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1 Introduction

Last time the higher spin field theory is becoming one the the central directions in modern

theoretical and mathematical physics (see e.g. the reviews [1–8]). In this paper we are going

to study some aspects of the higher spin field theory related to constructing the massive

supersymmetric higher spin models in three space-time dimensions.1

In higher spin field theories, in spite of their infinite dimensional gauge algebras, the

supersymmetry still plays a distinguished role in many aspects. It is enough to remind that,

for example, in the superstring theory all these massive higher spin states are perfectly

combined into the massive supermultiplets and it is the supersymmetry that stays behind

many nice feature of these theories.

In general, the classification of massless and massive supermultiplets is a rather

straightforward algebraic task depending mainly on the space-time dimension and on the

specific properties of the fermions in this space-time. But as far as explicit construction

(in terms of fields and Lagrangians) is concerned, the situation with massless and massive

1Strictly speaking, the notion of spin does not exist in three dimensions in literal sense. For the mass-

less fields the only characteristic is statistics (i.e. boson or fermion, see e.g. [9]), while massive fields are

characterized by their helicities in the same way as massless ones in four dimensions. But the term spin is

widely used in the literature on three dimensional theories and so we will also use it here.
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higher spin supermultiplets drastically differ. For the massless supermultiplets it is not

hard to find such realization following to the simple general pattern:

δB ∼ Fζ, δF ∼ ∂Bζ.

This is an essential reason why the supersymmetric massless higher spin theory is developed

good enough (see [10–15] for massless higher spin models in four dimensions).

But the analogous construction for the massive supermultiplets appears to be very

complicated even if one uses a powerful superfield technique (see e.g. [16–21] for some

examples of higher superspin superfields in four dimensional theory and [22–24] in three

dimensional ones). The reason is that shifting from massless to the massive case one has

to introduce very complicated higher derivative corrections to the supertransformations.

Moreover the higher the spins of the fields entering supermultiplet the higher the number

of derivatives one has to consider.

In four dimensions the solution for this problem was proposed [25–27] in component

approach2 based on the gauge invariant formalism for the massive higher spin bosonic [28]

and fermionic [29] fields. Recall that to obtain gauge invariant description for massive

bosonic (fermionic) field with spin s, one introduces a set of massless fields with spins

s, s − 1, . . . , 0(12) with their usual kinetic terms and local gauge transformations. Then

one adds all possible low derivative terms into the Lagrangian mixing all these massless

fields together as well as non-derivative corrections to the gauge transformations to restore

the gauge symmetries broken by the mass terms. Now if one takes some massive super-

multiplet and decomposes each massive field into the appropriate set of massless ones,

one immediately sees that all these massless fields are perfectly combined into the set of

massless supermultiplets. Thus the main idea of [25–27] was to generalize the gauge invari-

ant description of massive particles to the case of massive supermultiplets. Namely, one

introduces appropriate set of massless supermultiplets with all their fields, kinetic terms

and initial supertransformations and than adds lower derivative terms to the Lagrangian

as well non-derivative corrections to the supertransformations for the fermions only. It

is the absence of any higher derivative terms that makes such construction to be pretty

straightforward in spite of the large number of fields involved. At the same time if one tries

to fix all these local symmetries then all these complicated higher derivatives corrections

reappeared just as the transformations restoring the gauge.

In this paper we give an explicit construction for the massive supermultiplets with

arbitrary spins in three dimensions for the case of minimal supersymmetry. Naturally, this

construction is based on the gauge invariant description for the massive d = 3 bosonic [30]

and fermionic [31] higher spin fields developed in our previous works.3 Recall that in d = 4

it was crucial for the whole construction that there exists the possibility to consider a kind

2The Lagrangian formulation given in these papers is on-shell and does not include the auxiliary fields

which are needed for closing the superalgebra. Off-shell supersymmetric formulation for these models is

still unknown.
3Non gauge invariant formalism has been developed in [32].
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of dual mixing for the massless supermultiplets:

(

Ψs+ 1

2

As

)

⊕
(

Bs

Φs− 1

2

)

⇒







Ψs+ 1

2

As Bs

Φs− 1

2






,

where As and Bs are two bosonic fields with equal spins but opposite parities. Similarly,

in d = 3 case we found that it is crucial that there exist the possibility to consider massless

supermultiplets containing one bosonic and two fermionic fields:






Ψs+ 1

2

fs
Φs− 1

2






.

Recall that in three dimensions massless higher spin bosonic and fermionic fields do not

have any physical degrees of freedom. Thus such a structure of the supermultiplet does

not contradict to the fact that in any supermultiplet the numbers of bosonic and fermionic

physical degrees of freedom must be equal. Note here that massive higher spin supermulti-

plets do have physical degrees of freedom that originate form the massless supermultiplets

containing spins 1, 1/2 and 0 (that inevitably appear in the decomposition of massive

supermultiplet into the massless ones) exactly in the same way as in the gauge invari-

ant description of massive higher spin fields physical degrees of freedom come from the

components with spins 1, 1/2 and 0.

The paper is organized as follows. In sections 2 and 3 we provide all necessary formulas

for massless high spin bosonic and fermionic fields and massless higher spin supermultiplets

in the frame-like multispinor formalism we use in this work (see below). Section 4 contains

two relatively simple examples, namely massive supermultiplets (32 , 1,
1
2) and (2, 32 ,

3
2),

4

illustrating our general technique. Sections 5 and 6 contains our main results: massive

supermultiplets (s+ 1
2 , s, s− 1

2) and (s, s− 1
2 , s− 1

2), correspondingly. To make our paper

self-contained as much as possible, we include three appendices giving gauge invariant

description of massive higher spin bosons, fermions with Majorana mass terms and fermions

with Dirac mass terms, adopted to the formalism used in this work.

