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1 Introduction

Unitarity is a necessary property of any theory that aims at describing the fundamental

constituents of matter and their interactions. Since superstring theory is, at present, the

leading candidate for such a theory, it is necessary to ensure that the scattering matrix

computed from superstring theory is unitary. The goal of this paper will be to address this

issue in superstring perturbation theory.

Our strategy will be to make use of superstring field theory1 — a quantum field theory

whose Feynman rules reproduce the perturbative amplitudes computed using the conven-

1Our analysis will not require using any specific version of superstring field theory. For definiteness we

can consider the version of quantum superstring field theory considered in [1]. Most of the other recent work

has been towards the construction of classical open and/or closed superstring field theory [2–20]. If they can

be elevated to consistent quantum theory, they may provide equally good candidates for our analysis. One

may also be able to use non-local versions of closed superstring field theory of the kind suggested in [21].
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tional Polyakov approach. The advantage of using superstring field theory is that we can

use the well known techniques of quantum field theory to address various issues. In par-

ticular one might expect that the conventional approach to proving unitarity of quantum

field theories using Cutkosky rules [22–26] may be used to give a proof of unitarity of su-

perstring perturbation theory, since these rules encode the perturbation expansion of the

relation S†S = 1 satisfied by the S-matrix S.

It turns out however that there is one way in which superstring field theory differs from

conventional quantum field theories. The interaction vertices of superstring field theory

have the property that they fall off exponentially when the external states carry large

space-like momenta. This property is what makes the superstring perturbation expansion

manifestly free from ultraviolet divergences. However there is a flip side to this story —

for large time-like momenta the interaction vertices diverge exponentially. For this reason,

the only way to make sense of integration over loop energies is to let the energy integration

contours reach infinity along the imaginary axis. If we consider the Wick rotated Green’s

function in which all the external states carry imaginary energy, this is straightforward.

We simply take all the loop energy integrals to lie along the imaginary axis so that all the

propagators and vertices carry imaginary energy. This leads to non-singular integrand with

exponential fall-off at infinity and the integral is well defined. In a conventional quantum

field theory, we could inverse Wick rotate2 all the external energies towards the real axis

and at the same time rotate the energy integration contours clockwise from the imaginary

axis to the real axis, eventually arriving at the formalism where the energies of external

states are real, and the loop energy integrals run along the real axis with iε prescription

for dealing with the poles of the propagator. However such an integral will be ill defined

in string field theory, since the vertex factors will blow up exponentially as the loop energy

integrals approach infinity along the real axis. For this reason, even when we inverse Wick

rotate the external energies from the imaginary axis back to the real axis, we must continue

to let the loop energy integration contours reach infinity along the imaginary axis. However

we can no longer ensure that these integrals run all along the imaginary axis since during

the inverse Wick rotation of external energies, some of the poles of the propagator will

approach the imaginary energy axis and we have to deform the integration contour away

from these poles in order to ensure that we get the analytic continuation of the Wick

rotated result. As a result, when the external energies reach the real axis, we typically will

have a complicated integration contour over the loop energies with their ends tied at ±i∞.

For example for the one loop amplitude shown in figure 1 in page 11, a possible integration

contour over the loop energy is shown in figure 3 in page 13.

Since the proof of unitarity involves identifying the anti-hermitian part of the ampli-

tude, we now have to identify the anti-hermitian part of this Feynman integral. A priori

the result looks complicated due to the fact that the choice of integration contour does not

have simple reality properties. One can in fact show that the prescription for computing

the hermitian conjugate of the T-matrix reduces to the computation of a Feynman integral

similar to the original integral, with all the external energies replaced by their complex con-

2In our notation, Wick rotation will denote taking the energies from the real axis to the imaginary axis,

while inverse Wick rotation will correspond to taking them from the imaginary axis to the real axis.
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jugates and the integration contour over the loop energies related to the original contour

by complex conjugation. The main result of this paper involves proving that to all orders

in perturbation theory, this difference between the two integrals is given by Cutkosky rules

in the limit when the external energies approach the real axis.

If we denote by T the T-matrix related to the S-matrix via the relation S = 1−iT , then

Cutkosky rules express the difference between T and its hermitian conjugate T † as a sum of

cut Feynman diagrams in which we draw an oriented line through the Feynman diagrams

contributing to the original T-matrix, dividing the diagram into two pieces. In every cut

propagator, the original propagator is replaced by the product of a delta function that sets

the momentum along the propagator on-shell and a step function that forces the energy of

the propagator to flow from the left to the right of the cut. The contribution from part of

the Feynman diagram to the left of the cut is computed using the usual Feynman rules and

the contribution from part of the Feynman diagram to the right of the cut is given by the

hermitian conjugate of the corresponding Feynman diagram. The contributions from the

cut diagrams have the interpretation of the matrix elements of T †T , computed by inserting

a complete set of states between T † and T represented by the cut propagators. After taking

into account the factors of i we arrive at the relation T − T † = −iT †T , which is precisely

the statement of unitarity of the S-matrix.

In quantum field theories where all the fields represent fundamental particles, the

Cutkosky rules establish the unitarity of the S-matrix. For theories with local gauge sym-

metry, including string field theory, Cutkosky rules are necessary ingredients for the proof

of unitarity, but they are not sufficient. These theories contain many unphysical and pure

gauge states besides physical states, and we must show that only the physical states con-

tribute to the sum over intermediate states. In conventional gauge theories this is proved

using Ward identities (see e.g. [25]). Since gauge invariance of string theory leads to similar

Ward identities [27], we expect that they can be used to complete the proof of unitarity.

We leave this for future work.

The paper is organized as follows. In section 2 we introduce a toy scalar field theory

that captures all the essential properties of string field theory that goes into the proof of

Cutkosky rules. In order to define an amplitude in this theory with Lorentzian external

momenta, with the s-th external particle carrying spatial momenta ~ps and energy Es, we

begin with an amplitude where the s-th particle has spatial momenta ~ps and energy λEs,

where λ is a complex parameter. For purely imaginary λ the amplitude is defined by

taking all the loop energy integrals along the imaginary axis. We then define the physical

amplitude, corresponding to λ = 1, by analytic continuation of the result on the imaginary

λ-axis to the real λ-axis via the first quadrant of the complex λ-plane. In section 4 we prove

that this analytic continuation procedure is well defined by showing that the amplitude

does not have any singularity in the first quadrant of the λ-plane. In section 2 we also

derive an algorithm for computing the hermitian conjugate of an amplitude.

In section 3 we consider a simple one loop amplitude in this theory and show how

Cutkosky rules hold for this amplitude. The complete proof to all orders in perturbation

theory is carried out in section 5. This is done in several steps. First we show that for fixed

values of the spatial components of loop momenta the contribution to the anti-hermitian
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part of a connected amplitude is non-vanishing only when some of the integration contours

over the loop energy integrals are pinched, i.e. two poles approach each other from opposite

sides of a contour so that we cannot deform the contour away from the poles without

passing through a pole. Then we divide the contribution from the pinch singularities into

two classes, one vertex irreducible (1VI) diagram and one vertex reducible (1VR) diagrams,

and show that Cutkosky rules hold for the 1VR diagrams as long as they hold for the 1VI

diagrams. Next we prove the Cutkosky rules for 1VI diagrams. Finally we prove that the

Cutkosky rules for disconnected diagrams follow as a consequence of the Cutkosky rules

for connected diagrams. Our proof uses the method of induction in the number of loops,

and holds to all orders in perturbation theory.

In section 6 we describe how the analysis of the toy model in the previous sections

captures most, but not all, of the ingredients needed to prove unitarity of superstring

field theory. We discuss what else needs to be done to prove the unitarity of superstring

perturbation theory. Some of these are common to ordinary quantum field theories, e.g. we

need to work in sufficiently high dimensions so that we avoid the usual infrared divergence

problems that plague quantum field theories in dimensions ≤ 4, and we need to prove the

cancellation of the contributions from intermediate unphysical and pure gauge states using

Ward identities. However some of them are purely technical problems in string field theory

— e.g. proving the reality of the superstring field theory action — which we believe can be

proven with some effort but has not been done so far.

We conclude this introductory section by reviewing some of the previous work on this

subject. A complete proof of unitarity of superstring perturbation theory was attempted

in [28] by showing the equivalence of the perturbative amplitudes in superstring theory

and the amplitudes in light-cone string field theory. Since the latter is manifestly unitary,

this would imply unitarity of the S-matrix computed in the covariant formulation. In view

of recent understanding of the subtleties of superstring perturbation theory [29–32] one

should reinvestigate this correspondence. Nevertheless it seems quite likely that this will

lead to a concrete formulation of light-cone string field theory which will still be manifestly

unitary and at the same time generate the usual amplitudes of perturbative superstring

theory. This would establish the unitarity of perturbative superstring amplitudes. However

the main advantage of using a covariant superstring field theory for our analysis is that this

theory can be used to analyze unitarity and other properties of string theory not only in the

perturbative vacuum, but also in situations where loop corrections require us to shift the

vacuum expectation values of the fields away from that in the perturbative vacuum [27].

The shift in the field will change the vertices, but not their general properties on which we

shall base our analysis as long as the string field theory action in the shifted background

continues to be real.

One could also try to prove the unitarity of superstring perturbation theory directly

by using the iε prescription for defining the perturbative amplitudes as given in [33, 34].

At this stage it is not known how this can be done, but it is conceivable that one can

translate this iε prescription into a direct proof of unitarity of the perturbative superstring

amplitudes. However this will still suffer from the fact that the proof will not extend in a

straightforward manner to the cases where the true vacuum is related to the perturbative

vacuum by a shift in the fields.
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Finally we would like to add one word about convention. Throughout this paper we

shall use the notion of a pinch singularity to denote that the integration contours over some

loop energies encounter poles approaching each other from opposite sides of the contours so

that by deforming the contours into the complex loop energy plane we cannot avoid these

poles. However we shall always keep the integration over the spatial components of loop

momenta along the real axes. This notion differs from that used in the standard literature

e.g. in [22, 23], where a contour is declared to be pinched only if it cannot be deformed

away from the pole by deforming the integration contour into the complex energy and /

or complex spatial momentum plane. Due to this, some of our results, e.g. that the anti-

hermitian part of the amplitude comes only from pinch singularities, may look unfamiliar

to the experts. On the other hand, our approach leads to a proof of the Cutkosky rules at

fixed values of the spatial components of the loop momenta and for general off-shell external

states. This is close in spirit to the results of [35], although the analysis of [35] cannot be

applied directly to the class of field theories we consider due to essential singularities of

the interaction vertices at infinite momenta.

2 The field theory model

In this section we shall introduce a toy quantum field theory that captures all the essential

features of the subtleties of string field theory action. Our model will involve a single scalar

field. But the analysis we shall perform can be easily generalized to the case of multiple

fields including fields of higher spin, since Lorentz invariance will not play any significant

role in our analysis. In section 6 we shall discuss what additional subtleties we need to

address in order to translate the result of this paper to a complete proof of unitarity of

superstring field theory.

2.1 The model

We consider a scalar field theory in (d+ 1)-dimensions containing a single real scalar field

φ, with the following action written in momentum space:

S = −1

2

∫
dd+1k

(2π)d+1
φ(−k)(k2 +m2)φ(k)

−
∑
n

1

n!
(2π)−(n−1)(d+1)

∫
dd+1k1 · · · dd+1kn δ

(d+1)(k1 + · · ·+ kn)

× V (n)(k1, · · · kn)φ(k1) · · ·φ(kn) . (2.1)

Here k2 ≡ −(k0)2 + (k1)2 + · · ·+ (kd)2, dd+1k ≡ dk0dk1 · · · dkd and the vertices V (n) satisfy

the reality condition

(V (n)(k1, · · · kn))∗ = V (n)(−k∗1, · · · − k∗n) , (2.2)

where ∗ denotes complex conjugation. We take the V (n)’s to be invariant under arbitrary

permutation of the arguments, and assume that they have no singularities in the kµs planes

at finite values. Furthermore, they vanish exponentially as one or more k0
s approach ±i∞
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along the imaginary axis and/or one or more kis for 1 ≤ i ≤ d approach ±∞ along the real

axis, keeping the other kr’s fixed. On the other hand, V (n) may blow up exponentially as

k0
s and/or kis approach infinity in certain other directions, e.g. along the real k0

s axis or the

imaginary kis axis. Therefore V (n)’s have essential singularities at infinity.

