
J
H
E
P
1
0
(
2
0
1
5
)
1
0
3

Published for SISSA by Springer

Received: July 16, 2015

Accepted: September 16, 2015

Published: October 15, 2015

Thermoelectric DC conductivities and Stokes flows on

black hole horizons

Elliot Banks,a Aristomenis Donosb and Jerome P. Gauntletta

aBlackett Laboratory, Imperial College,

Prince Consort Rd., London, SW7 2AZ, U.K.
bCentre for Particle Theory and Department of Mathematical Sciences, Durham University,

South Rd., Durham, DH1 3LE, U.K.

E-mail: e.banks13@imperial.ac.uk, aristomenis.donos@durham.ac.uk,

j.gauntlett@imperial.ac.uk

Abstract: We consider a general class of electrically charged black holes of Einstein-

Maxwell-scalar theory that are holographically dual to conformal field theories at finite

charge density which break translation invariance explicitly. We examine the linearised

perturbations about the solutions that are associated with the thermoelectric DC conduc-

tivity. We show that there is a decoupled sector at the black hole horizon which must solve

generalised Stokes equations for a charged fluid. By solving these equations we can obtain

the DC conductivity of the dual field theory. For Q-lattices and one-dimensional lattices

we solve the fluid equations to obtain closed form expressions for the DC conductivity in

terms of the solution at the black hole horizon. We also determine the leading order DC

conductivity for lattices that can be expanded as a perturbative series about translationally

invariant solutions.

Keywords: Gauge-gravity correspondence, Black Holes in String Theory, AdS-CFT

Correspondence, Holography and condensed matter physics (AdS/CMT)

ArXiv ePrint: 1507.00234

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2015)103

mailto:e.banks13@imperial.ac.uk
mailto:aristomenis.donos@durham.ac.uk
mailto:j.gauntlett@imperial.ac.uk
http://arxiv.org/abs/1507.00234
http://dx.doi.org/10.1007/JHEP10(2015)103


J
H
E
P
1
0
(
2
0
1
5
)
1
0
3

Contents

1 Introduction 1

2 The background black holes 4

3 Perturbing the black holes 6

3.1 Electric current 7

3.2 Heat current 8

3.3 Currents at the horizon 10

3.4 Constraints at the horizon 10

3.5 Generalised Stokes equations at the horizon 11

3.6 The DC thermoelectric conductivity 14

3.7 Perspective using forms 15

4 Examples 17

4.1 Extra scalars and Q-lattices 17

4.2 One-dimensional lattices 19

4.3 Perturbative lattices 21

4.3.1 Perturbative one-dimensional lattices 23

5 Discussion 24

A Radial Hamiltonian formalism 26

B Generalised Stokes equations from the constraints 29

C Holographic currents 31

D Alternative derivation of the Stokes equations 32

1 Introduction

The holographic correspondence provides a powerful framework for obtaining precise re-

sults about strongly coupled systems using weakly coupled gravitational descriptions. A

key cornerstone is that the dual description of the field theory at finite temperature is

provided by a black hole spacetime. It is a remarkable fact that various properties of the

thermal system are captured by the properties of the gravitational solutions at the black

hole horizon. For example, the entropy of the thermal system at equilibrium is given by

the Bekenstein-Hawking forumla, S = A/4G, where A is the area of the black hole event

horizon. Another well-known example is provided by the shear viscosity, η, which, for
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certain classes of black hole solutions, is given by η = 4πs, where s is the entropy den-

sity [1, 2]. In this paper, which expands upon and generalises the results presented in [3],

we explain how the DC thermo-electric conductivity can be obtained by solving equations

for a non-relativistic fluid on the black hole horizon. Moreover, we will see that, unlike

η, our result for the DC conductivity holds in a very general context, being applicable

to arbitrary static black holes for which the DC conductivity is finite. The extension to

stationary black holes will be presented in [4].

We first recall that the DC thermal conductivity, κ, is a very natural observable to

study in holography. Indeed, in the regime of linear response it determines the heat current,

or momentum flow, that is produced after applying a constant external thermal gradient.

Although this naively appears to be a low-energy quantity it is in fact sensitive to the UV

physics. For example, if the system is translationally invariant, and hence conserves mo-

mentum, then κ is infinite. More precisely, there is a delta function in the AC conductivity

at ω = 0. To obtain a finite κ it is necessary to introduce a mechanism for momentum

to dissipate.

For systems with a U(1) symmetry, another natural observable to consider is the DC

electric conductivity. Momentum dissipation is also required in order to obtain a finite

result when the charge density is non-vanishing. More generally, for these systems there is

a mixing of electric and heat currents and one should consider the matrix of thermo-electric

conductivities
(

J̄

Q̄

)

=

(

σ αT

ᾱT κ̄T

)(

E

−(∇T )/T

)

, (1.1)

where J̄ and Q̄ are the total electric and heat current flux densities (which we define

precisely later) and E and ∇T are constant applied electric field and thermal gradients,

respectively.

Holographic lattices provide a natural framework1 for studying momentum dissipation.

These are black hole solutions whose asymptotic behaviour at the holographic boundary

corresponds to the addition of spatially dependent sources to the dual field theory. Various

holographic lattices with sources that depend periodically on just one of the non-compact

spatial directions have been constructed by solving PDEs in two variables [13–19]. Con-

structing lattices that depend periodically on additional spatial dimensions generically

requires solving PDEs in more variables, which becomes increasingly challenging at the

technical level. An important class of exceptions are provided by Q-lattices [20, 21] which

exploit a global symmetry in the bulk leading to a problem involving ODEs. Other con-

structions involving ODEs use massless ‘axions’ to obtain sources linear in the spatial

coordinates [22–27], or use the metric or matter fields to obtain helical sources when

D ≥ 5 [28–31]. A particularly interesting application of holographic lattices is that they can

lead to novel incoherent metal ground states [21, 28, 32], insulating ground states [20, 21, 28]

and transitions between them [21, 28]. Connections between holographic lattices and su-

perconductivity have also been explored in [31, 33, 34].

1Another approach is to use massive gravity and various interesting results have been obtained e.g. [5–10].

The DC conductivity has also been examined in the context of translationally invariant probe branes

e.g. [11, 12]. In these constructions a finite DC conductivity can arise because the delta function is sup-

pressed by 1/N , where N is the number of branes providing the background geometry.
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For the special case of translationally invariant black holes at zero chemical poten-

tial, while the thermal conductivity is infinite the electric conductivity is finite and can

be expressed in closed form in terms of the behaviour of the solution at the black hole

horizon [35]. For the above holographic lattices involving ODEs, formulae for the thermo-

electric DC conductivity, also expressed in terms of the black hole solutions at the black

hole horizon, were obtained in [21, 29, 30, 36]. These results were then extended to a class

of one-dimensional holographic lattices in [18], although the details were more involved.

Given these results it is natural to anticipate that similar results can be obtained for all

holographic lattices. Here we show that for a broad class of holographic lattices, depending

on all spatial directions, in general one cannot obtain such explicit formulae for the DC

conductivity. However, it is possible to obtain the DC conductivity after solving a set

of fluid equations on the black hole horizon. These equations are a generalisation of the

forced Stokes equations for a charged fluid on the curved black hole horizon, with addi-

tional viscous terms arising from bulk scalar fields. Recall that the Stokes equations are a

time-independent and linearised limit of the Navier-Stokes equations for an incompressible

fluid arising at low Reynolds numbers. We will show that the previous results on the DC

conductivity can all be obtained as special cases where the Stokes equations can be solved

explicitly in closed form.

The fact that the fluid equations which arise are linear and time-independent is not too

surprising since we are calculating in the regime of linear response and we are calculating

the DC conductivity. Similarly, the forcing terms are very natural since they arise from

the applied sources for the electric and heat currents. On the other hand only a subset of

the linearised perturbation appears in the equations on the horizon and it is remarkable

that the equations form a closed system.

We emphasise that unlike in the relativistic fluid-gravity correspondence [37], and the

associated non-relativistic limit [38, 39], we do not take any hydrodynamic limit in obtain-

ing our fluid equations. In the presence of spatially dependent sources a natural hydrody-

namic limit would arise for temperatures much bigger than all other scales, including those

of the lattice. By contrast our results are valid for all temperatures. Our results differ but

are also reminiscent of the “membrane paradigm” [40] and the more recent work2 which

relates solutions of the non-linear Navier-Stokes equations on hypersurfaces in Minkowski

space to obtain black hole solutions [41] (see also [42–44]). We expect that the time-

dependent and non-linear versions of our equations will play a role in studying momentum

dissipation for holographic lattices, possibly after taking a hydrodynamic limit and this

will be reported on elsewhere. Discussions of momentum dissipation, conductivities and

hydrodynamics can be found in [45–48] and some recent low-frequency conductivity results

are presented in [49].

The plan of the rest of the paper is as follows. In section 2 we introduce the holographic

model and the class of electrically charged black hole solutions that we shall be considering.

In section 3 we analyse the linearised perturbations, containing sources for the electric

2Ref. [41] also contains a discussion and references to some of the earlier work on fluids and black hole

horizons.
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and heat currents, which are associated with the DC conductivity. We will show how the

Stokes equations can be obtained by expanding the Hamiltonian, momentum and Gauss law

constraints, associated with a radial hamiltonian decomposition, at the black hole horizon.

The fluid equations determine electric and heat currents at the horizon in terms of sources

for the electric and heat currents. In turn these can be used to obtain suitably defined

constant electric and heat current fluxes which are independent of the radial direction and

hence give rise to the DC conductivity. If the deformed CFT is living on Σd then the DC

conductivity is a b1(Σd)× b1(Σd) matrix, where b1(Σd) is the first Betti number of Σd. We

emphasise that we provide a precise procedure for calculating the DC conductivity of the

boundary theory (the spectral weight of a two-point function) by solving an auxiliary set

of fluid equations on the black hole horizon.

In section 4 we analyse some examples. We first generalise our results to an arbitrary

number of scalar fields which allows us to reconsider Q-lattices. For the Q-lattices and

also for general one-dimensional lattices, we show that the fluid equations can be explicitly

solved and we can obtain formulae for the DC conductivity explicitly in terms of the black

hole solution at the horizon. We also examine holographic lattices that can be obtained as

perturbative expansions about translationally invariant solutions, including the AdS-RN

black brane. We show that the leading order DC conductivity can also be found in closed

form. We briefly conclude in section 5 where we put some of the main results in a more

general setting of general static black hole spacetimes. The paper contains four appendices,

including a discussion of the Hamiltonian decomposition of the equations of motion with

respect to the radial coordinate in appendix A.

2 The background black holes

We will consider theories in D spacetime dimensions which couple the metric to a gauge-

field, A, and a single scalar field, φ. The extension of our analysis to additional scalar fields

is straightforward as we will discuss later. We focus on D ≥ 4. The action is given by

S =

∫

dDx
√−g

(

R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)

. (2.1)

The equations of motion are given by

Rµν −
V

D − 2
gµν −

1

2
∂µφ∂νφ− 1

2
Z(φ)

(

FµρFν
ρ − 1

2(D − 2)
gµν F

2

)

= 0 ,

∇µ [Z(φ)Fµν ] = 0 ,

∇2φ− V ′(φ)− 1

4
Z ′(φ)F 2 = 0 . (2.2)

The only restrictions that we will make on the functions V (φ), Z(φ) is that V (0) =

−(D − 1)(D − 2), V ′(0) = 0 and Z(0) = constant. This ensures that a unit radius AdSD
solves the equations of motion with φ = 0 and this is dual to a CFT with a stress tensor,

dual to the metric, a global U(1) current, dual to A, and an additional operator dual to

φ. When Z ′(0) = 0, the D-dimensional electrically charged AdS-Reissner-Nordström black
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hole also solves the equations of motion and describes the CFT at constant charge density.

