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Abstract: We consider direct detection prospects for a class of simplified models of

fermionic dark matter (DM) coupled to left and right-handed Standard Model fermions

via two charged scalar mediators with arbitrary mixing angle α. DM interactions with

the nucleus are mediated by higher electromagnetic moments, which, for Majorana DM,

is the anapole moment. After giving a full analytic calculation of the anapole moment,

including its α dependence, and matching with limits in the literature, we compute the

DM-nucleon scattering cross-section and show the LUX and future LZ constraints on the

parameter space of these models. We then compare these results with constraints coming

from Fermi-LAT continuum and line searches. Results in the supersymmetric limit of these

simplified models are provided in all cases. We find that future direct detection experiments

will be able to probe most of the parameter space of these models for O(100 − 200) GeV

DM and lightest mediator mass . O(5%) larger than the DM mass. The direct detection

prospects dwindle for larger DM mass and larger mass gap between the DM and the light-

est mediator mass, although appreciable regions are still probed for O(200) GeV DM and

lightest mediator mass . O(20%) larger than the DM mass. The direct detection bounds

are also attenuated near certain “blind spots” in the parameter space, where the anapole

moment is severely suppressed due to cancellation of different terms. We carefully study

these blind spots and the associated Fermi-LAT signals in these regions.
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1 Introduction

The existence of dark matter (DM) in our universe has been established by various astro-

physical and cosmological observations, notably galaxy rotation curves [1] and the cosmic

microwave background [2]. The particle nature of DM is an area of intense study by both

experimentalists and theorists, since it has the potential to illuminate several deep issues

in the Standard Model (SM), such as the strong CP problem, neutrino masses, and the

hierarchy problem.

Weakly Interacting Massive Particles (WIMPs) are a well-motivated class of candidates

that appear in theories beyond the SM, particularly those, like supersymmetry, that address

the hierarchy problem. One finds that weak-scale couplings and masses give rise to a

thermal relic density compatible with the measured DM density, lending further credence

to these candidates. They have thus been extensively searched in colliders, as well as in

indirect and direct detection experiments. A popular strategy for parametrizing WIMP

searches is to work within “simplified models”, where one remains agnostic about the

specific UV completion and allows for a wider coverage of theory parameter space. Aspects

of simplified models with DM coupling to quarks and leptons have been investigated by

many authors [3–17].
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The purpose of this paper is to study simplified DM models with charged mediators,

with a focus on direct detection constraints. For concreteness, we assume that the DM is a

Majorana fermion. We consider two scalar mediators with arbitrary mixing angle α, which

couple the DM to left and right-handed SM leptons. Various aspects of this class of simpli-

fied models have been studied previously, such as constraints coming from SM electric and

magnetic dipole moments, relic density, and indirect detection [18, 19]. Direct detection in

the context of a similar class of models, but with colored mediators, has been studied by [20].

For uncolored charged mediators, DM interactions with the nucleus are mediated by higher

electromagnetic moments. In the case of Majorana DM, the relevant one is the anapole

moment. DM with anapole interactions have been studied in various contexts [21–26].

Our main results include comparing direct and indirect detection constraints on the

model, which are provided respectively by LUX [27–29] and Fermi-LAT [30, 31]. We pro-

vide a careful analytic calculation of the anapole moment and DM-nucleus scattering cross

section. The constraints coming from LUX,1 and future projections from the LZ detec-

tor [32], are then computed and shown for different choices of model parameters. On the

indirect detection side, constraints both from gamma-ray line signals (when the DM and

the mediator are sufficiently degenerate) and the continuum photon spectrum (for non-zero

mixing of the mediators) are obtained. The calculations are done for representative DM

masses 100 GeV and 200 GeV. Mixing angles α = 0, π/4, and π/2 are chosen when depict-

ing constraints on other parameters. The mass eigenvalues of the two scalars are chosen

to satisfy the existing collider limits. The special case of supersymmetry is highlighted

throughout.

Our results are highly sensitive to the level of degeneracy of the lightest mediator and

the DM, which we parametrize as follows

µ =
m2

med.

m2
DM

. (1.1)

Results for µ = 1.01, 1.10, and 1.44 are displayed for each case.

We find that direct and indirect detection probe complementary regions of parameter

space. For cases when the lightest mediator mass is most degenerate with the DM mass

(µ = 1.01), the direct detection limits from LUX constrain broad regions of parameter space

and are comparable with current constraints from Fermi-LAT. As the lightest mediator

becomes heavier and the mass gap with the DM increases, the magnitude of the anapole

moment becomes smaller and consequently the direct detection limits become weaker. In-

direct detection limits are largely indifferent to this mass separation, and start to dominate

over LUX limits as the mediator becomes heavier for a given DM mass.

We also note that future direct detection experiments will be very effective in prob-

ing the parameter space for these models. We take as an example the most optimistic

projections from LZ, with 1 background event in 1000 days exposure of 5.6 tonne fiducial

mass, which is expected to lower the exclusion limit on the cross section by a factor of

1As this paper was nearing completion, the LUX Collaboration put out new limits [29]. Results based

on these limits, for which we give estimates, will be more stringent than the LUX 2014 bounds, but less so

than the future LZ limits.
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7 × 10−4 [32]. With an improvement of three to four orders of magnitude in the effective

DM-nucleus scattering cross section, the limits on the DM-mediator-SM fermion Yukawa

coupling will get stronger by about one order of magnitude. Future indirect detection

experiments like GAMMA400 [33] and HERD [34], on the other hand, expect an improve-

ment by about a factor of several on the annihilation cross section, which only marginally

improves the constraints on the Yukawa coupling. Thus, future direct detection constraints

overwhelm indirect detection constraints.

It is important to point out that the results weaken considerably as either µ or the DM

mass is increased. The supersymmetric limit of these simplified models is particularly inter-

esting in this context. While future direct detection experiments will constrain the SUSY

limit of the simplified model for 100 GeV DM with µ ≤ 1.10, choosing larger values of the

DM mass (200 GeV) and mass gap (µ = 1.44) leave the SUSY limit almost unconstrained.

One aspect of these models that we examine carefully is the appearance of certain

“blind spots” in the parameter space, where the anapole moment is suppressed due to can-

cellation between various terms. This happens for certain choices of the mixing angle α and

Yukawa couplings. Near these blind spots, the direct detection constraints become severely

attenuated. We study the effectiveness of indirect detection in probing these regions.

Finally, we note that the focus of the present work is not to perform a full event-

level analysis for the LUX 2016 results [29], which we invite other groups to carry out in

the future, but a careful calculation of the anapole-induced DM-nucleon scattering cross

section in this particular model with charged mediators and the exploration of the interplay

of constraints from direct and indirect DM searches. Thus, while we believe that the

LUX 2016 and future LZ bounds that we have presented are broadly representative, the

constraints would certainly be sharpened once a full event-level analysis is carried out with

future datasets.

