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1 Introduction and summary

Entanglement entropy has recently emerged as an important quantity whose significance

spans various subjects ranging from quantum gravity to quantum Hall effect. One of the

properties of the latter is nonvanishing topological entanglement entropy, which can be

defined to be a finite term γ in a large radius expansion of the entanglement entropy for a

disk region in a 2+1 dimensional theory with finite correlation length [1, 2]:

SEE = αR− γ + . . . (1.1)

More generally, topological entanglement entropy can be a good non-local order parameter

for quantum liquids with long-range order in situations where more conventional local order

parameters are not useful.
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Many quantum Hall systems can be described by Chern-Simons theories, where topo-

logical entanglement entropy can be computed; it equals the S0
0 component of the modular

S-matrix of the theory [3]. It can also be shown to represent a constant term in a par-

tition function on a sphere or a logarithm of the total quantum dimension. Topological

entanglement entropy is also related to the degeneracy of the ground states for theories

compactified on a spatial surface of genus g. In particular, for abelian Chern-Simons the-

ories, the relation is

2gγ = Sg , (1.2)

where Sg is the logarithm of the number of the ground states. For a non-abelian Chern-

Simons theory, the relation between Sg and γ can be more complicated. As we review

below, an interesting simplification occurs for the SU(N)k Chern-Simons theory in the

limit N � k � 1. In this case, the relation between Sg and γ is

2(g − 1)γ = Sg . (1.3)

Recently, a seminal work by Ryu and Takayanagi [4, 5] has inspired work on entan-

glement entropy in the context of AdS/CFT correspondence. Although quite difficult to

calculate by conventional field theoretic techniques, the entanglement entropy can be easily

obtained in the dual holographic description by computing the minimal area of the bulk

surface anchored on the entangling surface at the AdS boundary. This raises a natural

question whether one can construct holographic theories with nonvanishing topological

entanglement entropy γ. Computing γ involves finding an extremal surface in the bulk an-

chored to a large circle at the boundary of asymptotically AdS space. In [6] this excersise

was performed for the AdS-soliton geometry, which describes a confining 2+1 dimensional

field theory. In that model, at large radii, the dominant bulk hypersurface has the topology

of a cylinder, and gives rise to the vanishing topological entanglement entropy in accord

with our expectations: such a QCD-like theory is not expected to have a ground state with

nontrivial long-range order. For other work on topological entanglement entropy in the

context of holography, see [7, 8].

In this paper we show that non-vanishing topological entanglement entropy arises

naturally for certain field theories whose holographic dual four-dimensional descriptions

include a Gauss-Bonnet term. In four-dimensional gravity, the Gauss-Bonnet term is purely

topological. Its contribution to the holographic entanglement entropy is also topological

and can be computed by integrating the Euler density over the minimal surface in the

bulk [9–11]. It produces the Euler characteristic of that surface and hence, to get a non-

vanishing γ, we need the minimal surface to have the disk topology in the bulk, rather than

the cylinder topology. This is precisely what did not happen in the example studied in [6].

There are geometries where only a disk-like surface is a solution (and a cylinder-like is not)

— see e.g. [12]. The model considered in [12] does not quite work for us, since it does not

have a gap in the excitation spectrum, but it shows that we may have a chance by making

the confinement “softer”. Indeed, in this paper we show that certain soft-wall models

of confinement do support entangling surfaces with the disk topology and, moreover, a

constant term in the entanglement entropy due to the Einstein-Hilbert part of the bulk
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action is absent. Hence, the addition of the Gauss-Bonnet term to these models ensures

nonvanishing γ.

These four-dimensional holographic models (reviewed below) satisfy two important

conditions:

(i) The extremal surface anchored on a large circle at the AdS boundary has the topology

of a disk.

(ii) The constant term in the large radius expansion of the area of this bulk surface

vanishes.

The second condition comes from the expectation for γ to come entirely from the Gauss-

Bonnet term in the action, in the anticipation of its relation to the degeneracy of states

on a genus g surface. This is because contribution of the Gauss-Bonnet term to Sg is also

topological, while a contribution from the Einstein-Hilber term to the entropy is necessarily

extensive (equals the area of the horizon). Indeed, we find that for the soft-wall models

the relation between γ and Sg is the same as for the SU(N)k Chern-Simons theories in

the N � k � 1 limit, (1.3). To be more precise, this relation is only true for the part of

the ground state entropy which comes from the Gauss-Bonnet term. As it turns out, in

Einstein-Hilbert gravity it is very hard to find a holographic geometry, whose boundary is

a genus g > 1 surface, with vanishing entropy at zero temperature. This statement is true

for pure AdS and remains true for models we consider. This finite area of the horizon term

spoils the relation (1.3). Such a term however is exponentially suppressed as the product

of the confining scale and the size of the genus g surface becomes large.

The rest of the paper is organised as follows. In section 2 we review some facts about

Chern-Simons theories. In particular we review relations (1.2) and (1.3). In section 3

we review some basic facts about holographic four-dimensional Gauss-Bonnet gravity and

point out that a putative field theoretic dual of this gravitational model may possess non

vanishing topological entanglement entropy and ground state degeneracy, related by (1.3).

In section 4 we construct holographic models which have non-vanishing topological entan-

glement entropy — the soft-wall models discussed above. In section 5 we study the ground

state entropy of these soft-wall models compactified on Riemann surfaces of genus g. We

discuss our results in section 6. The appendices A and B discuss the spectrum and the en-

tanglement entropy of a slab region in the soft-wall model. We also discuss the topological

entanglement entropy in a certain holographic model of quantum Hall effect in appendix C.