Note that we have set 16πG = 1, as well as setting the AdS radius to unity, for convenience.

We will focus on a general class of electrically charged static black holes with metric

and gauge-field given by

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd) ,

A = at dt , (2.3)

where ds2(Σd) ≡ gij(r, x)dx
idxj is a metric on a (d ≡ D− 2)-dimensional manifold, Σd, at

fixed r. In addition, U = U(r), while G,F, at and φ are all functions of (r, xi). In section 5

we will discuss our main results in the context of a more general class of static black hole

solutions.

Asymptotically, as r → ∞, the solutions are taken to approach AdSD with

U → r2, F → 1, G → Ḡ(x), gij(r, x) → r2ḡij(x),

at(r, x) → µ(x), φ(r, x) → r∆−d−1φ̄(x) . (2.4)

The spatial dependence of the boundary metric given by Ḡ(x), ḡij(x) corresponds to pro-

viding a source for the stress tensor in the dual CFT living on R×Σd. Similarly, µ(x) is a

spatially dependent chemical potential for the global abelian symmetry and φ̄(x) gives rise

to a spatially dependent source for the associated dual operator, which we have assumed

has scaling dimension ∆.

A particularly interesting class of black holes is associated with adding sources to CFTs

in flat Minkowski space, R1,d. In this case Σd is topologically R
d. Periodic lattices, which

have been a focus of study, are obtained by taking the functions Ḡ(x), ḡij(x), µ(x) and φ̄(x)

to be periodic functions on R
d. If we denote the period in each of the spatial directions be

Li then for this class of black holes we can, in effect, take Σd to parametrise a torus with

periods xi ∼ xi + Li.

The black hole horizon, which has topology Σd, is assumed to be located at r = 0.

By considering the Kruskal coordinate v = t+ ln r
4πT + . . . we deduce that the near horizon

expansions are given by

U (r) = r
(

4π T + U (1) r + . . .
)

,

at(r, x) = r
(

a
(0)
t G(0) (x) + a

(1)
t (x) r + . . .

)

,

G(r, x) = G(0) (x) +G(1) (x) r + . . . ,

F (r, x) = F (0) (x) + F (1) (x) r + . . . ,

gij = g
(0)
ij + g

(1)
ij r + . . . ,

φ = φ(0)(x) + rφ(1)(x) + . . . , (2.5)

with

G(0) (x) = F (0) (x) . (2.6)
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We have added the extra factor of G(0) in the leading expression for at for convenience.

For later use, we observe that electric charge density at the horizon is simply

ρH =
√−gZ(φ)F tr|H =

√−g0a
(0)
t Z(0) , (2.7)

where Z(0) ≡ Z(φ(0)). For the averaged holographic charge density, ρ, we have

ρ ≡ 1

vold

∫

ddx(
√−gZ(φ)F tr)|∞ =

1

vold

∫

ddxρH , (2.8)

where vold ≡
∫

ddx
√−ḡ is the volume of the spatial metric at the AdS boundary. This

result follows from the fact that the gauge-equations of motion implies ∂r(
√−gZF tr) +

∂i(
√−gZF ti) = 0 and for the case of non-compact Σd we have assumed any boundary

terms vanish.

This class of black holes includes almost all of the holographic lattices that have been

constructed to date as special cases. For example, periodic lattices with modulated chem-

ical potential with non-vanishing zero mode were studied in [13, 16, 18], while the case of

vanishing zero mode was studied in [15]. Periodic lattices with a single real scalar field

have been studied in [14, 19]. These examples have spatially inhomogeneous sources in

one direction only. By contrast, the Q-lattice construction using two (or more) scalar

fields [20, 21, 32, 36, 50] the non-periodic ‘axionic’ lattices studied in [22–27, 36, 51] are

homogeneous and the sources can be in any number of the spatial directions. Other ho-

mogeneous constructions using D = 5 helical lattices have been studied in [29, 30] (an

additional gauge field is needed to be included to cover the examples of [28]). Metric defor-

mations in one spatial dimension were studied in [17]. Holographic lattices in the presence

of magnetic fields have been studied in [52]; the generalisation of our results to include

magnetic fields will be discussed elsewhere [4].

3 Perturbing the black holes

We want to study the holographic, linear response of the black holes after applying suitable

one-form sources (E, ζ) on Σd for the electric and heat currents, respectively. Generalis-

ing [18, 21, 36] we incorporate the sources by the addition of terms that are linear in time.

Specifically, we consider the following linear perturbation:

δ
(

ds2
)

= δgµνdx
µdxν − 2tMζidtdx

i ,

δA = δaµdx
µ − tEidx

i + tNζidx
i ,

δφ . (3.1)

Here, δgµν ,δaµ, δφ are all functions of (r, xi), while Ei = Ei(x), ζi = ζi(x). We demand

that E, ζ are closed one-forms on Σd:

d(Eidx
i) = d(ζidx

i) = 0 . (3.2)

This means that the one forms E, ζ can uniquely be written as the sum of a harmonic form

plus an exact form on Σd. In fact it is the harmonic piece that is important Later we will
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see later that the harmonic piece is the important part of the source. In the case that Σd

is R
d or a torus, for example, we could take an independent basis of sources to be the d

one-forms Eidx
i (no sum on i) and the d one-forms ζidx

i (no sum on i) with constant Ei, ζi.

The functions M,N in (3.1) depend on (r, xi) and we will fix them in terms of the

background black hole solution via

M = GU , N = at . (3.3)

This is assumed, in addition to (3.2), in order to solve the time dependence of the equations

of motion at linear order. In general, this ansatz for the perturbation contains some residual

gauge symmetry, which, for our purposes, will not need to be fixed.

At the AdSD boundary, as r → ∞, we will demand that the fall-off of δgµν ,δaµ, δφ is

such that the only applied sources are parametrised by (E, ζ). The asymptotic fall-offs of

δgµν ,δaµ, δφ are associated with currents and other expectation values that are produced

by the sources. The resulting currents will be our primary interest in this paper.

At the black hole horizon, as r → 0, regularity implies that we must have

δgtt = U (r)
(

δg
(0)
tt (x) +O(r)

)

, δgrr =
1

U

(

δg(0)rr (x) +O(r)
)

,

δgij = δg
(0)
ij (x) +O(r), δgtr = δg

(0)
tr (x) +O(r) ,

δgti = δg
(0)
ti (x)−M ζi

ln r

4πT
+O(r), δgri =

1

U

(

δg
(0)
ri (x) +O(r)

)

,

δat = δa
(0)
t (x) +O(r), δar =

1

U

(

δa(0)r (x) +O(r)
)

,

δai =
ln r

4πT
(−Ei +Nζi) +O(r0) , (3.4)

with the following constraints on the leading functions of x:

δg
(0)
tt + δg(0)rr − 2 δg

(0)
rt = 0, δg

(0)
ri = δg

(0)
ti , δa(0)r = δa

(0)
t . (3.5)

It is worth emphasising that the logarithm terms that appear in (3.4) are a direct conse-

quence of the applied sources (E, ζ). For the scalar field we have δφ = δφ(0)(x) +O(r).

In the Kruskal coordinates, at leading order in the expansion in r we have

δ(ds2) ∼ 4πTrδg
(0)
tt dv2 + 2dvdr

(

−δg
(0)
tt + δg

(0)
tr

)

+ 2δg
(0)
ti dvdxi + δg

(0)
ij dxidxj ,

+ 2
(

vG(0)ζi − δg
(1)
ti + δg

(1)
ri

)

drdxi +
1

4πT

(

δg
(1)
tt + δg(1)rr − 2 δg

(1)
rt

)

dr2 ,

δA ∼ δa
(0)
t dv +

(

δa
(0)
i − vEi

)

dxi +
1

4πT

(

δa(1)r − δa
(1)
t

)

dr . (3.6)

Note that to obtain the leading order pieces in the perturbed field strength one should

calculate the field strength first and then take the limit r → 0.

3.1 Electric current

We define the bulk electric current density via

J i =
√−gZ(φ)F ir . (3.7)
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When evaluated at the AdSD boundary we obtain J i|∞ which is the electric current density

of the dual field theory as explained in appendix C.

In the background geometry we have J i = 0. At linearised order for the perturbed

black holes we have

J i =

√
gdg

ij
d

(FG)1/2
GUZ(φ)

(

∂jat
δgrt
GU

−∂rat

(

δgjt
GU

− tMζj
GU

)

+∂jδar−(∂rδaj+t∂rNζj)

)

, (3.8)

and we see that the time-dependence drops out because of (3.3).

The gauge equations of motion given in (2.2) can be written in the form

∂iJ
i = 0 ,

∂rJ
i = ∂j

(√−gZ(φ)F ji
)

, (3.9)

as well as

∂r
(√−gZ(φ)F rt

)

= −∂i
(√−gZ(φ)F it

)

. (3.10)

For later use we also note that the perturbation satisfies, at linearised order, the

condition

d(ik ∗ Z(φ)F ) = 0 , (3.11)

where k = ∂t. Indeed this easily follows by writing the components of the d− 1 form as

ik ∗ Z(φ)F = (−1)d−2

[

1

(d− 1)!
ǫ(ii . . . id−1j)J

jdxi1 ∧ · · · ∧ dxid−1

+
1

2(d− 2)!
ǫ(i1 . . . id−2jk)

√−gZ(φ)F jkdxi1 ∧ . . . dxid−2 ∧ dr

]

, (3.12)

where ǫ is the alternating symbol with ǫ(1 . . . d) = 1 and then using (3.9). Note that in

the special case when ζ = 0 we have that k = ∂t is a Killing vector with LkF = Lkφ = 0.

It is then very easy to establish (3.11). When ζ 6= 0, k is no longer a Killing vector and

furthermore LkF 6= 0. Nevertheless, at linearised order, we still have (3.11) as we have

just shown.