The rest of the paper is structured as follows. In section 2, we first discuss some

general features of our simplified model. In section 3 and section 4, we discuss direct and

indirect detection, respectively. In section 5, we present our results. We end with our

conclusions, and present detailed calculations of the anapole moment and IB cross section

in two appendices.

2 The simplified model

We consider a Majorana DM candidate χ (with mass mχ) that couples only to an uncolored

fermion f (with mass mf ) and a pair of charged scalars f̃L,R. The interaction is described

by the Lagrangian

Lint = λLf̃
∗
LχPLf + λRf̃

∗
RχPRf + c.c. . (2.1)

The Yukawas λL,R in general contain a CP -violating phase,

λL ≡ |λL| eiϕ/2 , λR ≡ |λR| e−iϕ/2 . (2.2)

There is a nonzero mixing angle α between the scalar mass and chiral eigenstates(
f̃1

f̃2

)
=

(
cosα − sinα

sinα cosα

)(
f̃L
f̃R

)
. (2.3)
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In the following, we denote the two scalar mass eigenvalues as m
f̃1

and m
f̃2

. Our model

thus has the following free parameters:

• the four masses mχ, m
f̃1

, m
f̃2

and mf . It is more convenient to use the following

variables to represent the mass parameters:

µ1 =
m2
f̃1

m2
χ

, µ2 =
m2
f̃2

m2
χ

, δ =
m2
f

m2
χ

. (2.4)

If f is a SM lepton, dipole moment constraints require that f be either µ or τ [18, 35].

• the coupling constants |λL,R|, the CP -violation phase ϕ, and the scalar mixing angle

α.

We briefly describe the supersymmetric limit of our simplified model. In the limit of the

Minimal Supersymmetric Standard Model (MSSM), bino DM couples to one generation of

light sleptons, and we have |λL| =
√

2g|YL| and |λR| =
√

2g|YR|, where g is the electroweak

coupling constant, |YL| = 1/2, and |YR| = 1. The mass squared matrix of the slepton in

the chiral basis is

− L =
(
f̃∗L f̃

∗
R

)(m2
f̃L

m2
f̃LR

m2
f̃LR

m2
f̃R

)(
f̃L
f̃R

)
. (2.5)

The relevant expressions for the matrix entries are:

m2
f̃L

= m2
L̃

+m2
Z cos 2β

(
−1/2 + sin2 θw

)
+m2

f , (2.6a)

m2
f̃R

= m2
Ẽ
−m2

Z cos 2β sin2 θw +m2
f , (2.6b)

m2
f̃LR

= mf

(
Af − µ tanβ

)
. (2.6c)

The mixing angle α is obtained as:

sinα =
m2
f̃LR√

(m2
f̃2
−m2

f̃L
)2 + (m2

f̃LR
)2
, (2.7a)

cosα =
m2
f̃2
−m2

f̃L√
(m2

f̃2
−m2

f̃L
)2 + (m2

f̃LR
)2
, (2.7b)

which leads to

tanα =
mf

(
Af − µ tanβ

)
m2
f̃2
−m2

f̃L

, (2.7c)

We note that for muons, using |Aµ − µ tanβ| ∼ 105 GeV in eq. (2.7c) yields tanα ∼ O(1).

The lepton anomalous dipole moments receive a new contribution from the vertex

correction with the DM and scalars running in the loop. Thus current dipole moment

measurements [36–41] are relevant. In the rest of the paper, except for a discussion in

section 5.4, we will remain agnostic both about the lepton anomalous dipole moments as

well as the relic density, and focus exclusively on the constraints coming from direct and
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indirect detection. This is in keeping with the spirit of simplified models, which tries to

capture low energy constraints while keeping questions of high energy or early universe

cosmology open. For example, the thermal relic density constraint depends heavily on the

mechanism of thermal freezeout in the early Universe, which, given the ubiquity of moduli

in UV complete frameworks, seems more and more unlikely [42]. Non-thermal histories that

can accommodate both overproducing and under-producing candidates have been studied

in detail [43, 44]. Similarly, dipole moment constraints in this class of models have been

studied in detail, and we refer to [18, 19] and references therein for details.

We note that the regions of parameter space that are most interesting for direct detec-

tion, with µ ≤ 1.44, are the ones where there are no constraints coming from colliders. Due

to the high degeneracy of the mediator and DM, the leptons in the final state are soft and

thus dilepton and trilepton searches cannot probe these regions [45, 46]. Recent collider

studies of compressed spectra show that these regions may be probed at high luminosity

in weak boson fusion processes [47–49]. We thus take only LEP bounds [50–53] as our

constraints and exclude charged scalars below ∼ 100 GeV.

3 Direct detection

In this section, we discuss some general features of direct detection for our simplified model,

and the constraints we are going to use in section 5.

In models with uncolored charged mediators, the DM interacts with nuclei only through

the loop-induced electromagnetic moments. Moreover, the Majorana nature of our DM only

allows a nonzero anapole moment. The relevant Feynman diagrams that contribute to the

anapole moment are shown in figure 1. Since our DM is Majorana, we have also included

the diagrams with the internal arrows reversed, which is equivalent to exchanging the two

external fermions.

If the incoming DM particle has momentum p and the outgoing one has momentum

p′, the total off-shell amplitude given by figure 1 is

Mµ = iA(q2)u(p′)
(
q2γµ − /qqµ

)
γ5u(p) , (3.1)

where q = p′ − p is the momentum transfer and A(q2) is the anapole moment of the DM.

Moreover, A(q2) can be expressed as

A(q2) = e
(
|λL|2 cos2 α− |λR|2 sin2 α

)
X1(q2)

+ e
(
|λL|2 sin2 α− |λR|2 cos2 α

)
X2(q2) , (3.2)

where X1,2 is the result of three-point loop integrals. The derivation of the above two

equations, together with the full form of Xi, will be given in appendix A. Noticeably, there

is no ϕ dependence in A, because the amplitude Mµ conserves CP . If both p and p′ are

on the same mass-shell, then the momentum transfer q must be space-like, namely, q2 < 0.

In the limit |q2| � m2
f and |q2| � m2

f̃i
, Xi has a simplified expression,

Xi
q2=0−−−→ 1

96π2m2
χ

[
3µi − 3δ + 1√

∆i
arctanh

( √
∆i

µi + δ − 1

)
− 3

2
log
(µi
δ

)]
, (3.3)
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(a) M1. (b) M2. (c) M3. (d) M4.

Figure 1. Relevant Feynman diagrams for the anapole moment. Mi is the amplitude of each

diagram, which are given in appendix A.

where ∆i = (µi − δ − 1)2 − 4δ and δ = m2
f/m

2
χ. This limit applies approximately to DM

direct detection for f = µ, τ . If the mediator is very heavy, µi � 1, then Xi indeed vanishes

as µ−1
i log µi. On the other hand, if the mass gap between the scalar and the DM is small,

the value of Xi will be boosted; in the limit (µi − 1) ∼ δ � 1,

Xi ∼
1

96π2m2
χ

[
π√
δ
− 3

2
log

1

δ

]
. (3.4)

Therefore, for f = µ and τ , our simplified model will give rise to a sizable anapole moment,

which will lead to signals in direct detection experiments.