Note that due to the exponential growth of V (n) for large time-like momentum, a

classical field configurations φ(k) with real argument {kµ} will have finite action only if

it falls off sufficiently fast for large |k0| so as to compensate for the exponential growth of

the V (n)’s. Once this condition is satisfied and the action is finite, then (2.1) is real for

real field configuration satisfying φ(k)∗ = φ(−k). We shall of course not be interested in

classical field configirations — for us the significance of (2.1) lies in the fact that this is

the property that we expect the superstring field theory action to possess.

The Feynman rules for computing the T-matrix, related to the S-matrix via S = I−i T ,

are as follows:

propagator of momentum k : −i (k2 +m2)−1

n-point vertex with incoming momenta k1, · · · kn : −i V (n)(k1, · · · kn)

each loop momentum integration :
dd+1`

(2π)d+1

overall factor : i (2π)d+1δ(d+1)

(∑
s

ps

)
, (2.3)

where in the last equation the sum over s runs over all the external momenta ps in the

convention that ps denotes the momentum entering the diagram from outside. If the

diagram has disconnected components then there will be separate momentum conserving

delta function for each component. These rules are derived from path integral expressions

for the Green’s functions with weight factors eiS .

We can simplify the Feynman rules somewhat by extracting a factor of i from each

propagator, a factor of −i from each vertex and the overall factor of i given in the last line

of (2.3). This gives a total factor of (i)np−nv+1 where np is the number of propagators and

nv is the number of vertices. If n` is the number of loops, then using the relation

n` = np − nv + 1 , (2.4)

that holds for a connected diagram, we get a net factor of

(i)np−nv+1 = (i)n` . (2.5)

If the diagram has nc disconnected components then (2.4) will be replaced by n` = np −
nv + nc, and hence the net factor given in the right hand side of (2.5) will be

(i)n`−nc+1 . (2.6)

For now we shall proceed by assuming that the diagram is connected so that (2.5) holds.

Therefore each loop integral is accompanied by a factor of i. The modified Feynman rules

– 6 –
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now involve

propagator of momentum k : P (k) = −(k2 +m2)−1

=

(
k0−

√
~k2+m2

)−1(
k0+

√
~k2+m2

)−1

vertex with incoming momenta k1, · · · kn : V (n)(k1, · · · kn)

each loop momentum integration : i
dd+1`

(2π)d+1

overall factor : (2π)d+1δ(d+1)

(∑
k

pk

)
. (2.7)

Since the vertices diverge exponentially for large time-like external momenta, individ-

ual Feynman diagrams in this theory have somewhat strange properties. For example the

s-channel diagram for a tree level 4-point function, in which a pair of 3-point functions are

joined by a single internal propagator, will blow up exponentially in the limit of large center

of mass energy of the incoming particles. In string field theory this effect is cancelled by

the contribution from the 4-point vertex. On the other hand, this property of the vertices

makes the individual Feynman diagrams manifestly free from ultraviolet divergences once

we choose the loop momentum integration contours appropriately. This will be described

in the next subsection.

2.2 Loop momentum integration contours

Due to the peculiar behavior of the interaction vertices at large momenta, the integration

over loop momenta has to be defined somewhat carefully. The integrals over ~̀k ≡ (`1k, · · · `dk)
— the spatial components of the loop momenta — are taken to be along the real axis, but

the integration contours for the `0k’s — the zeroth components of all the loop momenta —

are chosen as follows. Let us denote collectively by {p0
s} the zero components of the external

momenta {ps}. We shall introduce a set of numbers {Es} which denote the actual real

values of the {p0
s} for which we want to compute the Green’s function, and consider a more

general set of external momenta where p0
s = λEs with λ an arbitrary complex number.

When λ is purely imaginary then we can get a well-defined expression for the Green’s

function by taking the integration contour for `0k’s to run along the imaginary axis. In

this case all the internal propagators carry imaginary energy and real spatial momenta and

hence are free from singularities. Furthermore since the `0k integration contour approaches

infinity along the imaginary axis and the `1k, · · · `dk integration contours approach infinity

along the real axis, we get a convergent loop momentum integral due to the convergence

property of V (n) discussed above. We now define the off-shell Green’s function for general

λ as the analytic continuation of this expression in the complex λ plane. Operationally

this means that as we deform λ away from the imaginary axis, we continue to define the

Green’s function by taking the integration contour over `0k’s to run from −i∞ to i∞ till

some pole of the integrand approaches the imaginary `0k axis. When a pole approaches the

imaginary `0k axis, we deform the integration contour away from the imaginary axis to avoid

the poles, keeping its ends fixed at ±i∞. The integrations over the spatial components

– 7 –
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of loop momenta are always taken to be along the real axis.3 We shall show in section 4

that the off-shell Green’s function defined this way is an analytic function of λ in the first

quadrant of the complex plane, i.e. for Re(λ) ≥ 0, Im(λ) > 0. This is simply the statement

that as long as λ remains in the first quadrant, a deformation of the integration contour

of the kind mentioned above is always possible. For any amplitude, we shall denote by C

the collective prescription for all the `0k integration contours.

As is well known, if the integrands had sufficiently rapid fall off as `0k → ∞ in any

direction in the complex plane, the above prescription is equivalent to the usual iε pre-

scription for computing Green’s functions. To see this let us replace m2 by m2 − iε in the

propagators. Since the euclidean path integral has no divergences, in the ε → 0+ limit

this replacement has no effect on the Euclidean Green’s functions with p0
s = iEs. Now we

rotate each external p0
s from imaginary to real axis by taking p0

s = Ese
iθ and letting θ vary

from π/2 to 0. We can accompany this by a deformation of the integration contour over

`0k’s by replacing `0k by eiθui with real ui. As long as the integrand falls off sufficiently fast

as `0k → ± eiθ ×∞, this is an allowed deformation of the contour. During this deformation

the momentum kj ≡ (k0
j ,
~kj) flowing through the j-th internal propagator will take the

form (eiθκj , ~kj) with real κj . Therefore we have

k2
j +m2 − iε ≡ −(k0

j )
2 + ~k2

j +m2 − iε = −κ2
je

2iθ + ~k2
j +m2 − iε . (2.8)

For ε > 0 and 0 ≤ θ ≤ π/2 this has strictly negative imaginary part and hence does not

vanish. Therefore the deformed contour does not cross any pole as we vary θ from π/2

to 0. For θ = π/2 this gives the euclidean expression whereas for θ = 0 we get the usual

Feynman rules with Lorentzian momentum integration with the iε prescription.

Of course for the kind of vertices we are using here this rotation of the integration con-

tours is not allowed due the essential singularity that the integrand has at infinity. Therefore

we have to work with the integration contour with the end-points of `0k contour integrals

fixed at±i∞, as mentioned above. Nevertheless, replacing m2 bym2−iε serves a useful pur-

pose of determining which side of the integration contour a given singularity lies. For this

let us express the propagator −(k2 + m2)−1 as
(
k0 −

√
~k2 +m2

)−1 (
k0 +

√
~k2 +m2

)−1
.

In this case if we replace m2 by m2− iε and pretend that the k0 integral runs along the real

axis towards +∞, then the first pole lies to the right of the k0 integration contour whereas

the second pole lies to the left of the integration contour. This property is inherited from

the original definition of the integral for purely imaginary λ where the k0 integral runs

along the imaginary axis from −i∞ to i∞, and must be satisfied by the k0 integration

contour for any λ in the first quadrant. Therefore the iε prescription may be regarded as

a way of keeping track of on which side of the integration contour a pole lies, — we simply

3This prescription is not manifestly Lorentz invariant, since the standard proof of Lorentz invariance

requires us to transform the loop momenta by the same Lorentz transformation that acts on the external

states, and this does not leave the end points of the contour invariant. However the new contour obtained

by Lorentz transformation will also have the property that the integrand falls off exponentially at the two

ends since the integrand is manifestly Lorentz invariant. As a result we can prove the equality of the new

integral with the old integral by deforming the new contour to the old one near the end points by successive

infinitesimal Lorentz transformations.
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have to pretend that the k0 integration runs along the real axis towards +∞, and read off

which side of the contour the pole is on when we replace m2 by m2 − iε.

2.3 Hermitian conjugate of the T-matrix

The Feynman rules described above directly compute the T-matrix. Our goal will be to

compute the difference 〈a|(T − T †)|b〉 for incoming states |b〉 and outgoing states 〈a|. For

this we use the relation4

〈a|T †|b〉 = 〈b|T |a〉∗ , (2.9)

and proceed as follows:

1. We use the Feynman rules to compute the right hand side of (2.9). Now in our

convention where all external states have their momenta entering the Feynman di-

agram, an external line of momentum pi with positive p0
i is to be interpreted as an

incoming state of (d + 1)-momentum pi whereas an external state of momentum pi
with negative p0

i is to be interpreted as an outgoing state of (d+ 1)-momentum −pi.
Therefore 〈b|T |a〉 can be obtained from 〈a|T |b〉 by simply switching the signs of all

the external momenta.

2. Due to the change in sign of the external momenta, the `0k integration contours for

computation of 〈b|T |a〉 will have to be deformed in a way that is different from what

we have for 〈a|T |b〉, since the poles are at different places. However if we make a

change of variables in which each loop momentum `k is replaced by −`k then all

the momenta carried by the internal vertices and propagators5 in the expression

for 〈b|T |a〉 will have their signs reversed compared to the integrand appearing in

the computation of 〈a|T |b〉. Since this does not change the positions of the poles,

the contours for 〈b|T |a〉 can now be defined in the same way as for 〈a|T |b〉. The

(−1)d+1 factor picked up by the measure dd+1`k during the change of variables is

compensated by an orientation reversal of the integration contours, so that each `ik
integral for 1 ≤ i ≤ d still runs from −∞ to ∞ along the real axis and each `0k
integration still runs from −i∞ to i∞ along the original contour. This shows that

〈b|T |a〉 can be computed by taking the expression for 〈a|T |b〉 and changing the sign

of the arguments of each vertex factor V (n) and internal propagator that appears in

the amplitude, keeping the integration contours unchanged.

3. Next we study the effect of the complex conjugation appearing on the right hand

side of (2.9). This changes the factor of i accompanying each `0k integral to −i, and

complex conjugates all the vertices and propagators. We can now use (2.2) and the

minus signs in the arguments of V (n) introduced at the previous step to bring the

factors of V (n) back to the form in which they appeared in the expression for 〈a|T |b〉,
except that their arguments are replaced by their complex conjugates. On the other

hand in each propagator factor the momentum gets complex conjugated. Therefore

4We use the shorthand notation 〈a|S|b〉 ≡ 〈a, out|b, in〉 and 〈a|S†|b〉 ≡ 〈a, in|b, out〉.
5The change in sign of the momentum does not affect the propagator, but we have included it to facilitate

generalizations in section 6.
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the net difference between the expressions for 〈a|T |b〉 and 〈b|T |a〉∗ is that all the

momentum factors in the integrand are replaced by their complex conjugates and the

factor of i accompanying each loop integral is replaced by −i.

4. If we make a further change in the variables `0k → (`0k)
∗, it sends the integrand for

〈b|T |a〉∗ to its original form that appears in the computation of 〈a|T |b〉 except that all

the external momenta are replaced by their complex conjugates. The new `0k contour

would run from i∞ to −i∞, but we compensate for this by changing its orientation

by absorbing the − sign from the factor of −i mentioned at the end of the last

paragraph. However the new contours now are related to the original contours by

complex conjugation. We denote the new choice of contours collectively by C∗. An

example of how C∗ is constructed from C can be found in section 3 (see figure 3) and

a systematic procedure for constructing C and C∗ will be described in section 4.2.

5. As long as the contours can be kept away from the poles, we can take the limit in

which the external energies approach real values. In that case the integrands in the

expressions for 〈a|T |b〉 and 〈b|T |a〉∗ become identical. We shall see however that this

is not always possible since the contours may encounter pinch singularities in this

limit. In such cases we have to take the limit after carrying out the integration.

To summarize, we have shown that the expression for 〈a|T †|b〉 takes a form similar to

that for 〈a|T |b〉, except that in the integrand the external momenta are replaced by their

complex conjugates and the choice of integration contours over `0k, denoted collectively by

C, is replaced by C∗. Therefore the difference between T and T † can be computed by

calculating the difference between these two contour integrals. Our goal will be to prove

that this difference is given by the Cutkosky rules. In carrying out this analysis we shall

make use of the freedom of deforming the `0k contours in the complex `0k plane, possibly

picking up residues from the poles that the contour crosses, but keep the ends of the

integration contour always tied at ±i∞ to ensure convergence of the integral.