Notations and conventions. We will work in the frame-like multispinor formalism

where all objects are one-forms or zero-forms completely symmetric on their local spinor

indices. Spinor indices α, β, · · · = 1, 2 are raised and lowered with the help of antisymmetric

bi-spinor εαβ :

εαγεγβ = −δαβ, εαβAβ = Aα, εαβA
β = −Aα.

To simplify formulas we will often use a shorthand notations for spinor indices:

Ψα1α2...αn = Ψα(n).

We will also assume that spinor indices denoted by the same letter and placed on the same

level are symmetrized:

Ψα(n)ζα = Ψ(α1...αnζαn+1),

4Such supermultiplet has been constructed previously by dimensional reduction from d = 4 [33].
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where symmetrization contains the minimum number of terms necessary without any nor-

malization. Basis elements of 1, 2, 3-form spaces are respectively eα(2), E2
α(2), E3 where

the last two are defined as double and triple wedge product of eα(2):

eαα ∧ eββ = εαβE2
αβ ,

E2
αα ∧ eββ = εαβεαβE3.

Let us write some useful relations for these basis elements

E2
α
γ ∧ eγβ = 3εαβE3, eαγ ∧ eγβ = 4E2

αβ .

In what follows we will systematically omit the ∧ symbol.

2 Massless fields

In this section we give all necessary formulas for massless bosonic and fermionic higher

spin fields in the flat three-dimensional space-time.

Boson with spin s = l + 1, l ≥ 1 requires two one-forms Ωα(2l) and fα(2l) completely

symmetric on their local spinor indices. The free Lagrangian (which is a three-form in our

formalism) looks like:

(−1)l+1L0 = lΩα(2l−1)βe
β
γΩ

α(2l−1)γ +Ωα(2l)dΦ
α(2l), (2.1)

where d is an external derivative. This Lagrangian is invariant under the following local

gauge transformations:

δ0Ω
α(2l) = dηα(2l), δ0Φ

α(2l) = dξα(2l) + eαβη
α(2l−1)β , (2.2)

where ηα(2l) and ξα(2l) are zero forms also completely symmetric in their indices.

Boson with spin 1 requires zero-form Bαβ and one-form A. The free Lagrangian and

gauge transformations are:

L0 = E3B
αβBαβ −Bαβe

αβdA, δ0A = dξ. (2.3)

Equation for the auxiliary field Bαβ has the form:

2E3B
αβ = eαβdA ⇒ E2

αβBαβ = dA (2.4)

and as a result we have the following on-shell identity:

EαβdBαβ = 0 ⇒ Eα
γdB

βγ = Eβ
γdB

αγ .

Boson with spin 0 requires two zero-forms παβ and ϕ. The free Lagrangian:

L0 = E3π
αβπαβ − E2

αβπαβdϕ. (2.5)

Equation for the auxiliary field παβ :

2E3π
αβ = E2

αβdϕ ⇒ eαβπαβ = dϕ (2.6)

– 4 –
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leads to the following on-shell identity:

eαβdπαβ = 0 ⇒ eαγdπ
βγ = eβγdπ

αγ .

Fermion with spin s = l + 1
2 , l ≥ 1 is described by one-form Ψα(2l−1) (also completely

symmetric on spinor indices) with the free Lagrangian and gauge transformations having

the form:

(−1)l+1L0 =
i

2
Ψα(2l−1)dΨ

α(2l−1), δ0Ψ
α(2l−1) = dζα(2l−1). (2.7)

Fermion with spin 1
2 is described by zero-form φα with the free Lagrangian:

L0 =
i

2
φαE

α
βdφ

β . (2.8)

3 Massless supermultiplets

As it has been already noted in the Introduction, the main idea of this work is that massive

supermultiplet can be straightforwardly constructed out of appropriate set of massless

supermultiplets exactly in the same way as gauge invariant description of massive bosonic

or fermionic higher spin field can be constructed out of appropriate set of massless ones.

As it will be seen further on in the analysis of massive supermultiplets, the main role as

a building block is played by the massless supermultiplet containing one bosonic and two

fermionic fields, namely (here and in what follows s is always an integer) (s+ 1
2 , s, s− 1

2).

Supermultiplet (l + 3
2 , l + 1, l + 1

2), l ≥ 1 contains two fermionic Φα(2l+1) and Ψα(2l−1)

and two bosonic Ωα(2l), fα(2l) one-forms. The sum of their kinetic terms:

L0 = (−1)l+1

[

lΩα(2l−1)βe
β
γΩ

α(2l−1)γ +Ωα(2l)df
α(2l)

+
i

2
Φα(2l+1)dΦ

α(2l+1) − i

2
Ψα(2l−1)dΨ

α(2l−1)

]

(3.1)

is invariant under the following global supertransformations:

δfα(2l) = iαlΨ
α(2l−1)ζα + i(2l + 1)βlΦ

α(2l)βζβ ,

δΦα(2l+1) = βlΩ
α(2l)ζα, (3.2)

δΨα(2l−1) = 2lαlΩ
α(2l−1)βζβ .