2 Quantum dimensions and ground state degeneracy in Chern-Simons

theory

In this section we briefly review the physical interpretation of the quantum dimension

appearing in the Chern-Simons theory and its relation to the entanglement entropy. We

finish the section by outlining how to obtain the relation between topological entanglement

entropy and ground state degeneracy on Σg × S1.
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It is a well known fact that Chern-Simons theory is related to the corresponding Wess-

Zumino-Witten (WZW) theory [13].1 Consider the theory on T 2. Under the modular

S transformation, S : τ → −1/τ , exchanging two non-contractable cycles, the WZW

character is transformed as

χa(−1/τ) =
∑
b

Sba χb(τ) . (2.1)

The modular S-matrix, Sba plays a crucial role in the corresponding Chern-Simons

theory since the fusion rules [15] (see also [16] for a review in condensed matter application)

and partition functions on various Riemann surfaces [13] can be written as combinations

of these matrices.

We shall focus on the quantity called quantum dimension, da = S0
a/S0

0 . This object

has a special interpretation as a relative degeneracy of state in representation a compared

to the degeneracy of state in the identity representation, denoted as a = 0 [17]. This can be

shown more precisely by realising that the degeneracy of representation a can be written

as χa(q → 1), where q = e2πiτ . Thus, we have

da = lim
q→1

χa(q)

χ0(q)
= lim

q→0

∑
b Sbaχb(q)∑
b Sb0χb(q)

=
S0
a

S0
0

(2.2)

The topological entanglement entropy in (1.1) can be written as (se e.g. [3])

γ = − logS0
0 = logD ; D =

√∑
a

|da|2 , (2.3)

where D is called the total quantum dimensions [1, 2]. Recall also that S0
0 is the partition

function of the Chern-Simons theory on S3 [13].

We proceed by pointing out the relation between γ and Sg where Sg is the entropy of

the Chern-Simons theory on Σg × S1

Sg = logZ[Σg × S1] , (2.4)

where a simple relation (1.2) can be found for U(1)k gauge group and (1.3) for SU(N)k
with N � k � 1

2.1 U(1)k abelian Chern-Simons theory

For abelian Chern-Simons theories, the elements of the S-matrix are just phases and,

consequently, the total quantum dimension is simply

D =

√√√√ k∑
a=1

|da|2 =
√
k , (2.5)

and, therefore, the topological entanglement entropy for this theory is

γ = log D =
1

2
log(k) , (2.6)

1For an extensive review of WZW theory see e.g. [14].
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There are many ways to get the degeneracy of the U(1)k theory on a genus g surface.

For the least mathematically involved approach, see [18]. The ground state degeneracy and

the associated entropy are

Z[Σg × S1; U(1)k] = kg ; Sg = g log k . (2.7)

Thus, the topological entanglement entropy and ground state entropy are related by (1.2).

2.2 SU(N)k Chern-Simons theory

We now consider the non-abelian Chern-Simons theory with the SU(N)k gauge group where

N � k. The expression for the total quantum dimension can be found in e.g. [3] but the

calculation for large N limit can be quite involved. A simple way to find a nice expression

for the limit we are interested is to use the level-rank duality i.e. the partition function of

SU(N)k and SU(k)N on S3 are related by [19]

Z[S3, SU(N)k]

Z[S3, SU(k)N ]
=

√
k

N
. (2.8)

One can use the expression for Z[S3, SU(k)N ] for finite k and N → ∞, which is also

presented in [19],

logZ[S3, SU(k)N ] ' −1

2
(k2 − 1) logN +O(N0) . (2.9)

Using (2.8) and (2.9), the total quantum dimension D in this limit is

D = N+k2/2 ; γ = logD =
k2

2
logN . (2.10)

As for the ground state degeneracy on Σg × S1, we use the same approach outlined

above. The level-rank duality for this manifold is found in [20] to be

Z[Σg × S1, SU(N)k]

Z[Σg × S1, SU(k)N ]
=

(
N

k

)g
. (2.11)

The expression for Z[Σg × S1, SU(k)N ] with N � k can be found in [21]

logZ[Σg × S1, SU(k)N ] ' (g − 1)(k2 − 1) logN +O(N0) . (2.12)

As a result, the entropy on Σg × S1, with the gauge group SU(N)k, can be expressed

as follows:

Sg = logZ[Σg × S1, SU(Nk)] = g log(N/k) + (g − 1)(k2 − 1) logN +O(N0) . (2.13)

In the limit N � k � 1, we can then relate γ and Sg for SU(N)k using (2.10) and (2.13),

and the relation between them becomes (1.3).

– 5 –
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3 Gauss-Bonnet holography in 4 dimensions, entanglement entropy and

ground state degeneracy on Σg × S1

The Gauss-Bonnet theory is one of the simplest extensions of the Einstein gravity. It is

described by the Einstein-Hilbert action with a 4-dimensional Euler density, the Gauss-

Bonnet term, added. The action of this theory is

I =
1

16πG

∫
d4x
√
−g
[
R+

6

L2
+
λL2

2
E4

]
, (3.1)

where

E4 = R2 − 4RµνR
µν +RµνρσR

µνρσ . (3.2)

The Gauss-Bonnet term is non-dynamical, but affects physical quantities, such as the en-

tropy and the entanglement entropy. The correction term is simply an additional constant

proportional to λ. The Gauss-Bonnet gravity is problematic in the following ways. It has

been shown that for the positive Gauss-Bonnet coupling, λ > 0, one can merge black holes

and violate the second law of thermodynamics [22]. We will mostly be interested in the

situation with the negative coupling, λ < 0, where one can have black holes with negative

entropy [23–26]. Also, graviton scattering in higher-dimensional Gauss-Bonnet theories

exhibits violation of causality [27]. Nevertheless, none of these issues will appear in the

present work.

In this section, we review computations of the entanglement entropy and the black

hole entropy in the presence of the Gauss-Bonnet coupling. We show that contributions

from the Gauss-Bonnet term to the ground state entropy and to the entanglement entropy

are related by (1.3).