3 One loop four point function

In this section we shall analyze in detail the simple example of a contribution to the four

point function shown in figure 1. Using (2.7) the contribution to the Green’s function is

given by

A(p1, p2, p3, p4) = i

∫
C

dd+1`

(2π)d+1
{(`0)2 − ~̀2 −m2}−1{(p0 − `0)2 − (~p− ~̀)2 −m2}−1

× V (4)(p1, p2,−`, `− p)V (4)(`, p− `, p3, p4) . (3.1)

We have dropped the overall factor of (2π)d+1δ(d+1)(p1+p2+p3+p4) to avoid cluttering, and

C denotes the integration contour as described in section 2. Following the logic described
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p1

p2

p3

p4

`

p− `

Figure 1. A one loop contribution to the four point function. All external momenta flow inwards,

the internal momenta ` and p− ` flow from left to right and p = p1 + p2 = −(p3 + p4).

at the end of section 2 we also get, after some change of variables,

A(−p1,−p2,−p3,−p4)∗ = i

∫
C∗

dd+1`

(2π)d+1
{(`0)2−~̀2−m2}−1{((p0)∗−`0)2−(~p−~̀)2−m2}−1

× V (4)(p∗1, p
∗
2,−`, `− p∗)V (4)(`, p∗ − `, p∗3, p∗4) , (3.2)

where C∗ is the contour obtained from C after complex conjugation and an orienta-

tion reversal so that it still runs from −i∞ to i∞. Therefore A(p1, p2, p3, p4) and

A(−p1,−p2,−p3,−p4)∗ differ from each other only in the choice of the integration con-

tour, and complex conjugation of the external momenta.

Let us return to (3.1). The poles in the `0 plane are at

Q1 ≡
√
~̀2+m2, Q2 ≡ −

√
~̀2+m2, Q3 ≡ p0+

√
(~p−~̀)2+m2, Q4 ≡ p0−

√
(~p−~̀)2 +m2.

(3.3)

Let Es’s be the physical real values of p0
s that we are interested in, and define E ≡ E1+E2 =

−(E3 +E4). Let us for definiteness take E1, E2 to be positive and E3, E4 to be negative so

that E is positive. This corresponds to choosing p1 and p2 as incoming momenta and −p3

and −p4 as outgoing momenta. In order that this amplitude can be defined via analytic

continuation from the Euclidean result as suggested in section 2, we have to ensure that for

ps = λEs the amplitude defined above has no singularity for λ in the first quadrant. This in

the present circumstances correspond to p0 = λ(E1 +E2) lying in the first quadrant. Now

our prescription for defining the Green’s function for p0 on the imaginary axis is to take the

integration contour of `0 from −i∞ to i∞ along the imaginary axis. In this case the poles

Q2 and Q4 are to the left of the integration contour and the poles Q1 and Q3 are to the

right of the integration contour. As p0 moves into the first quadrant, the positions of the

poles shift. If they come towards the imaginary `0 axis, then analytic continuation of the

original results is obtained by deforming the `0 integration contour into the complex plane

to avoid the pole, keeping its ends fixed at ±i∞. We shall hit a singularity in the p0-plane

if the singularity is pinched, i.e. two poles approach the same point on the integration

contour from opposite sides so that we cannot deform the contour away from the pole

without passing through one of the poles. In the present context this would happen if Q2

approaches Q1 or Q3, or Q4 approaches Q1 or Q3. Now from the expressions given in (3.3)
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it is clear that for real ~̀, Q1 cannot approach Q2 and Q3 cannot approach Q4. Therefore

the only possibilities are Q2 approaching Q3 or Q4 approaching Q1. The conditions for

these to happen can be written as

p0 = ±
(√

~̀2 +m2 +

√
(~p− ~̀)2 +m2

)
. (3.4)

Since the right hand side of (3.4) is real, this can be avoided as long as p0 is away from

the real axis. This shows that the amplitude is free from singularities as long as p0 lies

in the first quadrant, and we can define the amplitude for real positive p0 by taking the

Im(p0) → 0 limit from above. An alternative but equivalent approach will be to replace

m2 by m2 − iε. In this case the right hand sides of (3.4) will lie in the fourth and the

second quadrants. Therefore as p0 approaches a positive real value from the first quadrant,

the analyticity property of the integral extends all the way up to real p0 axis, and we can

define the amplitude for real p0 by taking the ε→ 0+ limit after setting p0 to be real.

The story can be repeated even in the case E < 0. In this case p0 = λE lies in the

third quadrant and the possible solution to (3.4) comes from the choice of minus sign on

the right hand side. This can be avoided as long as Im(p0) < 0, i.e. Im(λ) > 0, and we

define the amplitude for real negative p0 by taking Im(p0)→ 0 from below. Alternatively,

replacing m2 by m2− iε shifts the right hand side of (3.4) with the choice of minus sign to

the second quadrant. Therefore the analyticity property of the integral also holds when we

consider real negative p0, i.e. real positive λ. This allows us to take p0 to be real keeping

ε > 0 and then take ε→ 0+ limit.

This proves the desired analyticity property of the Green’s function that allows us to

define the amplitudes for real p0 via analytic continuation of the amplitude for imaginary

p0. Let us now focus on deriving the Cutkosky rules for this amplitude. For this we need to

compute the difference between (3.1) and (3.2) in the limit p0 → E from the first quadrant.

Eq. (3.3) shows that in this limit all the poles approach the real axis. The original contour

needs to be deformed when Q4 crosses the imaginary axis so that the poles Q2 and Q4 will

continue to lie to the left of the integration contour and the poles Q1 and Q3 will lie to

the right of the integration contour. This has been shown in figure 2. If we include the iε

term, then the poles Q2 and Q4 get lifted slightly above the real axis, while the poles Q1

and Q3 get shifted slightly below the real axis.

Now as long as p0 <
√
~̀2 +m2 +

√
(~p− ~̀)2 +m2, Q4 lies to the left of Q1 and the

contour can be taken to be invariant under complex conjugation as shown in figure 2. As

a result C and C∗ are identical.6 Also all external momenta are real so that the integrands

in (3.1) and (3.2) become equal. In this case using (3.1) and (3.2) we see that for the range

of values of ~̀ satisfying the above inequality, the contributions to A(−p1,−p2,−p3,−p4)∗

and A(p1, p2, p3, p4) are equal.

Let us now consider the case when Q4 approaches Q1. If we use the iε prescription, Q4

always lies above the real axis and Q1 lies below the real axis, and we can continue to choose

6A more general statement is that the new contour obtained after complex conjugation can be deformed

to the original contour without passing through a pole.
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x xx x
Q2 Q1Q4 Q3

Figure 2. The integration contour over `0 and the locations of the poles marked by x.

x x x x
Q2 Q1 Q4 Q3

(a)

x x x x
Q2 Q1 Q4 Q3

(b)

Figure 3. (a) The integration contour over `0 with the locations of the poles marked by x. (b) The

complex conjugate contour.

the contour so that Q2 andQ4 are to the left and Q1 andQ3 are to the right. However in this

case we can no longer ignore the iε term. Equivalently we can set ε = 0 but take p0 to have

a small positive imaginary part as its real part approaches
√
~̀2 +m2 +

√
(~p− ~̀)2 +m2.

In either case, Q4 lies above Q1 in the complex plane when their real parts approach each

other. We shall return to this contribution later.

For p0 >
√
~̀2 +m2 +

√
(~p− ~̀)2 +m2, Q4 is to the right of Q1 and the deformed

contour takes the form shown in figure 3(a). In drawing this we have used the fact that

Q4 remains above Q1 as it passes Q1 and that during this process the contour needs to be

deformed continuously without passing through a pole. The complex conjugate contour of

figure 3(a) has been shown in figure 3(b). Since in both cases the contours can be taken far

away from the poles, we can set the external energies to be real and ε to zero so that the

integrands in (3.1) and (3.2) become identical. Now even though the contours in figure 3(a)

and 3(b) are topologically distinct, each of them can be split into two contours — an anti-
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clockwise contour around Q4 and a contour from −i∞ to i∞ keeping Q1, Q3 and Q4 to

the right. Therefore their contributions are equal. This shows that integration over the

contours in figure 3(a) and figure 3(b) give the same result, and hence the contribution to

A(p1, p2, p3, p4) − A(−p1,−p2,−p3,−p4)∗ from the region of integration where ~̀ satisfies

the above inequality also vanishes.

Therefore we see that the contribution to the imaginary part of (3.1) comes from the

region around p0 '
√
~̀2 +m2 +

√
(~p− ~̀)2 +m2 when the poles Q4 and Q1 approach

each other. We shall now evaluate this contribution. For both C and C∗, we proceed by

deforming the `0 contour through the pole Q4 so that the poles Q4, Q1 and Q3 now lie to

the right of the integration contour. This new contour is far away from all poles and can

be chosen to be invariant under complex conjugation followed by a reversal of orientation.

As a result the integral along this contour gives equal contribution to A(p1, p2, p3, p4) and

A(−p1,−p2,−p3,−p4)∗ according to our previous argument. In the process of passing

the contour through Q4 we also pick up the residue from Q4. Let us denote by Ar the

contribution from the residue at Q4. This can be expressed as

Ar =

∫
dd`

(2π)d

{
2

√
(~p− ~̀)2 +m2

}−1

×
{
p0 −

√
(~p− ~̀)2 +m2 −

√
~̀2 +m2

}−1{
p0 −

√
(~p− ~̀)2 +m2 +

√
~̀2 +m2

}−1

× V (4)(p1, p2,−`, `− p)V (4)(`, p− `, p3, p4) , (3.5)

where it is understood that `0 in the argument of V (4) is given by its pole value p0 −√
(~p− ~̀)2 +m2 and that this contribution is being evaluated only for those values of ~̀ for

which p0 is close to

√
(~p− ~̀)2 +m2 +

√
~̀2 +m2 so that Q4 is close to Q1. In this case

the second term in the second line remains finite over the entire range of integration of ~̀.

However the first term in the second line can encounter a divergence. To regulate this we

either replace m2 by m2 − iε or take p0 in the first quadrant. On the other hand for the

hermitian conjugate amplitude (3.2) the situation is opposite and we have to either replace

m2 by m2 + iε or take (p0)∗ in the fourth quadrant. Using the result

(x+ iε)−1 − (x− iε)−1 = −2iπδ(x) , (3.6)

we see that the contribution to A(p1, p2, p3, p4)−A(−p1,−p2,−p3,−p4)∗ is given by

− 2π i

∫
dd`

(2π)d
δ

(
E −

√
(~p− ~̀)2 +m2 −

√
~̀2 +m2

){
2

√
(~p− ~̀)2 +m2

}−1

×
{

2

√
~̀2 +m2

}−1

V (4)(p1, p2,−`, `− p)V (4)(`, p− `, p3, p4) , (3.7)

where now all external momenta are taken to be real. Interpreting V (4)(p1, p2,−`, ` − p)
as the matrix element of T with initial state carrying momentum (p1, p2) and final state

carrying momentum (`, p − `) and V (4)(`, p − `, p3, p4) = V (4)(−`, ` − p,−p3,−p4)∗ as the
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matrix element of T † with the initial state carrying momentum (`, p− `) and the final state

carrying momentum (−p3,−p4) we see that (3.7) is precisely the statement of the relation

T − T † = −i T †T . (3.8)

In order to check the precise normalization we must also put back the momentum conserving

δ-functions in the expressions for T and T †.

4 Analytic property of general Green’s functions

In this section we shall prove the analyticity of the general off-shell Green’s function in the

first quadrant of the complex λ plane as stated in section 2. More specifically, we shall

show that if we restrict the external momenta so that the spatial components are real, and

the time components have the form λ times real numbers for a complex parameter λ, then

the amplitudes, defined via analytic continuation from imaginary λ axis, are free from any

singularities for Re(λ) ≥ 0, Im(λ) > 0. We shall also describe explicitly the procedure for

choosing the integration contour that implements the analytic continuation.

