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1 Introduction

Cosmological phase transitions in the early Universe are interesting for a variety of rea-

sons. They can produce observable gravitational radiation [1–4], seed primordial magnetic

fields [5, 6], affect the abundance of thermal relics [7, 8], and otherwise play an important

role in the cosmological history of the Universe [9]. Perhaps most notably, such phase

transitions can give rise to a viable mechanism of baryogenesis, provided the transition is

first-order.

A first-order phase transition can occur in the early Universe when two vacua of the

theory coexist for some range of temperatures. If this is the case, an energy barrier exists be-

tween the two and the system can transition to the state with lower free energy via quantum

tunneling or thermal fluctuations [10–13]. Physically, this corresponds to the formation of

spherical bubbles in the ambient metastable vacuum. These bubbles grow and can reach a

steady state expansion velocity. Inside the bubble, some subset of the scalar fields have non-

zero vacuum expectation values (VEVs), while outside they do not. If the non-vanishing

condensate breaks the SU(2)L gauge symmetry of the Standard Model (SM), as at the elec-

troweak phase transition (EWPT), non-perturbative sphaleron transitions, which violate

B + L, will be quenched inside the bubble and active outside. These processes can act on

chiral charge currents diffusing in front of the wall to source a net baryon asymmetry. If the

sphaleron rate is significantly suppressed in the broken electroweak phase, the asymmetry

can be frozen in once captured by the expanding bubble. Roughly, this requires [14–16]

〈h〉
T

& 1, (1.1)

where T is a temperature associated with the phase transition and h is some combination

of fields charged under SU(2)L usually identified with the Standard Model-like Higgs. This

picture is known as “non-local” or “transport-driven” electroweak baryogenesis (EWB)

and is an elegant explanation for the origin of the observed baryon asymmetry of the

Universe [17–22].

Clearly this mechanism relies on several requirements beyond sphaleron suppression in

the broken phase. One must ensure a significant amount of CP -violation to source the chiral

charge currents in front of the wall. This is well-known, has been studied extensively, and

has motivated several experiments in search of CP -violating signatures, such as permanent

electric dipole moments [23]. There is another, somewhat less-appreciated, requirement

for successful baryogenesis through this mechanism: bubbles must expand slowly enough

for sphalerons to convert a significant fraction of the CP -asymmetry to a net baryon

density [19–21, 24]. In other words, the diffusion of the chiral plasma excitations must be

efficient in front of the bubble wall.1

Precisely how slowly the wall must move in this scenario depends on several factors,

including the amount of CP -violation and the details of diffusion in front of the bubble.

1Bubbles must also not expand too slowly; otherwise a quasi-equilibrium situation is reached and the

net baryon density is equilibrated away. This is typically not a problem in baryogenesis scenarios, since it

requires bubbles moving very slowly, with vw . 0.01 [19].
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However, it is generally the case that bubble expansion must at least be slower than the

speed of sound in the plasma,2 cs ∼ 1/
√

3 ≈ 0.58. Otherwise, diffusion in front of the

wall will be very inefficient. Even if the wall moves subsonically, the predicted value

of the steady-state wall velocity, vw, is an important input into any non-local electroweak

baryogenesis calculation. Previous studies have found that the predicted baryon asymmetry

typically peaks around vw ∼ 0.01, falling off as ∼ 1/vw or faster for larger values [26–29] (for

velocities much smaller than 0.01, the sphalerons can begin to equilibrate the asymmetry).

In some cases the dependence of the predicted asymmetry on the wall velocity can be less

severe [30–32], as the scaling hinges on the form of the dominant CP -violating source (see

e.g. refs. [33–35]). Nevertheless, a determination of the wall velocity is often important even

for rough estimates of the baryon asymmetry when the wall is expected to move quickly.

The electroweak phase transition in the Standard Model is not first-order [36, 37].

Thus, electroweak baryogenesis necessarily requires some physics beyond the SM. There

have been many such scenarios proposed in the literature. One of the most popular and

straightforward involves augmenting the Standard Model Higgs sector by a gauge singlet

scalar field [38–51], providing a tree-level cubic term in the effective potential. Such a

cubic term can easily give rise to the barrier required for a first-order transition, and the

singlet nature of the new state(s) in many cases can ensure compatibility with current

phenomenological constraints [47–51], including the observation of the 125 GeV Standard

Model-like Higgs at the LHC [52, 53]. This class of models, though popular and simple,

is often expected to produce fast-moving bubble walls when the singlet field VEV changes

appreciably during the electroweak phase transition [44]. This is simply because the ad-

ditional field direction contributes to the pressure difference between the phases, which

drives the expansion of the bubble, but does not experience a substantial drag force from

the plasma.3 Although this fact was recognized several years ago [44], studies of EWB typ-

ically focus on the strength of the phase transition and assume CP -violation can be added

in separately without considering the effects of the bubble wall dynamics on generating

the baryon asymmetry. In fact, while many studies have since considered baryogenesis in

these scenarios with a changing singlet VEV, the wall velocity has never been directly cal-

culated,4 nor has it been shown that the resulting bubble walls can propagate subsonically

as required for successful EWB. Our aim here is to fill this gap.

The bubble wall velocity is an important quantity to compute apart from baryogenesis

considerations. For example, models with additional gauge singlets that predict a strong

first-order transition can source gravitational waves through bubble collisions and turbu-

2More precisely, it is the wall velocity relative to the fluid in front of the bubble that should be sub-

sonic [25]. However, in what follows the fluid velocity in the symmetric phase will always be perturbatively

small, and so we will simply require the wall velocity to be subsonic in the rest frame of the fluid far from

the bubble. For further discussion on this point, see ref. [25].
3If the singlet field is instead approximately stabilized during the electroweak phase transition, bubbles

can expand significantly more slowly [54]).
4In ref. [48], we performed a very rough estimate of the wall velocity in the NMSSM. Several important

terms in the Boltzmann equations were dropped, likely resulting in a significant under-estimate of the wall

velocity. A full microphysical calculation of vw in the NMSSM does not currently exist in the literature.

Such a study can be undertaken with the methods discussed here and is currently in progress.
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lence (see e.g. refs. [1, 4, 55–68]). These scenarios may be effectively probed by upcoming

gravitational wave experiments, such as eLISA [69], or Big Bang Observer [70]. However,

in order to connect these observations to an underlying theory, one must be able to reliably

calculate the velocity of the expanding bubble, as well as the other properties of the phase

transition.

A detailed calculation of the wall velocity is rather involved. Building on previous

work [26, 71–75], Moore and Prokopec were the first to calculate the velocity for the

Standard Model case microphysically in refs. [76, 77] (ref. [54] also recently revisited this

calculation). Five years later, John and Schmidt performed an analogous study in the

minimal supersymmetric Standard Model (MSSM) with a light scalar top quark (stop) [78].

Around the same time, the effects of infrared gauge bosons on the wall velocity were

calculated in ref. [79]. Most recently, ref. [54] extended the results of Moore and Prokopec to

other SM-like scenarios, including that in which the VEV of a singlet scalar is approximately

stabilized during the EWPT. To date, these remain the only full microphysical calculations

of the wall velocity existing in the literature.5 Recent years have seen progress in matching

models onto these existing results [54, 80–82] and in the hydrodynamic considerations

associated with bubble wall expansion (see e.g. [83–89]).

Scenarios in which an the VEV of an additional singlet scalar field changes appreciably

during the transition merit separate consideration.6 This is because one must account for

the friction on the singlet field. Neglecting these contributions can lead to a drastic over-

estimate of the wall velocity. A proper treatment requires computing several new classes

of interaction rates in the plasma, which can be rather involved. Also, the additional

field direction complicates the equations of motion for the condensates. Nevertheless, the

calculation can be done and is especially important given the current status of electroweak

baryogenesis in light of collider searches. Until recently, the MSSM light stop scenario [90,

91] was considered by many to be the most plausible setting for electroweak baryogenesis

beyond the SM. Now light stops are in severe tension with both direct LHC searches [92, 93]

and measurements of the Standard Model-like Higgs couplings [94–97]. Similar conclusions

hold true for many different models relying on large thermally-induced cubic terms to

strengthen the phase transition [94, 98, 99]. This situation has led to a renewed interest in

singlet-driven scenarios, since they can be much more elusive at colliders [50]. An analysis

of the wall dynamics would mark an important step forward in understanding electroweak

baryogenesis in these models.

5By ‘microphysical’, we mean calculations explicitly computing the friction exerted by the plasma on

the wall, as opposed to those using a phenomenological viscosity parameter. The former involves deter-

mining the various interaction rates in the electroweak plasma and solving for the deviations from thermal

equilibrium around the bubble wall, as we describe in detail below.
6In the remainder of this study we will take ‘singlet-driven scenarios’ to refer to those in which the

singlet VEV changes non-negligibly during the transition. This can occur even in models with a discrete Z2

symmetry at T = 0. Examples in which the singlet VEV is approximately stabilized during the EWPT can

be treated by the techniques developed for the Standard Model (or MSSM, if the singlet contributions to

the finite-T cubic term are large) since only the Higgs field is involved in the transition (see e.g. refs. [54, 82]

for an application of this approach).
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The goal of this study will be to demonstrate how the electroweak bubble wall velocity

can be calculated and to extract some general features of the wall dynamics in singlet-driven

scenarios . We will generally follow the strategy and techniques developed in refs. [54, 76–79]

but modified to account for the singlet field direction. The methods described will be ap-

plicable to many different models, although for the sake of simplicity we will frame our dis-

cussion in the real singlet extension of the SM, sometimes known as the ‘xSM’ [43].This sce-

nario should encapsulate the most relevant features of models with singlet-driven first-order

phase transitions. Notably, the xSM does not feature any new sources of CP -violation,

which could in principle significantly alter the wall dynamics when included. We comment

further on this below and the reader should keep this in mind as we proceed.

We will focus on two different schemes for calculating the wall velocity. The first is

explicitly gauge-independent and neglects the contributions to the effective potential and

friction from the SU(2)L gauge bosons, while the second includes them. For slower bubble

walls (such that the friction on the singlet field is large), both calculations yield similar

results, while for faster walls the gauge boson contributions become increasingly important

in slowing down the expansion.

The remainder of this study is structured as follows. In section 2, we introduce the

singlet-driven scenario and the finite temperature effective potential which will be used

throughout our study. We then move on to computing the wall velocity. Following ref. [77],

the calculation can be broken down into several parts. First, the phase transition proper-

ties must be computed and the temperature near the bubble inferred from hydrodynamic

considerations, as discussed in section 3. There we also discuss the equations of motion

(EOMs) for the bubble wall and consider the simple case of wall velocities in the ultra-

relativistic limit. Possible values for the steady state wall velocity are those such that the

equations of motion for the wall are satisfied. The EOMs depend on the deviations from

thermal equilibrium of all plasma excitations in front of the wall. These are discussed

in section 4. We next move on to solving the system of equations for the deviations from

equilibrium and the equations of motion in section 5. The calculation is then applied to the

parameter space of the xSM consistent with all phenomenological constraints in section 6.

We find that sufficiently strong phase transitions may possess no subsonic solutions, and

that vw & 0.2 for points with 〈h〉/Tn ≥ 1 in the parameter regions considered. We infer

that bubbles may expand slowly enough for singlet-driven electroweak baryogenesis, but

only in certain portions of the parameter space. Results for the bubble wall profiles are

also presented. Finally, our main findings and conclusions are summarized in section 7.

We also provide a brief appendix which compares the interaction rates we have calculated

with those appearing elsewhere in the literature.

Before proceeding it is important to note that there are other electroweak baryogenesis

scenarios that do not rely on diffusion in front of the wall, and hence that do not require slow

bubble walls. Local EWB [100–103], in which the baryon number and CP -violation occur in

the same region at the bubble wall boundary, is one such example.7 However, this typically

leads to a highly suppressed total baryon asymmetry relative to the non-local case, since the

7Cold Electroweak Baryogenesis [104–106] also falls into this category.
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sphaleron transitions turn off near the outer edge of the bubble wall [19]. More recently, an

interesting scenario was presented in ref. [107], in which bubbles can expand quickly enough

to significantly reheat the plasma inside the bubble. Secondary bubbles can then nucleate

near which transport-driven baryogenesis can occur. This is an intriguing possibility, how-

ever it requires a substantial amount of reheating which only occurs for very strong phase

transitions. The reader should bear these alternative scenarios in mind as we proceed.

