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1 Introduction

Since the decisive formulation of open bosonic string field theory [1], various attempts have

been made to construct manifestly covariant open superstring field theory based on the

Ramond-Neveu-Schwarz formalism [2–10]. They can be classified into two types, according

to the way to treat the Hilbert space of the superconformal ghost sector on the world-

sheet [11, 12]: the approaches based on the small Hilbert space, and those based on the

large Hilbert space. The relation between the two types of approach has recently been
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investigated with the technique of partial gauge fixing, especially in the Neveu-Schwarz

(NS) sector [13, 14]. In the partial gauge fixing, however, ghost string fields, which are

necessary for proper gauge fixing, are not taken into consideration; therefore the scope

of the analyses is limited to only a certain aspect of the theories. In particular, we can

say little about the relation from the viewpoint of the path integral.1 The aim of the

present paper is to acquire a deeper understanding by elucidating the relation at the level

of the master action, namely the solution to the classical master equation in the Batalin-

Vilkovisky (BV) formalism [16–19], which is the key for the path-integral quantization of

complicated gauge systems such as string field theory.

Historically, the first manifestly covariant open superstring field theory was formu-

lated by Witten [2]. Based on the small Hilbert space, it is a natural extension of open

bosonic string field theory. However, it has the problem of divergences caused by the

picture-changing operator inserted at the string midpoint [20]. Among the approaches to

overcoming this problem, the Berkovits formulation for the NS sector is remarkable [5].

The theory is constructed without using any picture-changing operators, based on the

large Hilbert space. Recently, the present authors et al. have manifested the mechanism

of how the problem in the Witten formulation is resolved in this formulation [13]. In the

paper [13], we have shown that the action and the gauge transformation in the Berkovits

formulation can be interpreted as the regularized versions of those in the Witten formu-

lation, using the technique of partial gauge fixing. Imposed on the condition for partial

gauge fixing, the Berkovits action can be written in the form including line integrals of the

picture-changing operator, rather than its local insertions; therefore the divergences in the

Witten formulation are avoided. Inspired by this line-integral regularization mechanism,

Erler, Konopka, and Sachs have constructed a new open superstring field theory with the

small Hilbert space approach [10], and its relation to the Berkovits formulation, also, has

been analyzed by the use of partial gauge fixing [14].2 In these studies on the relation

between the small Hilbert space approach and the large Hilbert space approach, however,

partial gauge fixing is performed without taking into account ghost string fields, and an

understanding from the viewpoint of the path integral is missing. In order to deepen our

understanding of the relation, in the present paper we perform a detailed analysis on the

NS sector in the Berkovits formulation and compare it with the one in the Witten formu-

lation, extending the condition for partial gauge fixing in ref. [13] to the sector of ghost

string fields. We first scrutinize the detailed gauge structure called reducibility structure.

It contains the information about ghost string fields, and governs the form of the master

action, which is the key for the path-integral quantization in the BV formalism. We then

investigate the relation between the master actions in the two formulations. Through the

analyses, we show that the reducibility structure and the master action under partial gauge

fixing of the Berkovits formulation can be regarded as the regularized versions of those in

the Witten formulation.

1For the case of free theory, the correspondence between the completely gauge-fixed actions in the Witten

formulation and the Berkovits formulation is shown in ref. [15].
2For the relation between the Berkovits formulation and the Erler-Konopka-Sachs formulation, see also

ref. [21].
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The present paper is organized as follows. In section 2, we briefly review the Witten

formulation and the Berkovits formulation of open superstring field theory, concentrating

on the NS sector. We then explain in section 3 partial gauge fixing of the Berkovits

formulation introduced in ref. [13]. After that, extending the condition for partial gauge

fixing, we investigate the reducibility structures and the master actions in sections 4 and 5,

respectively. Finally, section 6 is allocated for summary and discussion. Two appendices

are provided to supply details of the analyses.

2 The Witten formulation and the Berkovits formulation

In the present section, we review two formulations of open superstring field theory, concen-

trating on the NS sector. One is the Witten formulation [2], and the other is the Berkovits

formulation [5]. The action in the former is constructed in the small Hilbert space, and that

in the latter is in the large Hilbert space. We first summarize the basics of the two Hilbert

spaces in subsection 2.1; then we briefly review the Witten formulation in subsection 2.2

and the Berkovits formulation in subsection 2.3.

2.1 The small Hilbert space and the large Hilbert space

The small Hilbert space and the large Hilbert space are basic concepts in the Ramond-

Neveu-Schwarz formalism. In order to see the difference between the two spaces, we

fermionize the superconformal ghosts β and γ as in refs. [11, 12]:

β = e−φ∂ξ , γ = η eφ . (2.1)

The fields ξ and η are fermionic, whereas φ is bosonic. Here and in what follows, we omit

the normal-ordering symbol with respect to the SL(2,R)-invariant vacuum for simplicity,

and use the convention in which appropriate cocycle factors are implicitly included, so that

elφ (l ∈ odd) anticommute with fermionic operators. The fundamental operator product

expansions (OPEs) of ξ, η, and φ are given by

ξ(z1)η(z2) ∼
1

z1 − z2
, φ(z1)φ(z2) ∼ − ln (z1 − z2) , (2.2)

with “∼” denoting the equality up to non-singular terms. In (2.1), the operator ξ, whose

conformal weight is zero, is accompanied by the derivative symbol ∂. In fact, we can

describe superstring theory, not using the bare ξ. In other words, we can describe it

without the zero mode ξ0.
3 The superstring Hilbert space containing only the states which

can be constructed without ξ0 is called the small Hilbert space, and the one including also

3In the present paper, an operator O of conformal weight h is expanded in the coordinate z on the upper

half-plane as

O(z) =
∑

n

On

zn+h
. (2.3)
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the states involving ξ0 is called the large Hilbert space. If a state A is in the small Hilbert

space Hsmall, it is annihilated by the zero mode of η, and vice versa:

A ∈ Hsmall ⇐⇒ η0A = 0 . (2.4)

It follows from the OPEs of ξ and η that the zero modes ξ0 and η0 satisfy

ξ20 = η20 = 0 , {ξ0, η0} = 1 . (2.5)

Therefore any state ϕ in the large Hilbert space can be written in terms of two states A

and B in the small Hilbert space as

ϕ = A+ ξ0B , (2.6)

with

A = η0ξ0ϕ , B = η0ϕ . (2.7)

Thus we could say that the large Hilbert space is twice as large as the small one.

In each of the spaces, there are two important quantum numbers: the world-sheet

ghost number g and the picture number p. They are defined by the charges Qg and Qp

below:

Qg =

∮

C

dz

2πi

(
−bc(z)− ξη(z)

)
, Qp =

∮

C

dz

2πi

(
−∂φ(z) + ξη(z)

)
. (2.8)

Here we have used the doubling trick,4 and have denoted by C the counterclockwise unit

circle centered at the origin. The ghost number and the picture number of the BRST

operatorQ, for example, are one and zero, respectively. In the fermionized description (2.1),

we have

Q =

∮

C

dz

2πi
jB(z) , (2.9)

with the BRST current jB given by5

jB = cTm+ η eφGm+ bc∂c+
3

4
∂c∂φ−

1

4
c∂2φ−

1

2
c∂φ∂φ− cη∂ξ− bη∂η e2φ+

3

4
∂2c , (2.10)

where Tm is the matter energy-momentum tensor and Gm is the matter supercurrent. The

action of Q upon ξ gives the picture-changing operator [11, 12]

X := Q · ξ = eφGm + c∂ξ + b∂η e2φ + ∂
(
bη e2φ

)
, (2.11)

which raises picture number by one. We list the ghost number g and the picture number

p, together with the conformal weight h, of various operators in table 1.

Let 〈〈A,B〉〉 and 〈A,B〉 denote the Belavin-Polyakov-Zamolodchikov (BPZ) inner prod-

uct [24] of states A and B in the small Hilbert space and that in the large Hilbert space,

respectively. The inner product in the small Hilbert space, 〈〈A,B〉〉, vanishes unless the sum

4For the doubling trick, see refs. [22, 23], for example.
5The total derivative term 3

4
∂2c makes jB primary.
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operator b c ξ η elφ β γ jB X

(g,p) (−1, 0) (1, 0) (−1, 1) (1,−1) (0, l) (−1, 0) (1, 0) (1, 0) (0, 1)

h 2 −1 0 1 −1
2 l(l + 2) 3

2 −1
2 1 0

Table 1. The ghost number g, the picture number p, and the conformal weight h of various

operators.

of the ghost number of A and of B is equal to three, and the sum of the picture number of

A and of B is equal to minus two:

〈〈A,B〉〉 = 0 unless g(A) + g(B) = 3 , p(A) + p(B) = −2 . (2.12)

Here g(A) and g(B) are the ghost number of A and of B, respectively; p(A) and p(B) are

the picture number of A and of B, respectively. By contrast, the inner product in the large

Hilbert space, 〈A,B〉, vanishes unless the sum of the ghost numbers is equal to two and

the sum of the picture numbers is equal to minus one:

〈A,B〉 = 0 unless g(A) + g(B) = 2 , p(A) + p(B) = −1 . (2.13)

The two inner products are related as6

〈〈A,B〉〉 = i〈ξ0A, B〉 = i(−1)A〈A, ξ0B〉 (∀A, ∀B ∈ Hsmall) , (2.14)

with

(−1)A :=

{
+ 1 for A bosonic

− 1 for A fermionic
. (2.15)

Note that the inner product 〈A,B〉 in the large Hilbert space is identically zero if both A

and B are in the small Hilbert space:

〈A,B〉 = 0 (∀A, ∀B ∈ Hsmall) . (2.16)

2.2 The Witten formulation

The first formulation of manifestly covariant open superstring field theory was proposed by

Witten [2], based on the small Hilbert space approach. It is a natural extension of the cubic

open bosonic string field theory [1], with the action composed of the string fields in the

natural picture: an NS string field of picture number minus one and a Ramond string field

of picture number minus a half. However, it has the problem of divergences caused by the

picture-changing operator inserted at the string midpoint [20]. In the present subsection,

we review this open superstring field theory and its problem, focusing on the NS sector.

The NS-sector action in the Witten formulation, SW, is given by

SW = −
1

2

〈〈
ΨW, QΨW

〉〉
−

g

3

〈〈
ΨW, Xmid

(
ΨW ∗ΨW

)〉〉
. (2.17)

6See appendix B of ref. [25] for the reason why the imaginary unit is necessary.
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Here g denotes the open string coupling constant, Xmid denotes the picture-changing oper-

ator (2.11) inserted at the string midpoint, ΨW is a Grassmann-odd NS open superstring

field of even parity under the Gliozzi-Scherk-Olive (GSO) projection, and the symbol “∗”

represents the multiplication in the space of string fields [1]. (All the superstring fields

to appear in the present paper are GSO even.) For later convenience, we have appended

the superscript “W” to the string field in the Witten formulation. The world-sheet ghost

number g and the picture number p of ΨW are +1 and −1, respectively. In what follows,

the quantum number (g,p) of a string field will often be indicated by its subscript. For

example, the ΨW will be written also as ΨW
(1,−1).

As is mentioned in subsection 2.1, inner products of the form 〈〈A,B〉〉 vanish unless

p(A) + p(B) = −2. Therefore, without the insertion of X, which raises picture number

by one, the cubic term in the action (2.17) would identically be zero, and the interacting

theory could not be described. On the other hand, the very midpoint insertion of X causes

the two serious problems: scattering amplitudes are divergent even at the tree level, and

gauge transformation is not well-defined [20]. Here we focus on the latter problem, which is

related to the main subject of the present paper. The gauge transformation in the Witten

formulation is given by

δΨW
(1,−1) = QΛW

(0,−1) + gXmid

(
ΨW

(1,−1) ∗ Λ
W
(0,−1) − ΛW

(0,−1) ∗Ψ
W
(1,−1)

)
, (2.18)

where ΛW
(0,−1) is a Grassmann-even gauge parameter of ghost number zero and picture

number minus one. (Note that in the Witten formulation, all the NS string fields are in

the −1 picture.) In the variation of the action under the above transformation, the terms

of order g0 or g1 vanish, and that of order g2 takes the form

− g2
〈〈
XmidXmid

(
ΨW ∗ΨW

)
, ΨW ∗ ΛW − ΛW ∗ΨW

〉〉
. (2.19)

This would be zero if XmidXmid were finite, but the fact is that the OPE of the picture-

changing operator with itself is singular:

X(z1)X(z2) =
{
Q, ξ(z1)

}
X(z2) =

{
Q, ξ(z1)X(z2)

}

∼ −
2

(z1 − z2)2
{
Q, be2φ(z2)

}
−

1

z1 − z2

{
Q, ∂(be2φ)(z2)

}
. (2.20)

Thus the product XmidXmid, in which two X’s collide at the string midpoint, is divergent,

and the gauge transformation (2.18) is not well-defined.

2.3 The Berkovits formulation

In order to remedy the problems in the Witten formulation, Berkovits has formulated open

superstring field theory without using any picture-changing operators [5]. This theory,

unlike the Witten one, is constructed in the large Hilbert space. The NS-sector action in

the Berkovits formulation, SB, takes the following Wess-Zumino-Witten form:7

SB =
i

2g2

〈
G−1

(
QG

)
, G−1

(
η0G

)〉
−

i

2g2

∫ 1

0
dt

〈(
Ĝ−1∂tĜ

)
,
{
Ĝ−1

(
QĜ

)
, Ĝ−1

(
η0Ĝ

)}〉

(2.21)

7A factor of the imaginary unit in each term is necessary in order for the action to be real. See appendix

B of ref. [25].
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with

G = exp
(
gΦ(0,0)

)
, Ĝ = exp

(
tgΦ(0,0)

)
. (2.22)

Here Φ(0,0) is a GSO-even NS string field whose Grassmann parity is even. It carries no

ghost number and no picture number, as is indicated by the subscript (0, 0). In the above

equations and in what follows, we omit the multiplication symbol “∗” for simplicity, but

products of string fields are always defined by Witten’s star product.