3.1 Entanglement entropy and the entropy of topological black hole

To calculate entanglement entropy for the field theory dual to 4-dimensional Gauss-Bonnet

gravity, one has to find the minimum value of the following functional [9–11]

SEE =
1

4G

[∫
M
d2y
√
ĥ
(

1 + λL2R̂
)

+ 2λL2

∫
∂M

dy

√
ĥ∂K̂

]
, (3.3)

where ĥij is the induced metric on the minimum surface, ĥ∂ is the induced metric of

the boundary of the minimum surface, R̂ is the Ricci scalar of the surface and K̂ is the

extrinsic curvature of the extremal surface’s boundary. The same functional (3.3) can also

be obtained using the derivation of gravitational entropy in [28–31], see also [32, 33]. In

the conformal case, where the gravitational dual is the AdS4 space, it is easy to compute

the entanglement entropy of a disk of radius R. The minimum surface is described by

r(z) =
√
R2 − z2 and the entanglement entropy is

SEE =

[
πL2

2G
(1− 2λ)

∫ R

ε
dz

(
R

z2

)]
+ 2λ

(
2πL2

4G

)
R

ε

=
πL2

2G

(
R

ε
− (1− 2λ)

)
. (3.4)
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Let us emphasise that, in general, there will be two kinds of constant terms in SEE, similar

to those in (3.4). The first type of constant term, independent of the Gauss-Bonnet cou-

pling, comes from the area of the minimum surface. However, this term is not topological

as it receives corrections when the disc is deformed [34, 35]. The constant term from the

Gauss-Bonnet term, on the other hand, is proportional to the Euler characteristic and is

topological by definition. As mentioned earlier, one of our main goals is to find a model

where only the constant term of a second kind is nonzero.

The black hole entropy is no longer just the area of the horizon due to the presence

of the Gauss-Bonnet term. The general formula for black hole entropy for the higher

derivative gravity is the Wald entropy formula [36–38]

S =
1

4GN

∫
horizon

d2y
√
h

∂L
∂Rµνρσ

εµνερσ =
1

4GN

∫
horizon

d2y
√
h(1 + λL2R). (3.5)

Here, hij and R are the induced metric and Ricci scalar on the black hole horizon. The

Lagrangian density L can be read off from the action (3.1). The binormal to the horizon

εµν is defined as εµν = n
(a)
µ n

(b)
ν εab, where n

(a)
µ are two unit normal vectors of the horizon

and εab is a usual Levi-Civita symbol.

We are mostly interested in the constant term (the Euler characteristic) which is

produced by integrating the Ricci scalar in (3.5) over the hypersurface. To double check

our prescription and to ensure that no other constant terms are present, we can use the

observation of [39]. They showed that in a conformal theory, entanglement entropy of a

disk equals the entropy of the hyperbolic black hole living in the dual AdS space. To be

precise, one can introduce the coordinate transformation

L2/z = ρ cosh(u) +
√
ρ2 − L2 cosh(t/L),

Lx0/z =
√
ρ2 − L2sinh(t/L),

Lx1/z = ρsinh(u) cos θ,

Lx2/z = ρsinh(u) sin θ . (3.6)

This coordinate transformation maps the metric of the empty AdS

ds2 =
L2

z2

(
dz2 + ηijdx

idxj
)
, (3.7)

into the hyperbolic black hole with R×H2 boundary, with a horizon2 at ρ = L

ds2 =
dρ2

ρ2/L2 − 1
−
(
ρ2

L2
− 1

)
dt2 + ρ2(du2 + sinh2u dθ). (3.8)

Using the Wald formula (3.5), the entropy of the hyperbolic black hole (3.8) is

S =
πρ2(1− 2λ)

2G

∫ umax

u=0
du sinh(u)

∣∣∣
ρ=L

=
πL2

2G
(1− 2λ)

(
R

ε
− 1

)
. (3.9)

2The appearance of the hyperbolic black hole here is similar to the way the Rindler space appears once

the Rindler coordinates are used to describe the wedge of the Minkowski spacetime. See e.g. [40] for more

detailed explanations.
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The value of cosh umax = R/ε can be read off from the coordinate transformation (3.6) at

ρ = L. Now we can see that the physical, cutoff-independent, terms in (3.4) and (3.9) are

the same. This verifies the formula for the entanglement entropy in (3.3).

3.2 Gauss-Bonnet contributions to entanglement entropy and to the black

hole entropy with genus g horizon

The 2-dimensional Riemann surface of genus g can be obtained by identifying the hyperbolic

space H2 by a finite subgroup of H2 isometry [41] (see also [42] and reference therein). In

this case the Gauss-Bonnet term in (3.5) is proportional to the Euler characteristic, χg, of

the horizon due to the Gauss-Bonnet theorem3

S(1)
g =

λL2

4G
(4πχg) =

2πλL2

G
(1− g) , (3.10)

where S
(1)
g is the contribution to the entropy due to the Gauss-Bonnet term. Now, consider

the Gauss-Bonnet term in the holographic entanglement entropy. The entangling surface

can be found using the usual Ryu-Takayanagi prescription. In general, there are two types

of surfaces that extremize the area functional, the ones with the cylinder topology with

r(z → ∞) = const and those with the disc topology with r(z = z0) = 0, for some finite

z0. The Euler characteristic is zero for the cylinder and unity for the disc. Let us denote

the Gauss-Bonnet contribution in the entanglement entropy by S
(1)
EE . For the minimum

surface with the disc topology, S
(1)
EE can be written as

S
(1)
EE =

λL2

4G

∫
d2y
√
ĥR̂ =

πλL2

G
, (3.11)

where we used χdisk = 1. The expressions (3.10) and (3.11) are topological since they only

depend on the topology of the horizon and minimum surface. The relation between (3.10)

and (3.11) is the same as (1.3).

4 A soft-wall holographic model with nonvanishing topological entangle-

ment entropy

In this section, we consider the geometry that is soft-wall model [43] in the IR and show

that it satisfies the criteria (i) and (ii) stated in the introduction. In the appendix C, we

also analyze the bottom-up model for fractional quantum Hall effect [44] in a certain range

of parameters. Without the Gauss-Bonnet term in the action, the topological entanglement

entropy is zero. However, since (i) and (ii) are satisfied, these models may have nonzero

topological term when the Gauss-Bonnet term is included.