3.2 Heat current

We now define the bulk heat current. To do so we want to identify equations of motion

involving the metric perturbation that have a similar structure to the gauge equations of

motion. We do this using3 the vector k ≡ ∂t. The procedure is slightly subtle when ζ 6= 0

since in this case ∂t is no longer a Killing vector. We proceed as follows. Consider a general

vector k which satisfies

∇µk
µ = 0, ∇µ∇(µkν) = αkν , (3.13)

3Heuristically, one can view this as a Kaluza-Klein reduction on the time direction. Alternatively, the

analysis is inspired by derivations of the first law of black hole mechanics e.g. [53].
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for some function α. Note, in particular that a Killing vector satisfies these conditions with

α = 0. The conditions (3.13) imply that

∇µ

(

∇[µkν]
)

= (−Rν
σ + αδνσ)k

σ . (3.14)

We next write ϕ = ikA and ikF = dθ + ψ, with ψ a one-form and θ a globally defined

function. In the special case that LkF = 0 we have dψ = 0. We now define4 the two-form G:

Gµν = −2∇[µkν] − 2Z(φ)

D − 2
k[µF ν]σAσ − 1

(D − 2)
[(3−D) θ + ϕ]Z(φ)Fµν . (3.15)

If we assume that Lkφ = 0, using the equations of motion (2.2), we can deduce that

∇µG
µν =

(

α+
2V

D − 2

)

kν − 3−D

D − 2
Z(φ)F νρψρ −

1

D − 2
Z(φ)AρLk(F

νρ) . (3.16)

For our setup, with k = ∂t and working at linearised order, we can choose θ = −ϕ and

we have

α = −∇(d)
i (gij(d)ζj)−

1

2
∂i log(G

3F )gij(d)ζj ,

ϕ = −θ = at + δat , ψ = −Ei dx
i + at ζi dx

i . (3.17)

We now define the bulk heat current density via

Qi =
√−gGir . (3.18)

When evaluated at the AdSD boundary, we show in appendix C that Qi|∞ is the time-

independent part of the heat current density of the dual CFT:

Ḡ1/2√ḡd(Ḡtti − µji) = Qi|∞ − tḠ3/2√ḡdt
ijζj . (3.19)

Here tti, ji are the expectation values of the holographic stress tensor and current vector,

with e.g. J i|∞ = Ḡ1/2√ḡdj
i The precise combination that appears on the left hand side

in (3.19) is the operator that is sourced by −tζi and is, by definition, what we call the

heat current density. Notice that in the case when the holographic lattice has no spatially

dependent sources for the metric this reduces to the standard expression tti − µji. The

time dependent piece on the right hand side is associated with the static susceptibility for

the heat current two point function (see appendix C of [36]).

In the background geometry we have Qi = 0. At linearised order for the perturbed

black holes we have

Qi =
G3/2U2

F 1/2

√
gdg

ij
d

(

∂r

(

δgjt
GU

)

− ∂j

(

δgrt
GU

))

− atJ
i . (3.20)

∂iQ
i = 0 ,

∂rQ
i = ∂j

(√−gGji
)

, (3.21)

4This definition slightly differs from the definition used in [18, 36]. The expression here has the advantage

that it is globally defined.
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as well as

∂r
(√−gGrt

)

+ ∂i
(√−gGit

)

=
√−g

((

α+
2V

D − 2

)

− 3−D

D − 2
Z(φ)F tjψj

)

. (3.22)

Note that (3.22) includes an equation for the background as well as the linearised pertur-

bation. We also record here that

√−gGij = −(GF )1/2
√
gdg

ik
d gjld

(

(UG)∂k

(

δglt
GU

)

+Z(φ)at

(

∂kat

(

δglt
GU

)

+∂kδal

)

−k ↔ l

)

,

(3.23)

and we note that the time dependence drops out because of the conditions (3.2) and (3.3).

Finally, following the discussion for the electric currents, with k = ∂t we conclude

that (3.21) implies

d(ik ∗G) = 0 . (3.24)

3.3 Currents at the horizon

We now obtain expressions for the electric and the heat current densities by expanding at

the black hole horizon. We find:

J i
(0) ≡ J i

∣

∣

H
= Z(φ(0))

√

g(0)g
ij
(0)

((

∂jδa
(0)
t + Ej

)

− a
(0)
t δg

(0)
jt

)

,

Qi
(0) ≡ Qi

∣

∣

H
= −4πT

√

g(0)g
ij
(0)δg

(0)
jt . (3.25)

From the first equations in (3.9) and (3.21) we immediately obtain

∂iJ
i
(0) = 0 , ∂iQ

i
(0) = 0 , (3.26)

which give two equations for a subset of the perturbations at the horizon. We can obtain a

closed system of equations, which are the generalised Stokes equations, by considering the

second equation of (3.21). We explain how this can be achieved in appendix D. The same

system of equations can also be obtained, in a more illuminating manner, by evaluating

the Hamiltonian, momentum and Gauss law constraints on the black hole horizon, as we

now discuss.

3.4 Constraints at the horizon

We carry out a Hamiltonian decomposition of the equations of motion using a radial de-

composition in appendix A. The momentum constraints and the Gauss-law constraints,

can be written in the form Hν = C = 0 where

Hν = −2
√
−hDµ

(

(−h)−1/2πµν
)

+ hνσfσρπ
ρ − hνσaσ∂ρπ

ρ + hνσ∂σφπφ ,

C = ∂µπ
µ , (3.27)

with

πµν = −
√
−h (Kµν −K hµν) ,

πµ =
√
−hZFµρnρ ,

πφ = −
√
−hnν∂νφ . (3.28)
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Here n is the unit norm normal vector, hµν = gµν − nµnν is the induced metric, Kµν =
1
2Lnhµν is the extrinsic curvature and K = gµνKµν . In addition Dµ is the Levi-Civita

connection with respect to hµν , bµ = hµ
νAν and fµν = ∂µbν − ∂νbµ.

We want to analyse these constraints for the perturbed metric on a surface of constant

r, near the horizon, and then take the limit r → 0. In local coordinates we have n = Ndr

where N is the lapse function. We immediately notice that

πµ =
√
−hZFµrnr = Jµ , (3.29)

and hence the Gauss-Law constraint C = 0 is simply ∂µJ
µ = 0. Evaluated at the horizon

we obtain ∂iJ
i
(0) = 0 as in (3.26). Turning to the momentum constraint, which we discuss

further in appendix B, we find that evaluating Ht = 0 as an expansion at the horizon gives

∂iQ
i
(0) = 0 as in (3.26). Next, Hi = 0 evaluated at the horizon gives the extra equation

mentioned above which, combined with ∂iJ
i
(0) = ∂iQ

i
(0) = 0 gives the Stokes system of

equations which we summarise in the next subsection. Finally, we note that the leading

order term of the Hamiltonian constraint, which is explicitly given in (A.9), also gives the

condition ∂iQ
i
(0) = 0.

3.5 Generalised Stokes equations at the horizon

We can now summarise the closed system of equations that we have shown a subset of the

linearised perturbations must satisfy at the black hole horizon. The black hole horizon is

as in (2.3), (2.5) and (2.6). The perturbation at the horizon is given as in (3.4), (3.5) and

it is illuminating to now introduce the following notation:

vi ≡ −δg
(0)
it , w ≡ δa

(0)
t , p ≡ −4πT

δg
(0)
rt

G(0)
− δg

(0)
it gij(0)∇j lnG(0) . (3.30)

These d + 2 unknowns satisfy the following d + 2 linear system of partial differential

equations:

∇iv
i = 0 , (3.31)

∇i(Z
(0)∇iw) + vi∇i

(

Z(0)a
(0)
t

)

= −∇i(Z
(0)Ei) , (3.32)

−2∇i∇(i v j) − Z(0)a
(0)
t ∇jw +∇jφ

(0)∇iφ
(0)vi +∇j p = 4πT ζj + Z(0)a

(0)
t Ej , (3.33)

where the covariant derivatives ∇ in this subsection are with respect to the metric, g
(0)
ij ,

on the black hole horizon Σd, and all indices are being raised and lowered with this metric.

The first two equations are simply ∂iQ
i
(0) = ∂iJ

i
(0) = 0, where Qi

(0), J
i
(0) are the heat current

and electric current densities at the horizon, respectively:

Qi
(0) = 4πT

√

g(0)v
j ,

J i
(0) =

√

g(0)g
ij
(0)Z

(0)
(

∂jw + a
(0)
t vj + Ej

)

. (3.34)

It is helpful to note that in the third equation we can also write

2∇i∇(i v j) = ∇2vj +Rjiv
i . (3.35)
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We emphasise that by evaluating the constraints at the horizon we obtain a system of

equations for a subset of the linear perturbation, namely, δg
(0)
it , δa

(0)
t , δg

(0)
rt , and we obtain a

closed system for this set. Furthermore, the equations we have obtained are a generalisation

of the forced Stokes equations for a charged fluid on the curved black hole horizon. Indeed

in the special case of electrically neutral black hole horizons with a
(0)
t = w = E = 0

and in addition constant φ(0), the equations are simply the Stokes equations with fluid

velocity vi, pressure p and forcing term given by the closed one-form 4πTζ. The curvature

of the horizon gives rise to an extra viscosity term as in (3.35). In the general case we

have a charged fluid with scalar potential w and an additional forcing term given by the

closed one-form E. It is also interesting to note that the scalar field is giving viscosity

terms of the form ∇jφ(0)∇iφ(0)vi. We will see in section 4 how these extra terms play a

direct role in determining the DC conductivity. We emphasise that we have not taken any

hydrodynamical limit in obtaining these equations.

We now establish a number of interesting properties of this set of equations. Firstly,

by taking the divergence of (3.33) and using (3.31), (3.32) we obtain the “pressure Poisson

equation”

∇2p = ∇j

(

2Rj
kv

k + Z(0)a(0)(∇jw + Ej) + 4πTζj −
(

∇jφ(0)∇kφ(0)
)

vk

)

. (3.36)

For a compact horizon and given background data, the pressure term is uniquely specified

by vj , w,Ej , ζj .

Second, we multiply (3.33) by vj from the left, and then integrate over the horizon,

and use (3.31), (3.32) to obtain

∫

ddx
√
g0

[

2∇(i v j)∇(i v j) + Z(0) (∇w + E)2 + vi

(

∇iφ(0)∇jφ(0)
)

vj

]

=

∫

ddx
(

Qi
(0)ζi + J i

(0)Ei

)

(3.37)

In the case of non-compact horizons, we have assumed that possible boundary terms vanish.

Observe that the left hand side is a manifestly positive quantity and this is related to the

positivity of the thermoelectric conductivities, which we discuss later.

Third, we consider the issue of uniqueness of the equations (3.31)–(3.33). If we have

two solutions then the difference of the functions, which we again write as (vi, w, p), will

satisfy the same equations but with vanishing forcing terms, ζj = Ej = 0. From (3.37) we

immediately conclude that

∇(i v j) = 0, ∇iw = 0, vi∇iφ
(0) = 0 . (3.38)

We also have Lva
(0)
t = 0 from (3.32) and ∇ip = 0 from (3.33). We conclude that the

solution space of equation (3.33) is unique up to Killing vectors of the horizon metric, with

p, w constant. We then have δgrt = (4πT )−1 LvG
(0) plus a constant. This result agrees

with the intuition that one should be able to boost along the orbits of Killing vectors to

obtain a solution with momentum at the horizon.
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Fourth, we observe that when (E, ζ) are exact forms, (E, ζ) = (de, dz) with e, z globally

defined functions on Σd, we can solve the equations (3.31)–(3.33) by taking w = −e and

p = 4πTz, plus possible constants, and vi = 0. We observe that this solution gives no

contribution to the current densities (3.34) at the horizon. We will see later that this

solution gives no contribution to suitably averaged currents at the AdS boundary and

hence no contribution to the DC thermoelectric conductivity i.e. the DC conductivity is

determined by the harmonic part of E and ζ. A basis for the non-trivial part of these

sources is thus given by a basis for the first cohomology group of Σd.

