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1 Introduction

Observations of the cosmic microwave background (CMB) radiation favor the paradigm

that the very early universe can be described by a phase of single-field slow-roll inflation [1,

2]. This can be realized in theories where a single scalar field, the inflaton field, is lighter

than all others so that its potential satisfies the inflationary slow-roll conditions.1 However,

additional fields can influence the predictions of many inflation models even when they are

heavier than the Hubble scale. We analyze such effects in some of the earliest and most

successful inflation models and their supergravity embeddings.

One of the first models of inflation was developed by A. Starobinsky [4]. It has an

exponentially flat scalar potential which is generated by a non-minimal coupling to gravity.

1We recommend [3] as a review.
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In recent years many successful attempts have been made to embed similar scenarios in four-

dimensional N = 1 supergravity. The ones we wish to study, as representative examples,

are the Cecotti model and its generalization [5, 6], the class of no-scale supergravity models

proposed in [7], and the Goncharov-Linde model [8, 9].

Another successful scenario to produce 50−60 e-folds of inflation, called natural infla-

tion, was developed in [10]. It contains a scalar field with a discrete axionic shift symmetry,

resulting in a periodic potential usually described by a cosine function. For the predictions

of this setup to agree with observations the axion decay constant of the inflaton field must

be super-Planckian. Axions are abundant in string theory, but super-Planckian decay con-

stants are forbidden [11, 12]. Hence, a number of ways have been proposed to generate effec-

tively large axion decay constants in string-derived and string-inspired setups. Among those

we wish to study are aligned natural inflation [13] and axion monodromy inflation [14, 15].

Many of the references given above analyze possible embeddings of the respective

inflation models in string theory. In that case consistent stabilization of all moduli is

generically a concern. In most cases, to realize single-field inflation without large amounts

of isocurvature fluctuations or non-Gaussianities all moduli and extra fields must be heavier

than the Hubble scale.2 Even if all moduli are stabilized supersymmetrically, meaning in

our terminology that the masses of the moduli are independent of the gravitino mass in

the vacuum,3 the inflationary vacuum energy induces a backreaction of the moduli on

the inflaton potential. This kind of moduli stabilization, called strong or supersymmetric

moduli stabilization, can be achieved using a racetrack setup [16, 17], or via interactions

with additional fields in the presence of anomalous U(1) symmetries [18]. The backreaction

of moduli stabilized in this way has been studied in [19] for generic F-term inflation models.

It is suppressed by powers of H/mTi , the Hubble scale divided by the mass of the moduli. If

some of the moduli break supersymmetry in the vacuum, the situation is more complicated.

Examples of this kind of moduli stabilization include the setup of KKLT [20], the Large

Volume Scenario [21, 22], and Kähler Uplifting [23–26]. The interplay of such moduli with

inflation has been studied in many instances. Here, we follow and extend the work of [27]

which is concerned with the backreaction in chaotic inflation with a quadratic potential.

We demonstrate that the non-decoupling effects found in [27] arise more generally and may

have severe implications for both plateau-like inflation and natural inflation.4

In addition to moduli fields from string compactifications there may be other heavy

fields which cause relevant backreactions on the inflaton potential. In particular, some of

the references given above make use of so-called stabilizer fields. It was shown in [29] that

the interplay between such stabilizer fields and supersymmetry breaking is non-trivial.

Hence, in models with a stabilizer field we are concerned with the backreaction of the

latter, which generically becomes important when the scale of supersymmetry breaking is

comparable to the Hubble scale. Similar as for the backreaction of moduli fields, we find

that plateau models are more susceptible to the effects of integrating out the stabilizer

2Again, we recommend [3] as a review and a comprehensive list of references on moduli stabilization.
3Note that we only consider Minkowski vacua. Here the gravitino mass always parameterizes supersym-

metry breaking.
4For a different approach involving the couplings between heavy and light superfields, cf. [28].
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field. This is because the exponential flatness of the inflaton potential is easily spoiled by

additional sectors in the theory.

