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Abstract: We compute conductivities of strongly-interacting and non-uniform charge

densities dual to inhomogeneous anti-de Sitter-black hole spacetimes. Backreacting

bulk scalars with periodic boundary profiles, we construct generalizations of Reissner-

Nordström-AdS that interpolate between those used in two previous studies — one that

reports power-law scaling for the boundary optical conductivity and one that does not. We

find no evidence for power-law scaling of the conductivity, thereby corroborating the pre-

vious negative result that gravitational crystals are insufficient to generate the power-law

mid-infrared conductivity observed in cuprate superconductors.
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Power laws are ubiquitous to critical phenomena as they are the fingerprint of scale invariant

correlations. To no surprise then, quantum criticality is the most commonly proffered

explanation [1–3] for the power-law scaling

|σ(ω)| ∼ ω−2/3 (1)

observed in the mid-infrared frequency range of the optical conductivity [4–7] for optimally

doped copper-oxide superconductors. However, we currently have no microscopic under-

standing of how quantum criticality emerges from the strong correlations that mediate the

normal state near optimal doping. Such an understanding requires precise knowledge of

the low-energy degrees of freedom in the strongly coupled regime. Ascertaining these de-

grees of freedom has proven difficult because the integral of the optical conductivity [8, 9]

up to the optical gap exceeds the number of doped holes. Consequently, no one-to-one

mapping [10] exists between the number of doped holes and the actual propagating degrees

of freedom at low energy.

Given the seemingly unbridgeable divide between the ultraviolet (UV) and infrared

(IR) physics in the cuprates, it is desirable to address the problem with a method which

is based on conserved currents rather than on a traditional particle description. The

gauge/gravity duality offers such an alternative, in which a strongly-coupled, conformal,

d-dimensional quantum field theory lives at the boundary of a (d+ 1)-dimensional gravity

theory. The workhorse in condensed matter applications is Reissner-Nordström-AdS (RN-

AdS), which provides the simplest bulk description of matter at finite charge density.

RN-AdS is often treated as a static background to be augmented by a set of probe fields

which source additional operators at the boundary. Horowitz, Santos, and Tong (HST) [11]

improved upon these treatments by solving the completely coupled equations of motion for

gravity, electromagnetism, and a neutral scalar field. Further, they fixed the boundary

source provided by the scalar to be A0 cos kx, thereby imprinting a periodic distortion

upon the bulk geometry and the boundary charge density. Taking this inhomogeneous

bulk as a new static background, the boundary conductivity was then obtained by solving

equations of motion for propagating fluctuations of the bulk fields. The key finding of

reference [11] is that the conductivity obtains — in addition to a Drude peak — a mid-

infrared power law identical to that seen in the cuprates, eq. (1), plus an additive constant.

HST obtained identical power laws for an ionic lattice — charged matter with a spatially

periodic chemical potential, limz→0At = µ(x) — in a slightly different geometry [12]. These

conclusions are indeed startling and imply that a gravitational crystal encodes the optical

conductivity of the cuprates.

However, the key claim that Einsteinian gravity, a Maxwell field and an inhomogeneous

charge density encode the mid-infrared conductivity of the cuprates has been called into

question [13, 14]. In reference [13] Donos and Gauntlett (DG) studied a model inspired by

the Q-ball potential of Coleman [15] which has the added simplification that only ordinary

rather than partial differential equations need be solved to obtain the conductivity. Their

scalar field, of the form Φ(z, x) = φ(z)eikx, leads to a uniform charge density as they chose

a potential of the form V (|Φ|2). Added differences with the work of HST is the use of a
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scalar mass of m2 = −3/21 and the radial gauge as opposed to the de Donder and Lorenz

gauges. In addition, rather than using a log-log plot to discern the presence of a power

law, they plotted

α = 1 + ω
|σ|′′

|σ|′
. (2)

A value of α = −2/3 would correspond to the mid-infrared power-law conductivity of the

cuprates. None was found. In fact, α was found to vary fairly widely as a function of

frequency precisely where the power law was reported by HST. Similar results from a

slightly different model have also been reported in reference [14].