Fifth, we point out that the fluid equations that we have obtained can be obtained by

varying the following functional:

L =

∫

ddx
√
g0

[

−∇(i v j)∇(i v j) −
1

2
(vi∇iφ)

2 + p(∇iv
i) +

1

2
Z(0)

(

a(0)v +∇w
)2

− 1

2
Z(0)a(0)2v2 + 4πTζiv

i + Z(0)Ei

(

a(0)vi +∇iw
)

+
1

2
Z(0)EiE

i

]

, (3.39)

and we remind the reader that the covariant derivative ∇ in this subsection is with respect

to the metric g0ij . Varying with respect to the pressure, which is a Lagrange multiplier, gives

the incompressibility condition. Varying with respect v and w then gives the remaining

Stokes equations. It is also interesting to note that if we vary with respect to Ei and ζi
then we get the currents at the horizon J i

(0) and Qi
(0), respectively. On shell we therefore

can deduce, for example, that

δJ i
(0)

δζj
=

δQj
(0)

δEj
. (3.40)

This is a kind of Onsager reciprocal relation for the currents at the horizon. After consider-

ing the current fluxes, to be described in the next subsection, we obtain Onsager relations

for the DC conductivitities.

Finally, we comment on the fact that, locally, the sources can be eliminated from the

Stokes equations (3.31)–(3.33). Indeed since the sources E, ζ are closed, locally we can

write E = de, ζ = dz and after defining w̃ = w + e, p̃ = p− 4πTz we have

∇iv
i = 0 , (3.41)

∇i(Z
(0)∇iw̃) + vi∇i

(

Z(0)a
(0)
t

)

= 0 , (3.42)

−2∇i∇(i v j) − Z(0)a
(0)
t ∇jw̃ +∇jφ

(0)∇iφ
(0)vi +∇j p̃ = 0 . (3.43)

It is important to emphasise that now w̃ and p̃ are not globally defined functions on the

black hole horizon. For example, if the horizon was a torus with xi = xi + Li, and the

source E = cdx1 for some constant c, then w̃ would satisfy the twisted boundary condition

w̃(x1+L1) = w̃+cL1. Note that this would give extra contributions to (3.37). It is therefore

most natural to work with the formulation with sources, and we will do so in the sequel.

It is worth noting, however, that the sources can also be removed, locally, from the

full linearised perturbation. Indeed, suppose we carry out the gauge transformation A →
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A = d(te)+B and in addition change the time coordinate via t = t̃(1− z)+C, where B,C

are functions independent of the time coordainte. We then find that at linearised order we

obtain the same perturbed ansatz with vanishing sources and

δgt̃t̃ = δgtt + 2UGz, δgt̃r = δgtt − UG∂rC δgt̃i = δgtt − UG∂iC

δat̃ = δat + e− atz, δar = δar + ∂rB, δai = δai + ∂iB . (3.44)

We choose B,C to vanish suitably fast at the AdS boundary and at the horizon we choose

B = ln r/(4πT )e+. . . and C = − ln r/(4πT )z+. . . . Evaluating at the horizon we see that in

the new coordinates and gauge we have induced w → w̃, p → p̃ and δg
(0)
tt → δg

(0)
tt +2G(0)z.

3.6 The DC thermoelectric conductivity

For a given set of sources (E, ζ) we can solve the Stokes equations (3.31)–(3.33) at the black

hole horizon and hence obtain expressions for the electric and heat current densities at the

black hole horizon. From this data we would like to deduce something about the current

densities at the holographic boundary as a function of (E, ζ). The radial dependence of

the current densities are given by (3.9) and (3.21). For some simple special classes of black

hole solutions the current densities J i, Qi are independent of the radial coordinate. This

occurs for the Q-lattices and the holographic lattices that depend on just one of the spatial

dimensions, for example. However, for general classes of black holes J i, Qi will depend on

the radial direction.

On the other hand, remarkably, we can always define “current flux densities” J̄ i, Q̄i

which are independent of r and hence we can obtain the associated DC conductivity. To

consider a concrete example, we assume that we are in D = 4 with a periodic holographic

lattice and Σd = R
2 or a two-torus. In particular, the lattice deformations Ḡ(x), ḡij(x),

µ(x) and φ̄(x) in (2.4) are all periodic functions of the spatial coordinates xi with period

Li. We define the following current flux densities

J̄1 ≡ 1

L2

∫

J1dx2 , J̄2 ≡ 1

L1

∫

J2dx1 , (3.45)

where J̄1 and J̄2 is the current flux density through the x2 and x1 planes, respectively.

We define Q̄i in a similar way. We can then immediately deduce from (3.9), (3.21) that

∂rJ̄
i = ∂rQ̄

i = 0, which is simply Stokes theorem in the bulk. Notice that J̄ i, Q̄i are also

independent of the xi coordinates and hence they are just constants. Similarly in D = 5

with a periodic lattice on R
1,3 we would define the following constant current flux densities

J̄1 ≡ 1

L2L3

∫

dx2dx3J1 , J̄2 ≡ − 1

L3L1

∫

dx1dx3J2 , J̄3 ≡ 1

L1L2

∫

dx1dx2J3 . (3.46)

The current flux densities of the boundary theory are, by definition, J̄ i, Q̄i evaluated

at the AdS boundary. In order to evaluate the DC conductivity matrix we want to relate

these to constant sources Ēi, ζ̄i at the AdS boundary via
(

J̄ i

Q̄i

)

=

(

σij Tαij

T ᾱij T κ̄ij

)(

Ēj

ζ̄j

)

. (3.47)
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We have just shown that J̄ i, Q̄i are constant and so their value at the AdS boundary is the

same as at the black hole horizon, and that in turn these are fixed by the closed forms E, ζ

evaluated at the horizon by solving the Stokes equations (3.31)–(3.33). Continuing with

the case that Σd = R
d or a torus, we can take an independent basis of sources to be the

d one-forms Ēidx
i (no sum on i) and the d one-forms ζ̄idx

i (no sum on i) with constant

Ēi, ζ̄i and this defines the DC conductivity matrix (3.47).

Note that an equivalent way to characterise the constant sources Ēi, ζ̄i at the AdS

boundary is to write a general closed form source on Σd = R
d or a torus, as E = Ēidx

i+de,

where e is a periodic function and then extract Ēi by integrating E over an appropriate

basis of one-cycles. It is worth emphasising that in the paragraph following (3.38) we

noted that it is only the harmonic part of the sources that contribute to the currents at

the horizon and hence this procedure gives the same DC conductivity.

After substituting (3.47) in (3.37), we can now explicitly see that the positivity of

the left hand side of equation (3.37) implies that the thermoelectric DC conductivity is a

positive definite matrix. Continuing on from the discussion following (3.39) we can deduce

that the thermoelectric matrix is symmetric.

We will discuss the DC conductivity matrix when Σd is not R
d or a d-dimensional

torus in the next subsection.

We have presented a procedure for calculating the DC conductivity of the boundary

theory in terms of a calculation at the black hole horizon. One might wonder if the

calculation could also be done at any constant radial hypersurface. In fact this cannot be

done since evaluating the constraint equations on a constant r hypersurface with r 6→ 0

will not lead to a closed system of equations for a subset of the linear perturbation and

hence we cannot obtain the current fluxes.

3.7 Perspective using forms

We have focussed on a particular class of black holes given in (2.3), with a single black hole

horizon, and with perturbation given in (3.1) with (3.2), (3.3). We have also focussed on

black holes for which Σd is topologically either Rd or a d-dimensional torus. In this section

we briefly discuss the DC conductivity calculation using the language of forms, which illu-

minates some global issues as well as revealing generalisations for Σd with other topologies.

One key point is that the two-forms F and G for the perturbed metric satisfy, at

linearised order, the following closure conditions (see (3.11), (3.24)):

d(ik ∗ Z(φ)F ) = 0 , d(ik ∗G) = 0 , (3.48)

where k = ∂t. These conditions are valid without k being a Killing vector, but instead

satisfying the weaker conditions in (3.13).

We now observe that for any two-forms satisfying (3.48) we can define a natural set

of current fluxes. Specifically, at the deformed AdSD boundary and at fixed t, we let Ca,

a = 1, . . . , bd−1(Σd), be a basis of d− 1 closed cycles on Σd, where bd−1(Σd) is the (d− 1)

Betti number of Σd. We can then define the current fluxes through these cycles via

J̄a ≡ −
∫

Ca

ik ∗ Z(φ)F , Q̄a ≡ −
∫

Ca

ik ∗G . (3.49)
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We now consider a d-dimensional surface S in the bulk spacetime which has boundary Ca

at the AdS boundary and possibly another boundary at a black hole horizon. Then since

the integrand in (3.49) is closed, we deduce that these current fluxes are also equal to their

values at the black hole horizon. If the cycle Ca is contractible in the bulk, then the current

flux would necessarily have to be zero.

For the special cases of periodic lattices in D = 4 and 5 spacetime dimensions, for

which Σd is topologically R
2 and R

3, respectively, using (3.12) we immediately see that

the definition (3.49) agrees with the definitions5 given in (3.45), (3.46) after choosing an

obvious basis of one and two cycles, respectively. For these cases, the number of current

fluxes is the same as the dimension of Σd. However, this is not the case for more general

Σd. In D = 4, for example, we can envisage black holes in which Σ2 is a Riemann surface

with genus g > 1, and it is possible to define 2g current fluxes. There are many more

possibilities for solutions in D = 5. We also note that when Σd is a sphere, which is

relevant for solutions associated with deformations of global AdS, these current fluxes are

all trivial since bd−1(S
d) = 0.

The above comments were based on general two-forms satisfying (3.48). A second key

point in our derivation of the DC conductivity is that the two-forms were constructed with

specific source terms parametrised by the one-forms E, ζ. For the class of solutions that

we considered we assumed there was a single black hole horizon with the same topology

Σd as the spatial boundary of the deformed AdS space. In order to satisfy (3.48) it was

necessary to take the one forms E, ζ to be closed one-forms on Σd and independent of

the radial coordinate. Corresponding to the basis of (d − 1)-cycles, Ca, we can define

a basis of harmonic one-forms, φa, on Σd by Poincaré duality. We can then write E =

Ēaφ
a+de and ζ = ζ̄aφ

a+dz with constant Ēa, ζ̄a. Recalling the discussion in the paragraph

following (3.38), in solving the Stokes equations at the horizon in order to obtain the

currents at the horizon only the harmonic part of the sources, Ēaφ
a, ζ̄aφ

a are important. We

therefore can relate the bd−1(Σd) independent constant source terms to the bd−1(Σd) current

fluxes at the horizon, after solving the Stokes equations, and hence to the bd−1(Σd) current

fluxes at the AdSD boundary. This procedure give rise to thermoelectric conductivity

matrices σab, αab, ᾱab and κ̄ab, all of which are b1(Σd) × b1(Σd) matrices, where we used

the fact that bd−1(Σd) = b1(Σd).

One can ask if this aspect of the formalism can be adopted to more general classes of

black holes in which there are multiple black hole horizons (an example of such a solution,

but without spatially dependent sources, is given in [54]). This would require identifying

suitable source terms E, ζ that depend on the radial direction while still maintaining the

condition (3.48). We return to this point in section 5.