In what follows we will fix the normalization of supertransformations so that

2lαl
2 + (2l + 1)βl

2 = 2,

while the relative values of αl and βl will depend on the massive supermultiplet which

this massless one enters in. Thus in general such supermultiplet, its Lagrangian and the

supertransformations contain two fermionic and one bosonic fields. But as the particular

cases we can obtain supermultiplets with one fermionic and one bosonic fields. Namely,

putting αl = 0 we get supermultiplet (l + 3/2, l + 1), while the case βl = 0 corresponds

to (l + 1, l + 1/2).

– 5 –
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Supermultiplet (32 , 1,
1
2) contains fermionic one-form Φα and zero-form ψα as well as

bosonic zero-form Bαβ and one-form A. The sum of their kinetic terms

L0 = − i

2
ΦαdΦ

α + EBαβBαβ −Bαβe
αβdA+

i

2
ψαE

α
βdψ

α (3.3)

is invariant under the following supertransformations:5

δA = iβ0Φαζ
α + iα0ψαe

αβζβ ,

δΦα = −β0eβγBβγζ
α, (3.4)

δψα = 4α0B
αβζβ .

Supermultiplet (12 , 0) contains fermionic zero-form φα and two bosonic zero-forms παβ

and ϕ. The sum of kinetic terms

L0 =
i

2
φαE

α
βdφ

α − Eπαβπαβ + Eαβπαβdϕ (3.5)

is invariant (provided one takes into account the equation for the auxiliary field παβ) under

the following supertransformations:

δϕ = iβ̃0φαζ
α, δφα = 2β̃0π

αβζβ . (3.6)

4 Simple examples

4.1 Massive supermultiplet
(

3

2
, 1, 1

2

)

Gauge invariant description of massive spin-32 requires massless spin-32 and spin-12 ones,

while massive spin-1 requires massless spin-1 and spin-0. Thus to construct massive super-

multiplet (32 , 1,
1
2) we need two massless supermultiplets (32 , 1,

1
2) and (12 , 0):







3
2

1
1
2






⇒







3
2

1
1
2






⊕
(

1
2

0

)

.

We begin with the sum of kinetic terms for all necessary fields:

L0 = − i

2
ΦαdΦ

α + EBαβBαβ −Bαβe
αβdA+

i

2
ψαE

α
βdψ

β

+
i

2
φαE

α
βdφ

β − Eπαβπαβ + Eαβπαβdϕ (4.1)

as well as their initial supertransformations:

δ0A = iβ0Φαζ
α + iα0ψαe

αβζβ ,

δ0Φ
α = −β0eβγBβγζ

α, δ0ψ
α = 4α0B

αβζβ , (4.2)

δ0ϕ = iβ̃0φαζ
α, δ0φ

α = 2β̃0π
αβζβ .

5Strictly speaking this Lagrangian is invariant up to the terms proportional to the auxiliary field B
αβ

equation only. Thus there are two possible approach here. From one hand one can introduce non-trivial cor-

rections to the supertransformations for this auxiliary field. Another possibility, that we will systematically

follow here and further on, is to use equations for the auxiliary fields in calculating all variations.

– 6 –
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Now we add the most general low derivative terms:

L1 = 2mEαβπ
αβA+ ia1Φαe

α
βΦ

β + ia2ΦαE
α
βψ

β + ia3ΦαE
α
βφ

β

+ia4Eψαψ
α + ia5Eψαφ

α + ia6Eφαφ
α. (4.3)

This breaks the invariance under the supertransformations producing

δ0L1 = −2i(2a1β0 − a2α0)ΨαE
(α

βB
γ)βζγ + 2ia2α0Ψα(EB)ζα

+ia3β̃0ΨαE
(α

βπ
γ)βζγ + i(2mβ0 + a3β̃0)Ψα(Eπ)ζ

α

−2i(a2β0 − 4a4α0)EψαB
αβζβ + 2i(2mα0 + a5β̃0)Eψαπ

αβζβ

−2i(a3β0 − 2a5α0)EφαB
αβζβ + imβ̃0φαe

αβdAζβ + 4ia6β̃0Eφαπ
αβζβ .

Recall that, as we have already mentioned above, all calculations are performed up to

the terms proportional to the auxiliary fields equations and in this case one has take into

account that equation for the παβ field was modified and looks like:

Eα
βπ

αβ = −1

2
eα(2)[dϕ+ 2mA]. (4.4)

To cancel these new variations we put

2a1β0 = a2α0, 2mβ0 = −a3β̃0, a2β0 = 4a4α0, 2a3β0 − 4a5α0 = 2mβ̃0

and introduce the following corrections to the supertransformations:6

δ1Ψ
α = γ1Aζ

α + γ2ϕe
αβζβ , δ1ψα = γ3ϕζα, δ1φα = γ4ϕζα. (4.5)

Then all variations with one derivative vanish provided

γ1 = 2a2α0, γ2 =
a3β̃0
2

, γ3 = 2mα0 + a5β̃0, γ4 = 2a6β̃0

leaving us with variations without derivatives:

δ1L1 = i(2a1γ1 +ma3α1)Ψαe
α
βAζ

β + i(8a1γ2 − a2γ3 − a3γ4)ΨαE
αβϕζβ

+i(a2γ1 + 2mγ3)ψαE
αβAζβ − i(3a2γ2 − 2a4γ3 − a5γ4)Eψαϕζ

α

+i(a3γ1 + 2mγ4)φαE
αβAζβ − i(3a3γ2 − a5γ3 − 2a6γ4)Eφαϕζ

α.