The condition (i) will follow from the equation of motion, unaffected by Gauss-Bonnet

term. We will see that there is no minimum surface with cylinder topology for the large

values of the radius R. To ensure the condition (ii), one has to find the minimum surface

3In the presence of boundaries this formula is modified; in particular, the Euler characteristic of a disk

is χdisk = 1.
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and calculate the entanglement entropy to see that there is no O(R0) term in the area of

the minimum surface when R is large.

We consider a class of geometries that are related to the AdS4 by a warp-factor a(z):

ds2 =
L2a(z)

z2

(
dz2 − dt2 + dr2 + r2dθ2

)
. (4.1)

The equation of motion can be obtained by minimizing the area of the surface described

by r(z):

A = 2πL2

∫
dz
a(z)r(z)

z2

√
1 + r′(z)2. (4.2)

The equation describing the minimum surface is

a(z)

z2

√
1 + r′(z)2 =

d

dz

(
a(z)r(z)r′(z)

z2
√

1 + r′(z)2

)
. (4.3)

The metric is constructed to have a crossover scale between the UV and IR geometries set

by the mass scale, µ. In the UV region, µz � 1, the warp factor is chosen to be

aUV (z → 0) = 1, a′UV (z → 0) = 0. (4.4)

The second condition in (4.4) is chosen for technical convenience, so that the minimum

surface of a disc radius R near the boundary, z/L� 1 is the same as in AdS4:

r(z) = R− z2

2R
−O(1/R2) (4.5)

In the IR region, µz � 1, the warp factor is chosen to be the soft-wall warp factor

of [43].

aIR(z) = e−(µz)ν (4.6)

The low energy spectrum of this theory can be found in existing works on soft-wall models.

For ν = 1, the spectrum has a gap, set by the energy scale µ, and continuous spectrum

above the gap [45]. For ν > 1, the spectrum becomes gapped and discrete and for ν < 1,

the spectrum becomes gapless (see [46, 47] and references therein). Note that, although

the computations in the literature on soft-wall models are done in 5-dimensional gravity,

the same conclusion can be reached in 4 dimensions, following the discussion in appendix

A. The high energy spectrum of bound states in these models is given by

m2
n = n2−2/ν (4.7)

where n is the excitation number of the bound states. For ν = 2, one obtains a behaviour

similar to the Regge trajectory in QCD [48]. We will focus on the gapped system, ν ≥ 1,

where the topological entanglement entropy is well defined.

As an explicit example, the warp factor that satisfies the above condtions is

a(z) = 1/cosh
(√

(µz)2ν + 1− 1
)

(4.8)

– 9 –
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It is clear that the warp factor (4.8) reduces to the IR form (4.6) as µz � 1 (with the

substitution
√

2L→L). In the UV regime, µz � 1, the warp factor above behaves as

a(z) ' 1− 1

8
(µz)4ν + . . . (4.9)

satisfying conditions in (4.4) for all the range of ν where the spectrum is gapped, 1 ≤ ν.

The profile of the surface with the warp factor in (4.8) can be found numerically and the

relevant numerical results are shown in figure 1.

We will now show that the surface with disc topology is the only possible solution when

the surface probes the IR region, as long as ν < 2. The equation of motion describing the

minimum surface in the IR can be written as

1

z2
e−(µz)ν

√
1 + r′(z)2 =

d

dz

(
r(z)e−(µz)ν

z2

r′(z)√
1 + r′(z)2

)
. (4.10)

We will now employ the method outlined in the appendix C of [49] to rule out the solution

with cylinder topology. For the cylinder topology solution to exist, there must be a solution

to (4.10) with the asymptotic solution, r(z → ∞) = c0. Hence, the cylinder solution, at

large z, must behave like

r(z) = c0 + c1z
m + . . . , (4.11)

with m < 0. Note that (. . .) denotes the subleading term in z →∞ limit. Plugging in the

ansatz (4.11) into the l.h.s. of (4.10) and extracting the leading term, one finds that

1

z2
e−(µz)ν

√
1 + r′(z)2 = z−2e−(µz)ν +

m2c2
1

2
z2m−4e−(µz)ν + . . . . (4.12)

Similarly to the r.h.s. of (4.10), one finds that

d

dz

(
r(z)r′(z)e−(µz)ν

z2
√

1 + r′(z)2

)
= mc0c1z

m−4e−(µz)ν (−ν(µz)ν − 3 +m)

+mc2
1z

2m−4e−(µz)ν (−µ(µz)ν − 3 + 2m) + . . . . (4.13)

We can see that, for the leading term on the left and right of (4.10) to match, we need the

power of z in these terms to be identical, namely

z−2 = zν+m−4 ⇒ ν +m = 2 . (4.14)

However, for ν < 2, we can see that (4.14) cannot be satisfied. Therefore, an extremal

surface with the cylinder topology is not allowed for ν < 2. Interestingly, this indicates

that the phase transition for a disc region occurs precisely at ν = 2, the point of linear

confinement. On the other hand, for the slab region (see appendix B), the phase transition

occurs at ν = 1, where the spectrum changes from gapped to gapless.

We now proceed to show that the constant term in the large radius expansion of

the entanglement entropy vanishes. This can be done by showing that the area of the

minimum surface does not contain the R0 term, where R is the radius of the disc region
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at the boundary. We will consider the case of ν < 2 where only the surface with the disc

topology is a solution. The tip of the surface is located at z = z0 and µz0 � 1 at large R.