Finally, recalling (3.37) we note that we can write

∫

ddx
(

Qi
(0)ζi + J i

(0)Ei

)

= −
∫

Σd

(ik ∗ Z(φ)F ) ∧ E + (ik ∗G) ∧ ζ ,

= −
∫

C(E)

(ik ∗ Z(φ)F )−
∫

C(ζ)

(ik ∗G) , (3.50)

5Note that in (3.45), (3.46) we have divided by suitable Li in order to obtain current flux densities.
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where in the first line we are integrating over any surface at constant r and t. In the second

line C(E) and C(ζ) are (d − 1) cycles, unique up to homology, that are Poincaré dual to

the closed one-forms E and ζ. By definition the right hand side is thus the sum of the

current fluxes J̄ (E) + Q̄(ζ), through the cycles C(E) and C(ζ), repsectively. The positivity

of the left hand-side, which we obtain from (3.37), is associated with the positivity of the

thermoelectric DC conductivity.

4 Examples

In this section we examine some special examples of holographic lattices for which we

can solve the fluid equations on the horizon and hence obtain expressions for the DC

conductivity in terms of the behaviour of the black hole solutions at the horizon. We first

discuss how extra scalar fields manifest themselves in extra terms in the fluid equations

at the horizon and then use this to study a general class of Q-lattices. We next analyse

general holographic lattices that depend on just one spatial dimension. Finally we examine

holographic lattices that can be obtained as a perturbative expansion about the AdS-RN

black brane.

4.1 Extra scalars and Q-lattices

For simplicity we derived the Stokes equations for the model given in (3.33) which involved a

single scalar field. However, the generalisation to extra scalar fields, which can parametrise

a non-trivial target space manifold, is straightforward. Specifically, if we replace (2.1)

with several scalars, φI , with the functions V, Z depending on all of the scalars and the

kinetic-energy terms generalised via

− 1

2
∂φ2 → −1

2
GIJ(φ)∂φ

I∂φJ , (4.1)

then this leads to the Stokes equations as before, with the only change in (3.33) given by

−∇jφ
(0)∇iφ

(0)vi → −GIJ(φ
(0))∇jφ

I(0)∇iφ
J(0)vi . (4.2)

With this result in hand we can now obtain previous results for the DC conductivities

for Q-lattices [21, 36]. They key feature of the Q-lattice is that it exploits a global symmetry

in the bulk to construct the black hole solutions. In the present context we assume that

the model admits n global shift symmetries of the scalars:

φIα → φIα + ǫIα , (4.3)

with α = 1, . . . , n. For example, if we had a single complex scalar field with a global U(1)

symmetry, then the associated shift symmetry of this type is obtained by parametrising the

scalar manifold locally with the modulus and phase of the complex scalar field. This gives

rise to a periodic lattice. Another example, is a massless ‘axion’ field with only derivative

couplings. Note that the function Z must be independent of these φIα .
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The spatial coordinates xi are taken to parametrise R
d or possibly a torus. The black

hole solutions are then constructed based on an ansatz in which the scalars associated with

these shift symmetries take the form

φIα = CIα
j x

j , (4.4)

everywhere in bulk with C a constant n by d matrix. For simplicity of presentation we

assume that all spatial coordinates are involved and hence the DC conductivity in all

spatial directions is finite. The metric, the gauge-field and the remaining scalar fields will

depend on the radial direction but will be independent of the spatial coordinates xi. The

metric on the black hole horizon is flat and in addition, Z(0), G(0) and a
(0)
t are all constant.

After these remarks, the fluid equations (3.31)–(3.33) are solved with vi, p and w all

constant on the horizon. The fluid velocity is given by

vi = 4πT
(

D−1
)ij

(

ζj +
ρ

Ts
Ej

)

, (4.5)

with constant Ei, ζi and we have defined the d× d matrix:

Dij = GIα1Iα2
CIα1 i CIα2 j . (4.6)

Furthermore, the averaged charge density, ρ, defined in (2.8), and the entropy density, s,

are given by

ρ = ρH =
√

g(0)Z
(0)a

(0)
t , s = 4π

√

g(0) . (4.7)

The current densities J i, Qi are independent of the radius and are given by their horizon

values:

J i =

(

sZ(0)

4π
gij(0) +

4πρ2

s

(

D−1
)ij

)

Ej + 4πTρ
(

D−1
)ij

ζj ,

Qi = 4πTs
(

D−1
)ij

(

ζj +
ρ

Ts
Ej

)

. (4.8)

The DC conductivities are thus given by

σij =
sZ(0)

4π
gij(0) +

4πρ2

s

(

D−1
)ij

,

αij = ᾱij = 4πρ
(

D−1
)ij

,

κ̄ij = 4πTs
(

D−1
)ij

. (4.9)

Note that the conductivity when Q = 0, σQ=0 ≡ σ − Tακ̄−1ᾱ, is given by

σij
Q=0 =

sZ(0)

4π
gij(0) . (4.10)

A final point worth emphasising is that the origin of the matrix D appearing in the

final expressions arises from the extra terms involving the scalars in the Stokes equations,

underscoring the significance of the latter.
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4.2 One-dimensional lattices

We now consider a class of black hole solutions with metrics on the horizon that break

translations in just one of the spatial directions. As special sub-cases we will recover the

results for the inhomogeneous lattices with varying chemical potential studied in [18] as

well as the helical lattices studied in [29]. Recently formulae for the DC conductivity for a

scalar lattice were obtained in [19] in terms the behaviour of the solution at the black hole

horizon as well as sub-leading terms. We improve upon those results by providing a new

formula that depends just on the solution at the horizon.

We assume that the horizon geometry depends on the spatial coordinate x and is

independent of the remaining d− 1 spatial coordinates which, for definiteness and without

loss of generality, we take to parametrise a torus. The moduli of this torus can depend

on x. For simplicity we restrict our considerations to metrics on the black hole horizon of

the form

ds2d = g
(0)
ij dxidxj = γ(x) dx2 + ds2d−1 (x) , (4.11)

where ds2d−1 = gabdx
adxb is a flat metric on the torus. We now solve the relevant system

of equations (3.31)–(3.33). The incompressibility condition (3.31) is solved by taking the

non-vanishing components of vi to be

vx = (γ gd−1)
−1/2 v0 , (4.12)

with gd−1 the determinant of the d− 1 dimensional metric on the torus and v0 a constant.

The non-trivial component of the current density is Jx
(0), which must be a constant, and

we have
γ1/2

g
1/2
d−1Z

(0)
Jx
(0) = ∂xw +

γ1/2a
(0)
t

g
1/2
d−1

v0 + Ex . (4.13)

With a little effort we can now write the Stokes equation (3.33) in the form

2 v0 ∂x

(

γ−1/2 ∂xg
−1/2
d−1

)

− Y v0 +
γ1/2a

(0)
t

g
1/2
d−1

Jx
(0) − ∂xp = −4πT ζx , (4.14)

where we have defined

Y ≡ 1

2(γgd−1)1/2

[

(∂x ln gd−1)
2 + ∂xgab ∂xgcd g

ac gbd
]

+
1

(γ gd−1)1/2

(

∂xφ
(0)

)2
+

γ1/2Z(0)a
(0)
t

2

g
1/2
d−1

, (4.15)

with gab(x) the metric components for ds2d−1. Equations (4.13) and (4.14) may now be used

to fix the functions w and p. Since these are periodic functions, we must have that the

expressions for ∂xw and ∂xp have no zero modes on the torus and this imposes constraints

on Jx
(0) and v0. A simple way to establish these constraints is take an average of the two

equations. In fact doing this completely fixes Jx
(0) and v0 in terms of the sources. Indeed,

if we define ∫

↔ 1

L1

∫

dx1 , (4.16)
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where L1 is the period of the lattice, we obtain

Jx
(0) =

1

X

(

Ex

∫

Y + 4πT ζx

∫

γ1/2a
(0)
t

g
1/2
d−1

)

,

v0 =
1

X

(

4πT ζx

∫

γ1/2

g
1/2
d−1Z

(0)
+ Ex

∫

γ1/2a
(0)
t

g
1/2
d−1

)

, (4.17)

where

X ≡
(

∫

γ1/2

g
1/2
d−1Z

(0)

)

(
∫

Y

)

−
(

∫

γ1/2a
(0)
t

g
1/2
d−1

)2

. (4.18)

The expression for the heat current at the horizon is simply Qx
(0) = 4πT v0. Now for these

one-dimensional lattices the electric current and heat current densities are independent of

the radial direction and so we have deduced their values at the AdS boundary. Thus we

can immediately extract the thermoelectric conductivities in the x direction and we find

σ =
1

X

∫

Y, α = ᾱ =
4π

X

∫

γ1/2a
(0)
t

g
1/2
d−1

, κ̄ =
(4π)2 T

X

∫

γ1/2

g
1/2
d−1Z

(0)
. (4.19)

Observe that the final result for the conductivity is invariant under reparametrisations of

the x coordinate, as it should be.

We can also write the electrical conductivity in the form

σ = σQ=0 +
1

X

(

∫

γ1/2a
(0)
t

g
1/2
d−1

)2(
∫

γ1/2

g
1/2
d−1Z

(0)

)

−1

(4.20)

where σQ=0 ≡ σ − Tακ̄−1ᾱ is the conductivity when Q = 0 (as opposed to ζ = 0) and is

given by

σQ=0 =

(

∫

γ1/2

g
1/2
d−1Z

(0)

)

−1

. (4.21)

Notice that the second term in (4.20) vanishes if a
(0)
t = 0.

We finish by indicating how to obtain some previous results. For the one-dimensional

lattice of D = 4 Einstein-Maxwell theory given in [18] we simply need to use the translation

given by

γ = Σ(x) eB(x), ds21 = Σ(x) e−B(x) dy2, G(0) = H
(0)
tt (x) , (4.22)

in order to obtain the expressions for σ, α, ᾱ, κ̄ given in [18]. Similarly for the helical lattice

of pure D = 5 gravity studied in [29] we should use

γ = h2+, ds22 = r2+
(

e2α+ ω2
2 + e−2α+ ω2

3

)

, (4.23)

where two of the three left-invariant one-forms for Bianchi VII0 are given by

ω2 = cos kx dy − sin kx dz, ω3 = sin kx dy + cos kx dz . (4.24)
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It is straightforward to show that Y = 4k2 sinh2 2α+/(r
2
+h+) and hence recover the formula

for κ in the x direction given in [29]. Finally charged helical lattices in D=5 gravity with

two gauge-fields coupled to a scalar were studied in [30]. Setting the second gauge-field to

zero, we can compare our results by setting

γ = C1, ds22 = C2ω
2
2 + C3ω

2
3 . (4.25)

A short calculation shows that in the x direction we have

σ =
C

1/2
2 C

1/2
3 Z0

C
1/2
1

+
C2C3

k2(C2 − C3)2
4πρ2

s
,

α = ᾱ =
C2C3

k2(C2 − C3)2
4πρ , κ̄ =

C2C3

k2(C2 − C3)2
4πsT , (4.26)

where s = 4π(C1C2C3)
1/2 and ρ = (C1C2C3)

1/2a
(0)
t Z(0) (see (2.8)). The expression for σ

agrees with [30] and the expressions for α, ᾱ and κ̄ are new.