2 A singlet-extended Higgs sector

To study the dynamics of singlet-driven electroweak phase transitions, we will work in

the real singlet extension of the Standard Model. This simple scenario has been studied

in depth in the literature, from the standpoint of electroweak baryogenesis, dark matter,

LHC signatures, and more (see e.g. refs. [42, 43, 45, 49, 108–113] and references therein).

The arguments and methods we discuss here can be straightforwardly applied to other

singlet extensions of the SM, such as the next-to-minimal supersymmetric Standard Model

(nMSSM [31, 32, 41] or NMSSM [32, 38–40, 47, 48]) and other scenarios with real or

complex gauge singlets [51].

The tree-level potential is taken to be8

V0(H,S) = −µ2(H†H) + λ(H†H)2 +
1

2
a1(H†H)S +

1

2
a2(H†H)S2

+
1

2
b2S

2 +
1

3
b3S

3 +
1

4
b4S

4
(2.1)

where S is a real scalar singlet under the Standard Model gauge groups and H is a complex

SU(2)L doublet. Both the singlet and CP -even neutral component of H are assumed to

obtain vacuum expectation values during electroweak symmetry breaking. Throughout our

discussion, we will also assume that both VEVs vanish in the high-temperature phase for

simplicity (this is discussed further below). Non-vanishing VEVs correspond to minima of

the effective potential for non-zero background field values φh, φs. These classical fields are

those relevant for computing the properties of the phase transition. At a given temperature,

we can expand H and S about the background fields,

HT =

(
φ+,

φh(T ) + h+ iφ0

√
2

)
, S = φs(T ) + s. (2.2)

At zero temperature, φh(T = 0) ≡ v = 246 GeV. The zero temperature singlet VEV,

φs(T = 0) ≡ vs can vary.

Throughout our study we will identify h with the Standard Model-like Higgs discovered

at the LHC [52, 53] and take s to be a pure singlet with no mixing at tree-level. The

phenomenology of this setup and our choices for the various parameters are detailed in

section 6.1 below.

8One is free to shift the singlet field value such that the T = 0 tadpole is removed [45].
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2.1 The effective potential

For a homogeneous background field configuration φ(x) ≡ φ, the ground state of the theory

corresponds to a minimum of the effective potential Veff(φ). At one loop, Veff is given by

the tree-level potential (expanded around the background fields), modified by additional

Coleman-Weinberg terms.

At finite temperature and density the physical ground state of the theory is altered

by the interactions of the scalar field φ with the ambient plasma. The vacua of the theory

can then be determined from the finite-temperature effective potential, Veff(φ, T ). In the

simple case involving one background field, it is given by [14]

V T (φ, T ) =
T 4

2π2

[∑
i

±NiJ±

(
m2
i (φ)

T 2

)]
, (2.3)

where the plus and minus signs correspond to the bosonic and fermionic contributions,

respectively, and the Ni are the associated number of degrees of freedom for the species

i. This expression generalizes straightforwardly to the case of more than one background

field. The functions J± are given by

J±(x) =

∫ ∞
0

dy y2 log
[
1∓ exp(−

√
x2 + y2)

]
. (2.4)

In the high-temperature limit they admit a useful expansion, given by

T 4J+

(
m2

T 2

)
= −π

4T 4

45
+
π2m2T 2

12
− Tπ(m2)3/2

6
− (m4)

32
log

m2

abT 2
, (2.5)

T 4J−

(
m2

T 2

)
=

7π4T 4

360
− π2m2T 2

24
− (m4)

32
log

m2

afT 2
,

with ab = 16π2e3/2−2γE , af = π2e3/2−2γE , and γE the Euler-Mascheroni constant. Note

that the thermal contributions above correspond to momentum integrals of equilibrium

distribution functions for all species in the plasma coupled to φ [14, 44].

2.2 Gauge-invariance

The finite temperature effective potential is only gauge-invariant at its extrema [114, 115].

Thus, tunneling calculations depending on the potential away from the local minima are

in general gauge-dependent. This will result in a gauge-dependent determination of the

nucleation temperature for the phase transition, Tn, and ultimately the wall velocity. To

avoid this as much as possible, our primary analysis will only consider terms in the effec-

tive potential which are explicitly gauge-invariant. Thus, we will not include the T = 0

Coleman-Weinberg corrections, or the finite temperature cubic and tadpole terms in the

high-temperature effective potential (gauge-dependence in the tadpole may enter at higher

perturbative order [49]). This is precisely the strategy followed by ref. [49] in analyzing the

phase transition properties of the xSM. The finite-temperature effective potential in this

case becomes

Veff(φh, φs, T ) ' −1

2
µ2φ2

h +
1

4
λφ4

h +
1

4
a1φsφ

2
h +

1

4
a2φ

2
hφ

2
s +

1

2
b2φ

2
s +

1

3
b3φ

3
s +

1

4
b4φ

4
s

+
φ2
hT

2

96

(
9g2

2 + 3g2
1 + 12y2

t + 24λ+ 2a2

)
+
φ2
sT

2

24
(2a2 + 3b4) . (2.6)
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Although morally satisfying, the gauge-invariant approach has the disadvantage of

sometimes neglecting numerically important contributions to the effective potential. While

it should capture the physics we are interested in, namely the singlet contributions to the

potential and the friction on the expanding bubble, it is important to consider the effects of

the neglected terms, especially the gauge boson cubic term.9 To this end, we will also show

results for the wall velocities including the gauge boson cubic term and friction in Landau

gauge. In this case the effective potential in eq. (2.6) is modified by the additional term

∆V cubic
eff (φh, T ) ' −

φ3
hT

12π

[
3

4
g3

2 +
3

8

(
g2

2 + g2
1

)3/2]
. (2.7)

We will find that these contributions (and the friction from gauge bosons) are numerically

significant in some cases, especially for faster moving bubble walls.

3 Preliminaries: phase transitions, hydrodynamics, and the wall equa-

tions of motion

For a given point in the model parameter space with a first-order electroweak phase transi-

tion, we are interested in determining the steady-state velocity of the bubble wall separating

the electroweak-symmetric and broken phases. To do so we must first determine the prop-

erties of the phase transition (most importantly its characteristic temperature), as well as

the equations of motion for the scalar field condensates. Our discussion will roughly follow

that of ref. [77], which we draw from frequently throughout the remainder of this study.

3.1 Bubble nucleation

Using the effective potential in eq. (2.6), first-order transitions can occur when two local

minima coexist for some range of temperatures. The background fields can then “tunnel”

from the origin to the new vacuum, in which φh, φs 6= 0. This can begin to occur below

the critical temperature, Tc, at which the two relevant vacua are degenerate. Bubbles

begin to nucleate efficiently at the nuceation temperature, Tn, determined by requiring the

expectation value for one bubble to nucleate per Hubble volume to be ∼ O(1). At finite

temperature, the nucleation probability is determined by the O(3)-symmetric instanton

interpolating between the metastable and and true vacua with the lowest ratio of three-

dimensional Euclidean action10 to temperature, S3/T [12–14]. The tunneling probability

per unit volume is then given by

Γ

V
= A(T )e−S3/T . (3.1)

where the pre-factor A(T ) is only weakly temperature-dependent. Using dimensional anal-

ysis to estimate A(T ) and assuming typical electroweak temperatures, one finds that the

9The inclusion of the tadpole term acts primarily to shift the high-temperature minimum away from

φs = 0. We have computed the wall velocities for several scenarios with this term included and obtain

values similar to those found neglecting the tadpole. For simplicity we will not consider this term further

in this study, although our methods can be straightforwardly modified to include it.
10For all the cases we consider, the nucleation temperatures are much larger than the inverse radii of the

instantons, and so the O(3) bounce is indeed the relevant quantity to consider.
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nucleation temperature is approximately determined by S3(Tn)/Tn ≈ 140 [14]. We adopt

this definition in the rest of our study.

Inside the nucleated bubble, both the VEV of the Higgs and singlet fields will be non-

zero by assumption. From the standpoint of electroweak baryogenesis, only the value of

φh is important for sphaleron suppression. We will therefore define a strongly first-order

phase transition, occurring at the nucleation temperature Tn, by [16]

φh(Tn)

Tn
& 1. (3.2)

This condition is free from explicit gauge-dependence in our primary setup, since we have

neglected all gauge-dependent terms in the effective potential. It should be noted that the

baryon number preservation condition above still contains several implicit assumptions,

discussed in detail in ref. [15].

3.2 Temperature variations

The nucleation temperature defined above is that of the ambient plasma when bubbles

begin to form efficiently. Once formed, however, the temperature is no longer homogeneous.

The phase transition releases latent heat into the plasma and the expansion of a subsonic

bubble heats up the medium in front of it. The temperature in the broken phase will

thus differ from that immediately outside the bubble, which in turn is not the same as the

typical nucleation temperature of the bubble. To relate these various quantities requires

a treatment of the plasma hydrodynamics. These changes in temperature can have large

effects on the expansion of the bubble [77], and so we must take them into account.

Far away from the bubble, the relevant temperature is that at which bubble nucleation

occurs, Tn. We wish to obtain the temperature in the vicinity of bubble wall. To do so,

let us consider the wall-plasma system, with the plasma modeled as a perfect relativistic

fluid. Hydrodynamic equations can be obtained by requiring conservation of the wall-fluid

stress-energy tensor [71],

∂µT
µν = ∂µT

µν
condensate + ∂µT

µν
plasma = 0. (3.3)

We define the ‘fluid –’ or ‘plasma frame’ such that the fluid is at rest far from the bubble

and in its center. This is the frame which we use to define the wall velocity vw and the

wall profile parameters. Solutions to the fluid equations in the plasma frame can typically

be classified as either ‘detonations’, in which the bubble velocity exceeds the sound speed

cs in the plasma, or ‘deflagrations’, in which vw < cs.
11 Successful subsonic electroweak

baryogenesis typically requires a deflagration solution, since otherwise diffusion in front of

the bubble is inefficient. We will restrict ourselves to this case.

Consider an expanding bubble with free energy Veff(φ−, T−) inside and Veff(φ+, T+) im-

mediately outside (‘±’ subscripts will correspond to quantities outside/inside the bubble).

The equations of state (EoS) for the two phases can be written as

p± =
1

3
a±(T )T 4

± − ε±(T ), ρ± = a±(T )T 4
± + ε±(T ) (3.4)

11There are also ‘hybrid’ cases; see ref. [83].
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where p± and ρ± are the pressure and energy density of the fluid in either phase, and

a±(T ) ≡ − 3

4T 3

dVeff [φ±(T ), T ]

dT
, ε±(T ) ≡ Veff [φ±(T ), T ] +

1

3
a±(T )T 4. (3.5)

The above form for the equations, taken from ref. [83], are inspired by the so-called ‘Bag

EoS’, but involves the temperature-dependent quantities a±(T ), ε±(T ). Fortunately, we can

safely neglect the temperature dependence in a±, ε±, using their values at T = Tn. This is

because the free energy (and hence a±, ε±) are dominated by light degrees of freedom, which

contribute a constant term to the free energy in each phase that does not vary significantly

between Tn and Tc for the cases we consider. We find that using a±(Tn), ε±(Tn) in eq. (3.5)

reproduces the full result for the pressure and energy density within a few percent. This is

fortunate as it allows us to avoid several issues arising for more complicated temperature

dependence in the EoS, such as the variation of the sound speed in the plasma [87].