The operator η0, as well as the BRST operator Q, acts as the derivation upon string

fields, satisfying

Q2 = η20 = {Q, η0} = 0 . (2.23)

In virtue of this, the action (2.21) is invariant under the transformation of the form [26]

δG = g
[(
Qǫ(−1,0)

)
G+G

(
η0ǫ(−1,1)

)]
. (2.24)

Note that there are not one but two gauge parameters ǫ(−1,0) and ǫ(−1,1). As the result

of the extension of the superstring Hilbert space, we have larger gauge symmetry in the

Berkovits formulation than in the Witten one. Furthermore, the two parameters are in

different pictures from each other. In the Witten formulation, all the NS string fields are

in the same picture, and the picture-changing operation is realized by X, whereas in the

Berkovits formulation, picture numbers of string fields are not fixed to the same value.

Nevertheless, as shown in ref. [13], the two formulations are related to each other: if we

perform partial gauge fixing in the Berkovits formulation, the resultant action and the

residual gauge transformation can be regarded as the regularized version of the action and

of the gauge transformation in the Witten formulation.

3 Partial gauge fixing in the Berkovits formulation

The two formulations of open superstring field theory introduced in the preceding section

may look completely different. They are, however, related to each other through partial

gauge fixing [13]. By fixing part of the gauge in the Berkovits formulation, we can show that

the free theories are equivalent; moreover, in the interacting case, the Berkovits formulation

can be interpreted as the regularized version of the Witten one. In the present section, we

review this relation. We first explain the basic idea of partial gauge fixing and demonstrate

the equivalence of the two formulations for the case of free theory in subsection 3.1. Then we

introduce in subsection 3.2 a one-parameter family of conditions for partial gauge fixing,

which is useful for the analysis of interacting theory. After that, in subsection 3.3, we

investigate the residual gauge symmetry under partial gauge fixing and explain its relation

to the Witten gauge transformation (2.18) in more detail and in a more sophisticated

manner than in ref. [13].

3.1 The basic idea of partial gauge fixing

Let us begin by reviewing the basic idea of partial gauge fixing. For this purpose, we

consider the free theories, showing their equivalence. The equation of motion in the free

Witten theory is given by

QΨW
(1,−1) = 0 , (3.1)

– 7 –
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and that in the free Berkovits theory is given by

Qη0Φ(0,0) = 0 . (3.2)

Because the string field ΨW
(1,−1) in (3.1) is in the small Hilbert space, it satisfies

η0Ψ
W
(1,−1) = 0 . (3.3)

Using this equation and the identity

{ξ0, η0} = 1 , (3.4)

we can rewrite (3.1) as

0 = QΨW
(1,−1) = Q{ξ0, η0}Ψ

W
(1,−1) = Qη0

(
ξ0Ψ

W
(1,−1)

)
. (3.5)

Therefore, for any solution ΨW
(−1,1) to the equation of motion (3.1) in the Witten formu-

lation, we have a solution ξ0Ψ
W
(−1,1) to the equation (3.2) in the Berkovits formulation.

In fact, by the use of the gauge transformation, the string field Φ(0,0) in the Berkovits

formulation can always be brought to the form

Φ(0,0) = ξ0Ψ(1,−1) with η0Ψ(1,−1) = 0 , (3.6)

where Ψ(1,−1) is some string field depending on Φ(0,0). Indeed, in the free theory,8 the

gauge transformation (2.24) reduces to

δΦ(0,0) = Qǫ(−1,0) + η0ǫ(−1,1) , (3.7)

and therefore if we consider the transformation specified by

ǫ(−1,0) = 0 , ǫ(−1,1) = −ξ0Φ(0,0) , (3.8)

the resultant gauge transform takes the form

Φ(0,0) + δΦ(0,0) =
(
1− η0ξ0

)
Φ(0,0) = ξ0η0Φ(0,0) = ξ0Ψ(1,−1) , (3.9)

with

Ψ(1,−1) = η0Φ(0,0) . (3.10)

In this manner, setting Φ(0,0) in the form (3.6) corresponds to fixing part of the gauge. The

condition for this partial gauge fixing is given by

ξ0Φ(0,0) = 0 . (3.11)

Under this condition, we can show also that in free theory the action in the Berkovits

formulation reduces to the gauge-invariant action in the Witten formulation. To see this,

let us start with the free Berkovits action

SB
∣∣
g=0

=
i

2

〈
QΦ(0,0), η0Φ(0,0)

〉
= −

i

2

〈
Φ(0,0), Qη0Φ(0,0)

〉
. (3.12)

8For the case of interacting theory, see appendix A.
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When Φ(0,0) is written in the form (3.6), we obtain

−
i

2

〈
Φ(0,0), Qη0Φ(0,0)

〉
= −

i

2

〈
ξ0Ψ(1,−1), QΨ(1,−1)

〉
= −

1

2

〈〈
Ψ(1,−1), QΨ(1,−1)

〉〉
. (3.13)

(In the last equality, we have used the relation (2.14).) Thus (3.12) coincides with the free

Witten action under the identification

Ψ(1,−1)
∼= ΨW

(1,−1) . (3.14)

In the above argument, we have only used the following properties of ξ0:

(g,p) = (−1, 1) , ξ20 = 0 , {ξ0, η0} = 1 . (3.15)

Therefore we may replace ξ0 with a Grassmann-odd operator Ξ satisfying

(g,p) = (−1, 1) , Ξ2 = 0 , {Ξ, η0} = 1 , (3.16)

and may consider the condition

ΞΦ(0,0) = 0 . (3.17)

The relation (2.14) is then generalized to

〈〈A,B〉〉 = i〈ΞA, B〉 , 〈〈A,B〉〉 = i(−1)A〈A, ΞB〉 (∀A, ∀B ∈ Hsmall) , (3.18)

and we can show the equivalence of the two free theories under the partial gauge fixing (3.17)

in the same manner as before, identifying Ψ(1,−1) = η0Φ(0,0) in the Berkovits formulation

with ΨW
(1,−1) in the Witten formulation.

3.2 A one-parameter family of conditions for partial gauge fixing

In the preceding subsection, we examined only the free theories. To show their equivalence,

we did not have to specify the form of Ξ in (3.17). In the interacting case, however, the

choice of Ξ becomes important. A particular type of Ξ helps us to manifest the relation

between the two formulations. In the present subsection, we review such useful gauge

choices proposed in ref. [13].

We consider a one-parameter family of conditions for partial gauge fixing of the form

ΞλΦ(0,0) = 0 (0 < λ < ∞) . (3.19)

Here Ξλ are operators defined by integrals along the counterclockwise unit circle C centered

at the origin:

Ξλ =

∮

C

dz

2πi
uλ(z)ξ(z) , (3.20)

with

uλ(z) =
1

z − ie−λ
−

1

z − ieλ
. (3.21)

As is explained in ref. [13], in the limit λ → 0 we have

Ξλ = ξ(ie−λ) +O(λ) . (3.22)

– 9 –
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From the viewpoint of the state-operator correspondence in the conformal frame on the

upper half-plane, the open string lies on the unit upper half-circle centered at the origin,

with its midpoint at z = i. Therefore, the operator Ξλ approaches ξmid, the midpoint

insertion of ξ, as the parameter λ tends to zero:

Ξλ → ξmid (λ → 0) . (3.23)

Furthermore, from (3.22) we obtain

Xλ = X(ie−λ) +O(λ) , (3.24)

where Xλ is the BRST transform of Ξλ:

Xλ := {Q,Ξλ} . (3.25)

Hence Xλ becomes Xmid, the midpoint insertion of the picture-changing operator, when λ

goes to zero:

Xλ → Xmid (λ → 0) . (3.26)

We also note that Ξλ are BPZ even:

bpz
(
Ξλ

)
= Ξλ . (3.27)

3.3 Residual gauge symmetry under partial gauge fixing

The condition (3.19) considered in the preceding subsection eliminates the gauge degrees of

freedom in the Berkovits formulation only partially. Therefore, there remains residual gauge

symmetry even after the condition is imposed. In the present subsection, we investigate

the residual gauge transformation which preserves condition (3.19), which can be regarded

as the regularized version of the Witten gauge transformation (2.18), in more detail and

in a more sophisticated manner than in ref. [13]. For this purpose, it is convenient to

express (2.24) in terms of Φ = Φ(0,0) rather than G. In order to perform this rewriting, we

introduce the adjoint operator adgΦ = g adΦ, whose action upon a string field A is defined

by

adgΦ(A) ≡ g adΦ(A) := g [Φ, A] . (3.28)

This operator satisfies

eαadgΦA = exp
(
αgΦ

)
A exp

(
−αgΦ

)
(∀α ∈ C) . (3.29)

From [Φ, G] = 0, for an arbitrary variation of Φ we obtain

e−
1
2
gΦδ [Φ, G] e−

1
2
gΦ = 0 ⇐⇒

(
e

1
2
adgΦ − e−

1
2
adgΦ

)
δΦ = e−

1
2
gΦ [Φ, δG] e−

1
2
gΦ

⇐⇒ δΦ = g−1 adgΦ

1− e−adgΦ

(
G−1δG

)
. (3.30)

Therefore, the gauge variation of Φ is given by

δΦ =
adgΦ

1− e−adgΦ

(
e−adgΦQǫ(−1,0) + η0ǫ(−1,1)

)

=
adgΦ

eadgΦ − 1
Qǫ(−1,0) +

−adgΦ

e−adgΦ − 1
η0ǫ(−1,1) . (3.31)
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Now suppose that Φ obeys condition (3.19). In order for the gauge transform of Φ to keep

the condition, the variation (3.31) has to satisfy

Ξλ δΦ = 0 . (3.32)

Under this constraint, the gauge parameters ǫ(−1,0) and ǫ(−1,1) are not independent any

longer. As a matter of fact, we can express η0ǫ(−1,1) in terms of Φ and Qǫ(−1,0) as follows.

Because the residual transformation satisfies (3.32), we have

η0ǫ(−1,1) = η0Ξλ

(
η0ǫ(−1,1) − δΦ

)

= −η0Ξλ

[
adgΦ

eadgΦ − 1
Qǫ(−1,0) +

(
−adgΦ

e−adgΦ − 1
− 1

)
η0ǫ(−1,1)

]
. (3.33)

This equation can be solved recursively in η0ǫ(−1,1), and we obtain

η0ǫ(−1,1) = −
∞∑

n=0

[
−η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]n
η0Ξλ

adgΦ

eadgΦ − 1
Qǫ(−1,0)

= −

[
1 + η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0Ξλ

adgΦ

eadgΦ − 1
Qǫ(−1,0) . (3.34)

In the last equality, we have used the fact that the sum in (3.34) converges for small g

because the operator

− η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)
(3.35)

is O(g). Substituting (3.34) into (3.31), we find that the explicit form of the residual

transformation is given by

δresΦ =

(
1−

−adgΦ

e−adgΦ − 1

[
1+ η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0Ξλ

)
adgΦ

eadgΦ − 1
Qǫ(−1,0) . (3.36)

Thus the residual gauge transformation in the Berkovits formulation is parameterized by a

single gauge parameter as the gauge transformation in the Witten formulation is. In fact,

the former can be regarded as the regularized version of the latter. To see this, we express

Φ as

Φ = ΞλΨ , Ψ ∈ Hsmall , (3.37)

and consider the residual transformation in terms of the string field Ψ = η0Φ, which will

correspond to ΨW
(1,−1) in the Witten formulation. Expanding (3.36) in g, we obtain

δresΨ = −Qη0ǫ(−1,0) −
g

2

([
Ψ , (1 + η0Ξλ)Qǫ(−1,0)

]
−
[
ΞλΨ , Qη0ǫ(−1,0)

])
+O(g2) . (3.38)

Unlike the gauge parameter ΛW
(0,−1) in the Witten formulation, which is in the small Hilbert

space, the parameter ǫ(−1,0) in the Berkovits formulation moves around the whole of the

large Hilbert space. Nevertheless, as shown in appendix B, without loss of generality we

may assume that ǫ(−1,0) satisfies the condition

Ξλǫ(−1,0) = 0 . (3.39)
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Therefore, ǫ(−1,0) can be written as

ǫ(−1,0) = −ΞλΛ(0,−1) (3.40)

for some Λ(0,−1) ∈ Hsmall, and the Λ(0,−1) is naturally related to the gauge parameter

in the Witten formulation. This can be seen as follows. First, we transform the term

(1 + η0Ξλ)Qǫ(−1,0) in (3.38) as

(1 + η0Ξλ)Qǫ(−1,0) = −QΞλΛ(0,−1) − η0ΞλQΞλΛ(0,−1) = −QΞλΛ(0,−1) − η0XλΞλΛ(−1,0)

= −QΞλΛ(0,−1) −Xλη0ΞλΛ(0,−1) = −QΞλΛ(0,−1) −XλΛ(0,−1)

= −2XλΛ(0,−1) + ΞλQΛ(0,−1) . (3.41)

Here we have used the relations

{Q,Ξλ} = Xλ , (3.42a)

Ξ2
λ = 0 , (3.42b)

[η0,Xλ] = 0 , (3.42c)

η0ΞλΛ(0,−1) = (1− Ξλη0) Λ(0,−1) = Λ(0,−1) . (3.42d)

Then, eq. (3.38) becomes

δresΨ = QΛ(0,−1) −
g

2

([
Ψ , (−2Xλ + ΞλQ)Λ(0,−1)

]
+
[
ΞλΨ , QΛ(0,−1)

])
+O(g2) . (3.43)

The point is that in the singular limit λ → 0, the operators Xλ and Ξλ in (3.43) effectively

become the midpoint insertions Xmid and ξmid, respectively, and we have

δresΨ
λ→0
−→ QΛ(0,−1) + g

([
Ψ, XmidΛ(0,−1)

]
−
[
Ψ, ξmidQΛ(0,−1)

]
−
[
ξmidΨ, QΛ(0,−1)

])

+O(g2)

= QΛ(0,−1) + gXmid

[
Ψ,Λ(0,−1)

]
+O(g2) . (3.44)

In the last line, we have used

(
XmidA

)
B = A

(
XmidB

)
= Xmid

(
AB

)
, (3.45)

(
ξmidA

)
B = (−1)AA

(
ξmidB

)
= ξmid

(
AB

)
(3.46)

for any pair of string fields A and B. It should be noted that the O(g2) term in (3.44) is

divergent. Apart from this O(g2) term, however, the last line of (3.44) precisely coincides

with the Witten gauge transformation (2.18) under the identification

Ψ ∼= ΨW
(1,−1) , Λ(0,−1)

∼= ΛW
(0,−1) . (3.47)

Thus we find that in this singular limit, the residual transformation (3.38) is naturally

related to the Witten gauge transformation. We could say that the O(g2) term plays

the role of the counterterm. In fact, the Berkovits theory under the gauge (3.19) can be

regarded as the regularized version of the Witten one [13].
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4 Reducibility structure

In subsection 3.3, we have considered the residual gauge transformation under partial gauge

fixing of the Berkovits theory, manifesting its relation to the Witten gauge transformation.