In the parameter space of our interest, one scalar mediator is quite degenerate with

the DM while the other is heavy. Thus, we have µ1 ∼ 1 and µ2 � 1 such that X1 � X2.

Then the “blind spot” in the parameter space is located around

tanα ∼
∣∣∣∣λLλR

∣∣∣∣ ,
where A is suppressed due to the lack of the contribution from X1.

The DM mass range of interest here is O(100 GeV), where the most sensitive con-

straints are drawn by Xenon-based experiments, such as LUX, XENON100 [54], Pan-

daX [55], and future LZ, XENON1T [56], etc. The typical nuclear recoil event has energy

of ∼ 10-30 keV, which corresponds to a DM-nucleus momentum transfer of√
|q2| ≈ |qqq| ≈ 50 ∼ 80 MeV,

where qqq is the three-momentum of the four-momentum q. In our model, the only DM-

nucleus interaction is mediated by the anapole, which can be described by the following

effective Lagrangian at small momentum transfer:

LDM-nucleus =
iA
2
χγµγ5χ∂νFµν + eAµJ

µ, (3.5)

where A ≡ A(0) and Jµ is the nuclear current operator. The anapole moment A is real,

since the combination iχγµγ5χ∂νFµν is real. This interaction conserves CP , but not C

and P individually. Using the full expression given in appendix A, we have checked that
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by neglecting the q2 dependence, we only introduce, at most, a 0.6% error in the anapole

moment for the models studied here. The differential cross section for an anapole DM

(with speed v2 ∼ 10−6) scattering off a target nuclear electric field is [21–24]

dσ

dER
= αemA2Z2F 2

E(qqq2)

[
2mT −

(
1 +

mT

mχ

)2 ER
v2

]
. (3.6)

In this equation, mT is the mass of the target nucleus (xenon for LUX), ER = qqq2/(2mT ) is

the nuclear recoil energy, and Z is the nuclear charge. The nuclear electric form factor F 2
E is

taken as the Helm form factor [57]. In principle, anapole DM also interacts with the nuclear

magnetic field, but this contribution is negligible for xenon nuclei due to the smallness

of the nuclear magnetic dipole moment [22]. Eq. (3.6) exhibits a different DM velocity

dependence from the usual spin-independent (SI) one. As a result, the LUX SI constraint

presented in [27, 28] cannot be directly applied here. Instead, one needs to calculate the

scattering rate using the standard halo model (SHM) and fit the LUX data at the event

level following [21]. For future LZ projections, the strategy we employ is as follows: we scale

the constraint on the scattering cross section for a given DM mass from the LUX limit to

the projected LZ limit, resulting in a scaling of the constraint on the anapole moment, from

eq. (3.6). This constraint on the anapole moment is then further translated into constraints

on the parameters of the model Lagrangian. As a full event-level analysis has not yet been

performed for the LUX 2016 results, we follow the same strategy when estimating the LUX

2016 bounds on the parameter space. Clearly, a more careful analysis of the LUX 2016

datasets, which is beyond the scope of the present work, will sharpen these constraints.

We turn next to indirect detection.

4 Indirect detection

In this section, we outline the indirect detection constraints on our model. We will only

focus on gamma-ray searches. We note that AMS bounds [58] may also come into play, but

we do not consider them here due to uncertainties related to the astrophysical background

and propagation of charged particles.

We first begin with a discussion of the chiral suppression of the annihilation cross

section in this class of models, and how it is lifted through either internal bremsstrahlung

(IB) processes or non-zero mixing of the two mediators. We then go on to discuss the

Fermi-LAT constraints on our model.

In the α → 0 and mf → 0 limit, the chiral symmetry f → exp(iθγ5)f forbids the

s-wave two-body annihilation χχ → ff̄ in the current era. The reason is as follows. DM

particles at the current era typically have relative velocity v → 0 such that the Majorana

nature requires the initial state be in the total angular momentum J = 0 state. Then the

conservation of angular momentum requires the final state fermion anti-fermion pair be of

the same helicity, which, for mf → 0, can be achieved only if the fermion is left-handed

and the anti-fermion is right-handed. Then this amplitude is not invariant under a chiral

symmetry transformation and is thus forbidden. Since a small mass mf minimally violates

– 7 –
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the chiral symmetry, the annihilation cross section must scale as (mf/mχ)2. That is, it is

chirally suppressed.

A finite α deviates from the minimal violation explicitly and thus enables an unsup-

pressed s-wave cross section, making the DM annihilation signal large enough to be poten-

tially observed.2 A left-right scalar mixing in our simplified model (2.1) thus enables an

unsuppressed s-wave annihilation [18, 19]. Chiral suppression can also be lifted by introduc-

ing one more photon in the final state, which modifies the condition of angular momentum

conservation [59, 60]. When considering IB in our model, both mechanisms are encoded.

We present briefly the IB calculation, which gives the indirect detection signal, and

refer to [19] for a dedicated study. In the s-wave limit, the total IB amplitude can be

written as the sum of three gauge invariant sub-amplitudes,

AIB =
ie

2

[
u(k1)γ5v(k2)

2mχ

] (
Avb +Amix +Amf

)
, (4.1)

all of which have clear physical meanings. Here k1 = k2 = k are the momenta of the initial

DM particles, while u and v are standard spinor wavefunctions following the definition

of [61]. The full analytic expressions for these three sub-amplitudes are given in appendix B.

First, Avb is an intrinsic unsuppressed s-wave amplitude. This amplitude is contributed

by the final states in which the fermion and anti-fermion have opposite helicities, made

possible by the vector boson emission, which lifts the chiral suppression. Thus it survives

even in the limit α = 0, when the minimal chiral symmetry violation is restored. The

contribution of Avb features a line like photon spectrum (if at least one scalar is very

degenerate with the DM) with the peak around the kinematic cut-off Eγ ≈ mχ [59]:

d(σv)vb

dx
=
∑
i=1,2

αemλ
4
i (1− x)

64π2m2
χ

[
4x

(1 + µi)(1 + µi − 2x)
− 2x

(1 + µi − 2x)2

−(1 + µi)(1 + µi − 2x)

(1 + µi − x)3
log

1 + µi
1 + µi − 2x

]
, (4.2)

where x = Eγ/mχ is the photon energy fraction, and

λ1 = |λL|2 cos2 α− |λR|2 sin2 α , λ2 = |λL|2 sin2 α− |λR|2 cos2 α. (4.3)

Nonzero scalar mixing angle α opens another unsuppressed amplitude, Amix ∝ sin(2α).