4.1 Analyticity in the first quadrant

Our strategy for proving analyticity of the Green’s function in the first quadrant of the

complex λ-plane will be as follows. We shall show that for any fixed real values of the

spatial components {~̀k} of the loop momenta, the integral over the {`0k}’s can always be

deformed away from all singularities of the integrand, i.e. the integration contour is not

pinched. As a result the contribution to the integral over {`0k} is non-singular. Since this

is true at every {~̀k}, the result remains non-singular even after integration over {~̀k}.
We shall prove the result by assuming the contrary and then showing that there is a

contradiction. Therefore let us suppose that there is a subspace R of the space spanned

by {~̀k} where there is a pinch singularity. This means that on this subspace the integrand

becomes singular at some points on the `0k integration contours, and we cannot deform

the `0k contours away from these points without passing through a singularity. We can

classify the regions R of this type using ‘reduced diagram’ which is obtained from the

original Feynman diagram by collapsing all propagators whose energies can be deformed

away from the poles. This means that we remove each of these propagators and join the

pair of vertices that were originally connected by the propagator into a single vertex with

larger number of external legs. The vertices of the reduced diagram will be called reduced

vertices. A given reduced vertex may receive contribution from many different Feynman

diagrams. We shall assume that the loop energies flowing through the propagators inside

the reduced vertex — i.e. the propagators which have been collapsed to points — have

been deformed if needed to keep these propagators finite distance away from their poles.

Henceforth the propagators of a reduced diagram will refer to only those propagators which

have not been collapsed to points.

Let us take any reduced vertex X of the reduced diagram and label by k1, · · · ks the

momenta carried away by internal propagators emerging from the vertex. This has been

shown in figure 4 with X marking a particular reduced vertex, and A denoting a blob

containing arbitrary number of internal lines and reduced vertices. Since each of the internal
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k2

ks

···
·
·

·
ks−1

A���

Figure 4. The reduced diagram displaying only the on-shell propagators of a potentially singular

region of integration. A denotes a blob containing arbitrary number of internal lines and reduced

vertices, and X denotes a specific reduced vertex of this reduced diagram where some external lines

are connected.

propagators of the reduced diagram is on-shell at the pinch (otherwise they would have

been collapsed to points in the reduced diagram) we have

(k0
i ) = ±

√
~k2
i +m2 for 1 ≤ i ≤ s . (4.1)

On the other hand if p denotes the total momentum entering the vertex X from the external

lines, we have, by momentum conservation,

p0 =

s∑
i=1

k0
i . (4.2)

Now (4.1) shows that k0
i is real. Therefore it follows from (4.2) that p0 must be real. On

the other hand we have taken p0 to be of the form λE for some real number E, with λ

lying in the first quadrant. This shows that the only way to satisfy (4.1) and (4.2) for

finite Im(λ) is to take E = 0. Repeating this analysis for every reduced vertex we see

that the total energy entering externally into every reduced vertex of the reduced diagram

must vanish.

Let us now denote by the set {kα} the momenta carried by all the propagators of the

reduced diagram — not only the ones that leave a given reduced vertex X. Using the iε

convention to label the side of the contour on which a pole lies, we see that the relevant

poles at the pinched singularity are at

k0
α = ±

√
~k2
α +m2 − iε . (4.3)

Near the singularities (4.3), we now deform all the loop energy integration contours of the

reduced diagram by multiplying them by λ̃ where λ̃ is a complex number close to 1, lying in

the first quadrant. Since the deformation is small, it does not lead to any new singularity

from the propagators that are inside the reduced vertices. On the other hand since the

external energies entering each reduced vertex vanishes, it multiplies each k0
α by λ̃. It

is easy to see that this deforms the contours away from each of the poles given in (4.3).

Therefore the loop energy integration contours are not pinched at the poles (4.3), showing

that our initial assumption was incorrect.

This proves the desired result.
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4.2 Choice of integration contour

For future use, we shall now describe a specific operational procedure for choosing the

integration contour. As before we denote by {pi} the external momenta, by {`k} the

loop momenta and by {ki} the momenta carried by the propagators. We express the np

propagator factors (−k2
i −m2)−1 as

(
k0
i +

√
~k2
i +m2

)−1(
k0
i −

√
~k2
i +m2

)−1

and assign

fixed labels 1, · · · 2np to the 2np poles obtained from the np propagators. Our analytic

continuation involves choosing the external energies {p0
i } to be {λEi} with real {Ei}.

When λ is on the imaginary axis, each of the `0k integration contours can be taken to run

along the imaginary axis from −i∞ to i∞. Furthermore, for each `0k integration contour,

there is a definite notion of whether a given pole that depends of `0k lies to the left or right

of the integration contour. We make these into permanent assignments in what follows

below. As mentioned in section 2 we could keep track of this information using the iε

prescription even when the contours are deformed.

Consider now a general value of λ in the first quadrant, and choose a specific order in

which we carry out the integration over {`0k}, for fixed values of the spatial components of

all loop momenta. Without any loss of generality we can take this order to be `01, `
0
2, `

0
3, · · · .

Now let us regard the integrand as a general complex function of {`0k}, and for fixed

complex values of `02, `
0
3, · · · , carry out the `01 integration along a contour from −i∞ to

i∞ that keeps the `01 dependent poles on the same side of the integration contour as the

original contour defined for purely imaginary λ. Note that there may be more than one

contour satisfying this condition that are not deformable to each other, e.g. as shown in

figure 3(a) and (b). However, the result of integration does not depend on the choice of

contour. To see this we note that given any two contours satisfying the above condition,

one can be deformed to the other by allowing it to pass through the poles and picking up

residues, and during any such deformation a given pole will have to be crossed an even

number of times in opposite directions since every time a pole is crossed it moves from

the right of the contour to the left or vice versa. Therefore all the residues cancel and the

result of integration becomes independent of the choice of contour. This gives a function

of `02, `
0
3, · · · . The resulting function can develop new poles as a function of these variables

from the `01 integration. For example a pole in the `0k plane can arise when an `0k dependent

pole A in `01 plane collides with an `0k independent pole B in the `01 plane from opposite

sides of the contour.7 We assign this new pole in the `0k plane to be on the same side of

the `0k contour that the pole A was before `01 integration. We now carry out the integration

over `02 along a contour from −i∞ to i∞ keeping all the `02 dependent poles on the ‘correct

side’ of the contour. Repeating the same argument as before, we get a function of `03, `
0
4, · · ·

with definite assignment of which side of the contours in the `03, `
0
4, · · · plane a given pole

should lie. This way we can successively carry out the integration over all the `0k’s and

get a finite result as a function of λ, the spatial components of the loop momenta, and

7To see that this generates a pole in the `0k plane, we note that the singular part of the integrand has

the form (`01 ± `0k − RA)−1(`01 − RB)−1 for some RA and RB that are independent of `01 and `0k. We can

deform the `01 contour through the pole B picking up the residue. The deformed contour integral has no

singularity from A or B, while the residue at B produces a pole in `0k of the form (±`0k −RA +RB)−1.
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the external momenta. The set of rules defined above for constructing the {`0k} integration

contours will be collectively denoted by C.

The complex conjugate contour C∗ introduced in section 2, needed for computing the

matrix elements of T †, is defined as follows. Let us suppose that the original integration

over `0s was done along a contour

`0s = fs

(
t; `0s+1, `

0
s+2, · · · ; {pi}, {~̀k}

)
, (4.4)

for some function fs of a real variable t labelling the contour, the other `0k’s for k > s,

all the external momenta {pi} and the spatial components of all the loop momenta {~̀k}.
The set of functions {fs} is what we collectively call the choice of the contour C. Now the

contour in terms of the variables {(`0k)∗} will be

(`0s)
∗=
(
fs
(
t; `0s+1, `

0
s+2, · · · ; {pi}, {~̀k}

))∗
≡ f̃s

(
t; (`0s+1)∗, (`0s+2)∗, · · · ; {p∗i }, {~̀k}

)
, (4.5)

where we have used the fact that the spatial components of loop momenta are always kept

real. After renaming the variables (`0k)
∗ as `0k, the function f̃s defined this way gives the

new `0s integration contour. Operationally f̃s is obtained from fs by replacing all explicit

factors of i by −i. We shall denote collectively by C∗ the information on the integration

contours encoded in the functions f̃1, f̃2, · · · .

5 Cutkosky rules

Our next task is to compute the matrix elements of T−T † and show that the result is given

by Cutkosky rules. The matrix element of T is given by the Green’s function A({pi} for

on-shell external momenta {pi} and the matrix element of T † between the same external

states is given by A({−pi})∗. As mentioned before, throughout our analysis we shall keep

the spatial components of loop momenta real and allow only the 0-components of the loop

momenta to be deformed so as to avoid the poles. It was shown in section 2 that in this

case the contributions to A({pi} and A({−pi})∗ are given by similar integrals with the

integrands related by the replacement of pi by p∗i , and integration contours C and C∗

related by complex conjugation. In absence of pinch singularity we can set the external

momenta pi’s to be real and the integrands become identical.

Consider now a pinch singularity where the 0-components of N of the loop momenta

are constrained. In this case, in order that each of these N loop momenta are pinched,

we need at least N + 1 of the denominator factors to vanish. This means that there will

be at least one constraint among the spatial components of these N loop momenta. More

generally we can say that pinch singularities will arise in subspaces of codimension ≥ 1

in the space spanned by the spatial components of the loop momenta. We shall call such

subspaces pinched subspaces.8

8Since we shall eventually look for functions with δ-function support on the pinched subspaces, it is

more appropriate to consider subspaces of small thickness around the pinched subspaces.
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We shall now prove the Cutkosky rules in three steps.

1. We shall begin our analysis with connected diagrams. First we shall show that when

the spatial components of loop momenta are away from the pinched subspaces, and

the spatial components of the external momenta are away from the subspaces on

which some single particle intermediate state is on-shell, the result of carrying out

integration over the 0-components of all loop momenta gives the same contribution

to A({pi} and A({−pi})∗. Therefore there is no contribution to A({pi} −A({−pi})∗

from this region.

2. Then we shall show that for connected diagrams, the contribution to A({pi}) −
A({−pi})∗ from the pinched subspaces and/or from on-shell single particle interme-

diate states is given by the Cutkosky rules.

3. Finally we shall prove the Cutkosky rules for disconnected diagrams.

Throughout this analysis we shall be using the method of induction, i.e. while proving any

of these results for an N -loop amplitude, we shall assume that all the results are valid

for any (N − 1) loop amplitude. Also during this analysis we ignore the effect of mass

renormalization. This is discussed separately in section 5.4.

Due to the iterative nature of our proof, and given that the full analysis is somewhat

long, some subtle points may be overlooked if we are not careful. We shall give some

examples below:

1. Cutkosky rules, as explained in section 1, require that the part of the diagram on the

right of the cut is conjugated. Much of our analysis that follows will go through even

if we do not take the hermitian conjugate of the amplitude to the right of the cut.

For example in the analysis of the class of diagrams considered in section 5.2.3 we do

not need to use explicitly the fact that the part of the diagram to the right of the cut

needs to be hermitian conjugated. This may give the reader the impression that for

this class of diagrams, Cutkosky rules will hold even if we do not take the hermitian

conjugate of the amplitude to the right of the cut. We shall now argue that this is

not the case. In section 5.2.2 there is a crucial minus sign on the right hand side

of the fourth line of eq. (5.12) that is there due to the hermitian conjugation, and

without it the analysis following this equation will not hold. Hermitian conjugation

of the amplitude to the right of the cut also plays a crucial role in the analysis of

disconnected diagrams in section 5.3. Now while applying recursive methods to the

diagrams of section 5.2.3 we often end up with lower order diagrams of the type

analyzed in section 5.2.2 and section 5.3, and assume that Cutkosky rules hold for

these diagrams. For these we must take the hermitian conjugate of the diagram to

the right of the cut. As a result even for the diagrams analyzed in section 5.2.3,

Cutkosky rules hold only if we take the hermitian conjugate of the diagram to the

right of the cut.
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2. In our analysis we give an iterative proof that for reduced diagrams, Cutkosky rules

require us to sum over only those cut diagrams for which the cut does not pass

through a reduced vertex. As usual we assume this to be true to a given order and

then prove the result to the next order. The reader may feel somewhat uneasy at

the lack of a direct proof, and wonder if the iterative proof would have gone through

even if we had relaxed the constraint that the cut does not pass through a reduced

vertex. However, if we examine the iterative proof carefully we shall find that during

the course of iteration we often end up with diagrams where the whole diagram is a

single reduced vertex. The result of section 5.1 shows that this has no anti-hermitian

part. This would have been in conflict with the Cutkosky rules if the cuts were

allowed to pass through the reduced vertex leading to a non-vanishing result for the

anti-hermitian part of the amplitude. Therefore we again see that different parts of

the analysis are intimately tied together, and relaxing any ansatz made during one

part of the analysis also affects the results of all other parts.