Developing our analysis further, in the present section, we investigate more detailed gauge

structure called reducibility structure. The structure is important in that it governs quan-

tization procedure. For example, it determines whether the quantization requires not only

ordinary ghosts but also additional ghosts such as ghosts for ghosts.

We first explain the concept of reducibility in subsection 4.1, and illustrate reducibil-

ity structure with open bosonic string field theory in subsection 4.2. We then review

the reducibility structure of the Witten formulation in subsection 4.3, and explain that

of the Berkovits formulation in subsection 4.4. After that, in subsection 4.5, we exam-

ine the relation between the reducibility structures of the two formulations. We find

that the reducibility structure of the Berkovits formulation under the partial gauge fix-

ing includes, as a sub-structure, the regularized version of the reducibility structure of the

Witten formulation.

4.1 The concept of reducibility

In order to explain the concept of reducibility, let us consider a gauge system described

by a classical action S = S[ϕ], which depends on a classical field ϕ, and assume that the

action is invariant under gauge transformation of the form9

ϕ −→ ϕ+ δǫ0ϕ . (4.1)

In the above equation, we have appended the subscript “ǫ0” to the variation symbol δ in

order to indicate that the variation is parameterized by ǫ0. We use a similar notation in

what follows in the present subsection (and only in the present subsection). In general, if

we change the parameter ǫ0 as

ǫ0 −→ ǫ0 + δǫ1ǫ0 , (4.2)

with ǫ1 parameterizing the variation of ǫ0, the form of δǫ0ϕ changes accordingly. In some

theories, however, for some particular choice of δǫ1ǫ0, the gauge variation δǫ0ϕ is invariant

under (4.2) if we use the equation of motion

δS

δϕ
= 0 . (4.3)

For such δǫ1ǫ0, we have

δǫ1
(
δǫ0ϕ

)
≃ 0 , (4.4)

where the symbol “≃” denotes the equality which holds if (but not necessarily only if) we

use the equation of motion. Furthermore, in complicated gauge systems, there exists also

a variation

ǫ1 −→ ǫ1 + δǫ2ǫ1 (4.5)

9For simplicity, we consider a gauge system described by a single field ϕ and a single gauge parameter ǫ0.
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which keeps δǫ1ǫ0 invariant under the use of the equation of motion:

δǫ2
(
δǫ1ǫ0

)
≃ 0 . (4.6)

In general, a gauge system is said to be N -th stage reducible if there exist a series of

parameters ǫk (0 ≤ k ≤ N) and a series of variations δǫkǫk−1 (0 ≤ k ≤ N ; ǫ−1 := ϕ)

which satisfy

δǫk
(
δǫk−1

ǫk−2

)
≃ 0 (1 ≤ k ≤ N) . (4.7)

As we see in the following subsections, string field theory is infinitely reducible, with the

above N infinity.

4.2 Reducibility structure of open bosonic string field theory

To illustrate reducibility structure, let us consider open bosonic string field theory [1], for

example. Its action takes the form

Sbos = −
1

2
〈Ψ1, QΨ1〉 −

g

3
〈Ψ1,Ψ1 ∗Ψ1〉 , (4.8)

where Ψ1 is a Grassmann-odd string field of world-sheet ghost number one. In what follows,

the world-sheet ghost number g of a bosonic string field is indicated by a subscript as in

Ψg. The BRST operator and the BPZ inner product in the Hilbert space of the bosonic

theory are denoted by the same symbols Q and 〈 , 〉, respectively, as in the Berkovits

formulation, for simplicity.

Let us first examine the free theory. The gauge transformation is given by

δ0Ψ1 = QΛ0 . (4.9)

For convenience, we have appended the subscript “0” to the variation symbol δ. The point

is that because Q is nilpotent, δ0Ψ1 does not change under the following variation of the

gauge parameter:

δ1Λ0 = QΛ−1 . (4.10)

Moreover, eq. (4.10) is invariant under the variation of the form

δ2Λ−1 = QΛ−2 . (4.11)

In fact, there exists a series of variations of parameters. The n-th variation

δnΛ−(n−1) = QΛ−n

(
n ≥ 0; Λ1 := Ψ1

)
(4.12)

is not affected by the (n+ 1)-st variation of the form

δn+1Λ−n = QΛ−(n+1) . (4.13)

In other words, we have

δn+1

(
δnΛ−(n−1)

)
= 0 (n ≥ 0) . (4.14)
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The Grassmann parity of Λ−n is even (resp. odd) if n is even (resp. odd). Note that the

above equation holds without using the equation of motion. This is a feature of the free

string field theory. In the interacting theory, however, this is not the case. Let us next

see this.

By the presence of the interaction, the gauge transformation (4.9) is replaced with

δ0Ψ1 = QΛ0 + g
[
Ψ1,Λ0

]
. (4.15)

Unlike the free theory, the interacting theory does not have a variation δ1Λ0 which keeps

δ0Ψ1 strictly invariant. However, we find that the variation

δ1Λ0 = QΛ−1 + g
{
Ψ1,Λ−1

}
(4.16)

does not change (4.15) if we use the equation of motion

δSbos

δΨ1
≡ −QΨ1 − g

(
Ψ1 ∗Ψ1

)
= 0 . (4.17)

Indeed we have

δ1
(
δ0Ψ1

)
= −g

[
δSbos

δΨ1
, Λ−1

]
, (4.18)

which vanishes under the use of the equation of motion. Moreover, eq. (4.16) is invariant

under the variation

δ2Λ−1 = QΛ−2 + g
[
Ψ1,Λ−2

]
(4.19)

if we use (4.17). In fact, if the equation of motion holds, the n-th variation in the interacting

theory

δnΛ−(n−1) = QΛ−n + g
[
Ψ1,Λ−n

}
(n ≥ 0) (4.20)

with [ , } denoting the graded commutator is not affected by the (n + 1)-st variation of

the form

δn+1Λ−n = QΛ−(n+1) + g
[
Ψ1,Λ−(n+1)

}
(4.21)

because we have

δn+1

(
δnΛ−(n−1)

)
= −g

[
δSbos

δΨ1
, Λ−(n+1)

]
. (4.22)

We thus find that the open bosonic string field theory is infinitely reducible. It should be

noted that it is because g is zero that in the free theory δn+1

(
δnΛ−(n−1)

)
exactly vanish.

4.3 Reducibility structure of the Witten formulation

As we have seen in subsection 2.2, open superstring field theory in the Witten formulation

has the problem of divergences caused by the collision of picture-changing operators. Apart

from such divergences, however, its reducibility structure is quite similar to that of open

bosonic string field theory. In particular, the structures of the free theories are exactly the

same. Indeed, the gauge variation

δ0Ψ
W
(1,−1) = QΛW

(0,−1) (4.23)
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in the free open superstring field theory does not change under the variation of the form

δ1Λ
W
(0,−1) = QΛW

(−1,−1) , (4.24)

and the n-th variation

δnΛ
W
(−(n−1),−1) = QΛW

(−n,−1)

(
n ≥ 0; ΛW

(1,−1) := ΨW
(1,−1)

)
(4.25)

is not affected by the (n+ 1)-st variation

δn+1Λ
W
(−n,−1) = QΛW

(−(n+1),−1) . (4.26)

Thus we have

δn+1

(
δnΛ

W
(−(n−1),−1)

)
= 0 (n ≥ 0) , (4.27)

where the Grassmann parity of ΛW
(−n,−1) is even (resp. odd) if n is even (resp. odd).

Let us next consider the interacting NS-sector theory. In this case, there arise diver-

gences caused by the picture-changing operator, but we examine formal gauge structure,

neglecting such divergences. In the interacting theory, the gauge transformation is given

by

δ0Ψ
W
(1,−1) = QΛW

(0,−1) + gXmid

[
ΨW

(1,−1),Λ
W
(0,−1)

]
. (4.28)

As in the case of the bosonic theory, the interacting NS-sector theory does not have a

variation δ1Λ
W
(0,−1) which keeps δ0Ψ

W
(1,−1) strictly invariant. However, the variation

δ1Λ
W
(0,−1) = QΛW

(−1,−1) + gXmid

{
ΨW

(1,−1),Λ
W
(−1,−1)

}
(4.29)

does not change (4.28) formally if we use the equation of motion

δSW

δΨW
≡ −QΨW − gXmid

(
ΨW ∗ΨW

)
= 0 . (4.30)

Indeed we have

δ1
(
δ0Ψ

W
(1,−1)

)
= −gXmid

[
δSW

δΨW
, ΛW

(−1,−1)

]
, (4.31)

which vanishes under the use of the equation of motion if we neglect the divergence caused

by the Xmid in front of the commutator and that in δSW

δΨW . Similarly, if we use (4.30), the

n-th variation

δnΛ
W
(−(n−1),−1) = QΛW

(−n,−1) + gXmid

[
ΨW

(1,−1),Λ
W
(−n,−1)

}
(n ≥ 0) (4.32)

is not affected formally by the (n+ 1)-st variation

δn+1Λ
W
(−n,−1) = QΛW

(−(n+1),−1) + gXmid

[
ΨW

(1,−1),Λ
W
(−(n+1),−1)

}
(4.33)

because we have

δn+1

(
δnΛ

W
(−(n−1),−1)

)
= −gXmid

[
δSW

δΨW
, ΛW

(−(n+1),−1)

]
. (4.34)
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4.4 Reducibility structure of the Berkovits formulation

Now that we have examined the reducibility structure of the Witten formulation, let us

next consider that of the Berkovits formulation. Here we will review the structure before

partial gauge fixing, following refs. [15, 27]. As we will see, the Berkovits theory, also, is

infinitely reducible.

Let us begin by analyzing the free theory. The gauge transformation in the free theory

is given by

δ0Φ = Qǫ(−1,0) + η0ǫ(−1,1) . (4.35)

In the matrix notation, this can be written as

δ0Φ =
[
Q η0

] [ǫ(−1,0)

ǫ(−1,1)

]
. (4.36)

In virtue of the relation

Q2 = η20 = {Q, η0} = 0 , (4.37)

eq. (4.36) does not change under the variation of the form

δ1

[
ǫ(−1,0)

ǫ(−1,1)

]
=

[
Q η0 0

0 Q η0

]

ǫ(−2,0)

ǫ(−2,1)

ǫ(−2,2)


 . (4.38)

Moreover, eq. (4.38) is invariant under the variation

δ2



ǫ(−2,0)

ǫ(−2,1)

ǫ(−2,2)


 =



Q η0 0 0

0 Q η0 0

0 0 Q η0







ǫ(−3,0)

ǫ(−3,1)

ǫ(−3,2)

ǫ(−3,3)


 . (4.39)

In fact, there exists a series of variations of parameters. The n-th variation

δn



ǫ(−n,0)

...

ǫ(−n,n)


 = n+ 1








Q η0 0
. . .

. . .

0 Q η0




︸ ︷︷ ︸
n+2




ǫ(−(n+1),0)
...

ǫ(−(n+1),n+1)


 (n ≥ 0) (4.40)

with

ǫ(0,0) := Φ (4.41)

is not affected by the (n+ 1)-st variation of the form

δn+1




ǫ(−(n+1),0)
...

ǫ(−(n+1),n+1)


 = n+ 2








Q η0 0
. . .

. . .

0 Q η0




︸ ︷︷ ︸
n+3




ǫ(−(n+2),0)
...

ǫ(−(n+2),n+2)


 . (4.42)
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In other words, we have

δn+1


δn



ǫ(−n,0)

...

ǫ(−n,n)





 = 0 (n ≥ 0) . (4.43)

The Grassmann parity of ǫ(−n,m) (0 ≤ m ≤ n) is even (resp. odd) if n is even (resp. odd).

As in the case of the free Witten theory, the above equation holds without the use of the

equation of motion.

Next let us consider the reducibility structure of the interacting theory. For this

purpose, it is convenient to introduce the deformed BRST operator [27, 28]

Q̃ := e−adgΦQeadgΦ . (4.44)

This operator is nilpotent as Q is:

Q̃2 = 0 . (4.45)

However, it does not anticommute with η0: for an arbitrary string field A, we have

{
Q̃, η0

}
A = −i g2

[
δSB

δG
G, A

]
. (4.46)

The right-hand side is proportional to the derivative of the action10

δSB

δG
=

i

g2
η0

(
G−1QG

)
G−1 , (4.47)

and therefore we obtain {
Q̃, η0

}
≃ 0 . (4.48)

In order to investigate the reducibility structure, we start from the following form of the

gauge transformation (see (3.31)):

δ0Φ =
adgΦ

1− e−adgΦ

(
e−adgΦQǫ(−1,0) + η0ǫ(−1,1)

)
. (4.49)

Unlike the free theory, the interacting theory does not have a variation of the gauge pa-

rameters which keeps δ0Φ strictly invariant. Eq. (4.48) tells us, however, that the variation

δ1

[
ǫ(−1,0)

ǫ(−1,1)

]
=

[
Q eadgΦη0 0

0 Q̃ η0

]

ǫ(−2,0)

ǫ(−2,1)

ǫ(−2,2)


 (4.50)

does not change (4.49) if we use the equation of motion

δSB

δG

(
∝

δSB

δΦ

)
= 0 . (4.51)

10For the derivation of (4.47), see ref. [26] for example.
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Indeed, noting

δ1
(
Qǫ(−1,0)

)
= Q

(
δ1ǫ(−1,0)

)
= QeadgΦη0ǫ(−2,1) , (4.52a)

δ1
(
η0ǫ(−1,1)

)
= η0

(
δ1ǫ(−1,1)

)
= η0Q̃ǫ(−2,1) , (4.52b)

we have

δ1
(
δ0Φ

)
=

adgΦ

1− e−adgΦ

(
e−adgΦδ1

(
Qǫ(−1,0)

)
+ δ1

(
η0ǫ(−1,1)

))

=
adgΦ

1− e−adgΦ

{
Q̃, η0

}
ǫ(−2,1) . (4.53)

Furthermore, eq. (4.50) is invariant under the variation

δ2



ǫ(−2,0)

ǫ(−2,1)

ǫ(−2,2)


 =



Q eadgΦη0 0 0

0 Q̃ η0 0

0 0 Q̃ η0







ǫ(−3,0)

ǫ(−3,1)

ǫ(−3,2)

ǫ(−3,3)


 (4.54)

if we use (4.51). In fact, if the equation of motion is satisfied, the n-th variation in the

interacting theory

δn



ǫ(−n,0)

...