4.3 Perturbative lattices

We now consider the case of a periodic lattice that is constructed as a perturbative expan-

sion about the electrically charged AdS-RN black brane solution with a flat horizon. As

we have noted before since everything is periodic in the spatial directions, in effect, we can

take Σd to be a torus. If λ is the perturbative parameter, then at the black hole horizon

we will assume that we can write

g(0)ij = g δij + λh
(1)
ij + · · · , G(0) = f(0) + λ f(1) + · · · ,

Z(0)a
(0)
t = a+ λ a(1) + · · · , φ(0) = ψ(0) + λψ(1) + · · · ,

Z(0) = z(0) + λ z(1) + · · · , (4.27)

with a, z(0), ψ(0), f(0) and g being constant and the sub-leading terms are periodic functions

of, generically, all of the spatial coordinates xi. Note that the entropy density and the

electric current density on the horizon are given by

s = 4πgd/2, ρH = agd/2 . (4.28)

For the Ricci tensor and Christoffel symbols we have the expansions

R(0)ij = λR
(1)
ij + λ2R

(2)
ij + · · · ,

Γi
jk = λΓ

(1)i
jk + λ2Γ

(2)i
jk + · · · . (4.29)

It turns out that we can solve equations (3.31)–(3.33) perturbatively in λ using the

following expansion:

vi =
1

λ2
vi(0) +

1

λ
vi(1) + vi(2) + · · · , w =

1

λ
w(1) + w(2) + · · · ,

p =
1

λ
p(1) + p(2) + · · · . (4.30)
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Expanding (3.31)–(3.33) in λ, we find at leading order that

∂i v
i
(0) = 0 , � vi(0) = 0 , (4.31)

where � = δij∂i∂j and we deduce that vi(0) are just constant on the torus. We proved

earlier that for the full non-linear problem, in the absence of horizon Killing vectors, there

is a unique solution to the Stokes equations. Therefore, it must be the case that these

integration constants are fixed at higher orders in the perturbative expansion, and this will

be confirmed shortly.

At next order in the expansion we find

∂iv
i
(1) +

g−1

2
∂jh

(1) vj(0) = 0 ,

g−1z(0)�w(1) + vi(0) ∂i a
(1) = 0 ,

�vi(1) + ∂k(Γ(1))iksv
s
(0) +R(1)i

j v
j
(0) + a ∂iw(1) − ∂ip(1) = 0 , (4.32)

where

h(1) = h(1)kk , (Γ(1))iks =
g−1

2

(

∂sh
(1)i

k + ∂kh
(1)i

s − ∂ih(1)ks

)

, (4.33)

and all indices are raised and lowered with δ. By considering the pressure Poisson equa-

tion (3.36) and using ∇jR
j
i =

1
2 ∇iR, we deduce that

− aw(1) + p(1) = (�−1∂jR
(1)) vj(0) , (4.34)

with w(1) = −gz−1
(0) (�

−1∂ja
(1)) vj(0) from (4.32). Combining these results we can obtain an

expression for vi(1) in terms of vi(0):

vi(1) = N i
(1)j v

j
(0) , (4.35)

with

N i
(1)j = −�

−1
(

∂k(Γ(1))ikj +R(1)i
j − ∂i

(

�
−1∂jR

(1)
))

. (4.36)

The function �
−1f is defined up to a constant on a torus. The associated constant for vi(1)

will be fixed at third order in the perturbative expansion and it does not affect the leading

order DC result.

We now integrate equation (3.33) to find

∫

g
1/2
(0) ∇(kvl)∂jg(0)kl −

∫

g
1/2
(0) Z(0)a

(0)
t ∂jw +

∫

g
1/2
(0) ∂jp+

∫

g
1/2
(0) ∂iφ

(0)∂jφ
(0)vj

=

(
∫

g
1/2
(0)

)

4πT ζj +

(
∫

g
1/2
(0) Z

(0)a
(0)
t

)

Ej , (4.37)

where we have taken Ei, ζi to be constants and
∫

is defined to be the average over a period:

∫

↔ 1

L1 . . . Ld

∫

dx1 . . . dxd . (4.38)
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We next expand equation (4.37) with respect to λ and keep the λ0 pieces. Using (4.34),

(4.35), after some work we find that the left hand side can be expressed in terms of vi(0).

Indeed we deduce that

λ−2Ljiv
i
0 = 4πT ζj + aEj , (4.39)

where L is a matrix that only depends on the background data given by

Lji = λ2g−1

∫
(

g−1

2
∂jh

(1)
kl ∂ih

(1)kl + ∂jh
(1)
kl ∂kN l

i +
1

2
h(1) ∂j(�

−1∂iR
(1))

)

+ λ2 gz−1
(0)

∫

a(1) ∂j
(

�
−1∂ia(1)

)

+ λ2

∫

∂iψ(0)∂jψ(0) , (4.40)

with N as given by (4.36). Notice, in particular, that the integration constants associated

with �
−1 drop out since the relevant terms are all covered by an extra spatial derivative.

Thus at leading order we have

vi ≈ (L−1)ij (4πT ζj + aEj) , (4.41)

and

J i|H ≈ ρHvi , Qi|H ≈ Tsvi . (4.42)

Recalling the definition of the radially independent current flux densities given in (3.45),

(3.46), we finally obtain the holographic current flux densities in terms of E, ζ:

J̄ i ≈ ρvi , Q̄i ≈ Tsvi , (4.43)

where we used (2.8). Thus we can determine the leading order behaviour of the conduc-

tivities:

κ̄ = L−14πsT , α = ᾱ = L−14πρ , σ = L−1 4πρ
2

s
. (4.44)

We observe that κ̄(σT )−1 = s2/ρ2, which corresponds to a kind of Wiedemann-Franz law.

In addition we note that the thermal conductivity at zero current flow, κ ≡ κ̄− T ᾱσ−1α,

appears at a higher order in the expansion: κ ∼ λ0. It is interesting to compare these

results to the discussion in [55]. We similarly find that σQ=0 also appears at a higher order

in the expansion.

4.3.1 Perturbative one-dimensional lattices

We conclude this subsection by discussing the special case of one-dimensional perturbative

lattices and hence make contact with the results of section 4.2. We first notice that for an

arbitrary periodic function of a single coordinate x we have

�
−1∂xF = c+

∫ x

0
dxF (x)− x

∫

F , (4.45)

where c is an arbitrary constant and in the last term
∫

refers to the average integral over

a period in the x direction, as given in (4.16). Hence

∫

F ∂x
(

�
−1∂xF

)

=

∫

F 2 −
(
∫

F

)2

. (4.46)
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Recalling (4.11) we next assume that

h
(1)
ij dxidxj = δγ dx2 + δgab dx

adxb , (4.47)

where δγ and δgab only depend on x. The only non-zero matrix element of the matrix L is

given by

λ−2 Lxx = g−2

∫
(

1

2
∂xδgab ∂xδg

ab +
1

2
∂xδg

a
a ∂xδg

b
b

)

+

∫

(∂xψ)
2

+ gz−1
(0)

(

∫

a2(1) −
(
∫

a(1)

)2
)

, (4.48)

where indices are raised with δab. In obtaining the above result we used that

Rxx = − 1

2g
∂2
x δg

a
a, Rab = − 1

2g
∂2
x δgab . (4.49)

In the notation of section 4.2 we have

γ = g + λ δγ, gab = g δab + λ δgab , (4.50)

and the rest of the functions are expanded exactly as in (4.27). After this identification we

find that X as defined in (4.18) takes the form

X =
1

gd z(0)
g Lxx . (4.51)

It is then straightforward to see that the leading order expansion in the lattice strength

of the DC conductivities give in (4.19) agree with the perturbative results given in (4.44)

when restricted to lattices that depend on one spatial coordinate only.

5 Discussion

The main results that we have obtained in previous sections apply in a more general setting

as we now discuss. Specifically, we consider the following ansatz for a general class of static

solutions

ds2 = gttdt
2 + ds2(MD−1), A = atdt, (5.1)

where gtt, at, φ and the metric ds2(MD−1) are all independent of time and are just functions

of the coordinates xa on M(D−1).

The spacetime may have various types of asymptotic boundaries, but our primary

interest is when there is an AdS boundary.6 In this case we can introduce a local radial

coordinate and then impose the same boundary conditions as in (2.3), (2.4), corresponding

to the CFT living on Σd deformed with various spatially dependent sources. The spacetime

may have one or possibly more black hole horizons (examples have been discussed in [54]).

6We can also consider other holographic boundary conditions, for example, asymptotically Lifshitz, or

even asymptotically flat boundary conditions.
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Near each black hole horizon we can again introduce a local radial coordinate and then

demand that the metric has the behaviour that we gave in (2.5). Note that we do not

assume that the topology of the black hole horizons are all the same, nor do we assume

that that have the same topology as Σd.

We now consider the following linear perturbation

δ
(

ds2
)

= δgµνdx
µdxν + 2tgttζadtdx

a ,

δA = δaµdx
µ − tEadx

a + tatζadx
a ,

δφ , (5.2)

where the one-forms E, ζ are now defined on MD−1 (not just on Σd as before) and are

still taken to be closed. In addition δgµν , δaµ and δφ are all independent of t. It is

an interesting fact that at linearised order in the perturbation (and independent of any

boundary conditions) we still have the key results

dik ∗ Z(φ)F = 0, dik ∗G = 0 , (5.3)

where k = ∂t. Note that k still satisfies the conditions (3.13), and we have defined G as

before in (3.15).

We now consider the boundary conditions on the perturbation. At the holographic

boundary E, ζ approach closed one-forms E0, ζ0 on Σd and we impose that these are the

only sources deforming the CFT. Similarly, for each black hole horizon the perturbation

behaves in local coordinates as in (3.4), with E, ζ again approaching closed one-forms

on each horizon. Using the local coordinates at each horizon we can now impose the

Hamiltonian, momentum and Gauss-law constraints exactly as described in section 3.4 and

obtain a set of generalised Stokes equations on each horizon. By solving these equations we

can thus obtain currents on each horizon. Note that the precise source terms that appear in

the Stokes equations on each horizon follows after imposing that E, ζ are closed one-forms

in the bulk and that they approach E0, ζ0 at the AdS boundary.

At the AdS boundary we can define the current fluxes through each d − 1 cycle Ca
on Σd as in (3.49). Now consider any orientable d-dimensional manifold in the bulk with

boundary Ca at the AdS boundary and a d−1 cycle at the black hole horizon (which might

be disconnected). Then using (5.3) and Stokes’s theorem, we deduce that the current

fluxes are equal to the fluxes on the black hole horizon. In turn these fluxes can be

obtained by solving the Stokes fluid equations on the black hole horizon, which only depend

on the cohomology class of the sources at the horizon, which in turn only depend on the

cohomology class of E0, ζ0 on Σd at the AdS boundary. Thus by expanding the fluxes E0, ζ0

in a basis of harmonic one-forms that are Poincaré dual to the Ca we have a procedure for

obtaining the DC conductivities.

There are a number of interesting directions to pursue. In our analysis we assumed

that the black holes have vanishing magnetic field. In [4] we will relax this condition and

generalise the results obtained in [52, 56] for Q-lattices.