Ultimately we will take Teq(x) ≡ T+ + δTbg(x) to be the (space-time-dependent) tem-

perature entering the equilibrium distribution functions for the various particles in the

plasma. We thus need to determine T+, the temperature just outside the bubble. The

pressure and energy density can be related to the fluid velocities on either side of the phase

boundary by integrating eq. (3.3) across the wall. This yields expressions for the fluid

velocities v± in the wall frame which depend on T±:

v+v− =
p+ − p−
ρ+ − ρ−

,
v+

v−
=
ρ− + p+

ρ+ + p−
. (3.6)

These velocities can be simply transformed to their analogs in the fluid frame ṽ± via

ṽ± = vw − |v±|/(1 − vw|v±|). Note that for a subsonic deflagration, ṽ− = 0 and so

vw = −v−, as discussed in e.g. refs. [71, 83].

One then needs to relate the temperature T+ to Tn. In the subsonic deflagration case,

the bubble wall is preceded by a shock front moving with velocity vsh in the fluid frame.

The temperatures T1,2 and fluid velocities v1,2 on either side of the shock front (in its rest

frame) will be different; the equation of state is however the same (again neglecting small

temperature variations in a+(T ), ε+(T )). We will use the subscripts 1,2 to denote quantities

inside and outside the shock front, respectively. One can again integrate across the interface

and use the fact that the fluid is at rest beyond the shock front (i.e. ṽ2 = 0→ v2 = −vsh)

with temperature T2 = Tn. This yields an expression for v1 in terms of T1 and Tn:

v2
1 =

3T 4
n + T 4

1

9T 4
1 + 3T 4

n

. (3.7)

Again, the corresponding fluid velocity in the fluid frame ṽ1 is simply given by velocity

addition, ṽ1 =
3v21−1

2v1
.

Throughout our calculation we neglect the curvature of the bubble wall. In this ap-

proximation, the temperatures and fluid velocities (in the fluid frame) between the bubble

wall and the shock wave are simply constant [84], and so one can set

ṽ1(T1, Tn) ≈ ṽ+(T+, vw), T1 ≈ T+ (3.8)
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Figure 1. Illustration of the competing forces acting on the bubble wall that ultimately determine

vw. The steady state wall velocity is such that the vacuum energy difference between the phases

(∆VT=0) is balanced by the friction provided by the interactions of the wall with the plasma.

and solve for T+ in terms of Tn, vw. Previous studies suggest that using the planar approxi-

mation instead of the full solutions to the spherical hydrodynamic equations can reproduce

the full result for the wall velocity to within a few percent [82].

With the temperature T+ and the static properties of the phase transition determined

in this way, we can now consider the asymptotic behavior of the bubble after its formation.

3.3 Wall equations of motion

The main object for our analysis will be the bubble wall equations of motion correspond-

ing to the set of scalar fields φi = φh, φs. These can be derived by requiring conservation

of the energy-momentum tensor for the scalar field condensates computed in a WKB ap-

proximation [77], or directly from the Kadanoff-Baym equations [54]. We are interested in

the stationary limit of the equations of motion in the plasma frame; that is, we want to

investigate the bubble wall once it has reached its terminal velocity (if it exists), with the

pressure driving the expansion precisely counterbalanced by the drag force exerted on the

bubble by the plasma. This is illustrated in figure 1.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-

accelerating) bubble wall all functions will be depend only on z, the distance from the

phase boundary. Consequently, in the plasma frame, all functions depend only on the

coordinate x ≡ z + vwt, where vw is the wall velocity in the plasma frame and we have

assumed that the wall is moving to the left. In the stationary wall limit, the equations of

motion then simplify to

− (1− v2
w)φ′′i +

∂V (φi, T )

∂φi
+
∑
j

∂m2
j (φi)

∂φi

∫
d3p

(2π)32Ej
δfj(p, x) = 0 (3.9)

where primes indicate differentiation with respect to x. Here the sum is over all fields

coupling to the scalar field φi, Ej is the (space-time-dependent) energy of the particle j,

Ej =
√
p2 +m2

j (x), and δfj is the deviation from the equilibrium distribution function for

the species j.
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Solutions to the above equations of motion typically only exist for one subsonic value

of the constant vw. This is the quantity we wish to determine. To do so, one must

find profiles φi(x) such that eq. (3.9) is satisfied, which in turn requires solving for the

deviations from equilibrium of the various species in the plasma. These deviations, along

with the equilibrium contributions, are responsible for the drag force on the bubble wall.

Unfortunately, the δfj depend non-trivially on vw and the bubble profile, so eq. (3.9)

represents a set of integro-differential equations.

3.4 Aside: runaway bubbles and tree-level cubic terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-

genesis), we can begin by considering the wall dynamics in a simple limit: that of ultra-

relativistic, “runaway” bubbles [44], with Lorentz factor γ � 1. In this case, the friction

on the bubble from the plasma in the large-γ limit is too small to counterbalance the

pressure difference between the vacua, which drives the expansion. Ref. [44] showed that

this situation is common in singlet-driven transitions, so it is important to review this case

before moving on to the non-relativistic regime.

Following ref. [44], a runaway solution to the equations of motion exists provided

Veff(T = 0, φ+)− Veff(T = 0, φ−) +
∑
i

Ni

[
m2
i (φ+)−m2

i (φ−)
] ∫ d3p

(2π)32E
f0,i(p, φ+) > 0

(3.10)

at the nucleation temperature. Here, f0 is the equilibrium distribution function of the

species i, and φ± are the field values at the minima of the potential. In the high-T limit,

there is a simple interpretation of this criterion in terms of the high-temperature expansion

of the thermal effective potential: a runaway solution will exist if it is energetically favorable

to tunnel to the broken phase in the ‘mean-field’ potential, obtained by retaining only the

T 2 terms in eq. (2.6). In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (3.11)

The above expression indicates that all points found with a first-order phase transition

in our gauge-invariant approach (retaining only the quadratic finite-T terms) would fea-

ture an ultra-relativistic wall solution if there were no other contributions to the effective

potential. This may appear incompatible with our goal of determining subsonic solutions

to the equations of motion but it is not. First of all, including the finite temperature

cubic term inevitably changes the the transition temperature and the effective potential

at that temperature. This can cause the same parameter space point to instead feature

V no cubic
eff (φ+, Tn) < V no cubic

eff (φ−, Tn) , and hence no runaway solution. We indeed find this

to be the case for most points considered when including the gauge boson cubic term in our

parameter scans. Even if a runaway solution exists for the EOMs including the full finite-T

effective potential, there is another important caveat. The criterion in eq. (3.11) assumes

that the bubble is in the ultra-relativistic regime to begin with. However it is instead pos-

sible for the friction to prevent the bubble from ever reaching such large velocities required
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for eq. (3.10) to be valid. In fact, hydrodynamic effects alone can obstruct the wall from ex-

panding ultra-relativistically [116]. Thus, even if a particular parameter space point admits

a runaway solution, it may not be realized if a subsonic stationary solution exists. On the

other hand, even if no runaway solution exists, one with vw > cs might. The reader should

thus bear in mind that our approach will find subsonic solutions to the equations of motion,

not guarantee that they are realized. This is also true of previous studies [54, 76–78].

Equation (3.10) shows that the friction force acting on the wall takes a very simple

form in the γ � 1 limit. This is not the case for the subsonic walls we are interested in. De-

termining the wall velocity in the γ ∼ 1 regime requires a careful calculation of the various

deviations from equilibrium in the plasma. This is what we discuss in the following section.

4 Kinetic theory and deviations from equilibrium

4.1 Setup

With the temperature T ≡ T+ inferred from hydronamic considerations, the first step to-

wards solving the bubble wall equations of motion in the non-relativistic (γ ≈ 1) case is

determining the distribution functions fi for the various excitations appearing in eq. (3.9).

To do so, we will primarily utilize a perturbative effective kinetic theory approach [117, 118],

as in previous studies [76–78] (we will take a somewhat different approach for the corre-

sponding gauge boson friction, which should be modeled classically as discussed below).

This treatment applies to weakly coupled excitations with local interactions and short

wavelengths compared to the length scale of the bubble wall in the plasma frame, i.e.

E � 1

Lw
(4.1)

where Lw is the wall width. Typical momenta are of order p ∼ T , but softer excitations

will be present in the plasma as well. We will assume that the kinetic theory description

is viable in the range p & gT , which is reasonable for the particles we will be interested in

given the values we find for the wall widths. Here and throughout this section g represents

a generic dimensionless coupling of the theory12 that is assumed to be small. Infrared

(IR) excitations with momenta p � T will not be captured by this treatment, since their

interactions cannot be properly described by a local collision term. These contributions

can be important for the bosonic species [79], but the perturbative effective kinetic theory

should provide an adequate estimate of the damping force on the bubble wall, provided

that very infrared excitations are equilibrated quickly [77], as we will assume for most of

the species we are interested in.13

12The coupling g should be thought of as some combination of couplings entering the thermal and zero

temperature masses of the particle in question. In other words, we assume parametrically that m ∼ gT ∼ gφ

near the electroweak phase transition.
13This was shown to be a poor assumption for the SU(2)L gauge bosons in ref. [79], which we discuss

further in section 4.3. Infrared contributions from the Higgs and singlet fields may be important. How-

ever, their equations of motion are not over-damped as they are for the gauge bosons [79], and so their

distributions should equilibrate more quickly than those for the gauge fields.
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In the effective kinetic theory we consider, the quasiparticle distribution function for

the species i satisfies the Boltzmann equation

d

dt
fi ≡

(
∂

∂t
+ ż

∂

∂z
+ ṗz

∂

∂pz

)
fi = −C[f ]i (4.2)

in the fluid frame, where C[f ]i is a local collision integral. The collision term involves all in-

teractions of the species i with all other excitations in the plasma. It can be written as [118]

C[f ]i =
1

2Ni

∑
jmn

1

2Ep

∫
d3kd3p′d3k′

(2π)92Ek2Ep′2Ek′

∣∣Mij→mn(p, k; p′, k′)
∣∣2 (2π)4δ(p+ k − p′ − k′)

×Pij→mn [fi(p), fj(k), fm(p′), fn(k′)] (4.3)

where the sum is over all 4-body processes ij → mn, with the momenta labeled as p, p′, k′,

and k moving clockwise around the diagram starting with particle i. The matrix elements

include finite-temperature effects (discussed below) and are summed over helicities and

colors of all four external quasiparticles, then divided by the number of degrees of freedom

corresponding to species i, Ni (Nh = 1, Nt = Nt̄ = 6).14 The population factor is

Pij→mn ≡ fifj(1± fm)(1± fn)− fmfn(1± fi)(1± fj) (4.4)

with the upper (lower) signs corresponding to bosons (fermions) and fa the appropriate

Bose-Einstein or Fermi-Dirac distribution function for particle a, which we assume to take

the form

fa =
(
e(E+δa)/T ± 1

)−1
. (4.5)

In eq. (4.3), the prefactor of 1/2 takes care of both the symmetry factor when identical

particles are present in the final state, and the double counting that occurs from the

unrestricted sum over m and n.

The Boltzmann equations above apply to all quasiparticles in the plasma satisfying

eq. (4.1) with sufficiently high momentum. However, examining eq. (3.9), we see that only

the distribution functions of field excitations with significant couplings to the relevant scalar

fields involved in the phase transition are required. Since these particles have significant

couplings to the Higgs and singlet scalar fields, we will refer to them as ‘heavy’. Also,

δfi = δfi(p, x) has some space-time-dependence, arising in part from the spatial variation

of the background fluid temperature and velocity across the bubble wall, as discussed in

section 3. The background fluid is in local thermal equilibrium and comprises all ‘light’

effective degrees of freedom. Note that quasiparticles with large field-independent masses

will be irrelevant for our purposes, since their distribution functions feature significant

Boltzmann suppression. Also, precisely which fields should be considered ‘heavy’, ‘light’,

or irrelevant depends on the given model. For the singlet-driven scenarios we are concerned

with here, the heavy fields will be the top quarks, gauge, Higgs, and singlet bosons.