5.1 Hermiticity of the connected diagrams in absence of pinch singularity

In this subsection we shall prove that for connected diagrams, A({pi})−A({−pi})∗ vanishes

in the absence of pinch singularities and on-shell single particle intermediate states. We

follow the algorithm described at the end of section 4 to define the analytically continued

amplitude as a function of λ in the first quadrant and the amplitude at λ = 1 as the

limit from the first quadrant. As long as there is no pinch singularity at λ = 1, we can

systematically choose the integration contours C over `01, `
0
2, · · · appearing in A({pi}), and

compute the integrals following the procedure described in section 4. The contribution to

A({−pi})∗ can be computed by evaluating the same integral over the integration contours

C∗. Since the external momenta are real at λ = 1 the integrands in the expressions for

A({pi}) and A({−pi})∗ are identical. Therefore if we can show that the choice of the

contours C and C∗ are identical, or deformable to each other without passing through

a singularity, we would have proved that the integrals are the same. Actually the same

arguments as in section 4.2 shows that we need less — all we need to show is that for

each s, the choice of contour in the `0s plane encoded in the functions fs and f̃s introduced

in (4.4) and (4.5) have all the poles lying on the same side, i.e. if a given pole lies on the

left (right) of the first contour then it must lie on the left (right) of the second contour.9

This can be proved by considering the special case where `0s+1, `
0
s+2, · · · are real since the

side of the contour on which a pole in the `0s-plane lies is by construction independent

of `0s+1, `
0
s+2, · · · . For real `0s+1, `

0
s+2, · · · the poles in the `0s-plane are along the real axis,

whereas the `0s integration contours in C and C∗ are related by a reflection about the real

axis together with a change in orientation. Under this operation the different segments of

the real axis lie on the same side of the contours in C and C∗ independent of how many times

the contours cross the real axis, and hence all the poles on the real axis also lie on the same

side of the contours in C and C∗. This establishes the desired result, that the contribution

to A({pi})−A({−pi})∗ vanishes as long as there is no pinch singularity at λ = 1.

9This includes the case where the contours are not necessarily deformable to each other, as in figure 3(a)

and (b).
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There is one exception to the above result, and this occurs when the external momenta

are such that some intermediate one particle state goes on-shell. In this case there are

Feynman diagrams in which some propagator carrying momentum p, given by some linear

combination of external momenta, blows up. In order to compute the contribution to

A({pi})−A({−pi})∗ from such Feynman diagrams we again work with a general complex

λ and define the amplitude by analytic continuation from imaginary λ-axis to λ = 1 along

the first quadrant. As mentioned before, in A({pi}) this is equivalent to replacing m2 by

m2 − iε in the propagator. After going through the manipulations described at the end of

section 2 we can bring the expression for A({−pi})∗ to an identical form, except that due to

the operation of complex conjugation, in this amplitude m2 is replaced by m2+iε. Therefore

in the difference between A({pi}) and A({−pi})∗, the propagator ((p0)2 − ~p 2 −m2)−1 will

be replaced by(
(p0)2−~p 2−m2 + iε

)−1 −
(
(p0)2 − ~p 2 −m2 − iε

)−1
= −2πi δ

(
(p0)2 − ~p 2 −m2

)
. (5.1)

This shows that in this case we can get a non-vanishing imaginary part of the amplitude

even in the absence of pinch singularity. We shall take into account contributions of this

type in our analysis below.

5.2 Anti-hermitian part of connected amplitude

We now turn to the second problem, i.e. the computation of the anti-hermitian part of a

connected amplitude when the spatial components of the loop momentum integrals lie on

— or more precisely around as stated in footnote 8 — a pinched subspace, or the external

momenta lie on a subspace on which some intermediate single particle state goes on-shell.

In carrying out the analysis we shall again use the notion of reduced diagram in which we

collapse to points all lines which are not put on-shell at the pinch singularity of the energy

integration contours. In one particle reducible diagrams we also have internal propagators

which are not part of any loop and carries momenta given by linear combinations of the

external momenta only. For these lines, we collapse to points those lines which are not

on-shell for the specific values of the external momenta we work with. On such a reduced

diagram we shall draw an arrow on each of the propagators to indicate the direction of

energy flow at the pinch singularity.

We shall now show that the reduced diagram defined this way cannot have a directed

closed loop — i.e. a closed loop with the property that we can traverse the loop by following

the directions of the arrows. Such a diagram has been shown in figure 5. If there is such

a loop, then we can find a loop momentum ` that appears only in each propagator in the

loop, and the direction of ` is along the direction of energy flow for each of the propagators.

As a result these propagators will carry momenta Ki + ` where Ki is linear combination of

other loop momenta and external momenta, and at the pinch we have

K0
i + `0 =

√
( ~Ki + ~̀)2 +m2 − iε . (5.2)

Note the + sign on the right hand side, reflecting the fact that ` is directed along the

energy flow. The −iε is a formal way of stating the fact all the poles are to the right of the
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Figure 5. A reduced diagram containing an oriented loop. Such a diagram is not allowed.

`0 integration contour from −i∞ to i∞. Furthermore there is no other propagator that

involves `. It is now easy to see that the `0 contour is not pinched and can be deformed

away keeping all the poles to the right. This proves the desired result.

In what follows, we shall use an even more minimal representation of a reduced diagram

in which we suppress all external legs and represent reduced vertices by circles. Further-

more, the absence of an oriented loop in the diagram allows us to do a partial ordering of

the vertices in the diagram so that all arrows are directed from the left to the right. With

this understanding we can also drop the arrows from the diagram.

5.2.1 Statement of Cutkosky rules for reduced diagrams

Our task will be to compute the contribution to A({pi})−A({−pi})∗ from such a reduced

diagram and show that the result is consistent with unitarity. For this let us first examine

what we need for unitarity. Using S = 1− iT and the unitarity relation S†S = 1 we get

T − T † = −i T †T . (5.3)

The computation of T †T is done by inserting a complete set of states between T and T †.

For a multi-particle intermediate state we need to integrate over the spatial components ~ki
of momenta of each particle subject to an overall energy and momentum conserving delta

function, and a measure factor (
2

√
~k2
i +m2

)−1

. (5.4)

We can formally express this as

i

∫
dk0

i

2π
Pc(ki) , (5.5)

where

Pc(ki) ≡ −2πi δ
(

(k0
i )

2 − (~k2
i +m2)

)
θ(k0

i ) , (5.6)

and the k0
i integral in (5.5) is taken to run along the real axis near the support of the

δ-function. The factor (5.6) is precisely what we would get from the residue at the pole of

the propagator ((k0
i )

2−~k2
i −m2)−1 if we take the difference between two contour integrals

in the complex k0
i plane, one keeping the pole at k0

i =
√
~k2
i +m2 to the right and the other
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keeping the same pole to the left. We shall denote by a cut propagator, with the momentum

k flowing from the left to the right of the cut, the effect of replacing a propagator by (5.6).

A cut diagram, obtained by drawing a line that divides the diagram into a left half and

a right half, will involve replacing each cut internal propagator by (5.6) and in addition

replacing the amplitude on the right of the cut by its hermitian conjugate. A cut across

an external line has no effect. With this convention (5.3) is equivalent to the statement

that the amplitude A({pi})−A({−pi})∗ will be given by sum over all cut diagrams of the

amplitude A({pi}) up to some phases. We shall now describe the origin of these phases

and compute them.

1. First of all the −i factor on the right hand side of (5.3) will give an explicit factor of

−i multiplying each cut diagram.

2. Replacing each cut propagator by (5.6) will produce the measure factor (5.4) if for

each cut propagator there is an integral idk0
i /2π in the original Feynman diagram

for A({pi}). If each k0
i had represented an independent loop momentum then such a

factor will indeed be present according to (2.7). However typically there are energy

conserving constraints relating the k0
i ’s which reduce the number of k0

i integrals, and

hence also the number of i’s. If there are nL disconnected components of the diagram

to the left of the cut and nR disconnected components to the right of the cut, then

the total number of constraints is nL + nR. Of these one represents overall energy

conservation instead of imposing relations between k0
i ’s but the other nL + nR − 1

constraints reduce the number of independent k0
i ’s and hence the number of factors

of i. Therefore we need to supply the missing i’s by multiplying the cut diagram by

a factor of (i)nL+nR−1 so that we get back the correct number of i’s that is needed to

get the correct expression for T †T . (The factors of 2π work out automatically since

each momentum conserving delta function is accompanied by a factor of 2π.)

3. Eq. (2.6) shows that if the diagram on the left of the cut has nL disconnected com-

ponents then the expression for the matrix elements of T should contain an extra

factor of (i)−nL+1. Similarly if the diagram on the right of the cut has nR discon-

nected components then the matrix element of T † will contain a net extra factor of

(−i)−nR+1 where the replacement of i by −i is due to hermitian conjugation. There

is no such factor in the original diagram without cut, since we have assumed that to

be connected. Therefore this factor is also absent in the cut diagram, and we need

to multiply the cut diagram by a net factor of (i)−nL+nR .

Combining all these factors we see that we need to weigh a cut diagram by a factor of

(−i)(i)nL+nR−1(i)−nL+nR = (−1)nR−1 , (5.7)

to reproduce the right hand side of (5.3).

A further simplification of cutting rules is possible for reduced diagrams. Let us con-

sider a cut Feynman diagram in which n propagators carrying momenta k1, · · · kn from left

to right are cut. Then we have the relation

k0
i =

√
~k2
i +m2 . (5.8)
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Furthermore the ki’s satisfy a momentum conservation law

p =

n∑
i=1

ki , (5.9)

where p is some linear combination of external momenta. This imposes constraint on the

spatial components ~ki of the momenta. Now consider the same Feynman diagram without

a cut but with the same spatial components of momenta along the propagators that were

cut earlier. It is easy to see that the integration contour over k0
i for 1 ≤ i ≤ (n − 1) are

now pinched at

k0
i =

√
~k2
i +m2 − iε , p0 −

n−1∑
i=1

k0
i =

√
(~p− ~k)2 +m2 − iε . (5.10)

Reversing this result we see that for fixed spatial momenta flowing along the loops, a

Feynman diagram allows a cut passing through propagators P1, · · ·Pn only if in the original

diagram the energy integration contour has a pinch where all the propagators P1, · · ·Pn
are on-shell. This is turn means that in a reduced diagram a cut cannot intersect the

propagators inside a reduced vertex. This allows us to state the required Cutkosky rule for

a reduced diagram as follows:

The contribution to A({pi})−A({−pi})∗ from a reduced diagram is given by the

sum over all cut diagrams with the cuts avoiding the reduced vertices, weighted

by the factor given in (5.7).

We shall in fact prove a slightly more general result. Consider an amplitude in which

we have replaced the integration contour C required to compute A({pi}) by a different

contour C̃ leaving the integrand unchanged. Let us call this contribution Ã({pi}). We

again work at fixed values of the spatial components of loop momenta, and define R as

the original reduced diagram associated with integration along the contour C and R̃ as the

reduced diagram obtained by shrinking to points all propagators which are not pinched in

C̃. We shall show that the version of the Cutkosky rules for reduced diagrams, as stated

above, holds for R̃ as long as the poles coming from the surviving propagators in R̃ lie

on the same side of the integration contour C̃ as they were for C. However there is no

restriction on how the poles associated with the propagators inside the reduced vertices

of R̃ are situated relative to C̃ as long as there is no pinch singularity that prevents us

from deforming C̃ away from these poles. In particular even if the original contour C was

pinched at the poles of some of the propagators inside a reduced vertex of R̃, Cutkosky

rules for R̃ will not include sum over cuts passing through this reduced vertex.

We shall prove this in two steps.

1. First we shall introduce the notion of one vertex irreducible (1VI) and one vertex re-

ducible (1VR) reduced diagrams and show that the Cutkosky rules for 1VR diagrams

hold as long as they hold for 1VI diagrams.

2. Then we shall prove the Cutkosky rules for 1VI reduced diagram.
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Figure 6. Example of a 1VR diagram. The external lines are suppressed, the reduced vertices are

denoted by circles, and the arrows on all lines are understood to be directed towards the right.

P

U

D

����

Figure 7. Schematic representation of a 1VR reduced diagram consisting of two components U

and D joined at a single reduced vertex P . All external lines have been suppressed.

5.2.2 One vertex reducible reduced diagrams

We shall define a reduced diagram to be 1VR if it can be regarded as two reduced diagrams

joined at a single reduced vertex. An example of such a diagram has been shown in figure 6.