The mass gap, µ, is set to unity for the rest of this section (equivalently, all dimensionful

quantities are measured in the units of µ). Following the method outlined in [50], we split

the minimum surface into three parts:

(I) Deep UV region, ε < z < z
(1)
c , where ε is the UV cutoff: this region contains part

of the surface that attached to the circle of radius R at the boundary. The upper

limit, z
(1)
c , is the crossover scale where a(z) change the behaviour from aUV (z) to

aIR(z). As z � 1, the minimum surface is described by (4.5) as demanded by the

construction of a(z) in (4.4).

(II) Intermediate region, z
(1)
c < z < z

(2)
c : in this region, the soft-wall warp factor, a(z),

becomes aIR(z) in (4.6). The upper limit, z
(2)
c , is chosen such that the area of the

surface in this region is not exponentially suppressed by the warp factor aIR but

will be suppressed when z > z
(2)
c . It is possible to find the profile of the minimal

surface in the deep interior of this region i.e. when z � 1 but z � z0. To do this,

we introduce a new coordinate u = z/z0 and r(z) = (z0)nρ(u). The power of (z0)n

is chosen such that ρ(u) is of order (z0)0. The equation of motion (4.10) in this new

parametrisation becomes

0 = −(z0)2−2n

ρ(u)
− νuν−1(z0)νρ′(u)−

(
ρ′(u)

ρ(u)

)2

− νuν−1(z0)ν−2+2n(ρ′(u))3 + ρ′′(u).

(4.15)

Collecting leading terms in large z0 expansion, one finds that the smallest value of

n that gives a nontrivial equation of motion is n = 1− ν/2. For this value of n, the

surface in this region is described by

ρ =

√
2

ν(ν − 2)
(ν(ν − 2)d1 − u2−ν), (4.16)

where d1 is an integration constant. Expanding the solution at small u and writing

it in the original parametrisation, one finds that

r(z) =
√

2d1(z0)1−ν/2 − z2−ν
√

2d1ν(2− ν)(z0)1−ν/2 − . . . (4.17)

(III) Deep IR region, z > z
(2)
c where z can be of the same order as z0: as z becomes very

large, the area of the surface in this region is exponentially suppressed by the warp

factor aIR(z).

From the solution r(z) in region (I) and (II), one can see that the minimum surface

can be described by the following large R expansion,

r(z) = R− r1(z)

R
− r2(z)

R2
+O(1/R3), (4.18)
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Figure 1. Left : illustration of the region (I), (II) and (III). Right : numerical value of radius R

versus the position of the tip z0 with a(z)−1 = cosh(
√
z2ν + 1 − 1). The gradient of this plot is

1− ν/2 for ν = 1(blue), 1.2 (orange) and 1.4 (green), respectively.

where we identify R ∼ (z0)1−ν/2. The relation between R and z0 also agrees with the

numerical results in figure 1. Here {ri(z)} are functions interpolating between region (I)

and (II). Note that this expansion breaks down when ν approaches the critical value ν = 2.

This is expected from the previous analysis since the minimal surface might change its

topology at this critical value of ν. Plugging the expansion (4.17), into the area of the

minimum surface (4.2), one finds

A = A(I) +A(II) +A(III), (4.19)

A(II) = 2πL2

[
R

∫ z
(2)
c

z
(1)
c

dz
a(z)

z2
+

1

R

∫ z
(2)
c

z
(1)
c

dz
a(z)

z2

(
r′1(z)2

2
− r1(z)

)
+O(1/R2)

]
,

where A(I), A(II), A(III) correspond to the area of regions (I), (II) and (III), respectively. In

the region (I) the solution is approximately a cylinder of radius R in the large z0 limit,

and yields a typical UV divergence A ∝ L2R/ε . The area of region (III) is exponentially

suppressed by construction and can be neglected. To compute A(II), we first note that the

first cross over scale is of the order 1/µ i.e. z
(1)
c ∼ 1. Moreover, due to the fact that area

from the region z > z
(2)
c is negligible, the upper limit, z

(2)
c can be lifted to infinity without

drastically changing the integral A(II). Thus, finite part of the area of the minimum surface

can be written as

Afinite ≈ 2πL2

[
R

∫ ∞
1

dz
a(z)

z2
+

1

R

∫ ∞
1

dz
a(z)

z2

(
r′1(z)2

2
− r1(z)

)
+O(1/R2)

]
, (4.20)

and one can show that all integrals are finite and independent of R. This indicates that

there is no constant term, R0, in the area of the minimum surface.

One can also check the validity of the above approximation scheme by computing the

entanglement numerically using the warp factor (4.8). We found that the R0 term in the

area (4.2) has a value of order 10−4, for 1 ≤ ν ≤ 2 and µR ∼ 20. This numerical value is

negligibly small even though we are not at the limit µR � 1 and is expected to decrease

even further as µR increases.
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Upon including the Gauss-Bonnet term, the entanglement entropy can be written as

SEE = α1R+
πL2λ

G
+O(1/R) , (4.21)

where α1 is some non-universal constant depending on the cutoff of the theory. Note

that the boundary term in (3.3) only gives a divergent term and therefore does not affect

the R-independent piece. We can read off the topological entanglement entropy γ by

comparing (4.21) to (1.1),

γ = −πL
2λ

G
. (4.22)

5 Ground state degeneracy for the soft-wall model

In this section, we make an attempt at computing the ground state entropy for the model

considered in the previous section when the horizon is the two-dimensional hyperbolic

space. As mentioned earlier, the surface of genus g > 1 is obtained by identifying this

hyperbolic space H2 by a finite subgroup of the H2 isometry. As in the empty AdS4, the

area of the horizon is non-vanishing even at T = 0. However, this area is suppressed when

the product of the mass gap and the size, L, of Σg is large4.

To find the black hole entropy with the horizon being H2, one can proceed as the

following. First, we replace the flat spatial metric by the H2 metric. The black hole metric

has the following form

ds2 =
L2a(z)

z2

(
−f(z)dt2 +

dz2

f(z)
+ dΣ2

2

)
, (5.1)

where the spatial part of the boundary, dΣ2
2, is the line element on H2.

dΣ2
2 = L2

(
dθ2 + sinh2θdφ2

)
. (5.2)

As mentioned earlier, the black hole entropy contains a contribution from the Gauss-

Bonnet term, even if the Gauss-Bonnet term is not dynamical. The entropy in this case

can be computed using (3.5).

