the appearance of a free parameter in the solution. Notice that rough estimates of these

scaling dimensions have also been obtained within the linear functional method [11]. The

quoted results are respectively ∆ε′′ ∼ 7 and ∆ε′′′ ∼ 10.5. It would be very important to

improve these estimates using some convex optimization method in order to substantially

reduce both the error bars of our results and a possible source of truncation effects.

The method described in this work, being based on the interplay between ordinary

and special transition, can not be directly generalized to O(N) models with N > 1. In

fact the special transition is an order-disorder transition on the surface boundary, while

there can not be any spontaneous breaking of a continuous symmetry in D ≤ 2 dimensions,

according to the Mermin-Wagner-Hohenberg theorem.

Actually the special transition, being multicritical, is characterized by two relevant

renormalization group exponents, the magnetic (yh) and the thermal (yt) exponents. The

latter is related to the fusion rule of the bulk energy in the boundary channel ε ∼ 1+ ε̂+ . . .

by yt = 2−∆ε̂. For completeness some values of yt are reported in the second table. An open

problem for future studies is the evaluation of this exponent within the bootstrap approach.
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So far, no suitable solution of the bootstrap equations has been found to compute it. The

algebraic formalism developed in this paper could help to face this problem.
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