ǫ(−n,n)


 = n+ 1








Q eadgΦη0 0
Q̃ η0

. . .
. . .

0 Q̃ η0




︸ ︷︷ ︸
n+2




ǫ(−(n+1),0)
...

ǫ(−(n+1),n+1)


 (n ≥ 1) (4.55)

is not affected by the (n+ 1)-st variation of the form

δn+1




ǫ(−(n+1),0)
...

ǫ(−(n+1),n+1)


 = n+ 2








Q eadgΦη0 0
Q̃ η0

. . .
. . .

0 Q̃ η0




︸ ︷︷ ︸
n+3




ǫ(−(n+2),0)
...

ǫ(−(n+2),n+2)


 . (4.56)

Note that in the first matrix on the right-hand side of (4.55), the first row contains Q (not

Q̃) and eadgΦη0, whereas the others contain Q̃ and η0.

4.5 Relation between the reducibility structures of the two formulations

In the preceding subsection, we have explained the reducibility structure of the Berkovits

formulation before partial gauge fixing. There, starting from (4.49) with the two gauge

parameters independent, we have obtained a series of the variations (4.55), which satisfy

δn+1


δn



ǫ(−n,0)

...

ǫ(−n,n)





 ≃ 0 (n ≥ 0) . (4.57)
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For example, the variations δ1ǫ(−1,0) and δ1ǫ(−1,1) are given by (see (4.50))

δ1ǫ(−1,0) = Qǫ(−2,0) + eadgΦη0ǫ(−2,1) , (4.58a)

δ1ǫ(−1,1) = Q̃ǫ(−2,1) + η0ǫ(−2,2) . (4.58b)

If once the partial gauge fixing is performed, however, the parameters ǫ(−1,0) and ǫ(−1,1) are

not independent any longer: η0ǫ(−1,1) can be expressed in terms of Qǫ(−1,0) as in (3.34).

Hence the reducibility structure is altered. In the present subsection, we will investigate

how it is altered by the partial gauge fixing, and show that it includes, as a sub-structure,

the regularized version of the reducibility structure of the Witten formulation. Before

beginning the analysis, let us summarize below the results to be obtained, in order to

clarify the direction in which we are going.

1. The residual gauge transformation (3.36) is parameterized only by ǫ(−1,0), so that

ǫ(−1,1) disappears from the reducibility structure. Then, this disappearance entails

the disappearance of ǫ(−2,2). In fact, if a parameter ǫ(−n,n) (n ≥ 1) disappears from

the reducibility structure, so does ǫ(−(n+1), n+1): in (4.55), the parameter ǫ(−(n+1), n+1)

appears only in the variation

δnǫ(−n,n) = Q̃ǫ(−(n+1), n) + η0ǫ(−(n+1), n+1) , (4.59)

and therefore the disappearance of ǫ(−n,n) entails the disappearance of ǫ(−(n+1), n+1).

Hence, under the partial gauge fixing (3.19), all the parameters of the form ǫ(−n,n)

(n ≥ 1) disappear from the reducibility structure. Therefore, instead of (4.55) we

obtain

δn




ǫ(−n,0)
...

ǫ(−n,n−1)


 = n








Q eadgΦη0 0
Q̃ η0

. . .
. . .

0 Q̃ η0




︸ ︷︷ ︸
n+1



ǫ(−(n+1),0)

...

ǫ(−(n+1),n)


 (n ≥ 1) . (4.60)

2. Extending condition (3.19), we consider the following restriction:

Ξλǫ(−n,0) = 0 (∀n ≥ 0; ǫ(0,0) := Φ) . (4.61)

Just as ǫ(−n,n) (n ≥ 1) disappear from the reducibility structure under condi-

tion (3.19), many of the parameters ǫ(−n,m) (0 ≤ m ≤ n) disappear under the above

restriction. In fact, the reducibility sub-structure specified by (4.61) is described only

by ǫ(−n,0) (n ≥ 0). Expressing them as

ǫ(−n,0) = (−1)n ΞλΛ(−(n−1),−1) with Λ(−(n−1),−1) ∈ Hsmall , (4.62)

we find that Λ(−(n−1),−1) are counterparts of ΛW
(−(n−1),−1) in (4.32) and the sub-

structure can be regarded as the regularized version of the reducibility structure of

the Witten formulation.
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Now let us confirm the above. We first investigate how the reducibility structure is

altered by the partial gauge fixing (3.19). For this purpose, it is convenient to start from

the following form of the residual gauge transformation:

δ̂0Φ =
adgΦ

1− e−adgΦ

(
e−adgΦQǫ(−1,0) + η0ǫ(−1,1)

)
, (4.63)

with η0ǫ(−1,1) depending on Qǫ(−1,0) as in (3.34). Here and in what follows, we append a

hat to a variation symbol when we consider a variation under the partial gauge fixing. In

order to find the variation δ̂1ǫ(−1,0) which satisfies the reducibility relation

δ̂1
(
δ̂0Φ

)
≃ 0 , (4.64)

let us try performing on ǫ(−1,0) the transformation

δ̂1ǫ(−1,0) = Qǫ(−2,0) + eadgΦη0ǫ(−2,1) (4.65)

as in (4.58a). Then, through the relation (3.34), η0ǫ(−1,1) is transformed accordingly,

with its variation δ̂1
(
η0ǫ(−1,1)

)
different from (4.52b); hence δ̂1

(
δ̂0Φ

)
does not coincide

with (4.53). Nevertheless, eq. (4.65) does lead to the desired relation (4.64). The point

is that the variation δ̂1
(
η0ǫ(−1,1)

)
induced by (4.65) and the δ1

(
η0ǫ(−1,1)

)
in (4.52b) is

effectively the same:

δ̂1
(
η0ǫ(−1,1)

)
≃ δ1

(
η0ǫ(−1,1)

)
. (4.66)

In virtue of this relation, we obtain

δ̂1
(
δ̂0Φ

)
=

adgΦ

1− e−adgΦ

(
e−adgΦ δ̂1

(
Qǫ(−1,0)

)
+ δ̂1

(
η0ǫ(−1,1)

))
≃ (4.53) ≃ 0 . (4.67)

We can indeed confirm (4.66) as follows, using eqs. (3.34), (4.65), (4.52b), and (4.48):

δ̂1
(
η0ǫ(−1,1)

)
− δ1

(
η0ǫ(−1,1)

)

=−

[
1 + η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0Ξλ

adgΦ

eadgΦ − 1
QeadgΦη0ǫ(−2,1) − η0Q̃ǫ(−2,1)

=−

[
1 + η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0Ξλ

−adgΦ

e−adgΦ − 1
Q̃η0ǫ(−2,1) − η0Q̃ǫ(−2,1)

≃−

[
1 + η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0Ξλ

−adgΦ

e−adgΦ − 1
Q̃η0ǫ(−2,1) + Q̃η0ǫ(−2,1)

=

[
1 + η0Ξλ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

Ξλη0Q̃η0ǫ(−2,1)

≃ 0
(
∵ η0Q̃η0 ≃ −Q̃η20 = 0

)
. (4.68)

We thus find that the variation (4.65) is of an appropriate form. Because the parameters

ǫ(−2,0) and ǫ(−2,1) in (4.65) are independent, we can continue the analysis on the reducibility

structure in exactly the same manner as in subsection 4.4. The result is that the expres-

sion of the n-th variation is the same as (4.55) except that the parameters ǫ(−n,n) and
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ǫ(−(n+1),n+1) do not appear:

δ̂n




ǫ(−n,0)
...

ǫ(−n,n−1)


 = n








Q eadgΦη0 0
Q̃ η0

. . .
. . .

0 Q̃ η0




︸ ︷︷ ︸
n+1



ǫ(−(n+1),0)

...

ǫ(−(n+1),n)


 (n ≥ 1) . (4.69)

Thus all the parameters of the form ǫ(−n,n) (n ≥ 1) has disappeared from the reducibility

structure, and we have

δ̂n+1


δ̂n




ǫ(−n,0)
...

ǫ(−n,n−1)





 ≃ 0 (n ≥ 0) . (4.70)

Having examined the reducibility structure under the partial gauge fixing, let us next

show that it includes, as a sub-structure, the regularized version of the reducibility struc-

ture of the Witten formulation. For this purpose, we restrict ǫ(−1,0) within the subspace

where (3.39) holds, as we did in subsection 3.3. In fact, as will be explained, we can

impose the same restriction on all the parameters of the form ǫ(−n,0) (n ≥ 1). Just as

the condition (3.19) for partial gauge fixing entails the elimination of ǫ(−n,n) (∀n ≥ 1)

from the set of independent parameters describing the reducibility structure, the condi-

tions Ξλǫ(−1,0) = 0, Ξλǫ(−2,0) = 0, Ξλǫ(−3,0) = 0, and so forth eliminates respectively

the parameters ǫ(−n,n−1) (∀n ≥ 2), ǫ(−n,n−2) (∀n ≥ 3), ǫ(−n,n−3) (∀n ≥ 4), and so

forth. Then what remains in the end is ǫ(−n,0) (n ≥ 0) with Ξλǫ(−n,0) = 0. Express-

ing ǫ(−n,0) as ǫ(−n,0) = (−1)nΞλΛ(−(n−1),−1), we find that Λ(−(n−1),−1) are the counterparts

of ΛW
(−(n−1),−1) in the Witten formulation. In the rest of the present section, we will confirm

this argument.

First, let us investigate the consequence of the condition

Ξλǫ(−1,0) = 0 . (4.71)

Under this condition, the parameter ǫ(−2,1) in (4.65) is not independent of ǫ(−2,0): in order

for the transform of ǫ(−1,0) to stay in the space in which (4.71) holds, the variation (4.65)

has to satisfy

Ξλ

(
δ̂1ǫ(−1,0)

)
≡ Ξλ

(
Qǫ(−2,0) + eadgΦη0ǫ(−2,1)

)
= 0 . (4.72)

This equation can be solved as follows, in the same manner that we used to obtain (3.34).

From (4.72), we have

η0ǫ(−2,1) = η0Ξλ

(
η0ǫ(−2,1) − δ̂1ǫ(−1,0)

)
= −η0Ξλ

[
Qǫ(−2,0) +

(
eadgΦ − 1

)
η0ǫ(−2,1)

]
. (4.73)

Solving this equation recursively, we obtain

η0ǫ(−2,1) = −
∞∑

n=0

[
−η0Ξλ

(
eadgΦ − 1

)]n
η0ΞλQǫ(−2,0)

= −
[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0ΞλQǫ(−2,0) . (4.74)
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In the last equality, we have used the fact that the sum in (4.74) converges for small g

because the operator

− η0Ξλ

(
eadgΦ − 1

)
(4.75)

is O(g). We thus find that η0ǫ(−2,1) can be expressed in terms of Qǫ(−2,0), and that the

explicit form of (4.65) under the constraint (4.72) is given by

δ̂sub1 ǫ(−1,0) = Qǫ(−2,0) + eadgΦη0ǫ(−2,1)

=

(
1− eadgΦ

[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0Ξλ

)
Qǫ(−2,0) . (4.76)

Here and in what follows, the “sub” on the variation symbol indicates that we consider

the reducibility sub-structure specified by (4.61). In order to find the variation δ̂sub2 ǫ(−2,0)

which satisfies the reducibility relation

δ̂sub2

(
δ̂sub1 ǫ(−1,0)

)
≃ 0 , (4.77)

let us try performing on ǫ(−2,0) the transformation

δ̂sub2 ǫ(−2,0) = Qǫ(−3,0) + eadgΦη0ǫ(−3,1) (4.78)

as in (4.69). The point is that just as (4.66) holds, the variation δ̂sub2

(
η0ǫ(−2,1)

)
induced

by (4.78) through the relation (4.74) is effectively the same as δ̂2
(
η0ǫ(−2,1)

)
, which is ob-

tained directly from the equation

δ̂2ǫ(−2,1) = Q̃ǫ(−3,1) + η0ǫ(−3,2) (4.79)

in (4.69):

δ̂sub2

(
η0ǫ(−2,1)

)
≃ δ̂2

(
η0ǫ(−2,1)

)
. (4.80)

The proof of (4.80) goes along the same lines as that of (4.66). It follows from (4.80) that

we have

δ̂sub2

(
δ̂sub1 ǫ(−1,0)

)
= δ̂sub2

(
Qǫ(−2,0)

)
+ eadgΦ δ̂sub2

(
η0ǫ(−2,1)

)

≃ δ̂sub2

(
Qǫ(−2,0)

)
+ eadgΦ δ̂2

(
η0ǫ(−2,1)

)
= eadgΦ{Q̃, η0}ǫ(−3,1) ≃ 0 . (4.81)

Thus (4.78) provides the desired relation (4.77) even under the constraint (4.71). In this

manner, the parameters ǫ(−2,1) and ǫ(−3,2) have vanished from the set of independent pa-

rameters describing the reducibility structure up to this stage. As can be seen from (4.69),

this vanishment entails the vanishment of ǫ(−4,3), ǫ(−5,4), ǫ(−6,5), and so forth. Indeed,

in (4.69), a parameter ǫ(−(n+1), n) appears only in the variation

δ̂nǫ(−n,n−1) = Q̃ǫ(−(n+1), n−1) + η0ǫ(−(n+1), n) , (4.82)

and therefore if the parameter ǫ(−n,n−1) (n ≥ 2) vanishes from the reducibility structure,

so does ǫ(−(n+1), n). Hence, as a consequence of condition (4.71), all the parameters of the

form ǫ(−n,n−1) (∀n ≥ 2) disappear from the reducibility structure.
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Next let us consider the condition

Ξλǫ(−2,0) = 0 , (4.83)

which can be realized by the use of the degree of freedom of the transformation (4.78).