Thus we obtain:

a1 = a4 = a6 =
m

2
, a2 = −a3 =

√
2m, a5 = −2m,

β̃0
2 = 2β0

2 = 4α0
2.

Now if we introduce new variables

ψ̃α =
1√
2
(ψα − φα), φ̃α =

1√
2
(ψα + φα),

6Let us stress that here and in what follows the only corrections we have to introduce in our approach

are the non-derivative ones to the fermionic fields.
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then the fermionic mass terms take the form

Lm =
im

2
[Φαe

α
βΦ

α + 4ΦαE
α
βψ̃

β + 3Eψ̃αψ̃
α]− im

2
Eφ̃αφ̃

α, (4.6)

which corresponds to massive spin-32 (in the gauge invariant formalism with the field ψ̃α

playing the role of Stueckelberg one) and massive spin-12 with equal masses. Note that

though we begin with the most general form of the fermionic mass terms, the supersymme-

try leads us to their form corresponding to gauge invariant formulation of massive spin-32 .

In what follows from the very beginning we will use gauge invariant description of massive

bosonic and fermionic higher spin fields entering supermultiplets. It will greatly simplify

all calculations and always happens to be compatible with the supersymmetry.

4.2 Massive supermultiplet
(

2, 3

2
,
3

2

)

This supermultiplet has been constructed previously by dimensional reduction from four

dimensions [33]. Here we will show how its construction can be worked out in our approach.

In the massless limit massive spin-2 decomposes into massless spin-2, spin-1 and spin-0 ones,

while massive spin-32 into massless spin-32 and spin-12 . Thus in this case the decomposition

of massive supermultiplet into the massless ones has the form:

(

2
3
2

3
2

)

⇒
(

2
3
2

)

⊕







3
2

1
1
2






⊕
(

1
2

0

)

.

Again we begin with the sum of kinetic terms for all necessary fields:

L0 = Ωαβe
β
γΩ

αγ +Ωαβdf
αβ − i

2
ΨαdΨ

α

− i

2
ΦαdΦ

α + EBαβBαβ −Bαβe
αβdA+

i

2
ψαE

α
βdψ

β

+
i

2
φαE

α
βdφ

β − Eπαβπαβ + Eαβπαβdϕ (4.7)

as well as their initial supertransformations:

δfαβ = iα1Ψ
(αζβ), δΨα = 2α1Ω

αβζβ ,

δA = iβ0Φαζ
α + iα0ψαe

αβζβ , (4.8)

δΦα = −β0eβγBβγζ
α, δψα = 4α0B

αβζβ ,

δϕ = iβ̃0φαζ
α, δφα = 2β̃0π

αβζβ .

Now we have to add low derivative terms. As we have already mentioned, we will use gauge

invariant description both for the massive spin-2 as well as massive spin-32 fields. As for the

massive spin-2 here the choice is unambiguous — we have just one spin-1 and spin-0 zero

fields to the roles of Stueckelberg ones. And for the two massive spin-32 fields by analogy

with four-dimensional case [25] we will assume that two Majorana fields will combine into

– 8 –
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a Dirac one. Thus we introduce the following terms (see appendices A and C):

L1 = −2meαβΩ
αβA−mfαβE

β
γB

αγ − 4mEαβπ
αβA

+im[Ψαe
α
βΦ

β + 2ΨαE
α
βψ

β + 2ΦαE
α
βφ

β + 3Eψαφ
α], (4.9)

L2 =
m2

4
fαβe

β
γf

αγ −m2Eαβfαβϕ+
3m2

2
Eϕ2. (4.10)

As in the previous case calculating all variations one has to use equations for the auxiliary

fields which in this case have the form:

0 = eαβΩ
αβ + dfα(2) + 2meα(2)A,

0 = 2EBα(2) − eα(2)dA+
m

2
Eα

βf
αβ , (4.11)

0 = 2Eπα(2) − Eα(2)[dϕ− 4mA].

To compensate for variations with one derivative δ0L1 we introduce the following correc-

tions to the supertransformations:

δ1Ψ
α = γ1Aζ

α, δ1Φ
α = γ2f

αβζβ + γ3ϕe
αβγβ, δ1ψ

α = γ4ϕζ
α, (4.12)

where

γ1 = 4mα0, γ2 = −mα1, γ3 = mβ̃0, γ4 = 3mβ̃0 + 4mα0.

Then all variations without derivatives δ1L1 + δ0L2 vanish provided

α1
2 = β̃0

2 = 4α0
2, β0

2 = α0
2.

5 Massive supermultiplet
(

s + 1

2
, s, s − 1

2

)

In this case the same line of reasoning leads us to the decomposition:







s+ 1
2

s

s− 1
2






⇒

s
∑

l=1







l + 1
2

l

l − 1
2






⊕
(

1
2

0

)

.

Correspondingly we begin with appropriate sum of kinetic terms for all fields

L0 =
s−1
∑

l=1

(−1)l+1[lΩα(2l−1)βe
β
γΩ

α(2l−1)γ +Ωα(2l)df
α(2l)]

+EBα(2)B
α(2) −Bα(2)e

α(2)dA− Eπα(2)π
α(2) + πα(2)E

α(2)dϕ

+
i

2

[

s−2
∑

l=0

(−1)l+1Ψα(2l+1)dΨ
α(2l+1) +

s−1
∑

l=0

(−1)l+1Φα(2l+1)dΦ
α(2l+1)

]

+
i

2
φαE

α
βdφ

β +
i

2
χαE

α
βdχ

β (5.1)
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and their initial supertransformations:

δfα(2l) = iαlΨ
α(2l−1)ζα + i(2l + 1)βlΦ

α(2l)βζβ , l ≥ 1

δ0Φ
α(2l+1) = βlΩ

α(2l)ζα, δ0Ψ
α(2l−1) = 2lαlΩ

α(2l−1)βζβ ,

δA = iβ0Φαζ
α + iα0ψαe

αβζβ , (5.2)

δΦα = −β0eβ(2)Bβ(2)ζ
α, δψα = 4α0B

αβζβ ,

δϕ = iβ̃0φαζ
α, δφα = 2β̃0π

αβζβ .