14We will neglect any possible CP -violation coupling to the top quark and hence assume that the top

and anti-top densities are identical. This means we can compute the top perturbations and simply count

their contribution to the condensate equations of motion twice.
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To find approximate solutions to the Boltzmann equations for the heavy species and

background, we will utilize the ‘fluid ansatz’ [77], in which case the perturbations are

assumed to take the form

δj = −µj −
E

T
(δTj + δTbg)− pz(δvj + vbg). (4.6)

Here µj , δTj , δvj are the chemical potential, temperature perturbation, and velocity pertur-

bation of the species j, respectively, in the plasma frame. We have assumed that the fields

with small couplings to the scalar condensates φh,s are in thermal equilibrium at a com-

mon space-time-dependent temperature T+ + δTbg(x) and velocity vbg(x) with vanishing

chemical potential, as in ref. [77]. The assumption that µbg ≈ 0 is valid whenever the total

background particle destruction rate is larger than that for the heavy particles, as will be the

case here (all pure gluon rates are enhanced by the large color factors and Bose statistics).

The space-time-dependence in δTbg, vbg arises from the change in masses of the correspond-

ing particles moving from the φi 6= 0 phase inside the bubble to the φi = 0 vacuum outside.

Throughout this study, we will work to linear order in the perturbations, which are

assumed to be small (µj/T , δTj/T , δTbg/T , δvj , vbg � 1). This should be the case for mod-

erately strong phase transitions, and we verify the validity of this assumption a posteriori.

It should be noted that this treatment can be extended to accommodate large fluid veloc-

ities in front of the wall [54], although this will not be necessary for any of the transitions

we consider. As a result, we set all Lorentz γ factors to 1 throughout our calculation.

With the above definitions, the population factor P is given to linear order in the

perturbations by

P ' f0,1f0,2(1± f0,3)(1± f0,4) (δ1 + δ2 − δ3 − δ4) (4.7)

where the ‘0’ subscript indicates the corresponding equilibrium distribution function. Note

that the background temperature and velocity perturbations do not enter the collision

integrals to linear order.

To determine µi, δTi, and δvi we follow refs. [76–78] and take three moments of each

equation, multiplying by
∫
d3p/(2π)3,

∫
Ep/Td

3p/(2π)3,
∫
pz/Td

3p/(2π)3 and solve the

resulting expressions for the perturbations. For a given heavy species, the relevant three

equations are given in the plasma frame by

ci2
∂

∂t
µi + ci3

∂

∂t
(δTi + δTbg) +

ci3T

3

∂

∂z
(δvi + vbg) +

∫
d3p

(2π)3T 2
C[f ]i =

ci1
2T

∂m2
i

∂t

ci3
∂

∂t
µi + ci4

∂

∂t
(δTi + δTbg) +

ci4T

3

∂

∂z
(δvi + vbg) +

∫
Ed3p

(2π)3T 3
C[f ]i =

ci2
2T

∂m2
i

∂t

ci3
3

∂

∂z
µi +

ci4
3

∂

∂z
(δTi + δTbg) +

ci4T

3

∂

∂t
(δvi + vbg) +

∫
pzd

3p

(2π)3T 3
C[f ]i = 0

(4.8)

where an ingoing particle of the relevant species has momentum p and where

cin ≡
∫
En−2

Tn+1
(−f ′0,i)

d3p

(2π)3
. (4.9)
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Further details can be found in ref. [77]. The resulting collision terms for each heavy field

i can be written as ∫
d3p

(2π)3T 2
C[f ]i ≡

∑
j

(
δµjΓ

i
µ1,j + δTiΓ

i
T1,j

)
∫

d3p

(2π)3T 3
EiC[f ]i ≡

∑
j

(
δµjΓ

i
µ2,j + δTiΓ

i
T2,j

)
∫

d3p

(2π)3T 4
pz,iC[f ]i ≡

∑
j

(
δvjΓ

i
v1,j

)
(4.10)

The background excitations also satisfy a set of Boltzmann equations,

∑
c4

(
∂

∂t
δTbg +

c4T

3

∂

∂z
vbg

)
+

∫
Ed3p

(2π)3T 3
C[f ]bg = 0

∑ c4

3

(
∂

∂z
δTbg + T

∂

∂t
vbg

)
+

∫
pzd

3p

(2π)3T 3
C[f ]bg = 0

(4.11)

which arise from eq. (4.8) with µbg ≈ 0. The sum above is over all background species, with

c4 ≡
∑
c4 the heat capacity of the plasma. As for the heavy quasiparticles, the collision

terms can be written as∫
d3p

(2π)3T 3
EiC[f ]bg ≡ −

∑
j

(
δµjΓ̃µ2,j + δTiΓ̃T2,j

)
∫

d3p

(2π)3T 4
pz,iC[f ]bg ≡ −

∑
j

(
δvjΓ̃v1,j

) (4.12)

Although δTbg and vbg do not enter the collision integrals, the perturbations corresponding

to the heavy excitations do. The convention for evaluating the matrix elements is the

same as for the heavy particles, with all background excitations treated as one species.

Thus, every heavy particle process involving the background excitations will contribute to

eqs. (4.12). We will calculate all of the contributions relevant for singlet-driven transitions

in the next subsection.

4.2 Relevant excitations and interaction rates

In the SM and its singlet extensions, the relevant heavy species to consider in eq. (3.9) above

are typically the top quarks, SU(2)L gauge, Higgs, and singlet bosons, with the Higgs and

singlet excitations being the dominant source of friction on the singlet field condensate.

We will consider two different sets of contributions to the total friction. For the gauge-

invariant calculation, we include only the top quark, Higgs, and singlet contributions. When

incorporating the gauge boson cubic term, we will also account for the friction arising from

the SU(2)L gauge bosons. We will not include the Goldstone friction contribution, since

we drop the corresponding finite-T cubic term from the effective potential. This should be
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a reasonable approximation as the Higgs excitations will only make up about 20% of the

total friction on the wall.15

The friction from each species enters the bubble wall EOM (eq. (3.9)) through the

derivative of the corresponding mass squared. For the top quarks, the effective mass

squared is

m2
t (φh) =

1

2
y2
t φ

2
h + Πt(T ) (4.13)

with the corresponding thermal self-energy correction

Πt(T ) ' 1

6
g2

3T
2, (4.14)

neglecting the subdominant thermal SU(2)L and U(1)Y contributions.

The Higgs and singlet require slightly more care. Throughout the remainder of this

study we will neglect all mixing effects between the SM-like Higgs and singlet excitations.

As discussed in section 6.1, we will choose the parameters of the T = 0 Lagrangian such

that the mixing vanishes in the broken electroweak phase. At finite temperature and across

the bubble wall this will no longer be the case. However, in the high temperature limit, the

effective neutral scalar mass matrix is diagonal, since off-diagonal thermal corrections are

proportional to dimensionful parameters and vanish as T →∞. For temperatures around

the electroweak phase transition, the thermal masses still dominate the mixing matrix, and

so this should be a decent approximation. The relevant field-dependent masses, including

the leading thermal corrections, are then

m2
h(φh, φs) ' −µ2 + 3λφ2

h +
1

2
a1φs +

1

2
a2φ

2
s + Πh(T )

m2
s(φh, φs) ' b2 + 2b3φs + 3b4φ

2
s +

1

2
a2φ

2
h + Πs(T )

(4.15)

with the thermal masses

Πh(T ) '
(

3

16
g2

2 +
1

16
g2

1 +
1

4
y2
t +

1

2
λ+

1

24
a2

)
T 2

Πs(T ) =

(
1

6
a2 +

1

4
b4

)
T 2

(4.16)

where we have left out the light fermion Yukawa contributions. Since we are neglecting

the finite-temperature tadpole contribution to the effective potential we also drop the a1

terms in the masses above. This is required for consistency, since these terms are precisely

those that give rise to the finite-temperature tadpole. Finally, as in ref. [77], we treat the

transverse SU(2)L gauge bosons as a single species W with field-dependent mass squared

m2
W (φh) =

1

4
g2

2φ
2
h. (4.17)

15We do include the Goldstones, φ0, φ± in the various interaction rates. They only appear as external

legs of the diagrams we consider, and the corresponding matrix elements are gauge-independent. They are

treated as a background species.
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Transverse excitations do not acquire a thermal mass at leading order in the couplings. Lon-

gitudinal modes obtain an effective thermal (Debye) mass at leading order, corresponding

to the inverse screening length of electric potentials in the plasma [119]. This is given by

m2
D,W (T ) ' 11

6
g2

2T
2 (4.18)

in the Standard Model. Since the gauge boson friction is dominated by very infrared

excitations, only the transverse contributions will be relevant.

Our strategies for dealing with each of these types of excitations will differ. As we will

see below, the top quark and Higgs interaction rates are typically sizable, and so the colli-

sion term plays an important role in the corresponding Boltzmann equations. This is not

expected to be the case for singlet quasiparticles at high temperature. Contrary to the tops

and Higgs, we will assume that the singlet interactions are slow. In this case, the collision

term can be neglected. The corresponding Boltzmann equation decouples from the rest of

the system and can be solved exactly. We discuss this further in sections 4.2.2 and 5.1. Fi-

nally, the gauge boson contributions are dominated by infrared dynamics and require a clas-

sical treatment, which has been worked out in ref. [77] and discussed in section 4.3 below.

Let us first consider the interactions involving the top quark, Higgs, and background

excitations.

4.2.1 Top, Higgs, and background excitations

Solving the Boltzmann equations for the perturbations µt,h, δTt,h, δTbg, δvt,h, and vbg

requires computing the collision integrals corresponding to all the four-body interactions

involving t, h, and the background fields. This task is rather daunting due to the sheer

number of allowed processes. However, the dominant interactions will be of O(α2
s) for the

top quarks, and O(αsαt), O(α2
t ) for the Higgs bosons, where αs = g2

3/4π, αt = y2
t /4π. We

will therefore focus on these interactions, neglecting, for example, contributions involving

a factor of αw, which are numerically small compared to the Yukawa-type contributions

for the Higgs bosons.16

To estimate the relevant interaction rates, we will work at leading order in all couplings

in the high-T , weak coupling limit, neglecting all terms of O(m2/T 2) (here m should be

understood as either a zero-temperature or thermal mass). This is the approximation

used in all previous microphysical studies of the wall velocity [76–78], as well as in the

context of plasma properties in arbitrary high-temperature gauge theories [120, 121]. This

approximation can begin to break down inside the bubble wall for the top quarks and

scalars and could in principle be improved upon in the future. Nevertheless, it should

reproduce at least the correct parametric dependence of the full leading order result. In

this limit we can neglect the effect of the space-time-varying masses on the interaction

rates. Hard excitations dominate the phase space for the relevant top quark and Higgs

collision integrals, and can be characterized by massless dispersion relations

Ehard =
√
p2 +m2 +m2

th(T ) ' p+O (gT ) (4.19)

to leading order in the couplings and in the high-temperature limit.

16We have verified this is the case despite the enhancement provided by Bose-Einstein statistics.
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Although the external quasiparticles can be treated as massless in this approximation,

infrared excitations appearing as mediators in t- and u-channel diagrams naively result

in logarithmic IR divergences in the Higgs and top quark scattering amplitudes. These

divergences are cut off by the interactions of the mediator with the plasma. For long-

wavelength excitations, the corrections comprise so-called ‘hard thermal loops’ (HTLs), and

result in a breakdown of the perturbative expansion. The corrections can be resummed into

a thermal self-energy correction to the propagator, valid in the low momentum limit.17 The

self-energy is typically of order gT and so these processes can produce sizable logarithmic

enhancements of the corresponding matrix elements, scaling as ∼ g(T )4 log 1/g(T ) at high

temperatures. This provides a useful way of categorizing the most important diagrams

contributing to Mi in C[f ] in the high-T limit.

A full leading-order determination of the effective scattering rates in the plasma is

possible [121, 122], though computationally more involved and beyond the scope of this

work. It would be interesting to revisit in the future. We will instead work in a ‘leading

logarithm’ expansion, keeping only contributions of order ∼ g(T )4 log 1/g(T ), which are

typically the largest. In this approximation, only 4-body rates with t- and u-channel

diagrams contribute. For further details on this approximation, see refs. [77, 120].