Given the substantial differences between the HST and DG constructions, it is instruc-

tive to resolve this problem through a new construction that interpolates between the two

models. We achieve this by introducing two neutral scalars, subject to periodic potentials

with tunable phase angles, to four-dimensional RN-AdS. Although the HST and DG setups

differ drastically in terms of the boundary charge density, we find that for identical system

parameters used by HST, α deviates significantly from the constant needed to reproduce

the mid-infrared power law of the cuprate conductivity. Consequently, we conclude that

Einsteinian gravitational crystals are insufficient to explain the power-law scaling in the

cuprates.

We consider the Einstein-Maxwell action

S =
1

16πGN

∫
d4x
√
−g
(
R− 2Λ− 1

2
F 2

)
, (3)

where Λ = −6/L2 is the cosmological constant, L is the AdS length, F = dA is the field

strength of a Maxwell field, R is the Ricci scalar, g is the metric determinant, and GN is

the Newton constant. To this we append an action for two neutral scalar fields,

SΦ =
1

16πGN

∫
d4x
√
−g

2∑
i=1

[
2(∇Φi)

2 + 4V (Φi)
]
,

V (Φ) =
m2

2L2
Φ2. (4)

The asymptotic expansion for the scalar fields is

Φi = z3−∆Φ
(1)
i + z∆Φ

(2)
i + · · · ,

Φ
(1)
1 (x) = A1 cos

(
k1x−

θ

2

)
,

Φ
(1)
2 (x) = A2 cos

(
k2x+

θ

2

)
, (5)

where ∆ = 3/2 +
√

9/4 +m2.

1Extremal RN-AdS4 has an emergent AdS2 × R2 geometry near the horizon, which hosts a quantum

dual with a Breitenlohner-Freedman (BF) bound higher than that of the boundary theory. Donos et al.

argue that the HST results may be unstable because their chosen scalar field mass violates the BF bound

in the near-horizon CFT.
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Obtaining the boundary conductivity requires two distinct calculations. First, solve

the full equations of motion for a static background. Second, kick the system with a

time-dependent electric field and find the current response. As all of this is standard (see

references [11, 12, 16, 17]), we will only highlight the key features. To assist in solving the

equations of motion,

Eab ≡ Rab − Λgab − T̂ab = 0 , (6)

∇aFab = 0 , (7)

�Φi − V ′(Φi) = 0 , (8)

we solved instead the Einstein-DeTurck equation

Eab = ∇(aξb) , (9)

ξa ≡ gcd
(
Γa
cd(g)− Γa

cd(g)
)
. (10)

Here T̂ab ≡ Tab−(gab/2)T is the trace-reversed energy-momentum tensor and g is a reference

metric. To directly compare with the HST results, we use the mass value m2 = −2.

The Einstein-DeTurck equation simultaneously encodes Eab = 0 and the harmonic gauge

ξa = 0 due to Eab obeying a continuity equation. Because the DeTurck term breaks gauge

invariance, metric components can be turned on to compensate any terms from T̂ab. We

take the ansatz

ds2 =
L2

z2

[
− (1− z)P (z)Qttdt

2 +
Qzzdz

2

(1− z)P (z)
+Qxx(dx+ z2Qzxdz)2 +Qyydy

2

]
,

P (z) = 1 + z + z2 − µ2
1

2
z3,

A = (1− z)at(z, x)dt , Φi = zφi(z, x) . (11)

Here all coordinates have been rescaled to be dimensionless and the radial coordinate z

is parameterized to extend from [0, 1]. The conformal boundary exists at z = 0 and an

event horizon exists at z = 1. The temperature is given by T = P (1)/(4πL). This ansatz

clearly reduces to Reissner-Nordström-AdS (RN-AdS) when Qtt = Qzz = Qxx = Qyy = 1,

Qzx = 0, at = µ1 = µ and φi = 0, which is used as our reference metric g in (10).

If we set A1 = A2 = A0 and k1 = k2 = k, then the parameter θ tunes this model

between the HST and Q-lattice models. θ = 0 corresponds to the HST lattice and θ = π/2

yields the Q-lattice. Consequently, regardless of the origin of the power law, the model

considered here should be able to unearth the source.