Now we have to add the lower derivative terms. For the bosonic terms we take the ones

corresponding to gauge invariant description of massive spin-s boson (see appendix A),

while for the fermionic terms we introduce the most general ones compatible with the fact

that they have to correspond to gauge invariant description of two massive fermions with

spin-(s+ 1
2) and spin-(s− 1

2) with equal masses (see appendix B):

L1b =

s−2
∑

l=1

(−1)l+1al

[

− (l + 2)

l
Ωα(2l)β(2)e

β(2)fα(2l) +Ωα(2l)eβ(2)f
α(2l)β(2)

]

+a0[2Ωα(2)e
α(2)A− fαβE

β
γB

αγ ] + ã0πα(2)E
α(2)A, (5.3)

L2 =
s−1
∑

l=1

(−1)l+1clfα(2l−1)βe
β
γf

α(2l−1)γ + c̃1hα(2)E
α(2)ϕ+ c0Eϕ

2, (5.4)

L1f = i

s−1
∑

l=0

(−1)l+1b̃lΦα(2l)βe
β
γΦ

α(2l)γ + i

s−2
∑

l=0

(−1)l+1[blΦα(2l)βe
β
γΨ

α(2l)γ + b̂lΨα(2l)βe
β
γΨ

α(2l)γ ]

+iE[b̃
−1φαφ

α + b
−1φαψ

α + b̂
−1ψαψ

α]

+i

s−1
∑

l=1

(−1)l+1Φα(2l−1)β(2)e
β(2)[d̃lΦ

α(2l−1) + elΨ
α(2l−1)]

+i

s−2
∑

l=1

(−1)l+1Ψα(2l−1)β(2)e
β(2)[dlΨ

α(2l−1) + ẽlΦ
α(2l−1)]

+iΦαE
α
β [d̃0φ

β + e0ψ
β ] + iΨαE

α
β [d0ψ

β + ẽ0φ
β ]. (5.5)

As in the previous cases, calculating the variations we use auxiliary field equations:

0 = eαβΩ
α(2l−1)β + dfα(2l) + aleβ(2)f

α(2l)β(2) +
(l + 1)al−1

l(l − 1)(2l − 1)
eα(2)fα(2l−2).

From the variations with one derivative we found that we must introduce the full set of

corrections to the supertransformations:

δ1Φ
α(2l+1) = γ̃lf

α(2l+1)βζβ + δ̃lf
α(2l)ζα,

δ1Ψ
α(2l+1) = γlf

α(2l+1)βζβ + δlf
α(2l)ζα,

δ1Φ
α = γ̃0f

αβζβ + δ̃0Aζ
α + ρ0e

αβϕζβ , (5.6)

δ1Ψ
α = δ0f

αβζβ + γ0Aζ
α + ˜̃ρ0e

αβϕζβ ,

δ1ψ
α = ρ̃0ϕζ

α, δ1φ
α = ρ̂0ϕζ

α.
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Moreover, supersymmetry requires that we put ẽl = 0 and it is this constraint that allowed

us to find the solution for the fermionic mass terms in appendix B. Now when all the coef-

ficients in the Lagrangian are fixed, it is straightforward to find solution for the parameters

of the supertransformations:

αl
2 =

(l + 1)

l(2l + 1)
, βl

2 =
2l

(2l + 1)2
, (5.7)

α0
2 =

1

4
, β0

2 =
1

2
, β̃0

2 = 1,

where we set the normalization so that

2lαl
2 + (2l + 1)βl

2 = 2.

Then the parameters determining corrections to the supertransformations are also fixed:

γl
2 =

(s+ l + 1)(s− l − 1)

2l(l + 1)2(2l + 1)2
m2,

γ̃l
2 =

(s+ l + 1)(s− l − 1)

(l + 1)(l + 2)(2l + 3)
m2,

δl
2 =

(l + 1)

(l + 2)(2l + 3)
m2, (5.8)

δ̃l
2 =

m2

2l(2l + 1)2
,

γ0
2 = 2(s− 1)(s+ 1)m2, δ̃0

2 = 2m2,

ρ0
2 = ρ̃0

2 = s2m2, ρ̂0
2 = m2, ˜̃ρ0 = 0.

6 Massive supermultiplet
(

s, s − 1

2
, s − 1

2

)

In this case the decomposition looks like:

(

s

s− 1
2 , s− 1

2

)

⇒
(

s

s− 1
2

)

⊕
s−1
∑

l=1







l + 1
2

l

l − 1
2






⊕
(

1
2

0

)

.

Thus we need the same set of fields as in the previous case except the field Φα(2s−1) (recall

that the supermultiplet (s, s − 1/2) is just a particular case of (s + 1/2, s, s − 1/2) one).