Another subtlety arises in computing scattering rates in the high-T limit involving soft

t- or u-channel exchange. The thermal self-energies involved in the propagators are gener-

ally momentum-dependent [121]. Previous studies of the wall velocity neglected these con-

tributions, simply replacing them with the corresponding Debye (thermal) masses for the

corresponding gauge bosons (fermions). However, including the momentum-dependent self-

energies, which enter at leading order in the couplings, can have a significant effect and has

been shown to often provide better agreement between the leading log and full leading order

results for plasma transport coefficients in high-temperature gauge theories [121]. Conse-

quently, we will use the full momentum-dependent HTL-resummed propagators [121, 123,

124] in computing the various collision integrals for the top quark and Higgs excitations.

The relevant processes and their associated vacuum matrix elements are listed in ta-

ble 1. All terms of O(m2/T 2) have been dropped. The leading log matrix elements are

summed over the helicities and colors of the external particle (but not particle-antiparticle).

These contributions will also be divided by the number of degrees of freedom of the species

under consideration when entering the various Γik,j .

The vacuum matrix elements must be modified to include the medium-dependent

effects discussed above. At leading order, this amounts to inserting the momentum-

dependent HTL self-energies on the internal lines. To translate the vacuum matrix ele-

ments above to their finite-temperature analogs, we can use the results of refs. [118, 121].

For diagrams with an exchanged fermion in the leading log approximation, this amounts

to the replacement

u

t
' −s

t
→ 4 Re(p · q̃ k · q̃∗ + sq̃ · q̃∗)

|q̃ · q̃|2
(4.20)

17Note that the same situation arises when computing loop corrections to the finite-temperature effective

potential.
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Process |M|2tot Internal Propagator

O(g4
3):

tt̄↔ gg: 128
3 g4

3

(
u
t + t

u

)
t

tg ↔ tg: -128
3 g4

3
s
u + 96g4

3
s2+u2

t2
g, t

tq(q̄)↔ tq(q̄): 160g4
3
u2+s2

t2
g

O(y2
t g

2
3):

tt̄↔ hg, φ0g: 8y2
t g

2
3

(
u
t + t

u

)
t

tb̄↔ φ+g : 8y2
t g

2
3

(
u
t + t

u

)
t, b

tg ↔ th, tφ0: −8y2
t g

2
3
s
t t

tg ↔ bφ+: −8y2
t g

2
3
s
t b

tφ− ↔ bg: −8y2
t g

2
3
s
t t

O(y4
t ):

tt̄↔ hh, φ0φ0: 3
2y

4
t

(
u
t + t

u

)
t

tt̄↔ φ+φ−: 3y4
t
u
t b

tt̄↔ hφ0: 3
2y

4
t

(
u
t + t

u

)
t

tb̄↔ hφ+, φ0φ+: 3
2y

4
t
u
t t

th, tφ0 ↔ ht, φ0t: −3
2y

4
t
s
t t

tφ− ↔ hb, φ0b: 3
2y

4
t
u
t t

tφ+ ↔ φ+t: 3y4
t
u
t b

Table 1. Relevant 4-body processes and their corresponding matrix elements in the leading log

approximation. The matrix elements are summed over the helicities and colors of all four external

states (as well as flavors and quark — anti-quark for tq → tq). The excitation appearing on the

internal propagators in each case is listed in the right-hand column. Note that other t- and u-channel

processes exist, but do not contribute logarithmically to the collision integrals or are suppressed by

powers of couplings small compared to g3, yt.

with q̃µ = pµ − p′µ − Σµ(p − p′) and Σµ(q) the fermionic HTL self-energy function [121,

123, 124]

Σ0(q) =
m2
f (T )

2 |q|

(
log
|q|+ q0

|q| − q0
− iπ

)
Σ(q) =

−m2
f (T ) q̂

|q|

(
1 + iπ − q0

2 |q|
log
|q|+ q0

|q| − q0

) (4.21)

with mf (T ) the leading order fermion thermal mass, given approximately by mf (T ) ≈√
1/6g3T for quarks (see eq. (4.16)).

For the gluon exchange diagrams, we must replace

s2 + u2

t2
→ 1

2

(
1 +

∣∣Dµν(p− p′)(p+ p′)µ(k + k′)ν
∣∣2) (4.22)
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with the retarded thermal equilibrium gluon propagator Dµν(q) given by

D00(q) =
−1

|q|2 + Π00(q, T )

Dij(q) =
δij − q̂iq̂j

q2 + ΠT (q, T )

Di0(q) = Di0(q) = 0.

(4.23)

The relevant HTL gauge boson self energy is [121, 123, 124]

Π00(q) = m2
D(T )

(
1− q0

2 |q|
log
|q|+ q0

|q| − q0
+
iπq0

2 |q|

)
ΠT (q) = m2

D(T )

[
q0

2 |q|
+

q0q2

4 |q|3

(
log
|q|+ q0

|q| − q0
− iπ

]) (4.24)

with mD(T ) the Debye mass of the gauge boson (=
√

2g3T for the gluon).

With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in refs. [118, 121,

125] and the Vegas Monte Carlo routine included in the Cuba package [126]. The integrals

converge reasonably quickly for most cases on a standard desktop computer to reasonable

numerical precision.

The results of this numerical evaluation are given in Equations (4.25)–(4.29) below.

These values can then be plugged into eqs. (4.8) and (4.11) for the perturbations. For the

Higgs bosons, the rates (in the leading log approximation) are

Γhµ1,h ' (1.1× 10−3g2
3y

2
t + 6.0× 10−4y4

t )T

ΓhT1,h ' Γhµ2,h ' (2.5× 10−3g2
3y

2
t + 1.4× 10−3y4

t )T

ΓhT2,h ' (8.6× 10−3g2
3y

2
t + 4.8× 10−3y4

t )T

Γhv,h ' (3.5× 10−3g2
3y

2
t + 1.8× 10−3y4

t )T,

(4.25)

while the corresponding contributions to the top quark distributions are

−Γhµ1,t ' (1.0× 10−3g2
3y

2
t + 5.8× 10−4y4

t )T

−ΓhT1,t ' Γhµ2,t ' (2.5× 10−3g2
3y

2
t + 1.5× 10−3y4

t )T

−ΓhT2,t ' (8.5× 10−3g2
3y

2
t + 4.8× 10−3y4

t )T

−Γhv,t ' (2.8× 10−3g2
3y

2
t + 1.4× 10−3y4

t )T.

(4.26)

For the top quarks,

Γtµ1,t ' (5.0× 10−4g4
3 + 5.8× 10−4g2

3y
2
t + 1.5× 10−4y4

t )T

ΓtT1,t ' Γtµ2,t ' (1.2× 10−3g4
3 + 1.4× 10−3g2

3y
2
t + 3.6× 10−4y4

t )T

ΓtT2,t ' (1.1× 10−2g4
3 + 4.6× 10−3g2

3y
2
t + 1.1× 10−3y4

t )T

Γtv,t ' (2.0× 10−2g4
3 + 1.7× 10−3g2

3y
2
t + 4.3× 10−4y4

t )T,

(4.27)
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while their contributions to the Higgs distributions are

−Γtµ1,h ' (9.3× 10−5g2
3y

2
t + 5.3× 10−5y4

t )T

−ΓtT1,h ' Γtµ2,h ' (2.2× 10−4g2
3y

2
t + 1.3× 10−4y4

t )T

−ΓtT2,h ' (7.2× 10−4g2
3y

2
t + 4.0× 10−4y4

t )T

−Γtv,h ' (2.4× 10−4g2
3y

2
t + 1.2× 10−4y4

t )T.

(4.28)

Finally, the background contributions are

Γ̃µ2,t ' (1.4× 10−2g4
3 + 1.3× 10−2g2

3y
2
t + 2.6× 10−3y4

t )T

Γ̃T2,t ' (1.4× 10−1g4
3 + 4.6× 10−2g2

3y
2
t + 8.7× 10−3y4

t )T

Γ̃v,t ' (2.4× 10−1g4
3 + 1.7× 10−2g2

3y
2
t + 3.4× 10−3y4

t )T

Γ̃µ2,h ' 0

Γ̃T2,h ' (1.0× 10−3g2
3y

2
t + 9.8× 10−5y4

t )T

Γ̃v,h ' (1.6× 10−3g2
3y

2
t + 4.6× 10−4y4

t )T.

(4.29)

Note that the background rates for the top quarks tend to appear larger than their counter-

parts in eq. (4.27) above. This is simply because in the background rates we have summed

over all contributions, while the rates in eqs. (4.25)–(4.28) are the average values per degree

of freedom (e.g. divided by Nt = 6 in the top quark case). The latter rates will be multi-

plied by the appropriate Ni factors when they enter the bubble wall equation of motion.

Also, note that the contributions in eqs. (4.26) and (4.28) are negative because they arise

from diagrams with the relevant species on the outgoing legs of the Feynman diagrams.

In previous work, the above integrals were performed analytically using several ap-

proximations and without incorporating the (momentum-dependent) self-energies. The

different computational methods used here change the rates by O(1) factors relative to

the results in ref. [77]. There were also some algebraic errors in the results of ref. [77], as

pointed out in ref. [120], that contribute to the discrepancy. Although our treatment is

still formally at the same order as that of ref. [77], the HTL-improved calculation in many

cases is expected to more closely reproduce the leading order result (see e.g. figure 1 of

ref. [121]). Nevertheless, modulo the algebraic mistakes in ref. [77], our interaction rates

are no more accurate than those of Moore and Prokopec in approximating the full leading

order results; they should simply be thought of as arising from a different set of approxi-

mations. We comment further on the differences between the rates found in ref. [77] and

those reported above in appendix A. The reader should bear in mind that the predicted

wall velocity will tend to be higher if the rates computed in ref. [77] are used instead of

ours. This is because the former are larger and thus result in faster equilibration for the

various perturbations. Note also that the collision integrals computed and listed above

depend only on the Standard Model degrees of freedom, and as such are quite general.

They can be used in various applications beyond those considered in this work.

Before moving on, some comments regarding the higher order contributions neglected

in the fluid approximation are in order. The assumed form for the perturbations is that of

a perfect fluid and can be thought of as a truncated expansion in powers of momentum.
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That is, the fluid ansatz assumes that the effects of higher angular moments p`Y`m(p̂) in

the distribution functions are negligible [77] (the Y`m are spherical harmonics). For the

top quarks this is a good approximation, since we find that the velocity perturbations

typically satisfy δvT/δµ . 0.1, while the contributions from higher moments should scale

roughly like (δvT/δµ)` [77]. On the other hand, the Higgs bosons have smaller interaction

rates than the tops, and so the fluid approximation begins to break down for strong phase

transitions. For this reason we will restrict ourselves to moderately strong phase transitions

with φh(Tn)/Tn . 1.1 in our consideration of the xSM in section 6. Already in this

regime some points will be found to possess no subsonic solutions. Further details on the

limitations of the fluid approximation can be found in appendix B of ref. [77].

4.2.2 Singlet contributions

Excitations of the singlet field will also contribute to the friction on the bubble wall.

The corresponding collision integral for singlet quasiparticles is dominated by scattering

processes involving four external scalars. At high temperatures, the resulting effective in-

teraction rates are typically suppressed relative to those for the processes involving external

fermions. To see this, note that processes with t-channel diagrams involving two external

scalars and two external fermions schematically contribute

Γµ,1 ∼ g4T ×
∫ T

m(T )
dq

1

q
(4.30)

to the first moment of the Boltzmann equation in the small-q limit (here q ≡ |p− p′|). The

logarithmic divergence is cut off by the thermal self-energy of the exchanged quasiparticle.