Reduced diagrams which are not 1VR will be called 1VI. We shall now show that for a 1VR

reduced diagram, the Cutkosky rules follow if they hold for the individual components that

are joined at a single reduced vertex to produce the 1VR diagram. By repeated application

of this result, one can then show that the Cutkosky rules will hold for a general reduced

diagram as long as they hold for 1VI diagrams.

Let us consider a 1VR diagram shown in figure 7 consisting of two pieces U and D

connected at a single reduced vertex P . U and D may be either 1VI or 1VR — our analysis

holds in all cases. In general the contribution from the reduced vertex P will depend on

the momenta entering it from the blobs U and D and the amplitude will not be factorized.

First let us assume that the dependence on these momenta are factorized so that the full

amplitude can be regarded as a product of the amplitudes associated with the two blobs

— we shall deal with the general case later. We denote by AU and AD the amplitudes

associated with the reduced diagrams U and D. Then the full amplitude is given by AUAD.

Our goal will be to show that AUAD−A∗UA∗D is given by the sum over cut diagrams of the

full diagram weighted by the phase factor (5.7), if we assume that similar result holds for
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AU −A∗U and AD−A∗D. Now since the cuts do not pass through the reduced vertex P , the

cut diagrams of AU and AD can be divided into two parts, those with the cut on the left

of the vertex P and those with the cut on the right of the vertex P . We denote by ∆UL,

∆UR, ∆DL and ∆DR respectively the sum over all cut diagrams, weighted by (5.7), (a) of

U with the cut on the left of P , (b) of U with the cut on the right of P , (c) of D with the

cut on the left of P and (d) of D with the cut on the right of P . Then the assumption that

the diagrams U and D satisfy Cutkosky rules imply that

AU −A∗U = ∆UL + ∆UR, AD −A∗D = ∆DL + ∆DR . (5.11)

We shall now compute the sum over all cut diagrams of the full diagram shown in figure 7.

These diagrams can be divided into six classes. Two of them, described by the first two

lines of (5.12), are shown in figures 8(a) and (b) respectively; the rest can be drawn in a

similar fashion. Below we describe these six classes of cut diagrams and their contribution:

cuts of D on the left of P , passing on the left of U : A∗U∆DL

cuts of D on the left of P , cuts of U on the left of P : ∆UL∆DL

cuts of U on the left of P , passing on the left of D : ∆ULA
∗
D

cuts of D on the right of P , cuts of U on the right of P : −∆UR∆DR

cuts of D on the right of P , passing on the right of U : AU∆DR

cuts of U on the right of P , passing on the right of D : ∆URAD . (5.12)

The minus sign on the right hand side of the fourth line is a consequence of (5.7) and the

fact that nR− 1 for the corresponding cut is given by (nUR− 1) + (nDR− 1) + 1. The sum

of these, using (5.11), can be easily seen to be given by

AUAD −A∗UA∗D . (5.13)

This is precisely the Cutkosky rule for the full diagram. This proves the desired relation.

Let us now turn to the general case where the reduced vertex P depends on the

momenta entering it from both U and D, and the contribution is not factorized. Let

us denote by {`U,i} the momenta entering P from U and by {`D,i} the momenta enter-

ing P from D. Each set satisfies an overall momentum conservation constraint that sets∑
i `U,i = −

∑
i `D,i to some linear combination of external momenta giving the total mo-

mentum flowing across the reduced vertex P . Our starting assumption will be that for fixed

{`D,i} the sub-diagram U , including the contribution from the reduced vertex P , satisfies

the Cutkosky rules and that for fixed {`U,i} the subdiagram D, including the contribution

from the reduced vertex P , satisfies the Cutkosky rules. Let us denote the corresponding

amplitudes by AU and AD respectively, and the sum over cuts as described above (5.11)

by ∆UR, ∆UL, ∆DR and ∆DL so that (5.11) holds. We also denote by VP ({`U,i}, {`D,i})
the contribution from the reduced vertex P , and by aU , a∗U , δUL and δUR the quantities

appearing in the expressions for AU , A∗U , ∆UL, ∆UR introduced above (5.11), before doing

integration over {`U,i} and without including the contribution VP from the reduced vertex.

aD, a∗D, δDL and δDR will denote similar contributions that would enter the computation
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Figure 8. Cut diagrams of the reduced diagram of figure 7 corresponding to the first and the

second line of (5.12).

of AD, A∗D, ∆DL and ∆DR. In that case aU , a∗U , δUL and δUR depend on {`U,i} but not

on {`D,i} and aD, a∗D, δDL and δDR depend on {`D,i} but not on {`U,i}. We now have

AU =

∫
{`0U,i}

aUVP , A∗U =

∫
{`0U,i}

a∗UVP , ∆UL =

∫
{`0U,i}

δULVP , ∆UR =

∫
{`0U,i}

δURVP ,

AD =

∫
{`0D,i}

aDVP , A∗D =

∫
{`0D,i}

a∗DVP , ∆DL =

∫
{`0D,i}

δDLVP , ∆DR =

∫
{`0D,i}

δDRVP .

(5.14)

In these equations it is understood that while doing the integration over {`0U,i} and {`0D,i},
the choice of integration contour may depend on the integrand. For example the integration

contours for {`0U,i} for integral over aU and a∗U may not be the same. Also note that we

have not included integration over the spatial components of {`U,i} and {`D,i} since we

have been working at fixed values of the spatial components of loop momenta. Eq. (5.11)

now takes the form∫
{`0U,i}

(aU −a∗U )VP =

∫
{`0U,i}

(δUL+ δUR)VP ,

∫
{`0D,i}

(aD−a∗D)VP =

∫
{`0D,i}

(δDL+ δDR)VP .

(5.15)

Eq. (5.12) can be similarly generalized, leading to the following contribution to the sum

over cut diagrams of figure 7:∫
{`0U,i}

∫
{`0D,i}

(
a∗UδDL + δULδDL + δULa

∗
D − δURδDR + aUδDR + δURaD

)
VP . (5.16)

Again we should keep in mind that for different integrands we have to integrate over

different contours. After some algebra using (5.15), the expression (5.16) can be brought

to the form ∫
{`0U,i}

∫
{`0D,i}

(aUaD − a∗Ua∗D)VP . (5.17)

This is precisely the difference between the original amplitude shown in figure 7 and its

hermitian conjugate. This gives the desired result.
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5.2.3 One vertex irreducible reduced diagrams

We now turn to the task of proving Cutkosky rules for 1VI diagrams. As mentioned before,

we shall carry out the proof recursively, i.e. assume that the result holds for all reduced

diagrams with (N−1) loops and then prove that the result holds for 1VI reduced diagrams

with N loops. To this end let us consider a 1VI reduced diagram with N loops and label

the independent loop momenta by `1, · · · `N . We now consider the particular loop S that

carries loop momentum `1 and analyze the integral over `01 at fixed values of other loop

momenta. Let us suppose that as we traverse this loop along the direction of `1, n of the

propagators in the loop — which we denote by P1, · · ·Pn — have their arrows directed

along `1 while the others have their arrows directed opposite to `1. In that case near the

pinch the relevant pole in the `01 plane from the propagator Pi has the form

(
−(`1 +Ki)

2 −m2 + iε
)−1

θ(`01 +K0
i ) , (5.18)

for 1 ≤ i ≤ n. Here Ki’s are linear combinations of the external momenta and other loop

momenta in the reduced diagram. The θ(`01 +K0
i ) is a formal expression that tells us that

at the pinch the relevant pole is the one that appears at positive value of `01 +K0
i . The iε

prescription reflects that for the `01 integration contour beginning at −i∞ and ending at i∞,

the pole of (5.18) lies to the right of the integration contour. On the other hand the poles

from all other propagators in the loop S that are not in the set P1, · · ·Pn lie to the left of

the `01 integration contour. We denote by C the original integration contour, and by C∗ the

integration contour needed to compute the hermitian conjugate amplitude. Below we follow

the convention that for any contour C required for computing an amplitude, C∗ will denote

the integration contour required to compute the hermitian conjugate of the amplitude.

We shall now deform the integration contours of `01 in C through each of the poles

given in (5.18) to the other side, at the expense of picking up residues at the poles. Let us

denote the deformed integration contour by Ĉ and the amplitude obtained by integrating

over this deformed contour by Â. This contour will have all the relevant poles in the `01
plane to the left of the integration contour and hence the contour is not pinched. Therefore

by deforming the `01 integration contours we can ensure that the momenta along all the

propagators in the loop S can be deformed away from the on-shell values. On the other

hand the difference between the original amplitude A and the new amplitude Â is given by

the sum of residues at the poles (5.18) through which we deform the contour. This may

be computed using the relation

n∏
i=1

{(
−(`1 +Ki)

2 −m2 − iε
)−1

θ(`01 +K0
i )
}

(5.19)

=

n∏
i=1

{(
−(`1 +Ki)

2 −m2 + iε
)−1

θ(`01 +K0
i ) + 2πi δ

(
(`1 +Ki)

2 +m2
)
θ(`01 +K0

i )
}
,
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which gives

n∏
i=1

(
−(`1 +Ki)

2 −m2 + iε
)−1

θ(`01 +K0
i )

=

n∏
i=1

(
−(`1 +Ki)

2 −m2 − iε
)−1

θ(`01 +K0
i )

+

n∑
j=1

{
−2πi δ

(
(`1 +Kj)

2 +m2
)
θ(`01 +K0

j )
} n∏

i=1
i 6=j

(
−(`1 +Ki)

2 −m2 + iε
)−1

θ(`01 +K0
i )

−
n∑

j,k=1
j<k

{
−2πi δ

(
(`1 +Kj)

2 +m2
)
θ(`01 +K0

j )
}{
−2πi δ

(
(`1 +Kk)

2 +m2
)
θ(`01 +K0

k)
}

×
n∏

i=1
i 6=j,k

(
−(`1 +Ki)

2 −m2 + iε
)−1

θ(`01 +K0
i )

+ · · ·

+ (−1)n−1
n∏
j=1

{
−2πi δ

(
(`1 +Kj)

2 +m2
)
θ(`01 +K0

j )
}
. (5.20)

The (−2πi) δ
(
(`1 +Kj)

2 +m2
)
θ(`01 + K0

j ) factor should again be regarded as a formal

expression that has to be made sense of by regarding the `01 + K0
j integration to be along

the real axis near the pinch singularity. The product over the propagator factors given in

the left hand side of (5.20) appears in the integrand needed for computing the amplitude

A. When we replace this by the right hand side of (5.20) inside the integral, the first

term on the right hand side represents integration over the deformed contour Ĉ generating

the amplitude Â and the other terms on the right hand side represent the residues at

various poles from the propagators P1, · · ·Pn picked up during the deformation from C to

Ĉ. Comparison with the right hand side of (5.6) shows that the effect of replacing the

propagator Pj by the (−2πi)δ
(
(`1 +Kj)

2 +m2
)
θ(`01 +K0

j ) factor may be represented by

a cut on the j-th propagator. Let us denote by A(j) the amplitude obtained by replacing

the propagator Pj by the cut propagator in the original amplitude. More generally we

denote by A(i1···is) the amplitude obtained by replacing the propagators Pi1 , · · ·Pis by cut

propagators. Then (5.20) inside the integral translates to

A = Â+

n∑
j=1

A(j) −
n∑

j,k=1
j<k

A(jk) + · · ·+ (−1)n−1A(12···n) . (5.21)

Even though A(i1···is) is obtained from the original amplitude A by replacing some of

its internal propagators by cut propagators, it is important to recognize that A(i1···is) is

not a cut diagram. There is no cut separating the graph into two parts and there is no

part of the diagram that is to be replaced by its hermitian conjugate. Therefore it is more

appropriate to interpret A(i1···is) as an amplitude where the propagators Pi1 , · · ·Pis have

been replaced by on-shell external states. Furthermore, since all the propagators factors on
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the right hand side of (5.20) except the first term have the correct iε prescription, A(i1···is)

is defined in the same way as the original amplitude A, i.e. by taking all the external state

energies to be λEs for real Es, and then taking the λ→ 1 limit from the first quadrant.