We have eight equations of motion to solve. At the conformal boundary, z = 0, we

imposed Dirichlet boundary conditions. These conditions will produce the desired AdS

geometry, fix the chemical potential, and fix the scalar lattice. The remaining conditions

will be so-called regularity conditions. We demand that all the functions can be expanded

at the horizon z = 1 as

Qab(z, x) = Q
(0)
ab (x) + (1− z)Q

(1)
ab (x) + · · · ,

at(z, x) = a
(0)
t (x) + (1− z)a

(1)
t (x) + · · · ,

φi(z, x) = φ
(0)
i (x) + (1− z)φ

(1)
i (x) + · · · . (12)
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Figure 1. (Left) Plot of Qzx for A0 = 0.75/
√

2, k = 1, θ = 0, µ = 1.4, and T/µ = 0.115. For

this plot max
(
|ξa|
)
. 10−12. (Right) Plot of the charge density ρ = limz→0

√
−gF tz for same

parameters, and with θ = π/4, π/2.

We then plug these expansions into various equations. Two further conditions can be

specified by setting ξz = ξx = 0 and the remaining six will be set by demanding that the

equations of motion be satisfied to lowest order in the expansion. This will fix relationships

among the (0) and (1) coefficients, giving Robin type boundary conditions at z = 1. The

numerical solution was obtained through the Newton-Raphson method using a sixth-order

finite difference grid for the z-direction and a Fourier grid for the x-direction. Details of

such methods can be found in reference [18].

In figure 1 we have a sample plot of the off-diagonal component Qzx. It is clear that

the periodicity of the scalar field is imprinted on the background (in multiples of 2k due

to the quadratic form of the scalar field in the energy-momentum tensor). Figure 1 also

contains the boundary charge density for different values of θ, distinguishing the periodic

imprint of the HST lattice versus the uniformity of the Q-lattice. Figure 1 was computed

in MATLAB at double precision with (300, 45) grid points on the (z, x) plane, which is a

typical grid size for the calculations in this paper.

The second step involves a time-dependent perturbation around the static solution

which enables a calculation of the conductivity. We follow the methods of reference [17].

Denoting background fields with bars, we write

gab = gab + hab , Aa = Aa + ba , Φi = Φi + ηi , (13)

where the barred quantities are the static background and the extra pieces hab, ba, and

ηi are fluctuations. The leading term in bx sources an electric field at the boundary and

the subleading term contains the current response. The Kubo formula can then be used to

obtain the conductivity.

Using this method, we computed the conductivity as a function of the interpolating pa-

rameter θ. Shown in figure 2 are the real and the imaginary parts of the conductivity for two

different values of k and three values of θ. For each choice of parameters the low frequency
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Figure 2. Low frequenecy plots of real and imaginary parts of the conductivity for various param-

eters. In each plot A0/k = 3/(4
√

2), µ = 1.4 and T/µ = 0.115.
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Figure 3. Plots of the power function and the argument of the conductivity for the same parameters

as figure 2. The dotted line marks −2/3. Refer to figure 2 for legend.

conductivity obeys the Drude form. Note, even though θ = π/2 corresponds to a uniform

charge density of DG, the conductivities are almost identical to those of HST (θ = 0).

Figure 3 is the key test for the existence of the power-law conductivity. In the left panel

we show a couple of plots of α using the parameter choices of reference [11]. The dotted

line indicates a power law of −2/3. As is evident, regardless of the value of θ, no discernible

power law exists even as k is varied. Also of note is the fact that the DG (θ = π/2) and

HST (θ = 0) models yield almost identical numerical results for the conductivity. The

right panel of figure 3 presents the phase angle which also deviates from 60◦.

As a final check we also varied the amplitude A2 for a dichromatic lattice in figure 4,

as this could introduce a mix of higher harmonics. In this case as well, no evident power

law exists. In fact, for any range of parameters including temperature, no power law was

found.
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Figure 4. This plot was generated using A1 = 0.75, k1 = 1, k2 = 2, θ = 0, µ = 1.4 and

T/µ = 0.115. The amplitude A2 of the higher harmonic lattice was adjusted.

Since we have introduced a model that is capable of interpolating between DG and HST

and we find no power law in either case, we conclude that gravitational crystals, although

adequate in describing Drude response, do not encode the power-law optical conductivity

of the cuprates.

Regarding the origin of the power-law optical conductivity, the only study [19] to date

that has successfully reproduced the ω−2/3 scaling relies on excitations which exist on

all energy scales — namely scale-invariant matter or unparticles. Given that the radial

direction in AdS represents the running of coupling constants, in principle it contains

the correct ingredients to capture unparticle excitations. Hence, we anticipate that some

construction using gauge/gravity duality, other than the one presented here, should be able

to reproduce the power law.
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