Under this condition, the parameters ǫ(−3,0) and ǫ(−3,1) in (4.78) are not independent any

longer. Because the structure of (4.78) is exactly the same as that of (4.65), we can express

η0ǫ(−3,1) in terms of Qǫ(−3,0), following the same argument as before. This time, through

the condition (4.83), the parameters ǫ(−3,1), ǫ(−4,2), ǫ(−5,3), and so forth are eliminated from

the set of independent parameters. We can proceed our argument in this manner, and in

the end we obtain the reducibility sub-structure described only by the parameters ǫ(−n,0)

(n ≥ 1) with

Ξλǫ(−n,0) = 0 (∀n ≥ 1) . (4.84)

The variations of these parameters take the same form as (4.76):

δ̂subn ǫ(−n,0) =

(
1− eadgΦ

[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0Ξλ

)
Qǫ(−(n+1),0)

= −ΞλQη0ǫ(−(n+1),0) − gΞλ

[
η0Φ , η0ΞλQǫ(−(n+1),0)

}
+O(g2) , (4.85)

with

δ̂subn+1

(
δ̂subn ǫ(−n,0)

)
≃ 0 (n ≥ 0) . (4.86)

In virtue of the relation (4.84), the parameters ǫ(−n,0) can be expressed as

ǫ(−n,0) = (−1)n ΞλΛ(−(n−1),−1) (4.87)

for some Λ(−(n−1),−1) ∈ Hsmall. Substituting (3.37) and (4.87) into (4.85), we obtain

δ̂subn Λ(−(n−1),−1) = QΛ(−n,−1) + g
[
Ψ,XλΛ(−n,−1)

}
+O(g2) . (4.88)

In the singular limit λ → 0, eq. (4.88) coincides with (4.32) except for the O(g2) term,

under the identification

Ψ ∼= ΨW
(1,−1) , Λ(−n,−1)

∼= ΛW
(−n,−1) . (4.89)

Because the reducibility sub-structure (4.85) of the Berkovits formulation has no singularity

for λ 6= 0, we conclude that it can be regarded as the regularized version of the reducibility

structure of the Witten formulation.

5 Master action in the Batalin-Vilkovisky formalism

Quantization of complicated gauge systems such as string field theory is often performed

with the Batalin-Vilkovisky (BV) formalism [16–19], which is an extension of the BRST

formalism. In this formalism, the most important process for gauge fixing is construction

of the master action, or the solution to the classical master equation. The equation is
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an extension of the Ward-Takahashi identity, and the point is that given a reducibility

structure, we can in principle construct its solution. Taking this into account, we expect

from the result in subsection 4.5 that the master action in the Berkovits formulation will

be related to that in the Witten formulation. In the present section, we will show that it

is indeed the case: the former reduces to the regularized version of the latter after partial

gauge fixing.

Because superstring field theory in the Witten formulation has the same structure as

bosonic string field theory [1], apart from the problem of the picture-changing operator, we

can easily obtain its master action S
W formally as in the bosonic case [29]. It is given by

S
W = −

1

2

〈〈
ΨW, QΨW

〉〉
−

g

3

〈〈
ΨW, Xmid

(
ΨW ∗ΨW

)〉〉
, (5.1)

where

ΨW =
∞∑

g=−∞

ΨW
(g,−1) . (5.2)

Here the ΨW
(g,−1) with g ≤ 0 are ghost fields, and those with g ≥ 2 are antighost fields.11

All of these Ψ’s are Grassmann odd. Note that if we neglect the divergences caused by

the picture-changing operator, the above action (5.1) is indeed a solution to the classical

master equation of the form

∑

n≤1

〈〈
δRS

W

δΨW
(n,−1)

,
δLS

W

δΨW
(3−n,−1)

〉〉
= 0 , (5.3)

where δR and δL denote the right and the left variation, respectively. We will demonstrate

that the master action in the Berkovits formulation reduces to the regularized version

of (5.1) after we perform partial gauge fixing and integrate out auxiliary components.

5.1 Relation between the master actions in the free theories

Let us begin by considering the free theories, in which the coupling g is equal to zero. In

this case, the master action (5.1) in the Witten formulation becomes

S
W
quad := S

W
∣∣
g=0

= −
1

2

〈〈
ΨW, QΨW

〉〉
, ΨW =

∞∑

g=−∞

ΨW
(g,−1) . (5.4)

Noting eq. (2.12), we can rewrite this as

S
W
quad =

∞∑

n=0

S
W
n , (5.5)

with

S
W
0 = SW

∣∣
g=0

= −
1

2

〈〈
ΨW

(1,−1), QΨW
(1,−1)

〉〉
, (5.6a)

S
W
n = −

〈〈
ΨW

(n+1,−1), QΨW
(−n+1,−1)

〉〉
(n ≥ 1) . (5.6b)

11In the present paper, we will not distinguish antighosts and antifields in the BV formalism for simplicity.

In the language of the BV formalism, we will consider only a gauge-fixing fermion such that antifields of

minimal-sector fields are identified with antighosts.
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The free master action S
B
quad in the Berkovits formulation is given in ref. [15]:

S
B
quad =

∞∑

n=0

S
B
n , (5.7)

with

S
B
0 = SB

∣∣
g=0

= −
i

2

〈
Φ(0,0), Qη0Φ(0,0)

〉
, (5.8a)

S
B
n = i

n−1∑

m=0

〈
Φ(n+1,−m−1), QΦ(−n,m) + η0Φ(−n,m+1)

〉
(n ≥ 1) . (5.8b)

Here Φ(−n,m) (1 ≤ n, 0 ≤ m ≤ n) are ghosts, and Φ(n+1,−m) (1 ≤ m ≤ n) are antighosts. All

the ghosts are Grassmann even, whereas all the antighosts are Grassmann odd. The master

action (5.7) is a solution to the classical master equation in the Berkovits formulation of

the form [28]
∞∑

n=0

n∑

m=0

〈
δRS

B

δΦ(−n,m)
,

δLS
B

δΦ(n+2,−m−1)

〉
= 0 . (5.9)

Furthermore, as explained in ref. [25], it is invariant under the transformations bellow:

δΦ(−n,m) = QΛ(−(n+1),m) + η0Λ(−(n+1),m+1) (0 ≤ m ≤ n) , (5.10a)

δΦ(2,−1) = Qη0Λ(0,0) , (5.10b)

δΦ(n+1,−1) = QΛ(n,−1) (2 ≤ n) , (5.10c)

δΦ(n+1,−m) = η0Λ(n,−(m−1)) +QΛ(n,−m) (2 ≤ m ≤ n− 1) , (5.10d)

δΦ(n+1,−n) = η0Λ(n,−(n−1)) (2 ≤ n) , (5.10e)

where Λ’s are gauge parameters. In the rest of the present subsection, we are going to show

that S
B
quad reduces to S

W
quad under partial gauge fixing for the above symmetry, which is

an extension of the original gauge symmetry (4.35).12 In fact, each S
B
n (n ≥ 0) reduces to

S
W
n . For showing this, it is convenient to decompose Φ(g,p) as follows:

Φ(g,p) = {η0,Ξλ}Φ(g,p) = Φ−

(g,p) + ΞλΦ
Ξ
(g,p) , (5.11)

with

Φ−

(g,p) = η0ΞλΦ(g,p) , ΦΞ
(g,p) = η0Φ(g,p) . (5.12)

The string fields Φ−

(g,p) and ΦΞ
(g,p) are in the small Hilbert space. Note that the subscript

(g,p) on them is simply carried over from Φ(g,p) and does not indicate the ghost numbers

and the picture numbers of Φ−

(g,p) and ΦΞ
(g,p). We impose the following conditions for partial

gauge fixing:

ΞλΦ(−n,m) = 0 (0 ≤ m ≤ n) , (5.13a)

ΞλΦ(n+1,−m) = 0 (2 ≤ m ≤ n) , (5.13b)

12Note that the relation between the completely gauge-fixed free actions have already been manifested in

ref. [15].
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or equivalently

Φ(−n,m) = ΞλΦ
Ξ
(−n,m) (0 ≤ m ≤ n) , (5.14a)

Φ(n+1,−m) = ΞλΦ
Ξ
(n+1,−m) (2 ≤ m ≤ n) . (5.14b)

It should be noted that this set of conditions coincides with a subset of the conditions for

complete gauge fixing of the free master action considered in subsection 2.2 of ref. [15],

merely by replacing Ξλ in (5.13) with ξ0.

We have already learned in subsection 3.1 that SB
0 reduces to S

W
0 under the condition

ΞλΦ(0,0) = 0 . (5.15)

Therefore, what we have to show in the present subsection is the reduction of SB
n to S

W
n

for n ≥ 1. Let us first consider the action

S
B
1 = i

〈
Φ(2,−1), QΦ(−1,0) + η0Φ(−1,1)

〉
= i

〈
Φ(2,−1), QΦ(−1,0)

〉
+ i

〈
Φ(2,−1), η0Φ(−1,1)

〉
.

(5.16)

As can be seen from (5.13), the field Φ(2,−1) does not submit to any constraints, whereas

Φ(−1,0) and Φ(−1,1) are subject to the conditions

ΞλΦ(−1,0) = 0 , ΞλΦ(−1,1) = 0 . (5.17)

Noting (2.16), we find that the second term on the rightmost side of (5.16) becomes

i
〈
Φ(2,−1), η0Φ(−1,1)

〉
= i

〈
ΞλΦ

Ξ
(2,−1), Φ

Ξ
(−1,1)

〉
. (5.18)

Because ΦΞ
(−1,1) appears only in this term, it acts as a Lagrange multiplier field which

imposes

ΦΞ
(2,−1) = 0 . (5.19)

After integrating out ΦΞ
(−1,1), the action S

B
1 therefore reduces to

S
B
1 = i

〈
Φ−

(2,−1), QΞλΦ
Ξ
(−1,0)

〉
= i

〈
Φ−

(2,−1), XλΦ
Ξ
(−1,0)

〉
− i

〈
Φ−

(2,−1), ΞλQΦΞ
(−1,0)

〉

= −i
〈
Φ−

(2,−1), ΞλQΦΞ
(−1,0)

〉
=

〈〈
Φ−

(2,−1), QΦΞ
(−1,0)

〉〉
. (5.20)

In the third equality, we have used (2.16): both Φ−

(2,−1) and XλΦ
Ξ
(−1,0) are in the small

Hilbert space (note (3.42c)), and therefore
〈
Φ−

(2,−1), XλΦ
Ξ
(−1,0)

〉
is zero. The action (5.20)

thus coincides with S
W
1 under the identification

Φ−

(2,−1)
∼= −ΨW

(2,−1) , ΦΞ
(−1,0)

∼= ΨW
(0,−1) . (5.21)

Next we consider the action S
B
2 . It takes the form

S
B
2 = i

〈
Φ(3,−1), QΦ(−2,0) + η0Φ(−2,1)

〉
+ i

〈
Φ(3,−2), QΦ(−2,1) + η0Φ(−2,2)

〉

= i
〈
Φ(3,−1), QΦ(−2,0) + η0Φ(−2,1)

〉
+ i

〈
Φ(3,−2), QΦ(−2,1)

〉
+ i

〈
Φ(3,−2), η0Φ(−2,2)

〉
.

(5.22)
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The field Φ(3,−1) does not obey any conditions, but the others do:

ΞλΦ(−2,0) = 0 , ΞλΦ(−2,1) = 0 , ΞλΦ(−2,2) = 0 , (5.23a)

ΞλΦ(3,−2) = 0 . (5.23b)

Noting (2.16), we realize that the last term on the rightmost side of (5.22) becomes

i
〈
Φ(3,−2), η0Φ(−2,2)

〉
= i

〈
ΞλΦ

Ξ
(3,−2), Φ

Ξ
(−2,2)

〉
. (5.24)

Because ΦΞ
(−2,2) appears only in this term, it acts as a Lagrange multiplier field imposing

ΦΞ
(3,−2) = 0 . (5.25)

This constraint, together with (5.23b), means that Φ(3,−2) should vanish:

Φ(3,−2) = 0 . (5.26)

Therefore, after we integrate out ΦΞ
(−2,2), the action S

B
2 reduces to

S
B
2 = i

〈
Φ(3,−1), QΦ(−2,0) + η0Φ(−2,1)

〉
= i

〈
Φ(3,−1), QΦ(−2,0)

〉
+ i

〈
Φ(3,−1), η0Φ(−2,1)

〉
.

(5.27)

This is similar in form to (5.16): the fields Φ(3,−1), Φ(−2,0), and Φ(−2,1) in (5.27) correspond

to Φ(2,−1), Φ(−1,0), and Φ(−1,1) in (5.16), respectively. Consequently, the argument goes

along the same lines as before: ΦΞ
(−2,1) acts as a Lagrange multiplier which imposes

ΦΞ
(3,−1) = 0 , (5.28)

and after integrating out ΦΞ
(−2,1) we obtain

S
B
2 =

〈〈
Φ−

(3,−1), QΦΞ
(−2,0)

〉〉
. (5.29)

This action coincides with S
W
2 under the identification

Φ−

(3,−1)
∼= −ΨW

(3,−1) , ΦΞ
(−2,0)

∼= ΨW
(−1,−1) . (5.30)

The process of the reduction of SB
2 to S

W
2 can be summarized as follows. First, ΦΞ

(−2,2)

acts as the Lagrange multiplier which imposes ΦΞ
(3,−2) = 0. Integrating out this field,

we obtain the reduced action which has the same structure as S
B
1 . Then, ΦΞ

(−2,1) acts

as the second Lagrange multiplier which imposes ΦΞ
(3,−1) = 0, and finally we obtain the

completely reduced action (5.29). In fact, for the case of SB
n (n ≥ 1), the situation is the

same: the field ΦΞ
(−n,n) in (5.8b) acts as the Lagrange multiplier imposing ΦΞ

(n+1,−n) = 0.