The upper limit q ∼ T corresponds to the breakdown of the small q approximation. For

processes involving four external scalars with a scalar exchanged in the t-channel, the

integrals of the Bose-Einstein distribution functions are also IR sensitive. Cutting off the

distribution functions with a parameter ε with mass dimension 1 such that f0(p/T ) →
f0(p/T + ε/T ), we find the corresponding contribution to be

Γµ,1 ∼
a4T

ε2
×
∫ T

m(T )
dq

1

q3
(4.31)

in the small q and ε/T regime (a is a cubic coupling with mass dimension 1). The divergence

is now nominally quadratic (again cut off by the self-energy of the exchanged scalar), and

the integral of over the distribution functions is cut off by the thermal masses of the

external scalars in the infrared. This suggests that a rough leading order estimate of the

scalar quasiparticle scattering rates should include thermal masses in the Bose-Einstein

distribution functions. Computing the dominant contributions involving the cubic and

quartic couplings and performing the resulting integrals, we find interaction rates that are

significantly smaller than those for the tops and Higgs across the range of couplings and

temperatures we consider, despite the nominally more severe divergence structure. This is

because for large temperatures, ε ∼ gT and so the schematic rate in eq. (4.31) is suppressed

by 1/T 3. This is expected, since at high temperatures all dimensionful parameters of the

zero temperature theory should be irrelevant [122]. Meanwhile the quartic interactions
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do not contribute a small q divergence at leading order. We therefore expect the singlet

qusiparticle collision term to be small.

Assuming this is the case, the fluid approximation is likely to provide a rather poor

estimate of the corresponding friction. Instead, we will make a ‘free particle’ approxima-

tion [72, 73] for these excitations, dropping the collision term for the singlet. In this case,

the Boltzmann equation can be solved exactly, without taking moments. The solution is

given by eq. 5.3 of ref. [77], to lowest order in vw, and is reproduced below in eq. (5.1). We

will include the corresponding contribution to the equations of motion when computing the

friction. Note that the presence of non-negligible interactions would decrease the friction

and increase the predicted wall velocity.

This treatment assumes that the dominant singlet excitations are well described by our

perturbative kinetic theory, with a local collision term. This should be true for the hard

excitations. For much softer excitations, a classical treatment with the short wavelength

fluctuations integrated out is likely more appropriate [79, 127]. Unlike classical Yang-Mills

fields (discussed in the next subsection), the classical scalar field is not overdamped [128],

and so infrared excitations are likely to equilibrate quickly. We thus neglect the effect of

infrared singlet modes on the friction. This approximation is likely rather crude and should

be revisited in the future. Including the IR contributions would increase the friction and

potentially slow the wall down. The reader should bear this in mind as we proceed.

4.3 Gauge boson contributions

Finally, for our calculations incorporating the finite-temperature gauge boson cubic term

in eq. (2.7), we will include the friction from the SU(2)L gauge bosons. In contrast with

the top quarks, Higgs, and singlet excitations, the friction in this case is dominated by

infrared degrees of freedom, which can be treated approximately as over-damped classical

fields [128] as opposed to the perturbative approach utilized for the other species. The

distribution functions in the classical limit can be shown to satisfy [128]

πm2
D,W (T )

8p

dfW (p, T )

dt
= −[p2 +m2

W (φh)]fW (p, T ) +N (4.32)

where N is a noise term. This equation serves as the analog of eq. (4.2). Further discussion

of its derivation and applicability can be found in ref. [128].

Note that hard gauge boson excitations also exert a drag force on the bubble wall, as

computed in ref. [77]. However, we have verified that these contributions are substantially

suppressed relative to that from the IR gauge bosons, as found in ref. [128]. We do not

include them.

5 Solving for the wall velocity

With the collision terms evaluated, we can now solve the Boltzmann equations to determine

the perturbations for a given field profile and wall velocity. The goal is then to find the

value of vw and the profile (and hence the perturbations) such that the equations of motion

are satisfied. We will describe how this can be done below. First, let us consider solutions

to the Boltzmann equations given a particular profile and value of vw.
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5.1 Exact solution for the singlet excitations

As mentioned above, the singlet equation can be decoupled from the rest of the system

and solved exactly in the free-particle limit. The result been discussed in detail previ-

ously [72, 73, 77], and so we simply quote it here. The integral appearing in the equations

of motion (3.9), to lowest order in vw, is∫
d3p

(2π)32E
δfs(p, x) = vw

∫
d3p

(2π)32E

eEp/T(
eEp/T ± 1

)2 Q(pz)

T
(5.1)

where the upper (lower) sign is for fermions (bosons). The function Q is defined as

Q(pz) =

{√
p2
z +ms(φh, φs, T )2 − pz, pz > −

√
m0
s(T )2 −ms(φh, φs, T )2

−
√
p2
z +ms(φh, φs, T )2 −m0

s(T )2 − pz, pz < −
√
m0
s(T )2 −ms(φh, φs, T )2

(5.2)

with m0
s(T ) the singlet mass (including thermal contributions) in the broken phase (i.e.

at z → ∞). This integral is multiplied by ∂m2
s(φh, φs, T )/∂φh in the Higgs EOM, and by

∂m2
s(φh, φs, T )/∂φs in the singlet equation.

5.2 Exact solution for the IR gauge contributions

We can also solve for the classical gauge boson contribution in eq. (4.32). The result is [128]

dm2
W (φh)

dφh

∫
d3p

(2π)32E
δfW (p, x) = vw

3T

32π
m2
D,W (T )

φ′h(x)

φh(x)2
Θ(x− x∗) (5.3)

where the quantity x∗ solves mW [φh(x∗)] = 1/Lh, with Lh the SM-like Higgs wall width.

For smaller x, the WKB description used to derive eq. (4.32) breaks down. For more discus-

sion on this point, see ref. [128]. Note that this value cuts off the IR divergence of eq. (5.3).

5.3 Solving the top-Higgs system

It remains to solve the equations for the top quark, Higgs, and background excitations.

Here we follow the methods found in refs. [77, 78] with some slight modifications.

Since we are interested in static solutions to the equations of motion in the wall frame,

all quantities depend only on x and so the derivatives in eqs. (4.8) can be re-written as

∂t → vwd/dx, ∂z → d/dx. The Boltzmann equations in the static limit are therefore a set

of linear ordinary inhomogeneous differential equations.

To solve them, the equations for the background temperature and velocity, eqs. (4.11),

can be used to eliminate Tbg and vbg from the top quark and Higgs equations. Defining a

vector of perturbations

δT ≡ (δµt, δTt, δvt, δµh, δTh, δvh) , (5.4)

eqs. (4.8) can then be written as

Alk
d

dx
δk + Γlkδk = Fl (5.5)
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with the definitions

A ≡

(
Att 0

0 Ahh

)
, Γ ≡

(
∆tt ∆th

∆ht ∆hh

)
, Ai ≡


vwc

i
2 vwc

i
3

1
3c
i
3

vwc
i
3 vwc

i
4

1
3c
i
4

1
3c
i
3

1
3c
i
4

1
3vwc

i
4

 , (5.6)

∆ij ≡


Γiµ1,j +

ci3
c4

Γ̃µ2,j ΓiT1,j +
ci3
c4

Γ̃T2,j 0

Γiµ2,j +
ci4
c4

Γ̃µ2,j ΓiT2,j +
ci4
c4

Γ̃T2,j 0

0 0 TΓiv,j +
ci4T
c4

Γ̃v,j

 (5.7)

and the source vector

F(x)T ≡ vw
2T

(
ct1
dm2

t (φh)

dx
, ct2

dm2
t (φh)

dx
, 0, ch1(x)

dm2
h(φh, φs)

dx
, ch2

dm2
h(φh, φs)

dx
, 0

)
. (5.8)

The field-dependent masses are given by eq. (4.15).

The system of equations can be solved by simple Green’s function techniques. Following

ref. [77] we define the matrix χ such that(
A−1Γ

)
ij
χjk = χikλk (5.9)

where λk are the eigenvalues of A−1Γ. It is then straightforward to define the vector

Green’s function

Gi(x, y) = sgn(λi)e
−λi(x−y)Θ [sgn(λi)(x− y)] (5.10)

in terms of which the perturbation δi is given by

δi(x) = χij

∫ ∞
−∞

[
χ−1A−1F(y)

]
j
Gj(x, y)dy. (5.11)

These solutions can then be inserted into the equation for the variation in the background

temperature,

δTbg(x) =
1

c4

(
1
3 − v2

w

) ∫ x

−∞

∑
i

[
T Γ̃v,iδvi − vw

(
Γ̃µ2,iδµi + Γ̃T2,iδTi

)]
(5.12)

defined with respect to T+, its value far ahead of the bubble in the shock front.

5.4 Approximate solutions to the equations of motion

With the perturbations determined, we can now try to identify solutions to the wall equa-

tions of motion. In terms of the perturbations δj , eq. (3.9) reads, for the gauge-invariant

case,

−(1− v2
w)φ′′i +

∂V (φi, T )

∂φi
+
∑
j

∂m2
j (φi)

∂φi

T

2

[
cj1δµj + cj2(δTj + δTbg)

]
+
∂m2

s(φi)

∂φi

∫
d3p

(2π)32E
δfs(x, p) = 0

(5.13)
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where the last term is given in eq. (5.1). If the gauge boson contributions are included,

the r.h.s. of eq. (5.3) should be added to the l.h.s. of the above expression. The bound-

ary conditions are φh,s(x → ∓∞) = φh,s;±(T+) and φ′h,s(x → ±∞) = 0. This system of

equations will typically admit a solution for certain values of vw and profile φh,s(x). Our

strategy will be to vary the profile and scan over values of vw consistent with a deflagration

bubble, looking for parameters such that the equations of motion (and Boltzmann equa-

tions) are simultaneously satisfied. All parameter space points we consider have at most

one deflagration solution.

Eq. (5.13) represents a set of integro-differential equations for Φ ≡ (φh, φs)
T (in the fol-

lowing discussion it will be useful to use explicit vector notation). To find its approximate

solutions, we will follow the strategy of refs. [77, 78] and use an ansatz for the field profiles

which depend on only a few parameters. Of course in using an ansatz it is unlikely that the

full equations of motion will be satisfied exactly. However, we can reasonably approximate

a solution by scanning over the ansatz parameters and imposing physical constraints. For a

given choice of parameters, the Boltzmann equations can be solved exactly and the results

inserted into the EOM. A set of parameter values such that all constraints are simultane-

ously satisfied corresponds to an approximate solution to the original equations. This strat-

egy has been employed in previous calculations of the wall velocity [54, 76, 77] and we expect

the results obtained in this way to be a decent approximation to the full numerical solution.

Before analyzing eq. (5.13) further, some useful insight can be gained from solving the

corresponding field equations with the assumption of constant friction of the form

− (1− v2
w)
d2Φ

dx2
+∇φV (Φ, T ) + F dΦ

dx
= 0 (5.14)

subject to the boundary conditions Φi(x → ∓∞) = Φi,±, Φ′i(x → ±∞) = 0, where

∇φ ≡ (∂/∂φh, ∂/∂φs)
T and F is the same for both field directions. Clearly this is not a

realistic case, but we will improve on it below. These equations are much simpler than the

full integro-differential equations of eq. (5.13). As detailed in ref. [48], the solution to the

equations of motion can be found numerically via path deformations, and corresponds to

a limit in which all the friction on the wall is parallel to the trajectory in the (φh, φs) field

space within the wall. This can be seen by noting that dΦ/dx is a “velocity” vector in

field space, so FdΦ/dx always acts parallel to the trajectory. In all cases we consider, the

solution to these equations of motion is well-fit by a tanh ansatz with parameters

φi(x) =
φ0
i

2

(
1 + tanh

x− δi
Li

)
(5.15)

in the fluid frame. Here Li = Lh, Ls are the wall widths and δi are offsets allowing for a

good fit to the numerical solution. We can take δh = 0 without loss of generality. Note

that if we had allowed φs 6= 0 in the electroweak-symmetric phase, we could have instead

used φs(x) = φ0
s + ∆φs/2

(
1 + tanh x−δs

Ls

)
for the ansatz, with φ0

s the singlet VEV in the

symmetric phase and ∆φs the change in VEV across the wall. The remaining analysis

would proceed in the same way.