Unlike Avb, this term is induced by an explicit deviation from the minimal violation of the

chiral symmetry by introducing the scalar mixing. At finite α, Amix is divergent in both

the soft and collinear limit when mf → 0, which gives the dominant contribution to AIB:

d(σv)IB

dx
≈ αem

π

x2 − 2x+ 2

x
log

[
s(1− x)

m2
f

]
× (σv)ff̄ (for finite α), (4.4)

where s = 4m2
χ, and (σv)ff̄ is the unsuppressed s-wave two-body annihilation cross section.

The total cross section thus has to be modulated by a Sudakov double log factor. It

2The ϕ dependence of a generic amplitude is always chirally-suppressed, being proportional to

(mf/mχ) sin 2α. The reason is that at mf = 0 (α = 0 or π/2), the ϕ dependence can be absorbed by

a chiral rotation of the fermion (scalar).
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also washes out the peak like feature of Avb when α & π/100 for our typical benchmark

models [19]. Finally, Amf ∝ mf is the chirally suppressed part. It has the same α

dependence as Avb but the similar spinor chain structure as Amix. Consequently, it also

survives at α = 0, which reflects the effect of the minimal chiral symmetry violation. On

the other hand, like Amix, it is divergent in the soft limit, but such a divergence is very

mild due to the chiral suppression.

To sum up, our simplified model (2.1) incorporates two mechanisms to lift the chiral

suppression on the IB cross section. At α → 0, the photon emission enables the same-

helicity fermion anti-fermion pair in the final state, which leads to a peak-like spectrum.

The peak is prominent if at least one scalar mass is very degenerate with the DM mass.

At finite α, the deviation from the minimal chiral symmetry violation lifts the chiral sup-

pression, but leads to a flat spectrum instead. The lesson for indirect detection is that we

need to use line signal searches to constrain the no mixing case with degenerate spectrum,

namely, µ1 = 1.01 and µ1 = 1.1, but continuum searches to constrain the finite mixing case

and nondegenerate spectrum (µ1 = 1.44). For µ1 . 1.1, the position of the sharp peak in

the IB spectrum can be found from the equation

d

dx

[
d(σv)IB

dx

]
≈ d

dx

[
d(σv)vb

dx

]
= 0 .

We find that the peak always sits at Eγ & 0.91mχ for µ1 . 1.1. When applying the

line constraint, we neglect this small difference since the Fermi-LAT constraint does not

change much in this range.

Now we discuss the constraints coming from indirect detection. As discussed above,

both limits drawn by line and continuum searches might be relevant. In the DM mass

range of interest, the most sensitive results come from dwarf galaxies. In the future, these

limits can be improved by GAMMA400 [33] and HERD [34], which are designed to have

better sensitivity and energy resolution.

For the line search limit that constrains the model at α = 0 or π/2 with µ1 . 1.1, we

use the PASS 8 analysis result of 5.8 years data [30] of Fermi-LAT. At mχ = 100 GeV, the

bound on the annihilation cross section is about 4.5× 10−28cm3/s. The uncertainty of this

limit spans about one order of magnitude. The one-loop suppressed processes χχ → γγ

and γZ also produce line signals, but for mχ & 100 GeV, the mass range of interest here,

the cross sections for these processes are only about 10−30 ∼ 10−31cm3/s with SUSY

couplings. Thus the IB signal always dominates, which gives a total cross section of about

10−28 ∼ 10−29cm3/s, also with SUSY couplings.

For the continuum spectrum search limit, we use the one on the particle physics factor

ΦPP given in [62]:

ΦPP = 5.0+4.3
−4.5 × 10−30cm3s−1GeV−2,

from which the limit on the IB cross section can be inferred as

(σv)IB = (8πm2
χ)ΦPP =

( mχ

100 GeV

)2
× 1.26+1.08

−1.13 × 10−24cm3/s . (4.5)

Although this is not a very recent analysis, it is more directly applicable to our case than the

latest Fermi-LAT analysis (for example, [31]) since the limit is drawn without assuming
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a spectrum. In common practice, one needs to first generate a photon spectrum from the

decay chain of the final state (for example, simulated by PYTHIA [63]) and then fit it with the

observed spectrum. In our work, the spectrum is approximated by an analytic calculation

of the IB, which can in principle be different from the PYTHIA simulation. We note that for

the µ+µ− final state IB is the dominant contribution and the difference is relatively small.

In this case, the bounds we obtain from ΦPP are somewhat conservative, but are robust

and spectrum independent. If we neglect the spectrum difference and directly apply the

Fermi-LAT result, the improvement is about a factor of 6 at mχ = 100 GeV for (σv)µ+µ− ,

which is about a factor of 4
√

6 ≈ 1.56 improvement in the constraint on the coupling λL,R.

We would like to encourage an updated spectrum-independent analysis of the Fermi-LAT

signal from dwarf galaxies.

5 Results

In this section, we describe the constraints on the parameter space of our model coming

from direct and indirect detection. We present our results for these constraints as contours

in the following planes: (α, λ), (mχ, λ), and (λL, λR). All the results presented are for the µ

channel. For the τ final state, the direct detection constraints are weaker, since A ∼ m−1
f

according to eq. (3.4). However, the indirect bounds from Fermi-LAT are stronger for

annihilation to taus [31]. We also emphasize that the |q2| � m2
f approximations presented

in section 3 are used only to give a qualitative understanding of the behavior of the anapole

moment, while the results in this section are calculated from the full analytic expression

given in appendix A.

5.1 (α, λ) planes

Our results for the LUX/LZ and Fermi-LAT sensitivities to our models are presented in

the (α, λ) planes in figures 2 and 3.

In figure 2, we present our results in the (λ, α) plane. We show plots of λR = 2λL versus

α, for three different values of µ: µ = 1.01 (left), µ = 1.10 (center), and µ = 1.44 (right).

In the first row, the contours correspond to values of |A/µN |×10−5 fm. The solid (dashed)

blue lines correspond to LUX 2014 (future LZ) limits on the DM SI scattering cross section.

In addition, the most recent LUX 2016 constraint is estimated as a thin dashed blue contour

using the procedure described for the projected LZ sensitivity. As a full event-level analysis

has not yet been performed for the LUX 2016 results, we focus the following discussion on

the 2014 results. The gray horizontal line corresponds to the SUSY value of couplings. In

the second row, the red shaded regions and blue contours for LUX sensitivity remain the

same, while additional black contours correspond to values of the IB cross section (σv)IB×
10−26 cm3s−1. The solid purple contour corresponds to the central value of the limits placed

by Fermi-LAT on the DM annihilation cross section coming from dwarf galaxies, while

the dashed purple contours correspond to 95% CL interval. The thick purple horizontal

line segments at α = 0, π/2, and π correspond to limits from Fermi-LAT line searches.