We first integrate out this field, and obtain the reduced action of the same structure as

S
B
n−1. Then in this reduced action, ΦΞ

(−n,n−1) acts as the Lagrange multiplier imposing

ΦΞ
(n+1,−(n−1)) = 0. Integrating out that, we obtain the action of the same structure as

S
B
n−2. Continuing this process, we find that the fields ΦΞ

(−n,n), Φ
Ξ
(−n,n−1), . . . , Φ

Ξ
(−n,1) are
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integrated out as Lagrange multipliers eliminating ΦΞ
(n+1,−n), Φ

Ξ
(n+1,−(n−1)), . . . , Φ

Ξ
(n+1,−1),

respectively. In the end, only the fields ΦΞ
(−n,0) and Φ−

(n+1,−1) survive, and we achieve the

completely reduced action

S
B
n =

〈〈
Φ−

(n+1,−1), QΦΞ
(−n,0)

〉〉
, (5.31)

which coincides with (5.6b) under the identification

Φ−

(n+1,−1)
∼= −ΨW

(n+1,−1) , ΦΞ
(−n,0)

∼= ΨW
(−n+1,−1) . (5.32)

5.2 Relation between the master actions in the interacting theories

Now that we have confirmed the correspondence of the master actions in the free theories,

let us next manifest the relation between the interacting theories. Unlike the Witten

theory, the Berkovits theory remains regular even if the interaction is present, being free

from the midpoint insertion of the picture-changing operator. In fact, the master action

in the Berkovits formulation, SB, can be interpreted as the regularized version of that in

the Witten formulation. In particular, in the singular limit λ → 0 of the partial gauge

fixing (5.13), the action S
B, which is non-polynomial, reproduces the formal cubic master

action (5.1) up to O(g2) terms. (The deviation will play the role of the counterterms for

canceling the divergences in the Witten formulation.) For showing this, it is sufficient to

examine the cubic term S
B
cubic of the master action, which are of order g, as well as the

quadratic term S
B
quad.

13

Before moving into the investigation of SB
cubic, it is helpful to review what we have

learned from the analysis of SB
quad in the free theory. In the preceding subsection, the field

ΦΞ
(−n,m) (1 ≤ m ≤ n) in S

B
n acts as the (n+ 1−m)-th Lagrange multiplier imposing

ΦΞ
(n+1,−m) = 0 (1 ≤ m ≤ n) . (5.33)

After integrating out all of these Lagrange multipliers one by one, only the fields ΦΞ
(−n,0)

and Φ−

(n+1,−1) survive out of the ghosts Φ(−n,m) (1 ≤ n, 0 ≤ m ≤ n) and the antighosts

Φ(n+1,−m) (1 ≤ m ≤ n), with the survivors corresponding to ΨW
(−n+1,−1) and −ΨW

(n+1,−1) in

the Witten formulation. As we will see, the interacting theory succeeds to this structure,

with the right-hand side of (5.33) receiving O(g) correction:

ΦΞ
(n+1,−m) = O(g) (1 ≤ m ≤ n) . (5.34)

In the process of the reduction of the master action S
B
quad +S

B
cubic, these O(g) corrections

include terms involving fields which do not appear in the completely reduced action in the

free theory. However, substituting the relations (5.34) themselves back for these fields, we

will find that such extra terms are of order g2, and therefore they can be neglected in our

analysis. We will obtain in the end the completely reduced action described only by the

fields ΦΞ
(0,0), Φ

Ξ
(−n,0) and Φ−

(n+1,−1) (n ≥ 1) as in the free theory. In the rest of the present

subsection, we confirm what we have summarized above.

13The complete form of the master action in the Berkovits formulation has not yet been obtained, although

several attempts have been made [27, 30].
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The complete form of the cubic terms of the master action in the Berkovits formulation,

S
B
cubic, was first shown in ref. [28], but there are many other expressions which are related

to one another through canonical transformations in the BV formalism.14 They can in

general be divided into four types of term as follows according to the numbers of Q and

η0 [27]:

S
B
cubic = S

B
Qη + S

B
Q + S

B
η + S

B
N , (5.35)

where S
B
Qη, S

B
Q, S

B
η , and S

B
N are the terms with one Q and one η0, with one Q and no η0,

with no Q and one η0, and with no Q and no η0, respectively. In fact, SB
Qη is exactly the

cubic term in the original action SB:

S
B
Qη =

i

6
g
〈
η0Φ(0,0) ,

[
Φ(0,0), QΦ(0,0)

]〉
. (5.36)

Furthermore, the form of SB
N is uniquely determined as

S
B
N = i g

∞∑

n1,n2=0

∑

0≤m1≤n1

0≤m2≤n2

〈
Φ∗
(n1+2,−m1−1)Φ

∗
(n2+2,−m2−1) , Φ(−n1−n2−2,m1+m2+1)

〉
. (5.37)

(For the proof of the uniqueness, see ref. [27].) Here and in what follows, we append the

superscript “∗” to antighosts for convenience, and consequently ΦΞ
(n+1,−m) and Φ−

(n+1,−m)

(1 ≤ m ≤ n) will be written as Φ∗Ξ
(n+1,−m) and Φ∗−

(n+1,−m), respectively. The degrees of

freedom of canonical transformations in the BV formalism are reflected in S
B
Q and S

B
η .

Among many different expressions of SB
Q and S

B
η , in the present paper we will use the

following one [27]:

S
B
Q =− i g

∞∑

n=0

n∑

m=0

〈
Φ∗
(n+2,−m−1) , Φ(−n−1,m)

(
QΦ(0,0)

)〉

− i g
∞∑

k=1

∞∑

a,b=0

〈
Φ∗
(2+k+a+b,−1−k−b) , Φ(−1−a−b, b)

(
QΦ(−k, k)

)〉
, (5.38)

S
B
η =− i g

∞∑

n=0

n∑

m=0

〈
Φ∗
(n+2,−m−1) ,

(
η0Φ(0,0)

)
Φ(−n−1,m+1)

〉

− i g
∞∑

k=1

∞∑

a,b=0

〈
Φ∗
(2+k+a+b,−1−b) ,

(
η0Φ(−k,0)

)
Φ(−1−a−b, 1+b)

〉
. (5.39)

The advantage of this choice is that SB
cubic does not include terms quadratic in an auxiliary

field ΦΞ
(−n,m) (1 ≤ m ≤ n). In fact, at any step of the reduction process, a descendant of

14The sum of SB
quad and S

B
cubic satisfies the master equation (5.9) in the following sense:

∞
∑

n=0

n
∑

m=0

〈

δR
(

S
B
quad + S

B
cubic

)

δΦ(−n,m)
,
δL

(

S
B
quad + S

B
cubic

)

δΦ(n+2,−m−1)

〉

= O(g2) .
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S
B
quad+S

B
cubic does not include such terms as long as we neglect O(g2) terms. Therefore we

can treat the auxiliary fields simply as Lagrange multipliers as in the free theory analysis.

Our strategy for investigating the relation between S
B and S

W under the condi-

tions (5.13) (or equivalently (5.14)) is as follows. First, we pick up from S
B
quad + S

B
cubic

the terms including a first Lagrange multiplier field ΦΞ
(−n,n) (n ≥ 1), which imposes a

constraint on Φ∗Ξ
(n+1,−n), and then integrate out all of these multipliers. Next, from the re-

sultant action, we pick up the terms including a second Lagrange multiplier field ΦΞ
(−n,n−1)

(n ≥ 2), which imposes a constraint on Φ∗Ξ
(n+1,−(n−1)), and then integrate out these multi-

pliers. Continuing this process, we lastly obtain the completely reduced action of SB, and

compare it with S
W.

Following the above strategy, let us begin by examining the terms including a first

Lagrange multiplier field ΦΞ
(−n,n) (n ≥ 1):

i
〈
Φ∗
(n+1,−n), η0Φ(−n,n)

〉
, (5.40a)

− i g
∞∑

a,b=0

〈
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b) , QΦ(−n,n)

〉
, (5.40b)

− i g
〈
Φ∗
(n+1,−n)

(
η0Φ(0,0)

)
, Φ(−n,n)

〉
− i g

∞∑

k=1

〈
Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
, Φ(−n,n)

〉
, (5.40c)

where (5.40a), (5.40b), and (5.40c) are the contributions from S
B
quad, S

B
Q, and S

B
η , respec-

tively. There are no contributions from S
B
Qη and S

B
N . Using the decomposition (5.11),

the conditions (5.13), and the BPZ evenness of Ξλ, we can express the sum of the above

terms as

i
〈
ΞλΦ

∗Ξ
(n+1,−n) , Φ

Ξ
(−n,n)

〉
− i g

〈
Ξλ

∞∑

a,b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)
, ΦΞ

(−n,n)

〉

− i g

〈
Ξλ

(
Φ∗
(n+1,−n)

(
η0Φ(0,0)

)
+

∞∑

k=1

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

))
, ΦΞ

(−n,n)

〉
. (5.41)

Thus we find that ΦΞ
(−n,n) imposes the constraint

Φ∗Ξ
(n+1,−n) = g η0Ξλ

[
∞∑

a,b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+Φ∗
(n+1,−n)

(
η0Φ(0,0)

)
+

∞∑

k=1

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
]
+O(g2) (n ≥ 1) ,

(5.42)

where the factor η0Ξλ acts as a projector into the small Hilbert space. Applying this

constraint to the fields Φ∗
(2+n+b,−1−n−b) and Φ∗

(n+1,−n), which are on the right-hand side

of (5.42), we have

Φ∗
(2+n+b,−1−n−b) = O(g) , (5.43a)

Φ∗
(n+1,−n) = δn,1Φ

∗−

(2,−1) + ΞλΦ
∗Ξ
(n+1,−n) = δn,1Φ

∗−

(2,−1) +O(g) . (5.43b)
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Here and in what follows, the symbol δn,m denotes the Kronecker delta:

δn,m :=

{
1 for n = m

0 for n 6= m
. (5.44)

(In the first equality of (5.43b), we have used (5.14b).) Substituting these back into (5.42),

we obtain

Φ∗Ξ
(n+1,−n) = g η0Ξλ

[
∞∑

a=1

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+ δn,1Φ
∗−

(2,−1)

(
η0Φ(0,0)

)
+

∞∑

k=1

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
]
+O(g2) (n ≥ 1) .

(5.45)

Note that the range of the summation for a got narrower: the index runs from one, not

zero. As can be seen from (5.45), after the Lagrange multiplier ΦΞ
(−n,n) is integrated out,

cubic terms including Φ∗Ξ
(n+1,−n) become O(g2) and can be neglected in the present analysis.

Instead, part of the quadratic term i
〈
Φ∗
(n+1,−n), QΦ(−n,n−1)

〉
in S

B
quad contributes to terms

of order g. Indeed we have

i
〈
Φ∗
(n+1,−n) , QΦ(−n,n−1)

〉
= i δn,1

〈
Φ∗−

(2,−1) , QΦ(−1,0)

〉
+ i

〈
ΞλΦ

∗Ξ
(n+1,−n) , QΦ(−n,n−1)

〉

(5.46)

with eqs. (5.14) and (5.45) imposed, and the second term on the right-hand side is of

order g.

Next let us examine the terms including a second Lagrange multiplier field Φ(−n,n−1)

(n ≥ 2). Among these terms, those in S
B
Q do not contribute in the present analysis because

they are of order g2 owing to the constraint (5.45). Below is what can be relevant:

i
〈
Φ∗
(n+1,−(n−1)), η0Φ(−n,n−1)

〉
, (5.47a)

i g δn,2

〈
Φ∗−

(2,−1)Φ
∗−

(2,−1) , Φ(−2,1)

〉
, (5.47b)

− i g

〈
Φ∗
(n+1,−(n−1))

(
η0Φ(0,0)

)
+

∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)
, Φ(−n,n−1)

〉
, (5.47c)

i g

〈
Ξλ

[
∞∑

a=1

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=1

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)
]
, QΦ(−n,n−1)

〉
, (5.47d)

where the terms (5.47a), (5.47b), (5.47c), and (5.47d) are the contributions from S
B
quad, S

B
N ,

S
B
η , and (5.46), respectively. Note that S

B
N contributes only for n = 2. After integrating
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out ΦΞ
(−n,n−1) (n ≥ 2), we obtain the constraint

Φ∗Ξ
(n+1,−(n−1)) =− g η0Ξλ

[
δn,2Φ

∗−

(2,−1)Φ
∗−

(2,−1)

− Φ∗
(n+1,−(n−1))

(
η0Φ(0,0)

)
−

∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

+QΞλ

{
∞∑

a=1

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=1

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)
}]

+O(g2) (n ≥ 2) . (5.48)

The crucial point here is that all the terms in (5.47) are linear in Φ(−n,n−1), as was men-

tioned below (5.39). If we did not have (5.43a) and could not neglect the a = 0 term

in (5.42), eq. (5.47d) would include the term

i g

〈
ΞλQ

(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)
, QΦ(−n,n−1)

〉∣∣∣∣∣
a=0, b=n−1

, (5.49)

which is quadratic in Φ(−n,n−1), in which case we could not treat ΦΞ
(−n,n−1) as a Lagrange

multiplier.