How does the situation change when including a realistic friction term? The friction

is no longer proportional to dΦ/dx and so will have some component perpendicular to the
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field space trajectory, acting as an effective “normal force” along the path. However, there

is a fortunate simplification we can make if the friction perpendicular to the field space tra-

jectory found by solving eq. (5.14) is negligible. In this case, the field will not be significantly

deformed from its field space path found using the constant friction equations of motion, al-

though the field profile in physical space will change. In other words, if we write the solution

to eq. (5.14) as Φ(s) where s = s(x) is some parameter such that |dΦ/ds| = 1, the effect of

a change in the friction parallel to Φ(s) will only be to alter s(x). Meanwhile, a change in

the friction normal to the profile would result in a change of Φ(s) itself. Applying this rea-

soning to the tanh ansatz (which we find to be a good fit to the constant friction solution),

the effect of altering only the friction parallel to the trajectory and neglecting that normal

to the path will simply be an overall simultaneous re-scaling of all the widths and offsets:

Lh,s → aLh,s, δs → aδs. (5.16)

This is the only change in the tanh profile that will not deform the path in field space.

Then, starting from the constant friction solution, the problem can be reduced to finding

the values of vw and a such that the pressure and pressure gradient in the wall vanish:∫
dx (eq. (5.13)) · dΦ

dx
= 0,∫

dx (eq. (5.13)) · d
2Φ

dx2
= 0.

(5.17)

The above constraints will only be satisfied for values of vw and a such that the wall

is not accelerating or expanding/contracting, as required for the steady-state solution

we are seeking. This is a simple generalization of the strategy used in the SM case in

refs. [54, 76, 77], where vw and Lw are varied.

In what follows, we will assume that the friction force normal to the field space path

determined from eq. (5.14) is negligible, such that the discussion of the above paragraph

applies. The validity of this assumption can be checked a posteriori (which we do), but

there is an intuitive reason why it should often be reasonable. At very high temperatures the

potential is stabilized at the origin (in our approximation) by the effective thermal masses

∼ gT of all the scalars. Around T ∼ 0, the potential is necessarily stabilized at a minimum

away from the origin. The temperature of the phase transition is such that two minima

exist simultaneously and are (nearly) degenerate. Provided that the tree-level contribution

to the barrier is not too large, this can only occur if there is a significant cancellation

between the zero-temperature and finite-temperature corrections in some direction of the

Φ field space. This approximate cancellation will be largest along the field space trajectory

Φ(s) found by solving eq. (5.14) such that, schematically,

∇φV (Φ, T = 0) · dΦ(s)

ds
∼ −

∑ dm(Φ)2

dΦ(s)

∫
d3p

(2π)32E
f0(p, T ) · dΦ(s)

ds
. (5.18)

The resulting ridge in the finite-temperature effective potential is precisely that along which

the cubic term becomes relevant. We can insert the solution to eq. (5.14) into eq. (5.13)

and see how we expect the solution to change when going to the full EOM. With the
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approximate cancellation of eq. (5.18) in effect, the full equation of motion parallel to Φ(s)

is then schematically{
−(1− v2

w)
d2Φ

dx2
+
∑ dm(Φ)2

dΦ

∫
d3p

(2π)32E
δf(p, T ) +O(δf2)

}
· dΦ(s)

ds
∼ 0 (5.19)

along Φ(s). The (approximate) cancellation has made the contribution from the friction

the leading effect. The change in the friction term from eq. (5.14) to (5.13) will alter

s(x) but leave the field space trajectory Φ(s) unchanged. In contrast, the cancellation

in eq. (5.18) is not expected to hold in the perpendicular direction along the path

(∝ d2Φ/ds2), unless the minimum of the potential away from the origin lies in the bottom

of a shallow valley. In the absence of such an approximate continuous symmetry, the full

EOM perpendicular to Φ(s) is{
−(1− v2

w)
d2Φ

dx2
+∇φV (T = 0) +

∑ dm(Φ)2

dΦ

∫
d3p

(2π)32E
f0(p, T ) +O(δf)

}
· d

2Φ(s)

ds2
∼ 0

(5.20)

and so the effect of the friction in this direction is perturbatively small, resulting in a

negligible correction to the perpendicular component of eq. (5.14) and hence to Φ(s).

The above discussion suggests the following strategy for finding approximate solutions

to the equations of motion for a given parameter space point:

1. Compute the phase transition properties, namely the order parameter and Tn. We

do this using the CosmoTransitions package [129].

2. Solve for the constant friction profile from eq. (5.14). This can be done using path

deformations [48] or otherwise. Fit the solution to the tanh ansatz eq. (5.15).

3. Solve the hydrodynamic relations to obtain T+ for various values of vw.

4. Vary the values of vw and a. For each pair, solve the Boltzmann equations as discussed

above, using T = T+ and Li = aL0
i , δs = aδ0

s with L0
i and δ0

s obtained from the

numerical solution of eq. (5.14).

5. Insert the solutions for the perturbations (and background temperature profile) into

eq. (5.13), then compute the constraints in eq. (5.17). The values of vw and a satis-

fying eq. (5.17) can be found by interpolating between the results of the scan.

This method generalizes that of refs. [54, 76, 77] to accommodate the additional singlet

field direction.

The results for vw and a obtained in this way will still produce a residual ‘normal force’

perpendicular to the trajectory in field space when inserted back into eq. (5.13) due to the

neglect of the friction in the direction ∝ d2Φ/ds2. Defining s(x) = |Φ(x)|, the tangent and

normal unit vectors to the field space path Φ(s) are

t̂(s) =
dΦ(s)

ds

∣∣∣∣dΦ(s)

ds

∣∣∣∣−1

, n̂(s) =
d

ds
t̂(s). (5.21)
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The ‘normal force’ along Φ(s) is given by

N(x) =
d2Φ

ds2

(
ds

dx

)2

−
[
∇φV (Φ, T ) +

∑ dm(Φ)2

dΦ

∫
d3p

(2π)32E
δf(p, T )

]
· n̂(s). (5.22)

A full solution to the equations of motion would guarantee that N(x) = 0 for all x. This

will not be true for our approximate solutions.

To check that this residual normal force is indeed negligible, we can deform the profile

to eliminate it. The deformation can be performed along the lines suggested by ref. [129]

for computing the critical bubble profile. It typically results in small changes to the original

field space profile, which in turn have very little effect on the perturbations and constraints

in eq. (5.17), since the curvature perpendicular to the path is typically significant. This

suggests that the wall velocity and profile found in the way outlined above should indeed

provide a reasonable approximation to those obtained from the full solution of the equations

of motion, at least in the cases we consider. There may be exceptions elsewhere in the

parameter space.

Note that the procedure outlined in Steps 1-5 above is quite general, and can be

adapted beyond singlet models to other scenarios with multiple field directions, provided

eq. (5.18) is approximately satisfied.

6 Wall velocities in the real singlet extension

6.1 Parameter space and phenomenology

We now turn to the parameter space of the real singlet extension of the Standard Model as

an application. Our goal is not a comprehensive analysis of this model. Instead, we focus

on a sample of the parameter space consistent with current observations and a strongly

first-order phase transition.

The authors of ref. [49] recently performed a detailed analysis of the electroweak phase

transition in this setup and so we use their study as a guide. Recall that we have identified

the excitation h as the Standard Model-like Higgs with mh ' 125 GeV. The couplings of

the discovered Higgs are very close to those expected in the Standard Model [130, 131].

Therefore we will assume that the doublet H couples precisely as in the Standard Model

and that there is no mixing between the singlet and Higgs at tree-level.18 This corresponds

to the choice

a1 + 2a2vs = 0 (6.1)

and immediately fixes λ in terms of the observed Higgs mass, m2
h = 2λv2 = (125 GeV)2.

Note that ref. [49] showed that deviations from this no-mixing limit are allowed by current

LHC measurements and so this requirement can be relaxed. In our scans, we will vary both

the cross-quartic coupling, a2, and the zero-temperature singlet VEV, vs. Then eq. (6.1)

can be used to determine a1, given our choice for vs and a2.

18Departing from this choice should not significantly affect our predicted range of wall velocities, since

we drop the finite-temperature tadpole and thus the contribution from a1.
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We will also assume b3 = 0. The barrier required for a first-order electroweak phase

transition will then arise primarily from the tree-level mixed cubic coupling a1. Again, this

is not required by the phenomenology, and this choice can be altered without significantly

affecting any of our arguments. Note that much of the NMSSM parameter space compatible

with a strongly first-order electroweak phase transition lies close to the corresponding limit

|κAκ| � |λAλ| [47, 48].

Equating the minima of the tree-level potential with the VEVs v = 246 GeV and vs
yields the conditions

µ2 = λv2 +
1

2
(a1 + a2vs)vs

b2 = −b3vs − b4v2
s −

a1v
2

4vs
− 1

2
a2v

2
(6.2)

which allows us to solve for µ2 and b2. We also take the tree-level singlet mass squared (in

the zero mixing limit),

m2
s = b3vs + 2b4v

2
s −

a1v
2

4vs
(6.3)

as an input, and use the above expression to solve for b4.

The free parameters are thus a2, vs, and m2
s. There are some additional requirements

on the theory that allow us to hone in on phenomenologically viable values for these quan-

tities. First of all, stability of the T = 0 potential requires b4 > 0, which in turn limits the

values of m2
s we can consider via eq. (6.3). Also, if m2

s is too small, the decay h→ ss would

cause large deviations in the width of h which are not observed experimentally. On the

other hand, if ms > 2mh, di-Higgs production at the LHC can place significant constraints

on the model [132, 133]. For simplicity, we avoid this regime and choose mh/2 < ms < 2mh.

Further insight can be gained from considering the expected behavior of the electroweak

phase transition strength and wall velocity as a function of these free parameters. In partic-

ular, larger values of a2 are favorable from the standpoint of small wall velocities. This is be-

cause increasing a2 corresponds to lowering Tc, as can be seen by noting that Tc corresponds

approximately to the temperature such that m2
h(φh, φs, T ) ∼ 0. Lowering Tc results in lower

values of φc satisfying φc/Tc & 1. Smaller field values in turn lower the total pressure differ-

ence between the vacua. This pressure difference is what drives the expansion of the bubble

and which must be compensated for by the friction. Furthermore, larger values for a2 corre-

spond to larger m2
s(φh, φs), which in turn increases the friction from the singlet on the wall.

With the above reasoning in mind, we choose two sets of parameters likely to be

promising for electroweak baryogenesis and across which we can compute the bubble wall

velocity. These are
Set 1 : ms = 170 GeV, a2 = 0.9

Set 2 : ms = 245 GeV, a2 = 1.7.
(6.4)

For both sets of points we vary vs, which corresponds to varying the strength of the

electroweak phase transition. This is clear, since higher values of vs correspond to larger

|a1| via eq. (6.1) and hence a larger contribution to the barrier separating the electroweak

minimum from the origin at finite temperature. We vary vs up to values such that either the

fluid approximation breaks down, or subsonic solutions no longer exist. This corresponds
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Figure 2. Wall velocities for the xSM parameter space described in the text. The solid (dashed)

curves depict the results neglecting (including) the SU(2)L gauge boson contributions to the finite

temperature effective potential and friction. No subsonic solutions are found with φh(Tn)/Tn & 1

(& 1.1) for the points in Set 1 neglecting (including) the gauge bosons. The curves corresponding

to Set 2 would extend beyond φh(Tn)/Tn = 1.1, however the perturbative fluid approximation

begins to break down significantly for stronger transitions, and so we restrict our results to the

region shown. The red dotted line shows the speed of sound in the plasma, above which non-

local electroweak baryogenesis is not possible. Note that we have searched exclusively for subsonic

solutions to the equations of motion.

roughly to values of vs between 30-100 GeV for Sets 1 and 2. Note that with our choices of

parameters, every point in Sets 1 and 2 will satisfy all current phenomenological constraints.

Specifically, the electroweak vacuum is absolutely stable for all points considered while the

absence of s− h mixing ensures that both h and the new singlet-like state are compatible

with current observations and limits.