S =
1

4G

(
L2a(zH)

z2
H

vol(Σg)

)
+
πL2

G
χH , (5.3)

where the first term on the most right hand side is the area of the horizon and χH is

the Euler characteristic of the genus g horizon i.e. χH = 2(1− g).

In the following, we follow [51], where a semi-quantitative method to construct the

black hole solutions in the soft-wall models is proposed. In this setup, the dilaton is

assumed to be non-dynamical and does not affect the metric in the string frame

ds2
string =

L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ dΣ2

2

)
; ds2 = e−2ϕ(z)ds2

string . (5.4)

4It would be interesting to do the same calculation for the fractional quantum hall model of [44]. Un-

fortunately, unlike the flat horizon case, we find no hyperbolic black hole solution when the dilaton has a

scaling form φ ∼ rN in the deep IR region for the allowed value of γ̃ and s
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The dilaton ϕ(z) is chosen such that it takes the form ϕ(z) = −(µz)ν/2, as in [48, 51]. The

emblackening factor is further assumed to be that of AdS-Schwarzschild

f(z) = 1− z2

L2
+Mz3 . (5.5)

This solution is assumed to be a solution of a certain gravity model. To our knowledge,

such model has not been found5.

The zero temperature solution can be found by tuning M into Mext = (2/33/2)L−3

and the horizon is located at zH =
√

3L. As a result, the warp factor at the horizon can

be written as
L2a(zH)

z2
H

=
L2

z2
H

e−µzH =
e−
√

3µL

3
. (5.6)

Substitute the expression in (5.6) back into (5.3), one finds that the area of the horizon is

exponentially suppressed when µL� 1.

Hence, in this limit, the entropy of the soft-wall theory on Σg × S1 contains only a

Gauss-Bonnet term, which is topological

Sg ≈
2πλL2

G
(1− g) . (5.7)

Relating the expression in (5.7) to the topological entanglement entropy is (4.22), we find

the relation (1.3). We emphasize that this result should be taken with a grain of salt, as

a number of assumptions has been made to arrive at (5.7). It would be great to find an

honest way of constructing holographic gapped geometries with hyperbolic horizons.

6 Discussion

We show that it is possible to obtain nonvanishing topological entanglement entropy, γ,

in holography. The Gauss-Bonnet term plays a crucial role in our construction since γ is

proportional to the Gauss-Bonnet coupling. The key property for the entangling surface

to have a disk topology in the bulk is satisfied by the soft-wall models we consider. It is

interesting that the soft and hard wall models of confinement are clearly distinct from the

point of view of our work. It would be interesting to identify a field-theoretic reason for

this distinction.

Let us emphasize that the definition of γ involves computing the entanglement entropy

of a disk in a theory on a plane. This is contrasted with a different measurement of the

5Given the metric of the form ds2 = e−2A(z)(−dt2 + dx2 + dy2 + dz2), one can try to use the potential

reconstruction method [52] to find a dilaton potential V (φ) when A(z) = (µz)ν/2 + log z. The attempt

to find V (φ) for black hole metric, ds2 = e−2A(z)(−f(z)dt2 + dx2 + dy2 + dz2/f(z)), can be found in [53].

However, the dilaton potential for black hole phase is temperature dependent, so this route does not work

for us. Another way to construct the soft-wall black hole is considered in [54] for a flat boundary and in the

limit where the horizon is close to the boundary. In this method, the potential, V (φ, T ), made out of dilaton,

φ(z), and an additional scalar field, T (z), is reconstructed from non-black hole geometry [43]. To find a

black hole solution, one has to solve for a nontrivial profile of f(z), A(z), φ(z) and T (z). Unfortunately, we

are unable to find an extremal hyperbolic black hole solution using this method.
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topological order: the degeneracy of the ground state in the same theory compactified

on a genus g surface. We observe that the relation between the topological entanglement

entropy and the contribution to the ground state degeneracy from the Gauss-Bonnet term

strongly resembles the same relation for the Chern-Simons theory. It would be nice to

understand this better.

To describe the holographic dual of the soft-wall model on a higher genus surface one

needs to consider the bulk action that leads to the soft-wall metric in the infrared and find

the solution with the asymptotic boundary being H2 × R. The analogous procedure in

the conformal case (pure AdS) leads to the asymptotically AdS black hole with hyperbolic

horizon, so the appearance of the horizon would not be surprising. Unfortunately we did

not succeed in constructing an honest soft-wall solution with a hyperbolic horizon due

to technical difficulties. However, we present some arguments which indicate that the

horizon area (and therefore contribution of the Einstein-Hilbert term to the ground state

degeneracy) is exponentially suppressed as the mass gap becomes large. It would be nice

to make these arguments more precise.

To summarize, in this paper we showed how in certain holographic models with

Einstein-Hilbert and Gauss-Bonnet terms, the field theoretic degrees of freedom dual to

the former are frozen in the infrared due to confining geometry, while the latter presum-

ably give rise to a topological theory. To better understand the nature of this theory, more

work is needed. In particular, considering holography on spaces with boundary can provide

new insights.
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A Spectrum of gauge invariant mode in soft-wall model

In this section, we extract gauge invariant combinations of the metric fluctuations in the

soft-wall model and argue that the spectrum of the metric fluctuations in the 4-dimensional

model is gapped as in the 5-dimensional one.

The spectrum of the metric fluctuation of the 5-dimensional soft-wall model with gen-

eral ν was studied in [46]. Nevertheless, the metric fluctuations in 5 and 4 dimensions are

slightly different. The 5-dimensional metric fluctuations, hµν(x0, x1), can be categorised
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into three different channels by the remaining O(2) symmetry of the boundary field theory

(see e.g. [55]). In this case, it is enough to consider the scalar channel, consisting of only

hx2x3 , and solve scalar field equation of motion, where xi denote the directions along the

boundary. On the other hand, in 4-dimensional gravity, the fluctuation is categorised by the

parity, y → −y (see e.g. [56]). As a result, the odd parity channel contains (hyt, hxy, hzy).

