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1 Introduction

The paradigm of cosmic inflation complements the big-bang theory and when combined

together it is the best theory compatible with the latest observations. Inflation is generally

believed to be driven by a scalar field known as inflaton. Gasperini [1] has pointed out that

the inflationary scenario can be well explained through torsion.1 Later, Poplawski [3] have

argued that torsion can be treated as an alternative source of inflation. In this context, it is

also to be noted that when torsion is considered to be generated from spin-spin interaction

a hidden scalar field can be associated with torsion [4]. It is interesting to know whether

the associated scalar field in torsion plays the role of inflaton in the inflationary regime

such that “the scalar field driven inflation” as well as the “torsion driven inflation” appear

to be equivalent statements. The motivation of the present paper is to show that if in the

Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity, the quantum gravity effect in the

early universe is taken into account, we can formulate an effective potential for inflation

in terms of the scalar field hidden in the torsion. Besides, the formulation gives rise to a

CP violating term. The estimate of the bound on CP violation in the early Universe using

Planck+WMAP9 best fit cosmological parameters [5, 6] has also been obtained.

2 Torsion induced potential

To study torsion in terms of the spin-spin interaction we take resort to a spin-current

duality relation so that the action for torsion can be developed through a dual current-

current interaction. We consider a four vector nµ in terms of the spinorial variables as

nµ =

(
1√
2

)
(ψ∗

1 ψ∗
2)σµ

(
ψ1

ψ2

)
(2.1)

1Also it is important to note that, in ref. [2], the authors have explicitly studied the late-time cosmic

acceleration from torision and the emergent scalar degree of freedom arose from the BCS condensation of

the fermions.
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where

ψ1 = (cos θ/2)eiφ/2, ψ2 = (sin θ/2)e−iφ/2, (2.2)

with σ0 = I, where I is the identity matrix and ~σ is the vector of Pauli matrices. Using

this one can construct an SU(2) group element

g = n0I + i ~n.~σ, (2.3)

in terms of which we can construct the topological current as [7]:

Jµ =

(
1

24π2

)
εµνλσTr[(g−1∂νg)(g−1∂λg)(g−1∂σg)] (2.4)

where εµνλσ is the rank-4 Levi-Civita tensor. Now by demanding that in 4-dimensional

Euclidean space the field strength Fµν of a gauge potential vanishes on the boundary S3

of a certain volume Vol4 inside of which Fµν 6= 0, we can write the gauge potential as

Aµ = g−1∂µg ∈ SU(2). Then from eq. (2.4) the Kac-Moody like current Jµ can be recast

in terms of the Chern-Simons secondary characteristic class as [8]:

Jµ =

(
1

16π2

)
εµνλσTr

(
AνFλσ +

2

3
AνAλAσ

)
(2.5)

This gives rise to a topological invariant:

QP =

(
1

16π2

)∫
d4x ∂µJ

µ (2.6)

which is known as the Pontryagin index. We can construct the Lagrangian from the

divergence of the current Jµ and write

L = −1

4
Tr
(
εµνλσF

µνF λσ
)

(2.7)

which leads to the construction of the current [9]

jµ = εµνλσaν ⊗ fλσ = εµνλσ∂νfλσ (2.8)

with Aµ = aµ.σ and

Fµν = ∂[µAν] + [Aµ, Aν ] = fµν .σ (2.9)

It can be shown that the axial vector current

J5
µ = ψ̄γµγ5ψ (2.10)

is related to the second component of the current jµ through the relation

∂µj(2)
µ = −1

2
∂µJ5

µ 6= 0. (2.11)

The consistency of the current conservation equations implies that [10]:

j(1)
µ = −1

2
j(2)
µ , j(3)

µ = +
1

2
j(2)
µ (2.12)
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Consequently, the current-current interaction can be expressed in terms of j
(2)
µ only which

effectively displays the spin-spin interaction. Now we can write the action for torsion as [11]

ST =
M2
p

2

∫
J2
µJ

2
µd

4x (2.13)

where Mp being the reduced Planck mass, given by Mp ≈ 2.43 × 1018 GeV. It is now

observed that there is a hidden scalar field φ in torsion which follows from the relation

jµ(2) = εµνλσ∂νf
(2)
λσ = εµνλσενλσφ(x) (2.14)

where ενλσ is the rank-3 Levi-Civita tensor. The action now turns out to be:

ST = A
∫
d4x j(2)

µ jµ (2) =

∫
d4x

√
−g(4)

m2

2
φ2 (2.15)

eq. (2.15) suggests that the potential associated with torsion can be written as:

VT (φ) = −m
2

2
φ2. (2.16)

The negative sign of the coupling constant m2 actually corresponds to the self interaction,

when orientation of all the spin degrees of freedom are along the same direction.