This paper is organized as follows. In section 2 we present a general discussion of

the backreactions induced by stabilizer fields and supersymmetry-breaking moduli. We

illustrate the results of this discussion in the following sections. In section 3 we focus on

supergravity models with stabilizer fields, treating plateau models and natural inflation

models separately. The comparison between these two classes of models is particularly

instructive. Section 4 is devoted to models without stabilizer fields, and the backreaction

of heavy moduli, in particular Kähler moduli. Again we investigate plateau models first,

and then natural inflation models. Finally, we give a short conclusion in section 5.

2 General remarks

Extra fields in theories describing inflation can have effects on the inflationary dynamics

even if they are much heavier than the Hubble scale. In string-derived or string-inspired

models these fields can be, for example, geometric moduli fields or so-called stabilizer

fields. In the following we treat these two cases separately. We integrate out the heavy

fields and compute their backreaction in the form of inflaton-dependent corrections to the

scalar potential.5

2.1 Backreaction of heavy stabilizer fields

A large class of supergravity models with a stabilizer field S can be defined by the following

effective Lagrangian,

K = K(Φ + Φ, S, S̄,X, X̄, Tα, Tα) , (2.1)

W = MSf(Φ) +W1(X,Tα) , (2.2)

where f is a holomorphic function. Usually the inflaton field is proportional to the imagi-

nary part of Φ, which is protected by an axionic shift symmetry. The field X is responsible

for supersymmetry breaking, i.e., for an uplift of the post-inflationary vacuum to Minkowski

or de Sitter spacetime. The fields Tα are additional degrees of freedom like moduli fields or

the axio-dilaton whose effects we neglect for the moment. M is a mass scale which sets the

energy scale of inflation. The Kähler potential is usually chosen such that, in the absence

of the supersymmetry-breaking piece W1, S is stabilized at the origin of field space. In this

case the scalar potential on the inflationary trajectory becomes

Vinf ∼M2|f(Φ)|2 . (2.3)

In most cases f(Φ) vanishes after inflation so that the true vacuum is supersymmetric

and Minkowski. Once W1 breaks supersymmetry, however, there is a mixing between the

5As in [27, 29] we consider setups in which the heavy fields trace their inflaton-dependent minima

instantaneously and adiabatically. In this sense our approach is different from the one taken in [30–35],

where the authors consider sharp turns of inflationary trajectories in the valleys of heavy fields. Although

our models generically do not exhibit such features, it may be interesting to study a combination with the

effects that we find.
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stabilizer field and the inflaton field. Qualitatively it is of the form

Vsoft ∼ m3/2 [ReSf1(ϕ) + ImSf2(ϕ)] , (2.4)

with m3/2 = eK/2W evaluated in the true vacuum.6 f1 and f2 are model-dependent func-

tions of the canonically normalized inflaton field ϕ. This mixing term forces the stabilizer

field to track the evolution of the inflaton during inflation even if S is much heavier than

the inflaton, which is the case we consider. Through a second-order expansion in Re S and

ImS one can find the inflaton-dependent minimum of the stabilizer field. It reads

ReS = −m3/2
f1(ϕ)

M2
S(ϕ)

, ImS = −m3/2
f2(ϕ)

M2
S(ϕ)

, (2.5)

where M2
S(ϕ) denotes the squared mass of the stabilizer field during inflation. Inserting

this result in the scalar potential generates a backreaction term, i.e., the inflaton potential

becomes

V (ϕ) = Vinf(ϕ)−m2
3/2

f2
1 (ϕ) + f2

2 (ϕ)

M2
S(ϕ)

. (2.6)

The backreaction term is always negative and is generically problematic for inflation even

if an appropriate uplift is taken into account.7 This has been studied in detail for the

specific case of chaotic inflation with a stabilizer field, i.e., the model first proposed in [36],

in [29]. As we discuss in this paper, the results found in [29] hold more generally. An

exception seems to be models of natural inflation, which are somewhat protected from

severe backreactions by the periodicity of the inflaton potential. We discuss these models

as well as other examples in section 3.