So we take the same massless Lagrangian (5.1) with this field omitted and the same set of

initial supertransformations (5.2) where now βs−1 = 0. As far as the low derivative terms,

the bosonic terms will again have the same form (5.3) and (5.4), while by analogy with

four dimensional case [27] we will assume that fermions have Dirac mass terms compatible
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with gauge invariant description (see appendix C):

L1f = i
s−2
∑

l=0

(−1)l+1blΨα(2l)βe
β
γΦ

α(2l)γ + ib̃0Eφαχ
α

+i
s−2
∑

l=1

(−1)l+1[dlΨα(2l−1)β(2)e
β(2)Ψα(2l−1) + d̃lΦα(2l−1)β(2)e

β(2)Φα(2l−1)]

+id0ΨαE
α
βψ

β + id̃0ΦαE
α
βφ

β . (6.1)

Calculating all variations with one derivative δ0L1 we find that we have to introduce the

following corrections to supertransformations:

δ1Ψ
α(2l+1) = γlf

α(2l)ζα, δΦα(2l+1) = γ̃lf
α(2l+1)βζβ ,

δ1Ψ
α = γ0Aζ

α, δ1Φ
α = γ̃0f

αβζβ + ρ0e
αβϕζβ , (6.2)

δ1ψ
α = ρ̃0ϕζ

α

and obtain the following expressions for the parameters determining supertransformations:

αl
2 =

(l + 1)(s+ l)

2sl(2l + 1)
, βl

2 =
l(s− l − 1)

s(2l + 1)2
,

α0
2 =

1

8
, β0

2 =
(s− 1)

4s
, β̃0

2 =
1

2
,

γl
2 =

s(s− l − 1)m2

4l(l + 1)2(2l + 1)2
,

γ̃l
2 =

s(s+ l + 1)m2

2(l + 1)(l + 2)(2l + 3)
,

(6.3)

γ0
2 = s(s− 1)m2, γ̃0

2 =
s(s+ 1)m2

12
,

ρ0
2 =

s(s− 1)m2

4
, ρ̃0

2 = 4(s− 1)2m2.

(6.4)

Conclusion. In this paper we have constructed the minimal supersymmetric Lagrangian

formulation for all massive supermultiplets with arbitrary spins in d = 3. We have shown

that as in the d = 4 case such massive supermultiplets can be straightforwardly built out

of the appropriately chosen set of massless ones. Such procedure can be considered as a

supersymmetric generalization for the gauge invariant formalism for massive higher spin

bosonic and fermionic fields where the description for the massive field is obtained through

the set of the massless ones. In most cases constructing the Lagrangians we from the

very beginning choose mass terms compatible with such gauge invariant description for

massive fields. But as we have shown in one case and checked in others even if one starts

with the most general form of the mass terms without any preliminary assumptions the
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supersymmetry alone will unavoidably lead to such form. Thus the very idea of gauge

invariant description for the massive higher spin fields is in the perfect agreement with the

supersymmetry.

As the directions of the further development one can point out: 1. The approach can

be applied to the extended supersymmetries as well. 2. It would be interesting to consider

interaction of such massive higher spin supermultiplets with supergravity. 3. The approach

considered in this paper is on-shell. It would be interesting to develop a completely off-

shell superfield Lagrangian formulation for the three-dimensional supersymmetric massive

higher spin theories. Some preliminary results have already been obtained in [34].7 4. We

have constructed the supersymmetric massive higher spin models in flat 3d space It would

be interesting to generalize the models under consideration to AdS3 space and apply it to

problem of AdS3/CFT2 duality.
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A Massive boson with spin s ≥ 2

Gauge invariant description of massive boson with spin s [30] requires massless fields with

spins s ≥ l ≥ 0. Thus we introduce a collection of one-forms fα(2l), Ωα(2l), s− 1 ≥ l ≥ 1 as

well as one-form A and zero-forms Bαβ , παβ and ϕ. As usual, we begin with the sum of

kinetic terms for all fields:

L0 =

s−1
∑

l=1

(−1)l+1[lΩα(2l−1)βe
β
γΩ

α(2l−1)γ +Ωα(2l)df
α(2l)]

+EBαβB
αβ −Bαβe

αβdA− Eπαβπ
αβ + παβE

αβdϕ (A.1)

and their initial gauge transformations:

δ0f
α(2l) = dξα(2l) + eαβη

α(2l−1)β , δ0Ω
α(2l) = dηα(2l), δ0A = dξ. (A.2)

To proceed we add the most general terms with one derivative:

L1 =
s−2
∑

l=1

(−1)l+1[b(l)Ωα(2)β(2l)e
α(2)fβ(2l) + a(l)Ωα(2l)eβ(2)f

α(2l)β(2)]

−a0Ωαβe
αβA− b0fαβE

β
γB

αγ + ã0παβE
αβA (A.3)

7Recently we have been informed by S.M. Kuzenko that he has unpublished yet results on superfield

formulation for massless three-dimensional N = 2 supersymmetric models with arbitrary superspins.
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as well as the most general corrections to the gauge transformations:

δ1Ω
α(2l) = κ1(l)eβ(2)η

α(2l)β(2) + κ2(l)e
α(2)ηα(2l−2) + κ3(l)e

α
βξ

α(2l−1)β ,

δ1Φ
α(2l) = κ4(l)eβ(2)ξ

α(2l)β(2) + κ5(l)e
α(2)ξα(2l−2),

δ1B
αβ = κ1(0)η

αβ , δ1A = Dξ + κ4(0)eαβξ
αβ , (A.4)

δ1π
αβ = κ6ξ

αβ , δ1ϕ = κ7ξ.