We can also carry out a similar manipulation for the hermitian conjugate amplitude

A∗.10 Manipulations similar to the one given above, applied to A∗, give

A∗ = Â∗ +

n∑
j=1

A(j)∗ −
n∑

j,k=1
j<k

A(jk)∗ + · · ·+ (−1)n−1A(12···n)∗ . (5.22)

Since A(i1···is) has less number of loops than the original diagram contributing to the

amplitude A, the Cutkosky rules hold for A(i1···is). Therefore the anti-hermitian part of

A(i1···is) is given by the sum over all its cut diagrams. We denote by A
(i1···is)
j1···jr the sum over

all cut diagrams of the amplitude A(i1···is), for which the cut passes through Pj1 , · · ·Pjr
and possibly other propagators, but not any of the other Pi’s in the set {P1, · · ·Pn}. Some

examples of this have been shown in figure 9. A
(i1···is)
∅ will denote the sum over all the

cut diagrams of A(i1···is) for which the cut does not pass through any of the propagators

in the set {P1, · · ·Pn}. Then we may express the Cutkosky rule applied to the amplitude

associated with A(i1···is) as

A(i1···is) −A(i1···is)∗ = A
(i1···is)
∅ +

n∑
j1=1

A
(i1···is)
j1

+

n∑
j1,j2=1
j1<j2

A
(i1···is)
j1j2

+ · · ·+A
(i1···is)
1···n . (5.23)

By construction the right hand side of this equation exhausts all cut diagrams of the

amplitude A(i1···is). Using this and (5.21), (5.22) we get

A−A∗ = Â− Â∗ +

n∑
i=1

A(i)
∅ +

n∑
j1=1

A
(i)
j1

+

n∑
j1,j2=1
j1<j2

A
(i)
j1j2

+ · · ·+A
(i)
1···n


−

n∑
i,j=1
i<j

A(ij)
∅ +

n∑
j1=1

A
(ij)
j1

+
n∑

j1,j2=1
j1<j2

A
(ij)
j1j2

+ · · ·+A
(ij)
1···n


+ · · ·

+ (−1)n−1

A(12···n)
∅ +

n∑
j1=1

A
(12···n)
j1

+

n∑
j1,j2=1
j1<j2

A
(12···n)
j1j2

+ · · ·+A
(12···n)
1···n

 . (5.24)

We now note the following relations. First of all, since we have seen that in Â the

`01 contour is not pinched, the loop S can be shrunk to a reduced vertex. The resulting

10Naively one might expect that the effect of hermitian conjugation will change the i’s to −i in the

expression for the cut propagators, and hence give an extra minus sign for each cut propagator. However

the way we have defined the contour C∗ involves a complex conjugation together with orientation reversal,

and this ensures that any given pole lies on the same side of C and C∗. Therefore during the deformation

from C to Ĉ and C∗ to Ĉ∗ we cross various poles in the same direction, and there is no minus sign in the

expression for the cut propagators of the hermitian conjugate amplitude A∗.
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(a) (b)

P1 P2 P1 P2

Figure 9. Figure (a) shows a cut reduced diagram in which a propagator P2 is replaced by a cut

propagator in the original diagram and the cut passes through the propagator P1. In our notation

this will be labelled as A
(2)
1 . Figure (b) shows a cut reduced diagram in which propagators P1

and P2 are replaced by cut propagators in the original diagram and the cut passes through the

propagator P1. In our notation this will be labelled as A
(12)
1 . These two contributions are identical.

In this example there is no cut diagram in which the cut passes through both the propagators P1

and P2, and hence A
(12)
12 = 0. But this is not always the case.

reduced diagram has one less loop than the original diagram, and hence the Cutkosky rules

should hold for this diagram. Furthermore in none of the cut diagrams of this diagram

the cut will pass through any of the propagators Pi since they have all been shrunk to a

reduced vertex. This gives, in our previous notation,11

Â− Â∗ = Â∅ . (5.25)

Second we note that in A
(i1···is)
j1···jr the cut passes through the propagators Pj1 , · · ·Pjr putting

them on-shell, and the propagators Pi1 , · · ·Pis are replaced by cut propagators, putting

them on-shell from the beginning. Therefore the result remains the same if we append to

the set i1, · · · is appearing in the superscript one or more elements of the set {j1, · · · jr}
that are not already part of {i1, · · · is}. This has been illustrated in figure 9. This gives

A
(i1···is)
j1···jr = A

({i1,···is}∪{j1,···jr})
j1···jr . (5.26)

Using this we can compute the coefficient of A
(i1···is)
j1···jr on the right hand side of (5.24) as

follows. Due to (5.26) we can choose the independent A’s to be of the form A
(i1···isj1···jr)
j1···jr

with {i1, · · · is}∩{j1, · · · jr} = ∅. In this case for s 6= 0, r 6= 0, the coefficient of A
(i1···isj1···jr)
j1···jr

comes from the following terms in (5.24):

A
(i1···is)
j1···jr : (−1)s−1

A
(i1···isjm)
j1···jr : (−1)s for 1 ≤ m ≤ r

A
(i1···isjmjp)
j1···jr : (−1)s+1 for 1 ≤ m < p ≤ r

· · · : · · ·

A
(i1···isj1···jr)
j1···jr : (−1)s+r−1 (5.27)

11Note that (5.25) requires the generalization of the Cutkosky rules for the reduced diagrams mentioned

at the end of section 5.2.1.
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The net contribution to the coefficient from all the terms is given by

(−1)s−1

[
1− r +

(
r

2

)
− · · ·+ (−1)r

(
r

r

)]
= (−1)s−1(1− 1)r = 0 . (5.28)

For s = 0, i.e. for A
(j1···jr)
j1···jr , the first line of (5.27) will be missing. As a result the contribu-

tion is given by

−
[
−r +

(
r

2

)
− · · ·+ (−1)r

(
r

r

)]
= 1− (1− 1)r = 1 . (5.29)

Finally for r = 0, i.e. for A
(i1···is)
∅ , only the term in the first line of (5.27) is present and

the contribution is given by

(−1)s−1 . (5.30)

This, together with (5.25) can be used to rewrite (5.24) as

A−A∗ = Â∅ +

n∑
i=1

A
(i)
i +

n∑
i,j=1
i<j

A
(ij)
ij + · · ·+A

(1···n)
1···n

+

n∑
i=1

A
(i)
∅ −

n∑
i,j=1
i<j

A
(ij)
∅ + · · ·+ (−1)n−1A

(1···n)
∅ . (5.31)

In order to show that the Cutkosky rules hold for the amplitude associated with A,

we have to show that the right hand side of (5.31) agrees with the sum of all the cut

diagrams of this amplitude. Let us denote by A∅ the sum of cut diagrams of A in which

the cut does not pass through any of the propagator P1, · · ·Pn, and by Ai1···is the sum of

cut diagrams of A in which the cut passes through the propagators Pi1 , · · ·Pis and possibly

other propagators but not any of the other propagators in the set {P1, · · ·Pn}. Then the

sum over all the cut diagrams of A is given by

A∅ +
n∑
i=1

Ai +
∑

1≤i<j≤n
Aij + · · ·+A1···n . (5.32)

Since in Ai1···is the propagators Pi1 , · · ·Pis are put on-shell, we have

Ai1···is = A
(i1···is)
i1···is . (5.33)

On the other hand since in A∅ none of the propagators P1, · · ·Pn are cut, the cut does not

enter the loop S. As a result the entire loop lies on one side of the cut. We can now repeat

the analysis that led to (5.21), (5.22) on the sub-diagram of A∅ that contains the loop S,

leading to

A∅ = Â∅ +
n∑
i=1

A
(i)
∅ −

n∑
i,j=1
i<j

A
(ij)
∅ + · · ·+ (−1)n−1A

(12···n)
∅ . (5.34)
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Figure 10. A reduced diagram containing a single propagator.

Substituting (5.33) and (5.34) into (5.32) we get the following expression for the sum over

all the cut diagrams of A:

Â∅ +

n∑
i=1

A
(i)
∅ −

n∑
i,j=1
i<j

A
(ij)
∅ + · · ·+ (−1)n−1A

(1···n)
∅

+
n∑
i=1

A
(i)
i +

n∑
i,j=1
i<j

A
(ij)
ij + · · ·+A

(1···n)
1···n . (5.35)

This precisely agrees with the right hand side of (5.31). This shows that the Cutkosky

rules hold for the 1VI reduced diagrams with N loops if it holds for amplitudes with

≤ (N − 1) loops.

In order to complete the proof we need to verify that the result holds for 1VI reduced

diagrams with zero loops. This corresponds to two reduced vertices connected by a single

propagator as shown in figure 10. If p denotes the momentum flowing from the left to the

right then p0 is positive by convention, and the contribution to the diagram is given by

A(p) =
1

(p0)2 − ~p 2 −m2 + iε
F (p) , (5.36)

where F (p) is the contribution from the reduced vertices. The iε factor is equivalent to

defining this amplitude via analytic continuation of the amplitude with p0 replaced by λp0,

and taking the limit λ→ 1 from the first quadrant of the complex λ-plane. Now since the

reduced vertices are not pinched we have F (p)∗ = F (−p) for real p and hence

A(p)−A(−p)∗ =

[
1

(p0)2 − ~p 2 −m2 + iε
− 1

(p0)2 − ~p 2 −m2 − iε

]
F (p)

= −2πi δ
(
(p0)2 − ~p 2 −m2

)
θ(p0)F (p) , (5.37)

where the θ(p0) factor has been included since we are considering positive p0 anyway.

Comparison with (5.6) shows that this precisely corresponds to replacing the propagator

in figure 10 by the cut propagator, in accordance with the Cutkosky rules.

5.3 Amplitudes with disconnected components

Finally we turn to the proof of Cutkosky rules for amplitudes with disconnected compo-

nents. We shall prove the result by showing that if an amplitude has two disconnected

components A and B, each of which may be connected or disconnected, then as long as

the Cutkosky rules hold for A and B, they also hold for the diagram with components A

and B. Repeated use of this result, and the fact that Cutkosky rules hold for connected

diagrams, then proves that Cutkosky rules hold for diagrams with arbitrary number of

disconnected components.
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A

B

(f) (g)

Figure 11. The cut diagrams of a disconnected diagram.

We begin by analyzing the left hand side of the Cutkosky rules. Let TA and TB denote

the T-matrix associated with individual blobs and TAB denote the T-matrix associated with

the combined diagram. If A has nA disconnected components and B has nB disconnected

components, then according to (2.6) A carries an extra factor of i1−nA and B carries an

extra factor of i1−nB , while the combined amplitude carries an extra factor of i1−nA−nB .

Therefore we need to remove a factor of i from the product TA ⊗ TB to get the combined

amplitude TAB. This gives

TAB = −i TA ⊗ TB . (5.38)

We define the amplitudes A and B associated with the two blobs as the matrix elements of

TA and TB between external states. We now see using (5.38) that the combined amplitude

is given by −iAB. Using the shorthand notation A∗ and B∗ for hermitian conjugates of A

and B we get the left hand side of the Cutkosky rules, encoding the anti-hermitian part of

the full amplitude, to be

− iAB − (iA∗B∗) = −i(AB +A∗B∗) . (5.39)

The right hand side of the Cutkosky rules is given by the sum over all the cut diagrams

of the original diagram. These are shown in figure 11. The phases of different cut diagrams

must be chosen such that the sum over cut diagrams represent matrix elements of −iT †T .

However now in T we also need to include the terms TA ⊗ IB and IA ⊗ TB besides TAB
given in (5.38). Therefore the total relevant contribution to T is given by

T = TA ⊗ IB + IA ⊗ TB − i TA ⊗ TB . (5.40)

We can now compare different terms in figure 11 with the corresponding terms in −iT †T
to determine their phases. For example figure 11(a) represents the matrix element of

−i(TA ⊗ IB)†(IA ⊗ TB) = −iT †A ⊗ TB, and hence gives the contribution −iA∗B. Similarly

figure 11(b) gives the contribution −iAB∗. In order to evaluate the contribution from

figure 11(c) including its phase we note that this diagram should represent the matrix

element of

− i(−iTA⊗ TB)†(−iTA⊗ TB) = −i(T †ATA)⊗ (T †BTB) = i(TA− T †A)⊗ (TB − T †B), (5.41)
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where in the last step we have used the fact that the blobs A and B individually satisfy the

Cutkosky rules and hence −iT †ATA and −iT †BTB are given respectively by (TA − T †A) and

(TB − T †B). The matrix element of (5.41) gives i(A−A∗)(B −B∗). Following similar logic

we get the contributions from figure 11(d), (e), (f) and (g) to be, respectively, i(A−A∗)B∗,
−i(A − A∗)B, iA∗(B − B∗) and −iA(B − B∗). The last four terms add up to −2i(A −
A∗)(B−B∗). Therefore the total contribution to the right hand side of the Cutkosky rules

is given by12

− iA∗B − iAB∗+ i(A−A∗)(B −B∗)− 2i(A−A∗)(B −B∗) = −i(AB +A∗B∗). (5.42)

This is in perfect agreement with the left hand side of the Cutkosky rules given in (5.39).