More generally, we have shown the DC conductivity of the boundary theory can be

obtained by solving the generalised Stokes equations at the black hole horizon. In a narrow
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sense the fluid equations are simply an auxiliary set of equations to solve this holographic

problem. However, the innate physical character of the equations (with their novel viscous

terms) suggest that their may be a deeper significance. As a first step, it would be interest-

ing to determine whether the full time-dependent and non-linear generalised Navier-Stokes

equations at the black hole horizon can also be used to obtain exact holographic informa-

tion for the dual CFT. It is natural to expect that the time-dependent equations will be

useful in extracting the small frequency behaviour of the AC conductivity. A related point

is to use our results to develop a systematic hydrodynamic framework in the presence of

holographic lattices. Finally it would also be very interesting to obtain some explicit lattice

black hole solutions that depend on more than one of the spatial dimensions and analyse

the fluid equations.
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A Radial Hamiltonian formalism

In this section we rewrite the equations of motion corresponding to the Lagrangian density:

L =
√−g

(

R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)

, (A.1)

using a Hamiltonian decomposition with respect to the radial variable. We will follow the

notation of [57], mutatis mutandi, generalising to include the gauge-field and the scalar field.

A useful reference is [58] and we note that closely related work independently appeared

recently in [59].

We consider a foliation by slices of constant r. We introduce the normal vector nµ, sat-

isfying nµnµ = 1. The D-dimensional metric gµν induces a (D−1)-dimensional Lorentzian

metric on the slices of constant r via hµν = gµν−nµnν . The lapse and shift vectors are given

by nµ = N(dr)µ and Nµ = hµνr
µ = rµ − Nnµ where rµ = (∂r)

µ. In a local coordinates

system we can write

ds2 = N2dr2 + γab(dx
a +Nadr)(dxb +N bdr) , (A.2)

where the shift vector has components Nµ = (0, Na) and hµν has components hrr =

NaN bγab, hra = γabN
b and hab = γab. Note also that Nµ = (N bN cγbc, γabN

a).

We will decompose the gauge-field components via

bµ = hµ
νAν , Φ = −NnµAµ , (A.3)
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and hence Aµ = bµ −N−1Φnµ. In the local coordinates we have br = NaAa, ba = Aa and

Φ = −Ar +NaAa.

The radial Hamiltonian formulation can be obtained by first rewriting the Lagrangian

density as follows

L = N
√
−h

(

(D−1)R+K2 −KµνK
µν − V − 1

4
Zfµνfρσh

µρhνσ − 1

2
ZXµh

µνXν

− 1

2
hµν∂µφ∂ν −

1

2
(nµ∂µφ)(n

ν∂νφ)

)

, (A.4)

where we have neglected total divergences. Here Kµν = 1
2Lnhµν = hµ

ρ∇ρnν is the extrinsic

curvature, K = gµνKµν and

fµν = ∂µbν − ∂νbµ ,

Xµ = fµνn
ν +

Φ

N
nν∇νnµ −Dµ

(

Φ

N

)

,

= fµνn
ν − 1

N
DµΦ , (A.5)

where the second expression utilises the fact that nµ∇µnν = − 1
NDνN . This latter result

follows from writing nν = N∇νr and using ∇µνr = ∇νµr. We also recall that Dµ is the

Levi-Civita connection associated with the metric h and, for example, DµΦ = hµ
ν∇νΦ.

With ḣµν = Lrhµν , ḃµ = Lrbµ, φ̇ = Lrφ we can show that

ḣµν = 2NKµν +DµNν +DνNµ ,

ḃµ = rρfρµ +∇µ(bρN
ρ) ,

= Nnρfρµ +Nρfρµ +∇µ(bρN
ρ) ,

φ̇ = Nnµ∂µφ+Nµ∂µφ . (A.6)

The corresponding conjugate momenta are then given by

πµν =
δL
δḣµν

= −
√
−h (Kµν −K hµν) ,

πµ =
δL
δḃµ

=
√
−hhµρZXρ ,

=
√
−hZFµrnr ,

πφ =
δL
δφ̇

= −
√
−h

N

(

φ̇−Nν∂νφ
)

,

= −
√
−hnν∂νφ , (A.7)

where the second expressions for πµ and πφ, which are not written in the canonical variables,

are useful.

The Hamiltonian density, defined as H = πµν ḣµν + πµḃµ −L, can be written as a sum

of constraints

H = N H +NµH
µ +ΦC , (A.8)
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with

H = −(−h)−1/2

(

πµνπ
µν − 1

D − 2
π2

)

−
√
−h

(

(D−1)R− V
)

− 1

2
(−h)−1/2 Z−1hµν π

µ πν +
1

4

√
−hZfµν fρσ h

µρ hνσ

− 1

2
(−h)−1/2π2

φ +
1

2

√
−hhρσ∂ρφ∂σφ , (A.9)

Hν = −2
√
−hDµ

(

(−h)−1/2πµν
)

+ hνσfσρπ
ρ

− hνσaσ
√
−hDρ

(

(−h)−1/2 πρ
)

+ hνσ∂σφπφ , (A.10)

C =
√
−hDµ

(

(−h)−1/2 πµ
)

, (A.11)

where π = πµ
µ and we have ignored total divergences.7

The equations of motion are given by

ḣµν = −2N(−h)−1/2

(

πµν −
1

d
π hµν

)

+ 2D(µNν) ,

π̇µν = −N
√
−h

(

(d+1)Rµν − 1

2
(d+1)Rhµν +

1

2
V hµν

)

− 1

2
N (−h)−1/2 hµν

(

πγδπ
γδ − 1

d
π2

)

+ 2N(−h)−1/2

(

πµγ πν
γ −

1

d
π πµν

)

+
√
−h (DµDνN − hµν DγDγN)

+
1

2
N(−h)−1/2Z−1

(

πµπν − 1

2
hµν(hρσπ

ρπσ)

)

+
1

2
N
√
−hZ

(

hµλhνγhρσfλρfγσ − 1

4
hµν(hρσhγδfργfσδ)

)

− 1

4
N(−h)−1/2π2

φh
µν +

1

2
N
√
−h

(

hµρhνσ∂ρφ∂σφ− 1

2
(hρσ∂ρφ∂σφ)h

µν

)

+
√
−hDγ

(

(−h)−1/2Nγπµν
)

− 2πγ (µDγN
ν) (A.12)

as well as

ḃµ = Dµ(N
νbν)−N (−h)−1/2 πµ +Nν fνµ −DµΦ ,

π̇µ =
√
−hDσ

(

NZ hσρhµδfρδ

)

+ 2
√
−hDσ

(

(−h)−1/2N [σ π µ]
)

, (A.13)

where we have dropped pieces proportional to the constraints in π̇µν and π̇µ. We also have

φ̇ = −(−h)−1/2Nπφ +Nν∂νφ ,

π̇φ =
√
−hDµ(

√
−hπφN

µ) +
√
−hDµ(NhµνDνφ)

−N

(

√
−hV ′ +

1

2
(−h)−1/2 Z−2Z ′hµν π

µ πν +
1

4

√
−hZ ′fµν fρσ h

µρ hνσ

)

. (A.14)

7In passing that we note that in the local coordinates (A.2) we have Φ−Nµaµ = −Ar and one sees that

using explicit coordinates one could uses Ar as a Lagrange multiplier instead of Φ.
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B Generalised Stokes equations from the constraints

In this appendix we show how the Stokes equations (3.31)–(3.33) arise from the constraint

equations (A.9)–(A.11) in a radial decomposition. More precisely we will examine the

constraints for the perturbed metric, at linearised order, focussing on the leading terms of

an expansion at the black hole horizon. In other words, we evaluate the constraints on a

hypersurface of constant r and then take the limit r → 0.

We begin by noting that for the perturbed metric the unit normal vector has

components

ni = −U1/2F−1/2 gijd δgrj , nt = G−1 (FU)−1/2 δgtr,

nr = U1/2F−1/2

(

1− U

2F
δgrr

)

. (B.1)

Furthermore, the corresponding shift and lapse functions are given by

N j = gijd δgri, N t = − 1

GU
δgrt ,

N = F 1/2U−1/2

(

1 +
1

2

U

F
δgrr

)

, (B.2)

The components of the extrinsic curvature take the form

Ktt =
1

2
G−2U−3/2F−1/2

(

−∂r (GU) +
1

2

U

F
∂r (GU) δgrr

)

+
1

2
G−2U−3/2F−1/2

(

(GU)2 ∂r

(

δgtt

(GU)2

)

+ ∂j(GU)N j

)

,

Kti =
1

2
U1/2F−1/2

(

−∂r

(

1

GU
gijd (δgtj − tGUζj)

)

+ gijd ∂j

(

1

GU
δgrt

))

,

Kij = −U1/2F−1/2∇(iN j) +
1

2
U1/2F−1/2

(

U

2F
∂rg

ij
d δgrr − ∂rg

ij
d + gikd gjld ∂rδgkl

)

− U1/2F−1/2 g
l(i
d g

j)m
d gknd δgmn ∂rgdkl , (B.3)

where here ∇ is the covariant derivative compatible with the d-dimensional metric gdij .

Expanding the extrinsic curvature close to the horizon we find

Ktt → −1

2

1

(4πT )1/2
1

r3/2
1

G(0)3/2

(

1 +
δg

(0)
tt

G(0)
− 1

2

δg
(0)
rr

G(0)
+

1

4πT
vi ∂i lnG

(0)

)

,

Kti → −1

2

1

(4πT )1/2
1

r3/2
1

G(0)3/2
vi ,

Kij → 1

(4πT )1/2
1

r1/2
1

G(0)1/2
∇(ivj) ,

K → 1

2

(4πT )1/2

G(0)1/2r1/2

(

1− 1

2

δg
(0)
rr

G(0)
+

1

4πT
∇iv

i +
1

4πT
vi∇i lnG

(0)

)

, (B.4)

and we also note that

Kt
i →

1

2

(4πT )1/2

G(0)1/2r1/2
ζi t . (B.5)
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We now consider the following quantity which appears in the momentum constraint (A.10)

Wν = Dµ

(

(−h)−1/2πµ
ν

)

= −DµK
µ
ν +DνK

= −(−h)−1/2 ∂µ

(√
−hKµ

ν

)

+
1

2
∂νhκλK

κλ + ∂νK . (B.6)

Expanding at the horizon we find the following individual components

Wt → −1

2

(4πT )1/2

G(0)1/2

1

r1/2
∇iv

i ,

Wi →
1

G(0)1/2

1

(4πT )1/2
1

r1/2

(

−∇j∇(jvi) − 2πT ζj +
1

2
∇ip

)

(B.7)

where

p = −2πT
1

G(0)

(

δg
(0)
tt + g(0)rr

)

− δg
(0)
it gij(0)∇j lnG(0) . (B.8)

Notice that after imposing the boundary condition constraints (3.5) this definition of p is

identical to the definition of pressure given in (3.30). Another quantity that enters the

constraints is the momentum of the scalar field. At leading order in r we have

πφ → −√

g(0) v
i∂iφ . (B.9)

We now turn to the gauge field. From the second expression in (A.7) we have

πµ =
√
−hZ Fµλ nλ =

√−g Z Fµr = Jµ . (B.10)

After expanding near the horizon we also find

ftµπ
µ = ftiJ

i → 0 ,

fiµπ
µ = fitJ

t + fijJ
j → (∂iw + Ei) J

t = g
1/2
(0) Z(0) a

(0)
t (∂iw + Ei) . (B.11)

We now now consider the constraint equations. Substituting (B.10) into the Gauss

constraint (A.11), ∂µπ
µ = 0, we obtain the current continuity equation ∂µJ

µ = 0. When

evaluated at the horizon this leads to ∂iJ
i
(0) = 0. We next consider the momentum con-

straints (A.10) with lowered indices. Using the above results we find that the t component

gives ∇iv
i = 0 while the i component gives the Stokes equation (3.33).