All variations coming from δ0L1 + δ1L0 vanish provided

κ1(l) = −b(l), κ2(l) =
a(l − 1)

l(2l − 1)
, κ4(l) = a(l),

κ5(l) = − b(l − 1)

l(2l − 1)
, b(l) = −(l + 2)a(l)

l
,

κ1(0) = −a0, κ4(0) =
b0
4
, κ7 = −ã0, a0 + 2b0 = 0.

To proceed we introduce the most general terms without derivatives:

L2 =
s−1
∑

l=1

(−1)l+1c(l)fα(2l−1)βe
β
γf

α(2l−1)γ + c̃1fαβE
αβϕ+ c0Eϕ

2. (A.5)

Then all remaining variations can be canceled if we put

2(k + 2)(2k + 3)

(k + 1)(2k + 1)
a(k)2 − 2(k + 1)

(k − 1)
a(k − 1)2 + 4c(k) = 0,

κ3(l) =
c(l)

l
,

(l + 2)2c(l + 1) = l(l + 1)c(l),

κ6 = c̃1 = − ã0b0
4
, ã0

2 = 64c1,

b0
2 =

(s+ 1)(s− 1)

3
m2,

where we choose normalization

m2 =
2s(s− 1)

(s− 2)
a(s− 2)2.

The last relation in the second line is just a recurrent relation on c(l) and it gives

c(l) =
s2(s− 1)

l(l + 1)2
c(s− 1).

Than the first line can be considered as a recurrent relation on a(l). For l = s−1 we obtain

c(s− 1) =
m2

4(s− 1)
,

and then we get general solution

a(l)2 =
l(s+ l + 1)(s− l − 1)

2(l + 1)(l + 2)(2l + 3)
m2, a0

2 =
(s− 1)(s+ 1)

3
m2.
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B Massive fermions with Majorana mass terms

To construct gauge invariant description of massive fermion with spin-(s + 1
2) [31] we

introduce a set of one-forms Ψα(2l+1), s−1 ≥ l ≥ 0 and zero-form χα. As for the Lagrangian

we take the sum of kinetic terms for all fields as well as the most general form for the mass-

like terms:

L0 =
i

2

s−1
∑

l=0

(−1)l+1Ψα(2l+1)dΨ
α(2l+1) +

i

2
χαE

α
βdχ

β

+i
s−1
∑

l=0

(−1)l+1blΨα(2l)βe
β
γΨ

α(2l)γ + ib̃0Eχαχ
α

+i
s−1
∑

l=1

(−1)l+1dlΨα(2l−1)β(2)e
β(2)Ψα(2l−1) + id0ΨαE

α
βχ

β . (B.1)

At the same time we introduce the most general ansatz for the local gauge transformations:

δΨα(2l+1) = dξα(2l+1) + αle
α
βξ

α(2l)β + βle
α(2)ξα(2l−1) + γleβ(2)ξ

α(2l+1)β(2),

δχα = α̃0ξ
α. (B.2)

For variations with one derivative to vanish we have to put

αl =
2bl

(2l + 1)
, βl =

dl
l(2l + 1)

, γl = dl+1, α̃0 = d0.

Than all variations without derivatives vanish provided

4bl
2

(2l + 1)
− dl

2 +
(l + 2)(2l + 1)

(l + 1)(2l + 3)
dl+1

2 = 0, bl−1 =
(2l + 3)

(2l + 1)
bl.

These relations can be easily solved and give

bl =
(2s+ 1)

2(2l + 3)
m, b̃0 = −3b0,

dl
2 =

(s− l)(s+ l + 1)

2(l + 1)(2l + 1)
m2, d0

2 = 2s(s+ 1)m2.

where we choose normalization by setting bs−1 =
m
2 . In what follows we will need analogous

solution for the fermion with spin-(s− 1
2) which has the form

bl =
(2s− 1)

2(2l + 3)
m, b̃0 = −3b0,

dl
2 =

(s− l − 1)(s+ l)

2(l + 1)(2l + 1)
m2, d0

2 = 2s(s− 1)m2.

For the massive supermultiplet (s + 1
2 , s, s − 1

2) we need two massive fermions with

spin-(s + 1
2) and (s − 1

2). The simplest solution is to take just the sum of corresponding
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mass terms:

L1 = i

s−1
∑

l=0

(2s+ 1)m

2(2l + 3)
Φ̃α(2l)βe

β
γΦ̃

α(2l)γ − i

s−2
∑

l=0

(2s− 1)m

2(2l + 3)
Ψ̃α(2l)βe

β
γΨ̃

α(2l)γ

+i
s−1
∑

l=1

A(s, l)Φ̃α(2l−1)β(2)e
β(2)Φ̃α(2l−1) − i

s−2
∑

l=1

A(s− 1, l)Ψ̃α(2l−1)β(2)e
β(2)Ψ̃α(2l−1)

+im
√

2s(s+ 1)Φ̃αE
α
βφ̃

β − im
√

2s(s− 1)Ψ̃αE
α
βψ̃

β

− i(2s+ 1)m

2
Eφ̃αφ̃

α +
i(2s− 1)m

2
Eψ̃αψ̃

α, (B.3)

where we denote

A(s, l) =

√

(s− l)(s+ l + 1)

2(l + 1)(2l + 1)
m.