Applying constraint (5.48) to the fields Φ∗
(n+1,−(n−1)), Φ

∗
(3+n+b,−1−n−b), and Φ∗

(n+2,−n),

which are on the right-hand side of (5.48), we have

Φ∗
(n+1,−(n−1)) = δn,2Φ

∗−

(3,−1) + ΞλΦ
∗Ξ
(n+1,−(n−1)) = δn,2Φ

∗−

(3,−1) +O(g) , (5.50a)

Φ∗
(3+n+b,−1−n−b) = O(g) , (5.50b)

Φ∗
(n+2,−n) = O(g) . (5.50c)

Substituting these back into (5.48) and using the relation ΞλQΞλ = ΞλXλ, we obtain

Φ∗Ξ
(n+1,−(n−1)) =− g η0Ξλ

[
δn,2

(
Φ∗−

(2,−1)Φ
∗−

(2,−1) − Φ∗−

(3,−1)

(
η0Φ(0,0)

))

−
∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

+ Xλ

{
∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=2

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)
}]

+O(g2) (n ≥ 2) . (5.51)

Now the ranges of the summation for a and that for l became narrower. Because of the

relation (5.51), cubic terms including Φ∗Ξ
(n+1,−(n−1)) become O(g2) after we integrate out

the Lagrange multiplier ΦΞ
(−n,n−1), and can therefore be neglected in our analysis. Instead,

– 33 –



J
H
E
P
1
0
(
2
0
1
5
)
1
2
7

part of the quadratic term i
〈
Φ∗
(n+1,−(n−1)), QΦ(−n,n−2)

〉
in S

B
quad contributes to terms of

order g:

i
〈
Φ∗
(n+1,−(n−1)) , QΦ(−n,n−2)

〉
= i δn,2

〈
Φ∗−

(3,−1) , QΦ(−2,0)

〉

+ i
〈
ΞλΦ

∗Ξ
(n+1,−(n−1)) , QΦ(−n,n−2)

〉
(5.52)

with eqs. (5.14) and (5.51) imposed. It should be added that after (5.51) is taken into

account, eq. (5.45) becomes

Φ∗Ξ
(n+1,−n) = g η0Ξλ

[
∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+ δn,1

(
Φ∗−

(2,−1)

(
η0Φ(0,0)

)
+Φ∗−

(3,−1)

(
η0Φ(−1,0)

))

+
∞∑

k=2

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
]
+O(g2) (n ≥ 1) , (5.53)

in which the ranges of the summations for a and k got narrower. To summarize, what we

have obtained up to this stage is

Φ∗Ξ
(n+1,−n) = g η0Ξλ

[
∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+ δn,1

(
Φ∗−

(2,−1)

(
η0Φ(0,0)

)
+Φ∗−

(3,−1)

(
η0Φ(−1,0)

))

+
∞∑

k=2

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
]
+O(g2) (n ≥ 1) ,

(5.53 bis)

Φ∗Ξ
(n+1,−(n−1)) =− g η0Ξλ

[
δn,2

(
Φ∗−

(2,−1)Φ
∗−

(2,−1) − Φ∗−

(3,−1)

(
η0Φ(0,0)

))

−
∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

+ Xλ

{
∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=2

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)
}]

+O(g2) (n ≥ 2) ,

(5.51 bis)

i
〈
Φ∗
(n+1,−n) , QΦ(−n,n−1)

〉
= i δn,1

〈
Φ∗−

(2,−1) , QΦ(−1,0)

〉
+ i

〈
ΞλΦ

∗Ξ
(n+1,−n) , QΦ(−n,n−1)

〉

(5.46 bis)

with eqs. (5.14) and (5.53) imposed, and

i
〈
Φ∗
(n+1,−(n−1)) , QΦ(−n,n−2)

〉
= i δn,2

〈
Φ∗−

(3,−1) , QΦ(−2,0)

〉

+ i
〈
ΞλΦ

∗Ξ
(n+1,−(n−1)) , QΦ(−n,n−2)

〉
(5.52 bis)

with eqs. (5.14) and (5.51) imposed.
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Let us go one more step further. We examine the terms including a third Lagrange

multiplier field Φ(−n,n−2) (n ≥ 3). Owing to (5.53) and (5.51), those in S
B
Q do not contribute

to terms of order g, and S
B
N contributes only for n = 3. Therefore, what can be relevant is

i
〈
Φ∗
(n+1,−(n−2)), η0Φ(−n,n−2)

〉
, (5.54a)

i g δn,3

〈{
Φ∗−

(2,−1),Φ
∗−

(3,−1)

}
, Φ(−3,1)

〉
, (5.54b)

− i g

〈
Φ∗
(n+1,−(n−2))

(
η0Φ(0,0)

)
+

∞∑

k=1

Φ∗
(n+k+1,−(n−2))

(
η0Φ(−k,0)

)
, Φ(−n,n−2)

〉
, (5.54c)

i g

〈
Ξλ

[
∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

−Xλ

{
∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=2

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)
}]

, QΦ(−n,n−2)

〉
, (5.54d)

where the terms (5.54a), (5.54b), (5.54c), and (5.54d) are the contributions from S
B
quad, S

B
N ,

S
B
η , and (5.52), respectively. Integrating out ΦΞ

(−n,n−2) (n ≥ 3), we obtain the constraint

Φ∗Ξ
(n+1,−(n−2)) =− g η0Ξλ

[
δn,3

{
Φ∗−

(2,−1),Φ
∗−

(3,−1)

}

− Φ∗
(n+1,−(n−2))

(
η0Φ(0,0)

)
−

∞∑

j=1

Φ∗
(n+j+1,−(n−2))

(
η0Φ(−j,0)

)

+QΞλ

( ∞∑

k=1

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

−Xλ

{ ∞∑

a=2

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+

∞∑

l=2

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)})]
+O(g2)

=− g η0Ξλ

[
δn,3

({
Φ∗−

(2,−1),Φ
∗−

(3,−1)

}
− Φ∗

(4,−1)

(
η0Φ(0,0)

))

−
∞∑

j=1

Φ∗
(n+j+1,−(n−2))

(
η0Φ(−j,0)

)

+ Xλ

( ∞∑

k=2

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

−Xλ

{ ∞∑

a=3

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)
(5.55)

+
∞∑

l=3

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)})]
+O(g2) (n ≥ 3) .
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In the second equality, we performed the deformation similar to that we did in obtain-

ing (5.51) from (5.48). Note the ranges of the summations for a, k, and l. The con-

straint (5.55) tells us that after the Lagrange multiplier ΦΞ
(−n,n−2) is integrated out, cubic

terms including Φ∗Ξ
(n+1,−(n−2)) become O(g2) and can be neglected, but the quadratic term

i
〈
Φ∗
(n+1,−(n−2)) , QΦ(−n,n−3)

〉
in S

B
quad includes an O(g) part:

i
〈
Φ∗
(n+1,−(n−2)) , QΦ(−n,n−3)

〉
= i δn,3

〈
Φ∗−

(4,−1) , QΦ(−3,0)

〉

+ i
〈
ΞλΦ

∗Ξ
(n+1,−(n−2)) , QΦ(−n,n−3)

〉
(5.56)

with (5.14) and (5.55) imposed. Furthermore, if we take account of (5.55), eqs. (5.53)

and (5.51) become as follows:

Φ∗Ξ
(n+1,−n) = g η0Ξλ

[
δn,1

(
Φ∗−

(2,−1)

(
η0Φ(0,0)

)
+Φ∗−

(3,−1)

(
η0Φ(−1,0)

)
+Φ∗−

(4,−1)

(
η0Φ(−2,0)

))

+
∞∑

a=3

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

k=3

Φ∗
(n+k+1,−n)

(
η0Φ(−k,0)

)
]
+O(g2) (n ≥ 1) , (5.57)

Φ∗Ξ
(n+1,−(n−1)) = g η0Ξλ

[
δn,2

(
−Φ∗−

(2,−1)Φ
∗−

(2,−1) +Φ∗−

(3,−1)

(
η0Φ(0,0)

)
+Φ∗−

(4,−1)

(
η0Φ(−1,0)

))

+

∞∑

k=2

Φ∗
(n+k+1,−(n−1))

(
η0Φ(−k,0)

)

−Xλ

{ ∞∑

a=3

∞∑

b=0

Q
(
Φ∗
(2+n+a+b,−1−n−b)Φ(−1−a−b, b)

)

+
∞∑

l=3

Φ∗
(n+l+1,−n)

(
η0Φ(−l,0)

)}
]
+O(g2) (n ≥ 2) . (5.58)

In this manner, as we integrate out Lagrange multipliers, cubic terms including Φ∗Ξ
(n+1,−m)

(1 ≤ m ≤ n) drop away, and S
B
quad generates O(g) terms; moreover, the ranges of the

infinite series in the constraints become narrower step by step. The ultimate forms of the

constraints are given by

Φ∗Ξ
(n+1,−m) = g δm,1 η0Ξλ

[
−

n∑

p=2

Φ∗−

(p,−1)Φ
∗−

(n−p+2,−1) +

∞∑

q=0

Φ∗−

(n+1+q,−1)

(
η0Φ(−q,0)

)
]

+O(g2) (1 ≤ m ≤ n) , (5.59)

with
1∑

p=2

(· · · ) := 0 . (5.60)
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Thus, among the fields Φ∗Ξ
(n+1,−m), only Φ∗Ξ

(n+1,−1) are relevant in our analysis. We finally

find that the completely reduced action S
B
red takes the form

S
B
red = −

i

2

〈
Φ(0,0), Qη0Φ(0,0)

〉
+

i

6
g
〈
η0Φ(0,0) ,

[
Φ(0,0), QΦ(0,0)

]〉

+ i
∞∑

n=1

〈
Φ∗
(n+1,−1) , QΦ(−n,0)

〉
+O(g2) (5.61)

with the conditions (5.14) and the constraints (5.59) imposed. The first two terms on the

right-hand side are nothing but the quadratic term and the cubic term in the original action

SB. The relation between the original actions SB and SW has already been manifested

in the previous paper [13]: under the partial gauge fixing (5.15), the action SB can be

regarded as the regularized version of SW, and we have

−
i

2

〈
Φ(0,0), Qη0Φ(0,0)

〉
+

i

6
g
〈
η0Φ(0,0) ,

[
Φ(0,0), QΦ(0,0)

]〉
−→ SW (λ → 0) . (5.62)

Therefore, in what follows, we concentrate on the third term on the right-hand side

of (5.61). It can be written as

i
∞∑

n=1

〈
Φ∗
(n+1,−1) , QΦ(−n,0)

〉
= i

∞∑

n=1

〈
Φ∗−

(n+1,−1) , QΞλΦ
Ξ
(−n,0)

〉

+ i
∞∑

n=1

〈
ΞλΦ

∗Ξ
(n+1,−1) , QΞλΦ

Ξ
(−n,0)

〉
. (5.63)

After the same calculation as performed in (5.20), the first term on the right-hand side

reduces to the following form:

i
∞∑

n=1

〈
Φ∗−

(n+1,−1) , QΞλΦ
Ξ
(−n,0)

〉
=

∞∑

n=1

〈〈
Φ∗−

(n+1,−1) , QΦΞ
(−n,0)

〉〉
= −

∞∑

n=1

〈〈
ψn+1 , Qψ−n+1

〉〉
,

(5.64)

where we have defined ψn (n ∈ Z) by

Φ∗−

(n+1,−1) = −ψn+1 , ΦΞ
(−n,0) = ψ−n+1 (n ≥ 0) . (5.65)

Eq. (5.64) is equal to the sum of the quadratic terms (5.6b) under the identification

ψn
∼= ΨW

(n,−1) (∀n ∈ Z) , (5.66)

which is equivalent to (5.32). Furthermore, the second term on the right-hand side of (5.63)

can be deformed as

i
∞∑

n=1

〈
ΞλΦ

∗Ξ
(n+1,−1) , QΞλΦ

Ξ
(−n,0)

〉
= i

∞∑

n=1

〈
ΞλΦ

∗Ξ
(n+1,−1) , XλΦ

Ξ
(−n,0)

〉

=− i g
∞∑

n=1

〈
Ξλ

[ n∑

p=2

ψpψn−p+2 +
∞∑

q=0

ψn+q+1ψ−q+1

]
, Xλψ−n+1

〉
+O(g2)

=− g

∞∑

n=1

〈〈 n∑

p=2

ψpψn−p+2 +
∞∑

q=0

ψn+q+1ψ−q+1 , Xλψ−n+1

〉〉
+O(g2) . (5.67)
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In the second equality, we have used (5.59). Rewriting the cubic term in (5.1) as

−
g

3

〈〈
ΨW, Xmid

(
ΨW ∗ΨW

)〉〉

=−
g

3

〈〈
ΨW

(1,−1), Xmid

(
ΨW

(1,−1) ∗Ψ
W
(1,−1)

)〉〉

− g

∞∑

n=1

〈〈 n∑

p=2

ΨW
(p,−1)Ψ

W
(n−p+2,−1) +

∞∑

q=0

ΨW
(n+q+1,−1)Ψ

W
(−q+1,−1) , XmidΨ

W
(−n+1,−1)

〉〉
,

(5.68)

we find that in the singular limit λ → 0, eq. (5.67) coincides with the cubic term in the

master action S
W minus the one in the original action SW up to O(g2) terms under the

identification (5.66), namely (5.32). We thus have

lim
λ→0

S
B = S

W +O(g2) . (5.69)

Because the Berkovits formulation is regular regardless of the presence of the interaction,

from the above result we can conclude that S
B is the regularized version of S

W, with

the terms higher order in g in S
B playing the role of the counterterms for canceling the

divergences in the Witten formulation.

6 Summary and discussion

For the purpose of acquiring a deeper understanding of the relation between the small

Hilbert space approach and the large Hilbert space approach to open superstring field the-

ory, in the present paper we have investigated the Berkovits formulation in detail with the

technique of partial gauge fixing, and have clarified its relation to the Witten formulation

at the level of the reducibility structure and the master action. In particular, the master ac-

tion in the Berkovits formulation has turned out to reduce to the regularized version of that

in the Witten formulation after partial gauge fixing. As shown in subsection 4.5, behind

this relation is the correspondence between a reducibility sub-structure of the Berkovits

formulation and the reducibility structure of the Witten formulation. In general, the form

of a reducibility structure governs that of a master action.