Finally, examining the Hamiltonian constraint (A.9), we find that the leading order

expansion at the horizon for the terms involving the linearised perturbation implies ∇iv
i =

0, and hence gives no further conditions. To see this we consider H in (A.9) as a sum of

six terms and it is convenient to divide by
√
−h. Using (B.9) and (B.10) we immediately

see that the third and fifth terms vanish at linearised order. It turns out that the leading

order power of r that appears is r−1. We can show that the sixth term and, with a bit more

effort, the fourth terms are of order r0. Next we consider the second term. The potential

term is clearly of order r0. After examining the leading terms in the Christoffel symbols we

can also show that the Ricci scalar term is also of this order. Finally, we need to examine
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the first term. To do so it is convenient to note that using (B.4) we have

(−h)−1/2πtt → −1

2

1

(4πT )3/2G(0)3/2

1

r3/2
∇iv

i ,

(−h)−1/2πij → 1

2

1

(4πT )1/2G(0)1/2

1

r1/2

(

− 2∇(ivj) − 4πTδg
(0)
kl g

ik
(0)g

jl
(0)

+ 4πTgij(0)

(

1− 1

2G(0)
δg(0)rr +

1

4πT
∇iv

i +
1

4πT
vi∇i lnG

(0)

))

. (B.12)

Continuing to evaluate the first term we are eventually led to the result that the leading

term in the Hamiltonian constraint can be written

(−h)−1/2H → 1

2rG(0)
∇iv

i. (B.13)

C Holographic currents

On-shell we have

δS =

∫

d3x
√
−h

[

1

2

(

r−(D+1)tµν
)

δhµν +
(

r1−Djµ
)

δAµ

]

, (C.1)

where tµν and jµ are the radially independent, holographic stress tensor and current,

respectively. After substituting the time dependent sources given in (3.1), (3.3) we find

δS =

∫

d3xḠ1/2√ḡd
[

(Ḡtti − µji)(−tζi) + ji(−tEi)
]

. (C.2)

We thus see that −tEi is a source for the operator density Ḡ1/2√ḡdj
i and −tζi is a source

for the operator density Ḡ1/2√ḡd(Ḡtti − µji).

It is possible to show that the expectation values of these holographic tensor densities

are given by

Ḡ1/2√ḡdj
i = J i|∞ ,

Ḡ1/2√ḡd(Ḡtti − µji) = Qi|∞ − tḠ3/2√ḡdt
ijζj . (C.3)

Thus J i|∞ and Qi|∞ are the time-independent parts of the expectation values of the vector

and tensor densities. To establish the first equation in (C.3) is straightforward. The second

is a little more involved. Firstly, from the expression for Qi given in (3.20) and using (B.3)

we can show that at linearised order we have

Qi = F (GU)3/2
√
gd

(

−2Kti + 2Kij 1

GU
(δgtj − tGUζj)

)

− atJ
i . (C.4)

Recall that if we write

t̃µν = −2Kµν +Xhµν + Y µν , (C.5)

where X = 2K + f(φ) + . . . and Y corresponds to additional terms arising from the

counterterms, then we obtain the stress tensor if we evaluate t̃µν at the AdS boundary.

Observing that at linearised order we have gtth
ti = hij (δgtj − tGUζj) we can therefore write

Qi = (GU)3/2
√
gd

(

(t̃ti − Y ti)− (t̃ij − Y ij)
1

GU
(δgtj − tGUζj)

)

− atJ
i . (C.6)
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We next want to take a limit as r → ∞. If the combination of Y ti and Y ij that appear

make sub-leading contributions, then we have

Qi|∞ = lim
r→∞

[

rD+1Ḡ3/2√gd
(

t̃ti + t̃ijtζj
)

− atJ
i
]

(C.7)

and we recover (C.3) after using that rD+1t̃µν = tµν . We have explicitly checked for

particular cases, eg D = 4 with Y µν ∼ R(3)µν that this does indeed occur. It would be

interesting to find a universal argument that this is always true.

The time dependent piece on the right hand side of (C.3) is associated with the static

susceptibility for the heat current two point function, as explained in appendix C of [36].

It can also be understood by noting that if we start with the background black hole ge-

ometries, with in particular tti = ji = 0, then the time independent linear perturbation

that is generated by the coordinate transformation t → t+ζix
i, induces the transformation

tti → −ζit
ij . Promoting this perturbation to one that is linear in time leads to the time

dependence as in (C.3).

D Alternative derivation of the Stokes equations

We discussed in section 3.3 how the generalised Stokes system of equations given in (3.31)–

(3.33) can also be obtained from the equations (3.9), (3.21) for J i and Qi. Indeed evaluating

the first of the two equations in each of (3.9), (3.21) at the black hole horizon we immedi-

ately obtain ∂iJ
i
(0) = ∂iQ

i
(0) = 0. These comprise two of the three Stokes equations, given

in (3.31), (3.32). The third Stokes equation, given in (3.33), can be obtained from the

second equation of (3.21).

To obtain it we consider the pieces of Qi that are linear in r obtaining

√

g(0)

[

−G(0)gij((0))∂j

(

4πT
δg

(0)
rt

G(0)

)

− δg
(0)
jt M

ij − 4πTG(0)ζj

]

− a
(0)
t J i

(0) , (D.1)

where we have defined the matrix

M ij = gij(0)

[

4πT

(

3G(1)

2G(0)
− F (1)

2G(0)

)

+ 2U (1)

]

+ 4πT g
−1/2
(0)

(√
ggij

)(1)
. (D.2)

Notice that this matrix depends on next to leading order terms in the expansion at the

black hole horizon. Equation (3.21) then implies that (D.1) should equal

− ∂j

[

G(0)2√g(0)g
jk
(0)g

il
(0)

(

∂k

(

δg
(0)
lt

G(0)

)

− k ↔ l

)]

. (D.3)

To obtain an equation at the black hole horizon, we need to be able to express the matrix

M in terms of leading order horizon data. After a long calculation, which we outline below,

using the equations of motion for the background black hole we can show the key result

M ij = −2G(0) (d)Rij + 4G(0)1/2∇i∇jG(0)1/2 − gij(0)�G(0)

+ Z G(0)a
(0)
t

2 gij(0) +G(0)gik(0)g
jl
(0)∂kφ

(0)∂lφ
(0) , (D.4)

and this leads to the final Stokes equation in (3.33).
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We use the radial Hamiltonian presentation of the equations of motion for the back-

ground black hole solutions (2.3). The unit normal vector is n = U1/2 F−1/2 ∂r. The

lapse function is given by N = U−1/2F 1/2 and the shift vector vanishes, Nµ = 0. The

non-vanishing components of the extrinsic curvature are given by

Ktt = −1

2
U1/2 F−1/2 ∂r (UG) ,

Kij =
1

2
U1/2 F−1/2 ∂rgij , (D.5)

and hence the non-vanishing components of the conjugate momentum are given by

πtt = − (FG)−1/2 ∂r g
1/2 ,

πij = −1

2
U (Gg)1/2 F−1/2 gik gjl ∂r gkl + U1/2 F−1/2 gij ∂r (UGg)1/2 ,

πt = (FG)−1/2 g1/2Z ∂rat ,

πφ = −G1/2F 1/2g1/2φ̇ . (D.6)

We also have

π = hµνπ
µν = dU1/2 F−1/2 ∂r (U Gg)1/2 . (D.7)

It is convenient to rewrite the equation of motion for πµν given in (A.12) in the form

π̇µν − 2N(−h)−1/2

(

πµγ πν
γ −

1

d
π πµν

)

=

−N
√
−h

(

(d+1)Rµν − (d+1)Rhµν + V hµν
)

+
√
−h (DµDνN − hµν DγDγN)

+
1

2
NZ

√
−h

(

hµλhνγhρσfλρfγσ − 1

2
hµν(hρσhγδfργfσδ)

)

+
1

2
N(−h)−1/2Z−1πµπν

+
1

2
N
√
−h (hµρhνσ∂ρφ∂σφ− hρσ∂ρφ∂σφhµν) , (D.8)

where we used the fact that Nµ = 0 as well as the constraint H = 0 with H as in (A.9).

We now wish to plug in the background expansions (2.5) in the equations of mo-

tion (D.8). Taking the r → 0 limit of the left hand side yields

π̇tt − 2N(−h)−1/2

(

πtγ πt
γ −

1

d
π πtt

)

→ −1

r

1

G(0)
(
√
g)(1) ,

π̇ij − 2N(−h)−1/2

(

πiγ πj
γ −

1

d
π πij

)

→
√
g(0)

2
M ij + 4πT gij(0) (

√
g)(1) , (D.9)

withM ij as defined in equation (D.2). For the right hand side of (D.8) we find the following
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leading order behaviour as r → 0:

(tt) →− 1

r

1

4πT
g
1/2
(0)

(

(d+1)Rtt
(0)G

(0) 4πTr + (d+1)R(0) − V(0)

)

+
1

r

1

4πT
g
1/2
(0) G(0)1/2

(

−1

2

1

G(0)2
gij(0) ∂iG

(0) ∂jG
(0)1/2 +

1

G(0)
DγDγG

(0)1/2

)

+
1

r

1

4πT

1

2G(0)2
g
1/2
(0) Za

(0)
t

2 +
1

4πrT

1

2
g
1/2
(0) g

ij
(0)∂iφ

(0)∂jφ
(0) , (D.10)

(ij) →−G(0)g
1/2
(0)

(

d+1Rij
(0) −

d+1R(0) g
ij
(0) + V(0) g

ij
(0)

)

+

√

G(0) g(0)
(

DiDj G(0)1/2 − gij(0)DγD
γ G(0)1/2

)

+
1

2
G(0)g

1/2
(0)

(

gik(0)g
jl
(0)∂kφ

(0)∂lφ
(0) − gkl(0)∂kφ

(0)∂lφ
(0) gij(0)

)

. (D.11)

We now decompose the d+ 1 dimensional Ricci tensor scalar via:

(d+1)Rij =
(d)Rij −

1

2
∇i

(∇jG

G

)

− 1

4
G−2∇iG∇jG ,

(d+1)Rtt =

(

1

2
∇i

(∇iG

G

)

+
1

4
G−2∇iG∇iG

)

GU ,

(d+1)R = (d)R−∇i

(∇iG

G

)

− 1

2
G−2∇iG∇iG . (D.12)

We also have

DγDγG
(0)1/2 =

1

2
G(0)−1 gij(0) ∂iG

(0) ∂jG
(0)1/2 +∇i∇iG

(0)1/2 , (D.13)

where ∇ is the covariant derivative with respect to the d dimensional horizon metric.

Putting these ingredients together we finally obtain the expression for M ij given in (D.4).
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