3 Inflationary modeling with the CP violating term

Now we analyse the contribution from quantum gravity. To this end we utilize the model

of Capovilla, Jacobson and Drell (CJD) [12, 13], where the action is given by [12, 13]:

S =
1

8

∫
η(ΩijΩij + aΩiiΩjj) (3.1)

where

Ωij = εαβγδFαβiFγδj (3.2)

with α, β, γ, δ as space time indices, i, j the SU(2) group indices and η is a scalar density. In

ref. [12, 13] it has been shown that in 3+1 decomposition this action yields Ashteker action

directly provided we have a = −1
2 and the determinant of the magnetic field Bi

a is non

zero and as such the equivalence to the Einstein’s theory is established. The equivalence to

the Einstein’s theory can also be shown when the space time metric is found to be given by

√
−g(4)g

αβ = −
(

2i

3η

)
εijkε

αγδρεβµνσFγδiFρσjFµνk (3.3)

The constraint that is obtained when the CJD action is varied with respect to the La-

grangian multiplier η is actually the Hamiltonian constraint

Ψ = ΩijΩij −
1

2
ΩiiΩjj = i(2η2 detB)−1 H (3.4)
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This implies that Ψ ≈ 0 and H ≈ 0 are equivalent statements provided detB 6= 0. The

canonical transformation of SU(2) gauge potential (Aai) and the corresponding non-abelian

fields (Eai , B
a
i ):

Aai → Aai, (3.5)

Eai → Eai − θBa
i (3.6)

gives rise to a CP-violating θ term in the CJD Lagrangian so that for a = −1/2 the action

now reads [4, 12–15]:

SC =
1

8

∫ [
θΩii + η

(
ΩijΩij −

1

2
ΩiiΩjj

)]
. (3.7)

In the first term the parameter θ essentially corresponds to the measure of CP violation

which contributes to torsion and the rest is curvature contribution. Consequently eq. (3.7)

can be recast as:

SC = −θ
4
QP + η

∫
d4x εαβγδελρσµεναβεν′λρεξνδεξ′σµ

∫
dxν φ

∫
dxν

′
φ

∫
dxξ φ

∫
dxξ

′
φ

−η
2

∫
d4x εµνλσεαβγδενλσεβγδ (∂µφ)(∂αφ) (3.8)

where
∫
dxν φ = φ [xν ], and the symbol [· · · ] signifies the boundary value of the coordinates

in the affine parameter space. Now from eq. (3.8) we get:2

SC = −θ
4
QP +

∫
d4x
√
−g(4)

[
gµα

2
(∂µφ)(∂αφ)− λ

4
φ4

]
. (3.9)

It may be mentioned here that the first term on the right hand side incorporates the

Pontryagin index given by eq.(2.6) which is a topological term arising from a total diver-

gence. This does not contribute classically but has the effect in the quantum mechanical

formulation.

From eq. (2.15) and eq. (3.9), we note that the action for torsion (curvature) when ex-

pressed in terms of the φ field involves the term φ2(φ4). This indicates that the anisotropies

associated with the torsion are much suppressed in comparison to the contribution from

curvature for large values of φ. It is noted that the the expression of curvature in terms

of the scalar field arises when we use CJD Lagrangian. In this sense the scalar field does

not arise from gravitation as such, but it originates from the torsional degrees of freedom

associated with the spin density.