For our analysis of the master action in the Berkovits formulation, it was sufficient

to investigate its quadratic terms and cubic terms. In fact, its higher-order terms have

not been completely obtained yet.15 We expect, however, that our result will be useful

also for solving this problem. In order to see the point in which the difficulty lies, let us

review the way to construct the master action in general. In principle, one can construct

a master action S, namely a solution to the classical master equation in the BV formal-

ism systematically in the following manner. First, one expands S in what is called the

antifield number:

S =
∞∑

n=0

S
(n) , S

(0) = S , (6.1)

15For some approaches to this problem, see refs. [27, 30].
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where S
(n) (n ≥ 0) denotes the sum of all the terms of antifield number n, with S

(0)

coinciding with the original action S. Consequently, the master equation is decomposed

into its subequations. Then, using the subequations, one can determine S
(N+1) (N ≥ 0)

if one knows the form of the reducibility structure and the actions S
(0), S(1), . . . , S(N).

Thus, given an S (= S
(0)) and a reducibility structure, all the S

(n)’s can be obtained

one by one. In some theories such as Yang-Mills theories, only a finite number of S(n)’s

are nonzero:

S
(n) = 0 (∀n ≥ ∃n0 ≥ 0) . (6.2)

In this case, one can solve the master equation completely, merely by carrying out the

above-mentioned procedure. There are, however, other theories in which (6.2) does not

hold: no matter how large n0 ≥ 0 one may take, there exists some n (≥ n0) satisfying

S
(n) 6= 0, and hence the procedure cannot terminate at any finite step. In fact, string field

theory is exactly one of such complicated gauge theories. A strategy to find a solution in

this class of theories is as follows.

1. First, one computes S(0), S(1), . . . , and S
(N) for some N ≥ 0.

2. Second, from the form of
∑N

n=0 S
(n), one infers the complete solution S.

3. Third, one confirms that the inferred S satisfies the master equation.

In open bosonic string field theory [1], the second step is readily performed, and the above

strategy works successfully. In fact, the solution S is of the same form as the original

action S: one can obtain S merely by eliminating the world-sheet ghost number constraint

on the string field in the original action [31–35]. It should be noted that behind this

result is the mathematical structure called A∞ [36–41].16 In the Berkovits formulation

of open superstring field theory, however, this kind of structure is obscure;17 as shown in

refs. [15, 25, 27, 28], the solution cannot take the same form as the original action, and it is

difficult to infer the complete solution. In this situation, crucial it can be how one performs

the first step of the above strategy. One may think that whatever calculation procedure

one may adopt, the resultant S
(n)’s are the same, and that the more S

(n)’s one obtains,

the easier it will become to infer the complete solution. The fact is, however, that the

result does depend on the manner in which one performs the calculation: there are degrees

of freedom of canonical transformations in the BV formalism, which are essentially the

degrees of freedom of field redefinition, and therefore the solution to the master equation is

not unique. Thus, what form of a solution one obtains depends on how one calculates. In

particular, what expression of the reducibility structure one starts from is very important.

The point is that only certain forms of partial solutions may be appropriate to infer the

16Closed bosonic string field theory has another mathematical structure, L∞, and its master action can

also be readily obtained in virtue of this structure [42–44].
17Recently, Erler, Konopka, and Sachs have formulated a new open superstring field theory which pos-

sesses a manifest A∞ structure [10]. In this theory, the master action can be constructed trivially, but is

difficult to treat because of the existence of complicated non-associative multi-string products. By contrast,

the master action in the Berkovits formulation, if it is constructed, must be easy to treat, formulated only

in terms of Witten’s star product.
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complete solution. We expect, however, our result in the present paper will be useful for

approaching this problem. Starting from the reducibility structure of the expression (4.55)

and adopting the calculation procedure which keeps the relation to the Witten formulation

manifest, we will be able to fix most of the degrees of freedom of canonical transformations.
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A Properness of the condition (3.17) for partial gauge fixing

In the present appendix, we prove the properness of the condition (3.17) for partial gauge

fixing: we show that for any string field Φ = Φ(0,0), there exists a gauge transform Φ+ δΦ

which satisfies

Ξ
(
Φ+ δΦ

)
= 0 . (A.1)

For this purpose, consider the gauge transformation (3.31) with ǫ(−1,0) zero:

δΦ =
adgΦ

1− e−adgΦ
η0ǫ(−1,1) . (A.2)

Then (A.1) becomes

Ξ

[
Φ+

adgΦ

1− e−adgΦ
η0ǫ(−1,1)

]
= 0 , (A.3)

which can be regarded as an equation for η0ǫ(−1,1). For showing the properness, it is

sufficient to prove the existence of a solution η0ǫ(−1,1) to (A.3). In fact, we can explicitly

construct the solution in the following manner: first, note that (A.3) is equivalent to

η0ǫ(−1,1) = η0Ξ

[
η0ǫ(−1,1) −

(
Φ+

adgΦ

1− e−adgΦ
η0ǫ(−1,1)

)]
= 0 , (A.4)

that is,

η0ǫ(−1,1) = −η0Ξ

[
Φ+

(
adgΦ

1− e−adgΦ
− 1

)
η0ǫ(−1,1)

]
= 0 . (A.5)

Then, we can solve (A.5) recursively as

η0ǫ(−1,1) = −
∞∑

n=0

[
−η0Ξ

(
−adgΦ

e−adgΦ − 1
− 1

)]n
η0ΞΦ

= −

[
1 + η0Ξ

(
−adgΦ

e−adgΦ − 1
− 1

)]−1

η0ΞΦ . (A.6)

In the last equality, we have used the fact that the sum in (A.6) converges for small g

because the operator

− η0Ξ

(
−adgΦ

e−adgΦ − 1
− 1

)
(A.7)

is O(g). Thus we have completed the proof of the properness.
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B Proof of the properness of condition (3.39)

Because the gauge parameter ǫ(−1,0) in the Berkovits formulation resides in the large Hilbert

space, it can be decomposed as

ǫ(−1,0) =
{
η0,Ξλ

}
ǫ(−1,0) = η0Ξλǫ(−1,0) + Ξλ

(
η0ǫ(−1,0)

)
, (B.1)

and thus it contains two components: η0Ξλǫ(−1,0) in Hsmall and Ξλ

(
η0ǫ(−1,0)

)
in ΞλHsmall.

Nevertheless, all the possible gauge transformations of the form (2.24) can be covered only

by the latter component of ǫ(−1,0) and the other gauge parameter ǫ(−1,1), which moves

around the whole of the large Hilbert space. Hence, as far as the gauge transformation is

concerned, without loss of generality we may assume ǫ(−1,0) ∈ ΞλHsmall, that is,

Ξλǫ(−1,0) = 0 . (B.2)

In the present appendix, we prove the above claim. We will show that if we take into

account what is called trivial gauge transformations, we can indeed impose condition (B.2),

namely (3.39).

B.1 Trivial gauge transformations

Before proving the properness of (B.2), in the present subsection we will explain the concept

of trivial gauge transformations because it plays a crucial role in our proof. In order to

explain the concept, let us consider a system described by a classical action S = S[ϕ], which

depends on classical bosonic fields ϕi, with the index i distinguishing different fields.18 The

action S is invariant under transformations of the form

ϕi −→ ϕi + δϕi (B.3)

if and only if we have

δS =
∑

i

∫
δS

δϕi
δϕi = 0 . (B.4)

Usually, among transformations satisfying (B.4), only gauge transformations are consid-

ered. There is, however, another type of transformation which is not classified as gauge

transformation in the usual sense. Indeed, we can readily find that (B.4) is trivially satisfied

by variations of the form

δtrvϕ
i =

∑

j

Aij δS

δϕj
with Aji = −Aij . (B.5)

Because these variations vanish under the use of the equations of motion

δS

δϕi
= 0 , (B.6)

they do not entail any Noether identities, and thus they are not genuine gauge transforma-

tions. Nevertheless, the transformations of this kind is called trivial “gauge” transforma-

tions by convention. The characteristic of these transformations is that the corresponding

18Just for simplicity, we consider only the case in which all the fields ϕi are bosonic.
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variations δtrvϕ
i become identically zero when we use the equations of motion. We would

like to remark that the degrees of freedom of trivial gauge transformations exist even in

non-gauge theories.

B.2 Proof of the properness

In the preceding subsection, we have introduced trivial gauge transformations. We usually

do not consider such transformations because they are not related to genuine gauge degrees

of freedom. In our proof of the properness of (B.2), however, they play a crucial role: it

is in virtue of the degrees of freedom of trivial gauge transformations that we can impose

condition (B.2) on the parameter ǫ(−1,0) of the genuine gauge transformation (2.24) without

loss of generality. The point is that two genuine gauge transformations are equivalent if their

difference is merely a trivial gauge transformation. Our proof is composed of two parts:

1. First, we show that for any ǫ(−1,0), there exists a transform ǫ(−1,0)+δ1ǫ(−1,0) by (4.50)

which satisfies

Ξλ

(
ǫ(−1,0) + δ1ǫ(−1,0)

)
= 0 . (B.7)

2. Then we show that the gauge transformation specified by the parameters ǫ(−1,0)

and ǫ(−1,1) and the one specified by their transforms ǫ(−1,0) + δ1ǫ(−1,0) and ǫ(−1,1) +

δ1ǫ(−1,1) differ merely by a trivial gauge transformation, and therefore the two gauge

transformations are equivalent.

The second part ensures that all the genuine gauge transformations can be generated by

ǫ(−1,0) + δ1ǫ(−1,0) and ǫ(−1,1) + δ1ǫ(−1,1). Therefore, together with the first part, we can

conclude that all the possible gauge transformations of the form (2.24) can be covered

by the ǫ(−1,0) satisfying (B.2) and the other parameter ǫ(−1,1). It should be noted that

in the following analysis, the string field Φ is not subject to any constraints, such as the

condition (3.19) for partial gauge fixing.

In order to prove the first part, we consider transformation (4.50) with ǫ(−2,0) and

ǫ(−2,2) zero:

δ1ǫ(−1,0) = eadgΦη0ǫ(−2,1) , (B.8a)

δ1ǫ(−1,1) = Q̃ǫ(−2,1)

(
Q̃ := e−adgΦQeadgΦ

)
. (B.8b)

What we have to do is to show the existence of an η0ǫ(−2,1) such that the transform

ǫ(−1,0) + δ1ǫ(−1,0) by (B.8) satisfies (B.7):

Ξλ

(
ǫ(−1,0) + eadgΦη0ǫ(−2,1)

)
= 0 . (B.9)

In other words, the problem is to show that eq. (B.9), which can be regarded as an equation

for η0ǫ(−2,1), has a solution. In fact, we can explicitly construct a solution η0ǫ(−2,1) to (B.9)

in the following manner: first, note that (B.9) is equivalent to

η0ǫ(−2,1) = η0Ξλ

[
η0ǫ(−2,1) −

(
ǫ(−1,0) + eadgΦη0ǫ(−2,1)

)]
, (B.10)
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that is,

η0ǫ(−2,1) = −η0Ξλ

[
ǫ(−1,0) +

(
eadgΦ − 1

)
η0ǫ(−2,1)

]
. (B.11)

Then, we can solve (B.11) recursively as

η0ǫ(−2,1) = −
∞∑

n=0

[
−η0Ξλ

(
eadgΦ − 1

)]n
η0Ξλǫ(−1,0)

= −
[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0Ξλǫ(−1,0) . (B.12)

The explicit form of the transform ǫ(−1,0) + δ1ǫ(−1,0) by (B.8) with (B.12) is given by

ǫ(−1,0) + δ1ǫ(−1,0) =
(
Ξλη0 + η0Ξλ

)
ǫ(−1,0) − eadgΦ

[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0Ξλǫ(−1,0)

= Ξλη0ǫ(−1,0) +

(
1− eadgΦ

[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
)
η0Ξλǫ(−1,0)

= Ξλη0ǫ(−1,0) − Ξλη0
(
eadgΦ − 1

)[
1 + η0Ξλ

(
eadgΦ − 1

)]−1
η0Ξλǫ(−1,0) ,

(B.13)

which indeed satisfies (B.9). We have thus completed the first part of our proof.

Let us next move on to the second part. Under the transformation (B.8) of the pa-

rameters, the gauge transformation

δ0G = g
[(
Qǫ(−1,0)

)
G+G

(
η0ǫ(−1,1)

)]
(B.14)

changes by

δ1
(
δ0G

)
= g G

{
Q̃, η0

}
ǫ(−2,1) = −i g3G

[
δSB

δG
G, ǫ(−2,1)

]
. (B.15)

In the last equality of (B.15), we have used (4.46). Because (B.15) is nonzero, the gauge

tranformation specified by the original parameters ǫ(−1,0) and ǫ(−1,1) and the one specified

by their transforms ǫ(−1,0)+δ1ǫ(−1,0) and ǫ(−1,1)+δ1ǫ(−1,1) are obviously different. However,

these two gauge transformations are effectively the same because their difference (B.15) is

nothing but a trivial gauge transformation. Indeed, the variation of the action under the

transformation

G −→ G+ δ1
(
δ0G

)
(B.16)

trivially vanishes as follows:

δSB =

〈
δSB

δG
, δ1

(
δ0G

)〉
= −i g3

〈
δSB

δG
G ,

[
δSB

δG
G, ǫ(−2,1)

]〉

= −i g3
〈[

δSB

δG
G,

δSB

δG
G

]
, ǫ(−2,1)

〉
= 0 . (B.17)

Eq. (B.15) is different from (B.5) in appearance, but non-commutativity of the multiplica-

tion in string field theory admits trivial gauge transformations of the form (B.15). If we

consider the gauge transformation generated by ǫ(−1,0) + δ1ǫ(−1,0) and ǫ(−1,1) + δ1ǫ(−1,1),
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and minus the trivial transformation (B.15) simultaneously, the resultant transformation

is exactly the same as (B.14). In this sense, the original parameters ǫ(−1,0) and ǫ(−1,1)

and their transforms ǫ(−1,0)+ δ1ǫ(−1,0) and ǫ(−1,1)+ δ1ǫ(−1,1) provide the same gauge trans-

formation. Therefore, all the possible genuine gauge transformations can be covered by

the ǫ(−1,0) satisfying (B.2) and ǫ(−1,1) in the large Hilbert space. We thus conclude that

without loss of generality we may assume (B.2).

Open Access. This article is distributed under the terms of the Creative Commons
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