Indirect detection places complementary constraints on the parameter space. From

the second row of figure 2, it is clear that regions near α = π/8, 7π/8 (the “blind spot”

– 10 –



J
H
E
P
1
0
(
2
0
1
6
)
0
1
8

Figure 2. (α, λ) with mχ = 100 GeV: we show plots of λR = 2λL versus α for µ = 1.01 (left),

µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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region) are already being probed by Fermi-LAT continuum searches, which place stronger

limits than LUX bounds in these regions of parameter space. Conversely, LUX bounds

are stronger than bounds from Fermi-LAT in the region near α = π/2. Limits from line

searches, which are applicable at α = 0, π/2, π are comparable with LUX bounds. For

larger values of µ, the bounds from indirect detection remain approximately unchanged,

while those from direct detection degrade significantly.

We now describe the “blind spots” in the parameter space, where the anapole moment

nearly vanishes, obvious in figure 2 as the places where direct detection constraints are

weakest, near α = π/8, 7π/8, from eq. (3.2). Even in the best case scenario of µ = 1.01,

LUX bounds do not probe these regions, although they will be probed by LZ. It is clear

from the left plot in the first row that LUX bounds also do not probe the SUSY limit, while

LZ will probe most of the SUSY limit for µ = 1.01. For larger values of µ, the prospects for

direct detection are considerably weaker. For µ = 1.44, even future LZ bounds will barely

start to constrain the SUSY parameter space.

In figure 3, we repeat the results of figure 2, but for mχ = 200 GeV. While the con-

straints show the same general features, there is an appreciable deterioration of the reach

due to the dependence on DM mass in eq. (3.2). In fact, now the future LZ projections

barely touch the supersymmetric limit for µ = 1.10, and the SUSY limit is completely un-

constrained for µ = 1.44. The constraints from Fermi-LAT show a similar degeneration.

In both cases, we see that the bounds from Fermi-LAT continuum searches are compara-

ble with LUX. Future LZ projections, however, go further in probing the parameter space

than the current indirect detection limits.

5.2 (mχ, λ) planes

Our results for the LUX/LZ and Fermi-LAT sensitivities to our models are presented in

the (mχ, λ) planes in figures 4, 5, and 6.

In figure 4, we show our results in the (mχ, λ) plane for α = 0. As in figures 2 and 3,

λR = 2λL and we show µ = 1.01 (left), µ = 1.10 (center), and µ = 1.44 (right). Similarly,

in the first row, the contours correspond to values of |A/µN |×10−5 fm. The solid (dashed)

blue lines correspond to LUX (future LZ) limits on the DM SI scattering cross section,

with the estimation of the LUX 2016 limit represented as a thin dashed blue contour. The

grey horizontal line corresponds to the SUSY value of couplings. In the second row, the

contours correspond to values of the IB cross section (σv)IB × 10−26 cm3s−1, and the solid

purple contour corresponds to limits from Fermi-LAT line searches.

From the first row of figure 4, we can see that a significant part of the parameter space

up to DM mass mχ = 200 GeV is already being covered by LUX for µ = 1.01, while LZ

projections cover the parameter space almost entirely. The reaches degrade significantly

for larger µ, with LUX only covering a small part of the parameter space near large values

of the Yukawa couplings. It is clear that LUX is unable to constrain the SUSY limit even

in the best case scenario of µ = 1.01. On the other hand, LZ covers almost the entire SUSY

limit in this case, although the reach degrades for larger µ.

From the second row of figure 4, we see that current line searches from Fermi-LAT

are already sensitive to the same regions of parameter space that LUX is sensitive to for
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Figure 3. (α, λ) with mχ = 200 GeV: we show plots of λR = 2λL versus α for µ = 1.01 (left),

µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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Figure 4. (mχ, λ) for α = 0: we show plots of λR = 2λL versus mχ for µ = 1.01 (left), µ = 1.10

(center), and µ = 1.44 (right). In the first row, the contours correspond to values of |A/µN | ×
10−5 fm. The vertical black dashed line is the LEP limit [50–53] on the mass of the charged scalar

for the µ channel. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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Figure 5. (mχ, λ) for α = π/4: we show plots of λR = 2λL versus mχ for µ = 1.01 (left),

µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN |×10−5 fm. The vertical black dashed line is the LEP limit on the mass of the charged scalar

for the µ channel. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as a

thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings. In

the second row, the red shaded regions and blue contours for LUX sensitivity remain the same, while

additional black contours correspond to values of the IB cross section (σv)IB × 10−26 cm3s−1. The

solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on the DM

annihilation cross section coming from dwarf galaxies, while the dashed purple contours correspond

to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π correspond to

limits from Fermi-LAT line searches. In all cases, the spectrum shows a continuum feature.

µ = 1.01. For larger values of µ, indirect detection considerably outperforms LUX, since, as

before, the bounds from indirect detection are not strongly dependent on the degeneracy

of the DM and mediator masses. LZ projections, however, continue to cover a larger

parameter space than indirect detection.
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In figure 5, we repeat the results of figure 4 for α = π/4. We see that direct detection

constraints are somewhat stronger than the α = 0 case, in agreement with the first row of

figure 2. In contrast to figure 4, however, the appropriate indirect detection constraint to

use for α = π/4 are the Fermi-LAT continuum searches. We see that it outperforms LUX

bounds for µ = 1.10 and µ = 1.44. LZ projections are stronger than indirect detection in

both cases.

In figure 6, we show our results on the (mχ, λ) plane for α = π/2. From figure 2, it

is clear that this value of α represents the best case scenario for direct detection. Indeed,

we see that both LUX and LZ cover a substantially larger part of the parameter space as

compared to the case of α = 0, π/4 shown in previous figures. For µ = 1.01, almost the

entire parameter space up to mχ = 200 GeV is covered by LZ. LZ covers the entire SUSY

limit up to mχ = 200 in the case of µ = 1.10, and up to mχ = 100 GeV for µ = 1.44.

From the second row of figure 6, we see that while indirect detection limits (here, the

appropriate constraint is from Fermi-LAT line searches) are comparable to LUX bounds

for small µ = 1.01, they perform vastly better for larger values of µ. However, LZ still

beats indirect detection limits.

5.3 (λL, λR) planes

Our results for the LUX/LZ and Fermi-LAT sensitivities to our models are presented in

the (λL, λR) planes in figures 7, 8, 9, and 10.

In figure 7, we display our plots on the λR versus λL plane keeping mχ = 100 GeV and

α = π/4 fixed, for µ = 1.01 (left), µ = 1.10 (center), and µ = 1.44 (right). The star symbol

corresponds to the SUSY value of couplings. We see that most of the parameter space

of the Yukawa couplings of our model is covered by a combination of direct and indirect

detection. In fact, only the narrow corridor near λR ∼ λL constitutes a “blind spot” where

the anapole moment diminishes in magnitude for this particular value of α. Exactly at

λR = λL the anapole moment vanishes and there are no direct detection constraints. The

SUSY point is probed for µ = 1.10 and below. For µ = 1.44, LUX 2014 does not cover

any part of the parameter space, while LZ covers most of it. From the second row, it is

clear that indirect detection is able to probe a large portion of the corridor currently. In

fact, parts of the parameter space where both λR and λL are larger than one are ruled

out by Fermi-LAT. For µ = 1.44, indirect detection is the only current bound on the

parameter space. A combination of Fermi-LAT and LZ will rule out most of the plane

even at µ = 1.44, although the SUSY point will be beyond detection.