Noting that the asymptotic constancy of torsion compensates the bare cosmological

constant [16] we can define a small but non-vanishing cosmological constant in terms of

the Pontryagin index as

M2
pΛeff =

θ

8 Vol4
QP (3.10)

2Here we use the following spin-particle duality relations:

ηεµνλσεαβγδενλσεβγδ = −
√

−g(4) gµα

ηεαβγδελρσµεναβεν′λρεξνδεξ′σµ[xνxν
′

xξxξ
′

] = −λ
4
.
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where Mp coresponds to the Planck mass. We can define the vacuum energy V0 through

the relation

V0 = 3H2
infΛ2

UV = ΛeffΛ2
UV (3.11)

Here ΛUV signifies the UV cut-off scale of the proposed EFT theory.3 Below ΛUV the effect

of all quantum corrections are highly suppressed and the heavy fields from the hidden sector

gets their VEV. Such VEV is one of the possible sources of vacuum energy correction in

the spin-current dominated EFT picture which uplifts the scale of inflationary potential

and the contributions of the VEV become significant upto a scale ΛC ≤ ΛUV . But at very

low scale, Λlow � ΛC , one can tune the vacuum energy correction, V0 ≈ 0 for which the

contributions of the VEV can be neglected [17, 18]. Such possibility is only significant when

the contribution of the primordial gravity waves become negligibly small (see eq. (5.1)).

Thus the expression for the potential from CJD Lagrangian incorporating the CP violating

θ term yields:

VC(φ) = V0 +
λ

4
φ4. (3.12)

4 The effective potential

Now in the background of a space-time manifold having Riemannian structure the contri-

bution to the conserved current can be expressed as:

Jµ g =
1

2
εµνλσRνλσδv

δ, (4.1)

where vδ is an arbitrary vector and Riemann curvature tensor can be expressed as:

Rνλσδ = ∂[λων]σδ + ωηνσωληδ − ω
ξ
λσωνξδ − eσνeδλ. (4.2)

As a result the gravitational part of the action can be written in terms of gravitational

current-current interaction in the Riemann space as:

Sg = −
Λ2
UV

2

∫
d4xJgµJ

µ g =
Λ2
UV

2

∫
d4x
√
−g4R (4.3)

Now clubbing the contributions from eqs. (2.15), (3.9), (4.3) the total action for the

present field theoretic setup, taking into account quantum gravity correction, can finally

be written as:

S =

∫
d4x
√
−g4

[
Λ2
UV

2
R+

gµα

2
(∂µφ)(∂αφ)− V (φ)

]
(4.4)

3Above the scale ΛUV it is necessarily required to introduce the higher order quantum corrections to

the usual classical theory of gravity represented via Einstein-Hilbert term, as the role of these corrections

are significant in trans-Planckian scale to make the theory UV complete [19, 20]. However such quantum

corrections are extremely hard to compute as it completely belongs to the hidden sector of the theory

dominated by heavy fields [21, 22]. In the trans-Planckian regime the classical gravity sector is corrected

by incorporating the effect of higher derivative interactions appearing through the modifications to GR

which plays significant role in this context [23–28]. On the other hand in trans-Planckian regime quantum

corrections of matter fields and their interaction between various constituents modify the picture which are

appearing through perturbative loop corrections [29–32].
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such that the total effective potential is given by:

V (φ) = VT (φ) + VC(φ) = V0 −
m2

2
φ2 +

λ

4
φ4. (4.5)

5 Estimate on the CP violation term

The effective potential is dominated by the vacuum energy correction term which deter-

mines the scale of inflation. To obtain the scale of inflation at k∗ ≈ kcmb, we express V0 in

terms of inflationary observables as:

V
1/4
∗ ≈ V 1/4

0 = 7.389× 10−3ΛUV ×
( r

0.1

)1/4
. (5.1)

where r is the tensor-to-scalar ratio defined as: r = AT /AS with (AT , AS) being the

amplitudes of the power spectra for scalar (S) and tensor (T ) modes at k = aH ≈ k∗. The

effective cosmological constant or equivalently the CP violating parameter θ can then be

constrained as:

Λeff =
θ

8 V ol4
QP = 2.98× 10−9Λ2

UV ×
( r

0.1

)
. (5.2)

In order to compare the theoretical predictions with the latest observations we use a

numerical code CLASS [33]. In this code we can directly input the shape of the potential

along with the model parameters. Then for a given cosmological background the code

provides the estimates for different CMB observables. In the code we set the momentum

pivot at k∗ = 0.05 Mpc−1 and used the Planck + WMAP9 best fit values:

h = 0.670, Ωb = 0.049, Ωc = 0.268, ΩΛ = 0.682 (5.3)

for background cosmological parameters. In this work we scan the parameter space within

the following window:

2.501× 10−9 Λ4
UV ≤ V0 ≤ 2.589× 10−9 Λ4

UV ,

6× 10−3 Λ−2
UV ≤ m2/V0 ≤ 8× 10−3 Λ−2

UV ,

λ/V0 ∼ 10−6 Λ−4
UV . (5.4)