5.4 Mass and wave-function renormalization

In the derivation of the Cutkosky rules we have given, the momentum k carried by a cut

propagator is forced to satisfy k2 + m2 = 0 where m is the tree level mass of the scalar

field. However in general a theory of the kind we have analyzed will have finite mass

renormalization and hence the constraint on the cut propagator should have been that

k2 +m2
p = 0 where mp is the renormalized physical mass. In our analysis this issue shows

up in the fact that if we have self energy insertions on a cut propagator on either side of the

cut, we get extra propagator factors proportional to (k2 +m2)−1 which diverge. Therefore

the Cutkosky rules become only formal relations.

This problem can be avoided by the usual trick of reorganizing Feynman diagrams at

each order in perturbation theory. If mp is the physical mass computed to a given order

in perturbation theory, and Z is the wave-function renormalization factor so that the two

point function has a pole at k2 = −m2
p with residue −i Z, then for computing any amplitude

at higher order, we change k2+m2 to Z−1(k2+m2
p) in (2.1) and compensate for it by adding

to the two point vertex V (2) a new term proportional to (m2 −m2
p) + (1−Z−1)(k2 +m2

p).

This makes the propagator −i Z (k2 +m2
p)
−1. Now the cut propagator will set k2 +m2

p to

zero, and the self energy insertions on the cut propagators, after including the contribution

from the new two point vertex, will vanish at k2 + m2
p = 0. This makes the contribution

from the cut diagrams manifestly finite.

Note that the new contribution to V (2) does not carry the exponential suppression

factor that was assumed to be present for all V (n). However whenever this new vertex

is inserted into an internal propagator of a loop diagram carrying momentum k, there

will be some other vertex whose external line carries the same momentum k and hence

exponentially suppresses the integrand in the large k2 region. Therefore the new two point

vertex does not affect the ultraviolet finiteness property of individual Feynman diagrams.

12Note that two other contributions given by −i(T †ATA) ⊗ IB and IA ⊗ (−iT †BTB) are present in the

expressions for −iT †T , but are not included in figure 11. They represent diagrams where either the blob B

or the blob A are replaced by forward scattering amplitudes. They will reproduce the anti-hermitian parts

of the first two terms on the right hand side of (5.40).
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6 Field theory model to superstring field theory

We shall now discuss what is involved in going from the toy model we have analyzed to the

full string field theory. This discussion will be divided into two parts. In the first part we

shall describe generalizations of our analysis to more general quantum field theories, and

in the second part we shall turn to the specific case of string field theory.

6.1 More general quantum field theories

In this subsection we shall describe the extension of our analysis to more general class of

quantum field theories.

1. Multiple fields of higher spin. The toy model of section 2 has only one scalar field.

This can be easily generalized to the case of multiple fields including those carrying

higher spins and also complex fields. If we denote the complex conjugate of a field

φα by φᾱ then the reality condition on the vertices V
(n)
α1···αn and the propagator Pαβ

appearing in (2.7) take the form

(V
(n)
α1···αn(p1, · · · pn))∗ = V

(n)
ᾱ1···ᾱn

(−p∗1, · · · − p∗n), Pαβ(k)∗ = Pᾱβ̄(−k∗) . (6.1)

For fermions some more signs are needed that will be discussed separately. Now we

can proceed with our analysis of section 2.3 as before. The main change is in the

fact that in relating 〈b|T |a〉 to 〈a|T |b〉 we not only need to change the sign of all the

external momenta, but also replace all the field labels αi by ᾱi. In the second step

of the analysis in section 2.3, where we relabel the internal momenta by a change of

sign, we also relabel the internal indices carried by the vertices and propagators by

their conjugates. In the third step the expression for 〈b|T |a〉∗ can be manipulated

using (6.1) to arrive at an expression that is a modification of that of 〈a|T |b〉 by

complex conjugation of each internal and external momenta and replacement of the

factor of i accompanying each loop integration by −i. In the fourth step we relabel

the loop momentum integration variables by their complex conjugates to arrive at

an expression in which the integrand is related to that in 〈a|T |b〉 by the replacement

of the external momenta by their complex conjugates, and the integration contour

is related to the original one by complex conjugation. Rest of the analysis remains

unchanged.

Typically theories with higher spin fields have gauge symmetries, and as a result not

all states propagating in the propagator are physical. In such cases Cutkosky rules

do not by themselves imply unitarity — we have to do additional work to show that

the unphysical state contribution cancels. There are also massless fields for which

our analysis may break down. We shall return to these points when we describe

applications to string field theory.

2. Fermions. For fermionic fields there are a few additional signs that need to be taken

care of. First of all the vertices V (n) are no longer fully symmetric under permutations

of fields — under the exchange of a pair of fermionic states they pick up minus
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signs. Since the complex conjugate of the product of grassmann variables involves

reversing their order in the product besides taking conjugates of each variable, in the

reality constraint (6.1), the order of the fermionic indices carried by the vertices and

propagators on the two sides of the equation will have to be in opposite order leading

to extra signs in our analysis. Also the hermitian conjugate of a multi-particle state

containing fermions will involve the conjugate states arranged in opposite order. As

a result in the analysis of section 2.3, the computation of 〈b|T |a〉 will now not only

involve reversing the signs of the external momenta and complex conjugating the

labels of external states, but also changing the order of the fermions in the external

states. After performing manipulations similar to that in section 2.3 we arrive at the

result that the computation of T † will involve evaluating an integral whose integrand

differs from that of the original integrand for T by complex conjugation of external

momenta and

(a) a reversal of the order of the fermionic labels in the external states,

(b) a reversal of the order of the fermionic labels carried by the vertices, and

(c) a reversal of the order of the fermionic labels carried by the propagators.

Let us denote by 2ne the total number of external fermions, by 2nv the total number

of fermionic labels carried by the vertices and by np the total number of internal

fermionic propagators. Then the net factor from the three effects mentioned above

is (−1)np+nv+ne . Using the relation nv − ne = np we see that this number is 1.

Therefore we get back the same integrand as that in the computation of T except

for complex conjugation of the external momenta. As before the integration contour

will be given by the complex conjugate of the integration contour for T .

In subsequent analysis, another set of minus signs originate from the fact that each

fermion loop is accompanied by a minus sign. Therefore if we have a cut diagram in

which N fermion loops are cut, the diagram is accompanied by a factor of (−1)N .

When we attempt to interpret this as a contribution to T †T by inserting a complete

set of states |α〉〈α| between T and T †, then the order of the 2N fermions in |α〉 and

〈α| must be opposite. Reversing the order of the 2N fermions leads to another factor

of (−1)N that cancels the (−1)N factor coming from the N fermion loops.

6.2 String field theory

We shall now describe the implication of our results for string field theory.

1. Exponential suppression of vertices at large momentum. The key feature of the toy

model of section 2 is the peculiar form of the interaction vertices in the momentum

space, possessing an essential singularity at infinity, diverging exponentially as k2 →
−∞ and falling off exponentially as k2 → ∞ for any momentum k carried by an

external line to the vertex. In string field theory this exponential factor comes from

the conformal transformation of the vertex operator. In defining the off-shell vertex

we have to choose local coordinate system at the punctures and by scaling the local
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coordinate at a puncture by some real number β, we can scale the off-shell vertex by a

factor of βh where h is the L0+L̄0 eigenvalue of the vertex operator. Since L0+L̄0 has

an additive contribution of k2/2 besides the oscillator contribution, this introduces a

factor of βk
2/2 = exp[(k2 lnβ)/2], and this can be made small for large k2 by taking

β to be small. In the string field theory literature this operation of scaling local

coordinates by β is known as the act of adding stubs of length − lnβ to the vertices.

Physically choosing small β i.e. long stubs amounts to ensuring that integration over

most of the moduli space of Riemann surfaces comes from the elementary vertices,

and only small regions near the boundary of the moduli space come from Feynman

diagrams with internal propagators.

2. Poles of the propagator. We have assumed that the only poles of the propagator

occur at k2 +m2 = 0 for different values of m. In string field theory this is automatic

in the Siegel gauge.

3. Infinite number of states. Since string field theory has infinite number of fields, we

also need to ensure that the sum over fields that appear in the evaluation of the

Feynman diagrams converge. The number of states below a certain mass m grows

as exp[c1m] for some positive constant c1, and the stubs suppress the vertices by a

factor of exp[−c2m
2] for some positive constant c2 that can be made arbitrarily large.

Therefore we expect the sums to be convergent.

4. Analyticity of the vertices at finite momentum. In our analysis we have assumed

that the interaction vertices are analytic as function of external momenta for finite

momenta. In string field theory this is a consequence of the fact that the n-point

interaction vertices are obtained as integrals over subspaces of moduli spaces of genus

g Riemann surfaces with n-punctures for various values of g, and that these subspaces

never include any degenerate Riemann surface.

5. Reality of the action. In the derivation of the Cutkosky rules we needed to make use

of the reality of the action. Therefore to extend the proof to string field theory we

need to prove the reality of the string field theory action. This has been proved for

the bosonic string theory [36]. It is expected that a similar proof can be given for

superstring field theory with judicious choice of the locations of the picture changing

operators, but this has not yet been worked out.

6. Decoupling of unphysical states. A more serious issue arises from the fact that among

the fields of string field theory there are many auxiliary fields, pure gauge fields and

ghost fields which do not correspond to physical particles. In the Siegel gauge in

which the propagator is proportional to (L0 + L̄0)−1 = 2(k2 +C)−1 where C/2 gives

the discrete contribution to L0 + L̄0 from the oscillators, all the fields contribute to

the poles and hence will be summed over as intermediate states in the Cutkosky rules.

As a result, Cutkosky rules by themselves do not prove unitarity. The complete proof

will involve showing that the contribution from all fields other than the physical fields

vanish or cancel. In principle this should be possible with the help of Ward identities

of the kind described in [27], but the details need to be worked out.
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7. Massless states. The spectrum of superstring theory contains massless states, and

as a result the S-matrix suffers from infrared divergences. Therefore unitarity may

not hold in the usual sense. In our analysis this problem shows up in the breakdown

of our implicit assumption that at a pinch singularity only one of the two poles in a

propagator blows up. For example for m = 0 in (3.3), as ~̀→ 0 both poles Q1 and

Q2 approach the contour from two sides and pinch it at the origin even when all the

external energies are taken to be imaginary and the integration contour lies along the

imaginary `0 axis. Since we have worked with fixed values of the spatial components

of loop momenta, our analysis can still be used for generic values of these spatial

momenta, but will break down when one or more internal or external massless particle

carries zero spatial momenta. In sufficiently large dimensions (> 4) configurations

with zero spatial momenta do not contribute to T or T †T due to the vanishing of the

integration measure dominating the divergences from the propagators. In such cases

infrared divergences are tame and our result holds. In dimensions ≤ 4 we need to be

more careful — work with cross section instead of S-matrix and sum over final states

and average over initial states [35, 37–39]. Since our proof of Cutkosky rules holds

for fixed spatial components of loop momenta, we expect that the method described

in [35] can be used to prove finiteness of appropriate inclusive cross sections after

averaging over initial states, but the details need to be worked out.

8. Vacuum shift. Like in ordinary quantum field theories, in string field theory the

vacuum can get shifted from the original classical vacuum by vacuum expectation

values of certain fields. Since the interaction vertices around the shifted vacuum

have the same analytic structure as in the original vacuum, the Cutkosky rules will

hold in the new vacuum as well. This of course requires that the fields acquiring

vacuum expectation values satisfy appropriate reality condition so that the action

expanded around the new vacuum continues to be real.

9. Mass renormalization. Massive particles in string theory undergo mass renormaliza-

tion. The S-matrix has to be defined by taking into account these effects. We expect

that the proof of unitarity can be carried through even in the presence of these effects

following the same steps as in section 5.4. There is also the issue that most of the

massive particles in string theory become unstable under quantum corrections and

hence cease to be true candidates for asymptotic states. We expect that this effect

can also be taken into account following the same method as in a quantum field

theory [24].

Therefore the two main technical problems that need to be solved before we can declare

superstring field theory amplitudes to be unitary are:

1. proving reality of the superstring field theory action, and

2. showing that the contribution to the cut propagator from the unphysical and pure

gauge states cancel, leaving behind only the contribution from physical states.
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