The rest of the metric and scalar fields fluctuations are in the even parity channel. The

fluctuations are coupled to components in their respective channel and, a priori, it is not

clear that the analysis in 5-dimensional theory is still valid.

We follow the approach similar to those in [56] by finding a gauge invariant combination

of the fluctuation in odd parity channel. The equations of motion of these fluctuations are

(ω2 − k2)hzy(z)− ikh′xy(z) + ωh′yt(z) = 0 ,

z

L
a(z)−1/2 d

dz

[
L

z
a(z)1/2(h′xy(z)− ikhzy(z))

]
+ ω (ωhxy(z) + khyt(z)) = 0,

z

L
a(z)−1/2 d

dz

[
L

z
a(z)1/2

(
h′yt(z) + iωhzy(z)

)]
− k (khyt(z) + ωhxy(z)) = 0. (A.1)

where a(z) = e−(µz)ν is the warp factor of the soft-wall metric (4.1) in the IR. These three

equations of motion are not independent. We can rearrange the last two equations into the

equation of motion of the gauge invariant combination by eliminating hzy(z). The resulting

equation is

z

L
a(z)−1/2 d

dz

[
L

z
a(z)1/2ϕ′(z)

]
+ (ω2 − k2)ϕ(z) = 0 , ϕ(z) = hxy(z) +

k

ω
hyt(z) . (A.2)

The equation of motion above is identical those of the KK modes in 5-dimensional soft-

wall [47]. (see also [45] and [46] for discussions in ν = 1 and ν = 2 case). Thus, we conclude

that the spectrum of the metric fluctuations in the 4-dimensional soft-wall is also gapped

as in the 5-dimensional one.

B Entanglement entropy for slab geometry

In this section, we study the entanglement entropy for the slab region in the field theory

dual to the model described by the metric (4.1). The case of soft-wall model with ν = 2

was briefly mentioned in [57] and further studied in [58]. See also [59], for multiple slab

regions in different gap phases. We found that the phase transition of the entanglement

entropy occurs at ν = 1, precisely the value when the spectrum changes from being gapped

to gapless [46, 47].

Let us introduce the notation here. The slab region is the region between x = ±`/2
and has an infinite length along y−direction. The induced metric on the minimum surface

is written as

ds2
ind =

L2a(z)

z2

(
(1 + z′(x)2)dx2 + dy2

)
(B.1)

To be consistent with the main text, the numerical result in this appendix is done with

the warp factor a(z) = 1/cosh(
√
z2ν + 1− 1), where we set the energy gap scale µ = 1 for
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Figure 2. The width of the extremal surface `(z0) as a function of 1/z0. The width `(z0) has a

maximum value at large z0 for n > 1. The maxima of `(z) is not found for ν < 1. This plot is

obtained numerically from (B.4).

simplicity. We will first look at the profile of the minimum surface, determined by the area

functional. The area of the surface in this section can be written as

A = L2

∫ ∞
−∞

dy

∫ `/2

−`/2
dx
√
H(z)

√
1 + z′(x)2 ; H(z) = a(z)2/z4 , (B.2)

As pointed out in previous studies, there are two possible configurations that satisfy

the equation of motion derived from (B.2). The first solution is two infinitely long parallel

planes described by x(z) = ±`/2, referred to as disconnected surfaces. The other solution

is the connected surface where z′(x) = 0 at some value of z0. To find the profile of z(x)

describing the latter solution, we notice that area (B.2) does not explicitly depend of x and

one can use the “conservation of energy” to obtain the following first order equation

H(z)

1 + z′(x)2
= H(z0). (B.3)

Inverting this equation of motion, one can obtain the relation between z0 and the width `

of the slab as

` =

∫ `/2

−`/2
dx =

∫ z0

0
dz

√
H(z0)√

H(z)−H(z0)
, (B.4)

The profile of ` in (B.4) as a function of z0 is shown in figure 2. We found that for

ν > 1, the width `(z0) has a maximum value, ` = `max. This indicates that there can only

be the disconnected surfaces when ` > `max. The maximum value ` is not found for ν < 1.

To find the entanglement entropy, one needs to calculate the area (B.2) for both solu-

tions and finds out which one is smaller. It turns out that the Gauss-Bonnet contribution

for both solutions are zero and one can obtain the entanglement entropy by simply com-

puting the area. The area of both surfaces can be found by numerically evaluate the

following integrals

scon = L2

∫ z0

ε
dz

H(z)√
H(z)−H(z0)

, sdiscon = L2

∫ ∞
ε

dz
√
H(z) . (B.5)

Here ε denotes the short distance cutoff while scon and sdiscon represent the areas divided by

length along y−direction of connected and disconnected surface respectively. The difference

– 17 –



J
H
E
P
1
0
(
2
0
1
5
)
0
9
2

Figure 3. The difference of the areas, ∆s, of the surfaces described by (B.5) in the unit of L2as

a function of 1/z0. We can se that for ν = 1.5, there is a region where ∆s > 0 indicated that

the entanglement entropy is governed by disconnected surfaces when z0 is large. For ν = 1, the

connected surface gives the smaller area for any z0.

between the areas of connected and disconnected surfaces, ∆s = scon−sdiscon, for ν = 1 and

1.5 are shown in figure 3. We can see that, for ν = 1, ∆s approaches zero from below as we

increase the width of the slab. Hence, for a slab region with a finite width, the connected

surface remains a preferable solution. This is also true for the theory with ν < 1. For

ν > 1, the minimum surface at small z0 is the connected surface but undergoes the phase

transition into disconnected surfaces at large z0, as depicted in figure 3 for ν = 1.5.