As a result, the CMB observables are constrained within the following range:

2.197× 10−9 ≤ AS ≤ 2.202× 10−9,

0.957 ≤ nS ≤ 0.962,

−1.08× 10−3 ≤ αS ≤ −0.99× 10−3,

0.055 ≤ r ≤ 0.057. (5.5)

Within the present context the field excursion [34–43] is defined as:

|∆φ| = ΛUV

∫ Ncmb

0
dN

√
r(N)

8
≈
√
r

8
NcmbΛUV . (5.6)

– 6 –
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Figure 1. Constraint on CP violating topological θ parameter for discrete integer values of Pon-

tryagin index QP using Planck + WMAP9 best fit cosmological parameters. Here Red and black

colored points correspond to the upper and lower bound of the θ parameter for a given value of

QP . All the parallel blue colored lines are drawn for different integer values of QP which connects

both the Red and black colored points. This plot suggests that as the value of QP increases then

the interval between the upper and lower bound of the θ parameter decrease and it will converge

to very small value for large QP . Also the numerical value corresponding to the upper bound and

lower bound of the θ parameter decreases once we increase the the value of QP .

where |∆φ| = |φ∗−φf |, in which φ∗ and φf represent the field value corresponding to CMB

scale and end of inflation respectively. Also Ncmb is the number of e-foldings at CMB scale

which is fixed at Ncmb ≈ 50 − 70 to solve the horizon problem associated with inflation.

Subsequently we get the following constraint on the field excursion:

|∆φ| ∼ O(4.1− 5.9)× ΛUV , (5.7)

which implies to make the EFT of inflation validate within the prescribed setup for which

we need to constrain the UV cut-off of the EFT within the following window:

ΛUV ∼ O(0.16− 0.24) Mp < Mp, (5.8)

which is just below the scale of reduced Planck mass. Finally using eq. (5.2) we get the

following bound on the CP violating parameter:4

3.48× 10−10M2
p ≤

θ

V ol4
QP ≤ 7.62× 10−10M2

p . (5.9)

4From experimental measurements of the neutron electric dipole moment, the experimental limit on the

CP violating θ parameter is θ ≤ 10−9 [44], which is consistent with our derived stringent bound on θ.
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6 Discussion

Thus once we fix QP , this will further provide an estimate of θ according to the eq. (5.9). In

figure (1) we have explicitly shown the constraint on θ from the proposed EFT picture which

is obtained by using Planck + WMAP9 best fit cosmological parameters. To exemplify we

have prescribed the bound on θ for different integer values of QP lying within 1 ≤ QP ≤ 10.

From the plot it is easy to see that as the value of QP increases the bound on the parameter

θ converges to a very small value. This suggests that θ will converge to a constant value

beyond a certain value of QP . It may be mentioned that the Pontryagin index can be

taken to correspond to the fermion number [45, 46]. Indeed a fermion can be realized as a

scalar particle encircling a vortex line which is topologically equivalent to a magnetic flux

line and thus represents a skyrmion [45, 46]. The monopole charge µ = 1/2 corresponding

to a magnetic flux line is related to the Pontryagin index through the relation QP =

2µ. In view of this, one may note that QP represents the fermion number which is the

topological index carried by a fermion. For an anti-fermion QP takes the negative value.

In any system the effective fermion number is given by the difference between the number

of fermions and anti-fermions. Thus we can quantify the fermionic matter and hence the

spin density through the total accumulated value of QP . As QP increases we have the

increase of fermions implying the increase in spin density. So from eq. (5.9) we note that

for a fixed volume when QP increases indicating the increase in spin density, the bound

on the parameter θ converges to a small value representing the residual effect of torsion

residing at the boundary. Thus the remnant of CP violation5 giving rise to torsion can be

witnessed through the small value of θ which is operative at the boundary.

To summarize, we have derived an effective potential for inflationary scenario, taking

into account the quantum gravity effect, in terms of the hidden scalar field associated

with torsion along with a CP violating term.Using this we give an estimate of inflationary

CMB observables by constraining the model parameters- vacuum energy, mass and self-

coupling from Planck + WMAP9 best fit values of the cosmological parameters. Finally,

for the first time we constrain the CP violating topological θ parameter from the vacuum

energy correction within EFT.
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