Figure 8 repeats the results of figure 7 for mχ = 200 GeV (again, α = π/4). We

see that both direct and indirect detection constraints become weaker, as expected. The

LUX bounds are considerably weaker, and vanish entirely for µ = 1.10. The corridor

near the blind spot λR = λL along which direct detection constraints are weak also gets

wider. We see that indirect detection plays an important role in constraining the model

for mχ = 200 GeV. Significant parts of the parameter space near the blind corridors are

constrained by Fermi-LAT.

In figure 9 and 10, the results of figure 7 are repeated for the case of α = 0 and

α = π/2, respectively, in each case with mχ = 100 GeV. We see that the corridor along
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Figure 6. (mχ, λ) for α = π/2: we show plots of λR = 2λL versus mχ for µ = 1.01 (left),

µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN |×10−5 fm. The vertical black dashed line is the LEP limit on the mass of the charged scalar

for the µ channel. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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Figure 7. (λL, λR) for mχ = 100 GeV and α = π/4: we show plots of λR versus λL, for µ = 1.01

(left), µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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Figure 8. (λL, λR) for mχ = 200 GeV and α = π/4: we show plots of λR versus λL, for µ = 1.01

(left), µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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which the scattering cross section is small has changed positions compared to the α = π/4

case. For α = 0 (π/2), the corridor lies along λL = 0 (λR = 0). For the α = 0 case,

λL & 0.6 (1.6, 3.0) is ruled out by LUX constraints for µ = 1.01 (1.10, 1.44). On the other

hand, λL & 0.1 (0.4, 0.5) is ruled out by LZ constraints for µ = 1.01 (1.10, 1.44). From the

second row, it is clear that line search constraints from Fermi-LAT rule out the model for

λL & 0.6 for different values of µ. This is comparable to the LUX limits for µ = 1.01, but

is better for larger values of µ. It is clear, however, that the reach of LZ is better than that

of indirect detection. The SUSY limit is constrained by LZ for µ = 1.01. For µ > 1.10, LZ

cannot constrain the SUSY limit.

5.4 Muon g − 2 constraints

In our simplified model, the leading order contribution to the anomalous magnetic dipole

moment a = g−2
2 is [64, 65]:

∆af =
mfmχ

8π2m2
f̃1

|λLλR| cosϕ cosα sinα

[
1

2(1− r1)2

(
1 + r1 +

2r1 log r1

1− r1

)]
− (f̃1 → f̃2) ,

(5.1)

where r1 = m2
χ/m

2
f̃1

. In the µ channel, our simplified model will fully account for the 2σ

deviation from the Standard Model [36–41]:

128× 10−11 < ∆aµ < 448× 10−11

if (1) ϕ ∼ π/2 with arbitrary mixing angle α, or (2) α ∼ 0 or π/2 with arbitrary ϕ, absent of

fine-tuning in λL,R [18, 19]. For the τ channel, current experiments cannot put any sensitive

limits on our parameter space. We note that the anomalous magnetic moment favors certain

regions in our parameter space, but it does not put hard constraints on it. While direct

detection experiments constrain the interaction of our simplified model with the SM, there

are independent parameters in the new physics sector that tune ∆aµ to the observed value.

6 Conclusion

We have investigated simplified DM models coupled to SM fermions via charged mediators.

We have considered the general case where fermionic DM couples to both right- and left-

handed SM fermions, through two scalar mediators with arbitrary mixing angle α. Results

from direct detection for this class of models have been presented, and contrasted with

results from indirect detection.

We note that the most stringent collider constraints for charged uncolored scalar par-

ticles come from LEP, and our study has been conducted for a spectrum which is beyond

LEP bounds. The DM-nucleus scattering cross section in this class of models is mediated

by higher electromagnetic moments, which, for Majorana DM, is the anapole moment. We

give a full analytic derivation of the anapole moment for arbitrary α and match with limits

presented in the literature. We then compute the scattering cross section, and translate

bounds from LUX and LZ to the parameter space of the model.
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Figure 9. (λL, λR) for mχ = 100 GeV and α = 0: we show plots of λR versus λL, for µ = 1.01

(left), µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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Figure 10. (λL, λR) for mχ = 100 GeV and α = π/2: we show plots of λR versus λL, for µ = 1.01

(left), µ = 1.10 (center), and µ = 1.44 (right). In the first row, the contours correspond to values of

|A/µN | × 10−5 fm. The solid (dashed) blue lines correspond to LUX 2014 (future LZ) limits on the

DM SI scattering cross section. In addition, the most recent LUX 2016 constraint is estimated as

a thin dashed blue contour. The gray horizontal line corresponds to the SUSY value of couplings.

In the second row, the red shaded regions and blue contours for LUX sensitivity remain the same,

while additional black contours correspond to values of the IB cross section (σv)IB× 10−26 cm3s−1.

The solid purple contour corresponds to the central value of the limits placed by Fermi-LAT on

the DM annihilation cross section coming from dwarf galaxies, while the dashed purple contours

correspond to 95% CL interval. The thick purple horizontal line segments at α = 0, π/2, and π

correspond to limits from Fermi-LAT line searches.
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On the indirect detection side, we have presented the constraints coming from the

Fermi-LAT line and continuum searches, after a careful discussion of the chiral suppression

of the annihilation cross-section in this class of models, and how it is lifted through either

IB processes or non-zero mixing of the two mediators.

We have presented results for direct and indirect detection and found that they probe

complementary regions of parameter space. Results in the supersymmetric limit of these

simplified models are provided in all cases. We have found that future direct detection

experiments like LZ will probe a significant portion of the parameter space of these models

for mχ ∼ O(100 − 200) GeV and lightest mediator mass within O(5%) of the DM mass.

However, the direct detection prospects become weaker for larger DM mass and larger mass

gap between the DM and the lightest mediator mass. At DM mass of O(200) GeV and

lightest mediator mass ∼ 20% larger than the DM mass, direct detection constraints are

already too feeble to probe the SUSY limit of these models. The direct detection bounds

also disappear at certain “blind spots” in the parameter space, where the anapole moment

vanishes or nearly vanishes. These regions have been carefully studied.

Generally, we have found that current Fermi-LAT and LUX 2014 results have com-

parable reaches in this class of models, for µ = 1.01. However, for larger µ, the indirect

detection constraints start to become more constraining than LUX. Indirect detection is

also able to constrain regions of parameter space where the blind spots occur. Future LZ

projections generally outperform indirect detection constraints for all choices of parameters,

except at the blind spots.