2.2 Backreaction of heavy moduli

Supergravity models without stabilizer fields in the presence of geometric moduli have

been recently studied in [27] with particular focus on chaotic inflation with a quadratic

potential. The authors have demonstrated that there are non-decoupling effects induced

by a backreaction of the moduli and by supersymmetry breaking which become more severe

as the moduli become heavier. Thus, their influence on the inflationary dynamics are never

negligible and are potentially destructive. We wish to stress here that the results found

in [27] hold more generally and for a much larger class of inflation models. This has

implications for many string-derived and string-inspired models in the recent literature.

Along the lines of [27] we can start our analysis from a quite general ansatz of the form8

K = K0(Tα, Tα) +K1(Φ + Φ, X, X̄, Tα, Tα) , (2.7)

6Since 〈S〉 = 0 during and after inflation, usually m3/2 ∝ 〈W1〉.
7Notice that, in principle, the backreaction term can be made to vanish by making the mass of the

stabilizer field very large. As will become clear in the examples we discuss, this is unrealistic in most

scenarios due to the origin of the mass term of the stabilizer field.
8One important class of models which is not captured by this ansatz is Kähler moduli inflation in its

various forms, cf. [3] for a review and a list of references. In many of those models, like the ones of [37–40],

the inflaton potential has a plateau as in some of our examples. Most of them take various backreactions

from heavy fields into account.
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W = Winf(Φ) +W1(X,Tα) . (2.8)

Once more the inflaton field ϕ is protected by a shift symmetry, X is responsible for an

uplift of the true vacuum and Tα denotes all moduli fields. Thus, K0 usually has a no-

scale symmetry up to perturbative corrections from string theory. The mixing between the

moduli and the inflaton is assumed to be purely gravitational.

The backreaction of moduli on the inflaton potential can be worked out by expanding

the scalar potential in

V = V0 + V1 + V2 + . . . , (2.9)

where V0 denotes the moduli potential at the end of inflation, V1 ∼ O(Winf), and

V2 ∼ O(W 2
inf). This means we consider the case that the moduli fields are much heav-

ier than the inflaton and treat inflation as a perturbation of the modulus potential.

According to the analysis in section 2 of [27] we can treat the potential as a perturbative

expansion in the displacement of the moduli fields, since during inflation Tα = Tα,0+δTα(ϕ).

Here Tα,0 denotes the vacuum expectation value of Tα after inflation has ended. Similar to

the models with heavy stabilizer fields we can integrate out the moduli to find the effective

inflaton potential, along the lines of [27]. The important difference in our case is that we

expand in a general superpotential Winf instead of in ϕ. We can write the result as

V (ϕ) = Λ4
0 + V1(Tα,0, Tα,0, ϕ) + V2(Tα,0, Tα,0, ϕ)− 1

2

∂V1

∂ρα
M−2
αβ

∂V1

∂ρβ
+ . . . , (2.10)

with ρα = (Tα, Tα). We have summarized the effect of the uplift sector in a constant Λ0

which cancels the cosmological constant in the true vacuum after inflation. The second

term on the right-hand side arises through supersymmetry breaking and is the analog of soft

terms in phenomenological models like the MSSM and the soft inflaton mass term in [27].

Its explicit form in this general setup is irrelevant, and we discuss examples in section 4.

The last term in eq. (2.10) is the effect of the moduli backreaction. It is suppressed by

the squared inverse of the modulus mass matrix. Nevertheless it contains additional non-

decoupling effects which survive in the limit of large moduli masses, if the latter contribute

to supersymmetry breaking.