6.2 Results

Finally we arrive at our results for the xSM. The wall velocities computed in a parameter

scan for the two sets of points (Set 1 and 2) described above are shown in figure 2. The criti-

cal bubble profile and nucleation temperature are computed using CosmoTransitions [129].

The solid lines depict the outcome of the gauge-invariant method. Stronger transitions

correspond to faster moving bubble walls. The perturbative fluid approximation becomes

worse and breaks down for stronger phase transitions, and so we cut off our scans above

φh(Tn)/Tn ∼ 1.1. Wall velocities for stronger phase transitions will only be larger than

those shown. The dashed lines depict the resulting wall velocities when including the gauge

boson cubic terms and friction. The values of vw are smaller in this case, although for Set

2 the gauge boson contribution makes a less significant difference. This suggests that our

gauge-invariant treatment should provide a reasonable, though rough, estimate of the wall

velocity when vw is not too large.
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Figure 2 confirms our intuition from section 6.1: larger thermal masses for the singlet

and SM-like Higgs field result in slower bubble walls. Larger thermal masses trap the fields

in the high-temperature minimum and delay the phase transition to lower temperatures.

This yields smaller changes in the VEVs for a given phase transition strength, and hence a

smaller pressure difference between the phases. The friction on the bubble wall also tends

to be enhanced for larger thermal masses.

Interestingly, for strong first-order phase transitions, we find that subsonic solutions

to the equations of motion may not exist. This is because as vw → cs, the background

temperature contribution begins to dominate in the Higgs and singlet field EOMs (it is

proportional to 1/(c2
s − v2

w)). As pointed out in ref. [54], the background terms typically

enter with a relative sign to those from the heavy species, thus reducing the total friction

for subsonic deflagrations. This behavior is seen for Set 1 in figure 2: no subsonic solution

exists for the gauge-invariant case with φh(Tn)/Tn & 1. Including the gauge-dependent

terms, subsonic solutions can extend up to φh(Tn)/Tn ∼ 1.1, but not higher. We conclude

that viable non-local electroweak baryogenesis in singlet-driven models is incompatible with

very strong first-order phase transitions, at least in some cases. This can be at odds with

sphaleron suppression inside the bubble, as seen for Set 1.

Even if a subsonic solution exists, the bubbles tend to expand rather quickly from

the standpoint of successful EWB. For example, previous studies of CP -violating sources

in the MSSM [27–29] suggest that electroweak baryogenesis tends to be most efficient for

vw ∼ 0.01, while figure 2 indicates that vw > 0.2 for most points featuring a strongly first-

order phase transition. Viable bayogenesis in singlet-driven scenarios may thus require

substantially more CP -violation than in models with slow walls (such as the MSSM with

light stops) to overcome the suppression arising from large vw.

Our methods also allow us to determine the wall widths and offset for the subsonic

configurations. These quantities are important inputs for microphysical calculations of

the baryon asymmetry. The resulting bubble wall profiles for Sets 1 and 2 are shown in

figure 3. The offset can change sign, with the singlet field lagging behind that of the SM-

like Higgs for stronger phase transitions. For φh(Tn)/Tn & 1, the wall widths are typically

∼ O(5/T ). This is substantially smaller than typical values in Standard Model-like cases

and consistent with the findings of ref. [48] in the NMSSM. Thin walls follow from the

large pressure difference due to the changing singlet VEV during the transition. This is in

fact promising for electroweak baryogenesis, since in many cases the CP -violating sources

scale as ∼ 1/Lw [28, 134].

One may ask to what extent we should expect similar results beyond the minimal real

singlet extension of the Standard Model. After all, the xSM is known to be incomplete

from the standpoint of electroweak baryogenesis, since it contains no new source of CP -

violation. However, the model can be modified slightly to incorporate CP -violation by e.g.

complexifying the singlet and adding CP -violating Higgs-singlet couplings, or by including

additional higher dimension CP -violating operators, as in ref. [112], in cases where the

singlet VEV vanishes at T = 0. Neither possibility should significantly alter the friction

on the bubble wall. We expect similar conclusions in other CP -violating extensions of the

xSM. Our findings followed primarily from the form of the friction, which is dominated
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Figure 3. Late-time bubble wall profiles relevant for electroweak baryogenesis obtained by solving

the wall equations of motion. The solid (dashed) curves depict the results neglecting (including) the

SU(2)L gauge boson contributions to the finite temperature effective potential and friction. The

top panel shows the singlet field offset, while the bottom two show the SM-like Higgs and singlet

wall widths. Bubbles with strong first-order phase transitions tend to feature Lh,s ∼ 5/T and the

singlet lagging slightly behind the Higgs field.

by the top quarks and gauge bosons for the SM-like Higgs field and the singlet and Higgs

excitations for the singlet field. As long as this is the case, the results beyond the minimal

model should be qualitatively similar to those we have found here. In fact, this is not

unreasonable: it would be difficult for new states to couple as strongly to the Higgs field

as the top quark without violating existing phenomenological constraints, for example.

Regardless, the methods and ingredients presented in sections 4–5 can be used to determine

the wall velocity beyond the minimal xSM, although this may require computing additional

interaction rates involving the excitations of the new species in the plasma.

7 Summary and conclusions

In this study, we have seen how to compute the electroweak bubble wall velocity at singlet-

driven first-order phase transitions. This extends previous work which applied to the

Standard Model– and MSSM-like cases. For concreteness, we framed our discussion in the

real singlet extension of the Standard Model, or xSM, although our methods can be used

in other models involving singlets at the electroweak phase transition.
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Some of the key findings of this study are:

• As anticipated, bubbles tend to expand rather quickly at first-order phase transitions

driven by tree-level cubic terms in which the singlet vacuum expectation value changes

appreciably. We have found vw & 0.2 for all points with φh(Tn)/Tn ≥ 1 in the

xSM. These wall velocities may be compatible with electroweak baryogenesis in some

cases, provided a sufficiently strong source of CP -violation. One should bear in mind,

however, that the free-particle approximation made for the singlet excitations may

overestimate the corresponding friction, and thus lead to an underestimate of vw.

• The most promising parameter space for slower bubble walls, and hence for elec-

troweak baryogenesis, features larger thermal masses for the singlet and SM-like

Higgs field. This translates into larger values of a2 and b4 in the xSM.

• Strong phase transitions may exhibit no subsonic solution and hence not allow for vi-

able transport-driven electroweak baryogenesis. For example, considering a particular

set of parameters in the xSM, we found no points with vw < cs for φh(Tn)/Tn & 1.1.

• A gauge-invariant estimation of the bubble wall velocity is possible and should ap-

proximate the full solution rather well for the slowest walls. The (gauge-dependent)

SU(2)L gauge boson contributions become important for faster moving bubble walls.

• Wall widths are typically of order ∼ 5/T for strong first-order phase transitions as

required for electroweak baryogenesis. These values are considerably smaller than

their Standard Model analogs which are often used in the literature.

Along with the above points, our treatment of the friction on the bubble wall can be

useful in various applications related to the electroweak plasma. For example, the interac-

tion rates computed for the top quarks and Higgs bosons can be used to extract diffusion

constants for these species, valid at leading log order and including the effects of hard

thermal loops, which are important in transport calculations for electroweak baryogenesis.

A rough estimate along the lines of ref. [21, 77] suggests Dh ∼ 13/T , Dt ∼ 2/T .

Our results are promising from the standpoint of observable gravitational radiation.

The peak amplitude for the stochastic gravity wave background produced at a phase transi-

tion is enhanced for faster moving bubbles and larger pressure differences. The ingredients

presented in this study can be used to more precisely compute the resulting gravity wave

spectrum in concrete models involving singlets. Recent work [67, 68] suggests that the

peak amplitude of the signal from a strong electroweak-scale phase transition may in fact

be significantly larger than previously realized. It would be interesting to analyze singlet

driven phase transitions given these new hydrodynamic insights along with our predictions

for the wall velocity in concrete models. An observable gravity wave signal could pro-

vide exciting (indirect) evidence for a first-order phase transition, and possibly electroweak

baryogenesis, in the early Universe.

There are several ways to improve over the methods presented this study. One might

hope to move beyond the simple fluid approximation to be able to study stronger phase
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transitions. Also beneficial would be a full leading-order determination of the quasiparticle

interaction rates entering the Boltzmann equations for the various perturbations. Other

improvements include accounting for the effects of the spherical bubble geometry on the

hydrodynamics, formulating a gauge-independent treatment incorporating the gauge and

Goldstone bosons (which is a difficult problem), and considering full numerical solutions to

the bubble wall equations of motion rather than utilizing an ansatz. These improvements,

required for more precise determinations of the wall velocity, would become much more im-

portant if the LHC or a future collider were to unearth direct evidence for a singlet-extended

Higgs sector. In the interim, we expect our methods to provide a decent approximation of

the bubble wall velocity in singlet-driven scenarios, which remain a particularly compelling

setting for electroweak baryogenesis in light of current experimental constraints.
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A Comparing effective interaction rates

The effective interaction rates we have computed and listed in Equations (4.25)–(4.29) dif-

fer by O(1) factors from those appearing in the classic references [20, 77]. In this appendix,

we show that this discrepancy can be explained by the slightly different set of approxima-

tions made in evaluating the integrals analytically in previous works. Technically, both the

methods used in refs. [20, 77] and in this work are valid ‘leading log approximations’ to the

full first-order result, in that only processes contributing logarithmically to the collision

integrals are considered. They differ primarily in their treatments of the non-logarithmic

pieces of the various momentum integrals. The discrepancies can therefore be understood to

demonstrate the uncertainties associated with the leading log approximation and the impor-

tance of performing a full leading-order calculation for more precise results in future studies.

To understand the different approaches to evaluating the collision integrals, let us con-

sider the process tt̄ → gg. First of all, ref. [77] does not include the symmetry factor for

the corresponding matrix elements, resulting in a factor of two discrepancy before evalu-

ating any integrals [120]. Including the symmetry factor, the leading-log matrix element is

≈ 64/9g4
3u/t, where we have averaged over the top quark degrees of freedom. The result-

ing contribution to Γtµ1,t, evaluating the integral numerically and including the top quark

momentum-dependent self-energy, is

∆Γtµ1,t ≈ 1.1× 10−3T, (A.1)
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whereas ref. [77] reports

∆Γtµ1,t '
16α2

s

9π3
× 9ζ2

2

16
log

9T 2

m2
q

T ≈ 3.8× 10−3T, (A.2)

including the correct symmetry factor. Starting from the same matrix element, the different

methods for evaluating the integrals results in almost a factor of 4 difference in the result.

Simply evaluating the integral in ref. [77] numerically, but including the thermal mass

in the propagator instead of the HTL momentum-dependent self-energy, we find

∆Γtµ1,t ≈ 1.5× 10−3T, (A.3)

suggesting that the simple propagator replacement over-estimates the integral by about

40%, but does not account for the whole discrepancy. In fact, most of the difference comes

from the various approximations made to arrive at the analytic result in eq. (A.2). In

particular, all non-logarithmic contributions are dropped, while numerically evaluating the

integrals includes all of the various contributions.

For example, the final result for ∆Γtµ1,t in ref. [77] contains an integral over the plasma

frame angle θ between p and k,∫
d cos θ

1

2
log

(
2 |p| |k| (1− cos θ)

m2
t

)
= −1 + log

4 |p| |k|
m2
t

. (A.4)

Moore and Prokopec drop the constant piece, keeping only the logarithm. However, the

contribution of the constant piece is numerically comparable, and of opposite sign, to

the logarithmic term. Performing the remaining integrals over |p|, |k|, the contribution

without the constant term is ∼ 3.1×10−3T , while including it yields ∼ 1.8×10−3T , which

is significantly closer to the results we have obtained. Similar approximations are made in

performing the other integrals, and for the other rates.

It is worth reiterating that neither approach includes all processes contributing at

leading order in the gauge couplings. Our interaction rates should simply be viewed as a

slightly different approximation to the full leading order result. Future studies of the wall

velocity in different models may find it beneficial to compare the results obtained from our

interaction rates and those of ref. [77] to assess the uncertainty expected from the leading

log approximation.
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