It is interesting to contrast our work with that of models with simpler mediator sectors,

such as the case of a single scalar mediator coupling to right-handed SM fermions considered

in [21]. This corresponds to a choice of α = π/2 in the models presented here. While the

dependence of the anapole moment on the mixing angle is quite simple, there are several

new physical features that emerge when one considers the more elaborate mediator sector.

These features are evident in figure 2 and have been discussed throughout the paper. For

example, it is clear that the case of a single mediator coupling to right-handed fermions

(α → π/2) actually affords the most optimistic outlook in terms of direct detection. The

prospects dwindle rapidly as α is changed, until one reaches the blind spots where they

are very weak and one must rely on indirect detection to constrain the model. This more

general mediator sector thus displays the complementarity of direct and indirect detection,

which is one of the main themes of the paper.
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A Full analytic expression of the anapole moment

In this appendix, we derive the full analytic expression of the DM anapole moment from

the Lagrangian (2.1) and the relevant QED interaction,

Lqed = ie
(
f̃∗1A

µ∂µf̃1 + f̃∗2A
µ∂µf̃2 − c.c

)
+ e fγµAµf. (A.1)

The total off-shell amplitude Mµ is the sum of all four Feynman diagrams in figure 1,

Mµ =Mµ
1 +Mµ

2 +Mµ
3 +Mµ

4 . (A.2)

Each Mµ
i contains the contribution from two internal scalars f̃1 and f̃2, namely,

Mµ
k =Mµ

k(1) +Mµ
k(2).

The Majorana nature of χ requires that Mµ must have the form of eq. (3.1), and we are

going to explicitly show this. We only need to calculate Mµ
k(1), from whichMµ

k(2) can be

obtained through the replacement

m
f̃1
→ m

f̃2
cosα→ sinα sinα→ − cosα.

If we call the undetermined loop momentum k in all these diagrams, the sub-amplitudes

can be expressed as

Mµ
1 (1) =

∫
d4k

(2π)4

Fµ1 +mfGµ

d1(1)d2(1)d3(1)
Mµ

2 (1) =

∫
d4k

(2π)4

Fµ2 −mfGµ

d1(1)d2(1)d3(1)

Mµ
3 (1) =

∫
d4k

(2π)4

Fµ3 +mfHµ

d̃1(1)d̃2(1)d̃3(1)
Mµ

4 (1) =

∫
d4k

(2π)4

Fµ4 −mfHµ

d̃1(1)d̃2(1)d̃3(1)
. (A.3)

In these equations, d’s are the propagator denominators,

d1(1) = k2 −m2
f̃1

d2(1) = (k + p)2 −m2
f d3(1) = (k + p′)2 −m2

f ,

and d̃ are obtained by exchanging the scalar mass m
f̃1

and the fermion mass mf . In the

numerators, the fermion chains are

Fµ1 = −u(p′)
(
|λL|2 cos2 αPL + |λR|2 sin2 αPR

)
[(/k + /p

′)γµ(/k + /p) +m2
fγ

µ]u(p)

Fµ2 = u(p′)
(
|λ2
L| cos2 αPR + |λR|2 sin2 αPL

)
[(/k + /p

′)γµ(/k + /p) +m2
fγ

µ]u(p)

Fµ3 = −(2k + p+ p′)µu(p′)
(
|λL|2 cos2 αPL + |λR|2 sin2 αPR

)
/k u(p)

Fµ4 = (2k + p+ p′)µu(p′)
(
|λL|2 cos2 αPR + |λR|2 sin2 αPL

)
/k u(p) (A.4)

Gµ = −|λLλR| sinα cosαu(p′)(eiϕPL + e−iϕPR)[(/k + /p
′)γµ + γµ(/k + /p)]u(p)

Hµ = |λLλR| sinα cosα (2k + p+ p′)µu(p′)(eiϕPL + e−iϕPR)u(p). (A.5)

In the total amplitude Mµ, the Gµ and Hµ parts cancel, leaving

Mµ = e
(
|λL|2 cos2 α− |λR|2 sin2 α

)
Iµ1 + e

(
|λL|2 sin2 α− |λR|2 cos2 α

)
Iµ2 , (A.6)
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where Iµi is

Iµi =

∫
d4k

(2π)4

[
(2k + p+ p′)µu(p′)γ5/k u(p)

d1(i)d2(i)d3(i)
+
u(p′)γ5[(/k + /p′)γµ(/k + /p) +m2

fγ
µ]u(p)

d̃1(i)d̃2(i)d̃3(i)

]
.

(A.7)

The cancelation of Gµ and Hµ can be understood in the following way. As we have noted

before eq. (3.5), A should be real in nature so that Gµ and Hµ, containing the factor

eiϕPL + e−iϕPR that introduce an imaginary part i sinϕ, must cancel by themselves.

Using some spinor and γ-matrix identities, we can rewrite Iµ into

Iµi = i u(p′)(Yiγ
µ −Xi/qq

µ)γ5u(p), (A.8)

where Xi and Yi can be expanded with respect to tensor loop integrals,

Xi = C11(i) + C1(i) + C̃11(i)− C12(i)− C̃12(i)

Yi = 2C00(i)− 2C̃00(i) + 2m2
χC11(i) + (2m2

χ − q2)C12(i)

+ 4m2
χC1(i) + (m2

χ −m2
f )C0(i). (A.9)

The loop integrals C and C̃ are related to those 3-point integrals C defined in LoopTools [66]

through

C(··· )(i) ≡
1

16π2
C(··· )[m

2
χ, q

2,m2
χ,m

2
f̃i
,m2

f ,m
2
f ]

C̃(··· )(i) ≡
1

16π2
C(··· )[m

2
χ, q

2,m2
χ,m

2
f ,m

2
f̃i
,m2

f̃i
]. (A.10)

Then, using the techniques reviewed in [67], we can expand the tensor and vector loop

integrals in terms of the scalar ones (C0 and C̃0) and 2-point integrals. The result is that

−ξ2
χXi = (1− δ)C0(i) + (1− µi)C̃0(i) + (3− µi + δ)C1(i)

+ (ξ2
χ + µi − δ + 3)C̃1(i) + B0(i) , (A.11)

where ξ2
χ = −q2/m2

χ. In this process, we may also prove that Yi = q2Xi. As a result, we

can arrive at

Iµi = iXiu(p′)(q2γµ − /qqµ)γ5u(p), (A.12)

and consequently eq. (3.1) and (3.2). In eq. (A.11), B0 is a combination of 2-point loop

integrals whose divergent parts cancel each other,

B0(i) =
1

2m2
χ

[
2− (µi − δ) log

(µi
δ

)
+ 2
√

∆i arctanh

( √
∆i

µi + δ − 1

)