But in general the variables in terms of which the mass terms turn out to be diagonal do

not coincide with the ones entering massless supermultiplets. The most general situation

corresponds to the possible mixings for the pairs of fermions with equal spins. Thus we

introduce:

Φ̃α(2s−1) = Φα(2s−1),

Φ̃α(2l+1) = cos θlΦα(2l+1) + sin θlΨα(2l+1),

Ψ̃α(2l+1) = − sin θlΦα(2l+1) + cos θlΨα(2l+1), (B.4)

φ̃α = cos θφα + sin θψα,

ψ̃α = − sin θφα + cos θψα.

Than for the mass terms we obtain the Lagrangian (5.5) used in our construction of cor-

responding massive supermultiplet, where

b̃s−1 =
m

2
,

b̃l =
(2s+ 1) cos2 θl − (2s− 1) sin2 θl

2(2l + 3)
m,

bl =
4s sin θl cos θl

(2l + 3)
m,

b̂l =
(2s+ 1) sin2 θl − (2s− 1) cos2 θl

2(2l + 3)
m,

b̃
−1 = −(2s+ 1) cos2 θ − (2s− 1) sin2 θ

2
m,

b
−1 = −4s sin θ cos θm,

b̂
−1 = −(2s+ 1) sin2 θ − (2s− 1) cos2 θ

2
m,

d̃s−1 =
m

√

(2s− 1)
cos θs−2,
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d̃l = A(s, l) cos θl cos θl−1 −A(s− 1, l) sin θl sin θl−1,

d̃0 =
√

2s(s+ 1)m cos θ0 cos θ −
√

2s(s− 1)m sin θ0 sin θ,

dl = A(s, l) sin θl sin θl−1 −A(s− 1, l) cos θl cos θl−1,

d0 =
√

2s(s+ 1)m sin θ0 sin θ −
√

2s(s− 1)m cos θ0 cos θ,

es−1 =
m

√

(2s− 1)
sin θs−2,

el = A(s, l) cos θl sin θl−1 +A(s− 1, l) sin θl cos θl−1,

e0 =
√

2s(s+ 1)m cos θ0 sin θ +
√

2s(s− 1)m sin θ0 cos θ,

ẽl = A(s, l) sin θl cos θl−1 +A(s− 1, l) cos θl sin θl−1,

ẽ0 =
√

2s(s+ 1)m sin θ0 cos θ +
√

2s(s− 1)m cos θ0 sin θ.

But supersymmetry requires that ẽl = 0 and this gives a recurrent relation on the mixing

angles:

tan θl−1 = −
√

(s− l)(s+ l + 1)

(s− l − 1)(s+ l)
tan θl.

For the massive supermultiplet (s+ 1
2 , s, s− 1

2) we will need the following simple solution

for this relation:

sin θl = (−1)l
√

s− l − 1

2s
, cos θl =

√

s+ l + 1

2s
.

Than for the coefficients in the fermionic mass terms (5.5) we obtain:

b̃l = −b̃
−1 = −b̂

−1 =
m

2
, b̂l = − 2l + 1

2(2l + 3)
m,

bl = (−1)l
2
√

(s− l − 1)(s+ l + 1)

(2l + 3)
m, b

−1 = 2sm,

d̃l =

√

(s− l)(s+ l)

2(l + 1)(2l + 1)
m, d̃0 =

√
2sm,

dl = −
√

(s− l − 1)(s+ l + 1)

2(l + 1)(2l + 1)
m, d0 = −

√

2(s+ 1)(s− 1)m,

el = −(−1)l

√

1

2(l + 1)(2l + 1)
m, e0 = −

√
2m.

C Massive fermions with Dirac mass terms

For the massive supermultiplet (s, s − 1
2 , s − 1

2) we need a pair of massive fermions with

spin-(s− 1
2) with equal masses and with mass-like terms having a Dirac form. The kinetic
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terms has the usual form:

L0 =
i

2

s−2
∑

l=0

(−1)l+1[Ψα(2l+1)dΨ
α(2l+1) +Φα(2l+1)dΦ

α(2l+1)]

+
i

2
ψαE

α
βdψ

β +
i

2
φαE

α
βdφ

β , (C.1)

while for the mass-like terms we choose the Lagrangian (6.1). For the field’s Ψα(2l+1) local

gauge transformations we consider the following ansatz:

δΨα(2l+1) = dξα(2l+1) + βle
α(2)ξα(2l−1) + γleβ(2)ξ

α(2l+1)β(2),

δΦα(2l+1) = αle
α
βξ

α(2l)β, δψα = α̃0ξ
α.

For variations with one derivative to cancel we have to put

αl =
bl

(2l + 1)
, βl =

dl
l(2l + 1)

, γl = dl+1, α̃0 = d0.

Then all variations without derivatives vanish provided

bl
2

(2l + 1)
− dl

2 +
(l + 2)(2l + 1)

(l + 1)(2l + 3)
dl+1

2 = 0,

(2l + 3)

(2l + 1)
bld̃l − bl−1dl = 0.

Analogously, the invariance under the local gauge transformations for the Φα(2l+1) field

gives:

bl
2

(2l + 1)
− d̃l

2 +
(l + 2)(2l + 1)

(l + 1)(2l + 3)
d̃l+1

2 = 0,

(2l + 3)

(2l + 1)
bldl − bl−1d̃l = 0.

From these equations we obtain the following solution:

bl =
(2s− 1)

(2l + 3)
m, dl

2 = d̃l
2 =

(s− l − 1)(s+ l)

2(l + 1)(2l + 1)
m2,

b̃0 = 3b0, d0
2 = d̃0

2 = 2s(s− 1)m2,

where we set bs−2 = m.
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