To sum up, the entanglement entropy for a slab region with a large width µ` � 1 is

governed by disconnected surfaces for ν > 1 when the theory is gapped and by connected

surface for ν < 1 when the theory is gapless. As in [12], the critical point ν = 1,where the

phase transition occurs does not affect the entanglement entropy of a disk. This seems to

indicate that the simple model of [57] actually needs more work.

C Bottom-up model of fractional quantum Hall system

In this section, we apply our procedure to a bottom-up model of quantum Hall system [44].

We show that this model has non-zero topological entanglement entropy at certain values

of free parameters (γ̃, s) in the action of [44] when the Gauss-Bonnet term is present.6

Let us briefly review the setup for this model. The action we consider here is the exten-

sion of Einstein-Maxwell-dilaton-axion theory, with four following components in the action

I = Ig + IF + IV + IGB , (C.1)

where IGB is the usual Gauss-Bonnet term defined in (3.1). Note again, that IGB is does

not affect the analysis in [44] and can be added to produce the topological entanglement

6In [44] the two free parameters are denoted as γ and s. We denoted their γ by γ̃ to a avoid confusion

with the topological entanglement entropy
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entropy. The pieces Ig, IF and IV can be written as

Ig =

∫
d4x
√
−g
[
R− 1

2
(∂φ)2 − 1

2

e−2γ̃φ

γ̃2
(∂τ1)2

]
,

IF = −1

4

∫
d4x

[√
−geγ̃φF 2 +

τ1

2
ε̃µνρσFµνFρσ

]
,

IV =

∫
d4x
√
−g V (φ, τ1) , (C.2)

where V (φ, τ1) is the SL(2,Z) invariant potential of the axion τ1 and dilaton φ. The

solution we are interested in has both electric and magnetic fields however the electric

field is completely screened out in the deep IR. In this region, the potential V (φ, τ1) is

approximately V = −2Λe−γ̃sφ and the extremal solution can be written as hyperscaling

violating Lifshitz geometry

ds2 = C(γ̃, s, h)ρθ
[
−dt

2

ρ2z̃
+
dρ2 + dx2 + dy2

ρ2

]
. (C.3)

The overall constant, C(γ̃, s, h), depends on the free parameters in the action and the total

magnetic field h. The dynamical exponent, z̃, and hyperscaling violating exponent, θ, can

be written in terms of γ̃ and s as

z̃ =
γ̃2(1 + s)(1− 3s) + 4

γ̃2(1 + s)(1− s)
; θ =

4s

s− 1
(C.4)

where ρ → ∞ corresponds to the AdS boundary. We can define a new coordinate ρ =(
2
θ−2

)2/θ
z2/(2−θ) so that the boundary is at z → 0 when θ > 2. The induced metric on the

entangling surface in this new coordinate is

ds2
ind =

1

z2

((
1 +

z′(r)2

zn

)
dr2 + r2dΘ2

)
, n =

2θ

θ − 2
, (C.5)

The allowed value of θ (or equivalently γ̃ and s) can be found by imposing consistency

conditions on the potential V (φ, τ1) and by demanding that the theory is gapped and has

no naked singularity at finite temperature. The results in [44] show that the allowed values

of γ and s are the small region around the line s = 1± 1.44(γ̃ ± 1) between γ̃ ∈ ±[0.75, 1].

Since the width in γ̃ direction is small, we approximate the allowed region of (γ̃, s) to be

a straight line depicted in figure 4.

The entanglement entropy calculated from the induced metric of the form (C.5) has

been explored in [49]. One of their results is that there is only a solution with a disc

topology when n ≤ 2. Thus, from condition (i), only theory with γ̃ = ±1 and s = 1 can

have non-vanishing topological entanglement entropy.

Moreover, when n = 2, the approximate solution of the entangling surface can be

found. Let us parametrise the extremal surface by z = z(r), the equation of motion can

be written as

d

dr

(
rz′(r)

z(r)4
√

1 + (z′(r)/z(r))

)
= − 2r(z(r)2 + 3z′(r)2)

z(r)5
√

1 + (z′(r)/z(r))2
(C.6)
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Figure 4. Left : the allowed value of s and γ̃ captured by the relation s = 1 ± 1.44(γ̃ ± 1) where

γ̃ ∈ ±[0.75, 1]. Right : the allowed value of n = 2θ/(θ − 2) from value for allowed value of γ̃ and s.

Noted that n = 2 is the minimum value when s = 1 and γ̃ = ±1.

We are interested in the limit where the crossover from the deep IR geometry to the full

metric happens at z = zc(Rc) and that Rc � 1, in the unit of AdS radius. In the limit

where r approaches zero, one finds that the ansatz z(r) ≈ Ze−Ar
2

solves the equation of

motion (C.6) at the leading order. After imposing the matching condition, z(Rc) = 1, to

fix the constants Z and A, we find that the surface in the region z > zc is described by

z(r) = exp

(
R2 − r2

2

)
(C.7)

Now, we need to see whether there is a nonzero constant term from the area of the extremal

surface or not. We assume that the entangling surface extend very deep in the IR so that

the finite part of the area is determined by the IR part, similar to examples in section 4

and in [50]. Also, in the large R limit, the crossover radius Rc is approximately equal to

R, where R is the radius of the surface at the AdS boundary. In the large R ≈ Rc limit,

we have

SRT =
π

2G

∫
dr

r

z(r)2

√
1 +

z′(r)2

z(r)2

≈ π

2G

∫ Rc≈R

0
drr2e

r2−R2

2 ≈ π

4G

(
R− 1

R

)
(C.8)

This indicates that there is no constant term from this geometry. Hence, in this approxima-

tion, this model passes the criteria (i) and (ii) mentioned in the introduction. In principle,

one should also extract the constant term in the UV completed metric, not just the IR

part. However, the UV completed metric in [44] has to be obtained numerically which is

beyond the scope of this work.
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