+2

√
4δ+ξ2

χ

ξ2
χ

arctanh

√
ξ2
χ

4δ+ξ2
χ

+2

√
4µi+ξ2

χ

ξ2
χ

arctanh

√
ξ2
χ

4µi+ξ2
χ

]
. (A.13)

The vector loop integrals C1 and C̃1 can be written as a combination of 2-point integrals

and scalar 3-point integrals,

C1(i) =

(
δ − µi − 1

4 + ξ2
χ

)
C0 + B1(i) C̃1 =

(
µi − δ − 1

4 + ξ2
χ

)
C̃0 + B̃1(i), (A.14)
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where B1 and B̃1 are

B1(i) =
1

m2
χ(4 + ξ2

χ)

[
−µi − δ + 1

2
log
(µi
δ

)
+
√

∆i arctanh

( √
∆i

µi + δ − 1

)

+

√
ξ2
χ + 4δ

ξ2
χ

arctanh

√
ξ2
χ

4δ + ξ2
χ

]
(A.15)

B̃1(i) =
1

m2
χ(4 + ξ2

χ)

[
−µi − δ − 1

2
log
(µi
δ

)
+
√

∆i arctanh

( √
∆i

µi + δ − 1

)

+

√
4µi + ξ2

χ

ξ2
χ

arctanh

√
ξ2
χ

4µi + ξ2
χ

]
. (A.16)

Now we are left with the last two pieces of Xi, C0 and C̃0. They can be calculated using the

technique developed in [68]. To write them in a compact form, we introduce the following

variables:

xi1,2 = −(µi − δ − 1)±
√

∆i

2
x̃i1,2 = −(δ − µi − 1)±

√
∆i

2

zi1,2 =
ξχ ±

√
4δ + ξχ

2ξχ
z̃i1,2 =

ξχ ±
√

4µi + ξχ

2ξχ
. (A.17)

In the above variables, we implicitly assign an infinitesimal imaginary part −iε to those

with subscript 1 and +iε to those with subscript 2 when necessary. This imaginary part

is important for analytic continuation beyond the branching points of the logarithm and

dilogarithm functions. In addition, we have

yi1 =
1− (1− a)(µi − δ)

2− a
ỹi1 =

1− (1− a)(δ − µi)
2− a

yi2 =
1− a− µi + δ

2− a
ỹi2 =

1− a− δ + µi
2− a

yi3 =
a(µi − δ − 1 + a)

(2− a)ξ2
χ

ỹi3 =
a(δ − µi − 1 + a)

(2− a)ξ2
χ

, (A.18)

where a =
−ξ2χ+

√
4+ξ2χ

2 . Effectively, the variables with a tilde are obtained by exchanging

δ and µi in those without a tilde. These variables appear as arguments of dilogarithm

functions in

Ii1 = Li2

(
yi1

yi1 − xi1

)
− Li2

(
yi1 − 1

yi1 − xi1

)
+ Li2

(
yi1

yi1 − xi2

)
− Li2

(
yi1 − 1

yi1 − xi2

)
Ii2 = Li2

(
yi2

yi2 − xi1

)
− Li2

(
yi2 − 1

yi2 − xi1

)
+ Li2

(
yi2

yi2 − xi2

)
− Li2

(
yi2 − 1

yi2 − xi2

)
Ii3 = Li2

(
yi3

yi3 − zi1

)
− Li2

(
yi3 − 1

yi3 − zi1

)
+ Li2

(
yi3

yi3 − zi2

)
− Li2

(
yi3 − 1

yi3 − zi2

)
. (A.19)

We also have Ĩi1,2,3, in which the dilogarithm functions have x̃, ỹ and z̃ as variables. Finally,

in terms of I1,2,3 and Ĩ1,2,3, we simply have

C0(i) = −b (Ii1 − Ii2 + Ii3) C̃0(i) = −b (Ĩi1 − Ĩi2 + Ĩi3), (A.20)
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where b = 1

m2
χ ξχ
√

4+ξ2χ
. In the limit ξχ → 0, it is tedious but still straightforward to

verify that the leading term on the right hand side of eq. (A.11) is O(ξ2
χ) such that Xi is

independent of q2 in this limit:

Xi ≈
1

96π2m2
χ

[
3µi − 3δ + 1√

∆i
arctanh

( √
∆i

µi + δ − 1

)
− 3

2
log
(µi
δ

)]
. (A.21)

B Analytic IB amplitudes

In this appendix, we give the analytic expressions for the three sub-amplitudes Avb, Amix

and Amf defined formally in eq. (4.1). A more detailed analysis can be found in [19]. In the

following equations, k3 denotes the final state fermion momentum, k4 for the anti-fermion,

and k5 and ε5 for the photon momentum and polarization. The amplitude opened by the

vector boson emission, Avb, is given by

Avb = u(k3)O1(|λL|2 cos2 αPL − |λR|2 sin2 αPR)v(k4)

+ u(k3)O2(|λL|2 sin2 αPL − |λR|2 cos2 αPR)v(k4) , (B.1)

where the matrix Oi is given by

Oi ≡ γµ

[
kµ5 (k3 − k4) · ε5 − εµ5 (k3 − k4) · k5

(s3 −m2
f̃i

)(s4 −m2
f̃i

)

]
, (B.2)

with s3 = (k − k3)2 and s4 = (k − k4)2. The mixing-induced amplitude, Amix, is given by

Amix = mX |λLλR| sin(2α)
[
cosϕu(k3)γ5(V1 + S1 − V2 − S2)v(k4)

−i sinϕu(k3)(V1 + S1 − V2 − S2)v(k4)] , (B.3)

where the matrices Vi and Si are

Vi ≡ −
i

2
σµνk

µ
5 ε
ν

[
1

(k3 · k5)(s4 −m2
f̃i

)
+

1

(k4 · k5)(s3 −m2
f̃i

)

]

Si ≡
(k3 − k4) · ε5

(s3 −m2
f̃i

)(s4 −m2
f̃i

)
+

[
k3 · ε5

(k3 · k5)(s4 −m2
f̃i

)
− k4 · ε5

(k4 · k5)(s3 −m2
f̃i

)

]
. (B.4)

Finally, the chirally suppressed piece, Amf , is given by

Amf = −mf (|λL|2 cos2 α+ |λR|2 sin2 α)u(k3)γ5(V1 + S1)v(k4)

−mf (|λL|2 sin2 α+ |λR|2 cos2 α)u(k3)γ5(V2 + S2)v(k4) . (B.5)

If we write the momenta in the fermion pair center-of-mass frame, the differential cross

section can be calculated as

d(σv)IB

dx
=

x

512π4

√
1−

m2
f

m2
X(1− x)

∫
dΩ34|AIB|2 , (B.6)

where the integration is over the spatial direction of the momentum k3, which is opposite

to that of k4. The over-bar stands for summing over the final state spins while averaging

over the initial state spins.
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