We can provide more explicit expressions in a class of models where the kinetic term

of the inflaton is simple,

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(Φ + Φ)2 , (2.11)

W = Winf(Φ) +Wmod(Tα) , (2.12)

neglecting the uplift sector involving the field X for the moment.9 Integrating out the

displacement of the moduli and expanding in the inflaton superpotential yields10 for the

9In [27] it was shown that including the supersymmetry breaking sector in the analysis does not change

the final result, provided the sgoldstino is heavy enough and has a small vacuum expectation value.
10In [27] the supersymmetric mass of order O(W 2

inf) was included in V1, whereas according to our present

expansion it should have been included in V2. Consequently, a sub-leading term of order O(W 3
inf) was kept

in the final expression, eq. (2.16) of that paper.
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terms in eq. (2.9)

V1 = eK0

{(
Kαβ̄

0 K0,αDβ̄Wmod − 3Wmod

)
Winf(Φ) + h.c.

}
, (2.13)

V2 = eK0

{(
Kαβ̄

0 K0,αK0,β̄ − 3
)
|Winf(Φ)|2 +K−1

1 |∂ΦWinf(Φ)|2
}
, (2.14)

where DαWmod = Wmod,α+K0,αWmod. The corresponding result for eq. (2.10) is still a very

complicated expression. Using the explicit form of ∂V1/∂Tα we can simplify the result by

assuming that the influence of the field which breaks supersymmetry dominantly is weak.

This is the case when the supersymmetric mass of the chiral fields in the theory is much

greater than the gravitino mass, or when the supersymmetry breaking scale is large but the

supersymmetry-breaking sector decouples from moduli stabilization by some mechanism.

The latter is the case, for example, in KKLT moduli stabilization with a Polonyi uplift.

This is the case we mostly consider in the example models of section 4. More details on

this approximation and the simplification of the effective potential can be found in the

appendix of [27]. The result of this computation reads

V (ϕ) = Λ4
0 + eK0

{
K−1

1 |∂ΦWinf(Φ)|2 − 3 |Winf(Φ)|2

+
[(
Kαβ̄

0 K0,αDβ̄Wmod − 3Wmod

)
Winf(Φ) + h.c.

]}
+ e

3
2
K0

(
Kδ

(
m−1
F

)βδ {− [Kεε̄
0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

− 3KβWmod

]
W 2

inf(Φ) + 2DβWmod|Winf(Φ)|2
}

+ h.c.

)
+O

(
H2

m2
T

)
, (2.15)

with Γαβγ = Gαᾱ∂βGγᾱ and G = K + ln |W |2. Moreover, m−1
F denotes the inverse of the

fermion mass matrix,

(mF )αβ = eG/2
(
Gαβ − ΓγαβGγ +

1

3
GαGβ

)
, (2.16)

which determines the supersymmetric contribution to the scalar masses. Again Λ0 sum-

marizes the effect of an additional uplift sector. Notice that the term in the second line,

proportional to Winf, is the soft term discussed before. It is independent of any approxi-

mations and assumptions made about the scale of supersymmetry breaking. Moreover, in

eq. (2.15) Φ = i(2K1)−1/2ϕ so that ϕ is the canonically normalized inflaton field, and the

real part of Φ is stabilized at the origin by its soft mass term.

In section 4 we provide various examples of the corrections to the inflaton potential in

single-field inflation models, by working out eq. (2.10) and eq. (2.15) explicitly, whenever

applicable. Before we proceed with examples of models with stabilizer fields, let us comment

briefly on possible higher-order correction to the inflaton potential.

– 6 –
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2.3 Comments on higher-order corrections

In any UV complete theory which produces the low-energy effective supergravity setups

we consider, one may worry about the effect of additional Planck-suppressed corrections

and their effect on the dynamics of inflation. Specifically, our two classes of models in

eqs. (2.1) and (2.7) assume that the inflaton field is protected by a shift symmetry. This

happens generically in various type II string compactifications where the shift symmetry

is a remnant of a ten-dimensional gauge symmetry. In heterotic string compactifications

it may arise as a remnant of SL(2,Z) symmetries of the tori of the compact manifold. In

both cases the shift symmetry is exact at all orders in perturbation theory, i.e., we expect

perturbative corrections to K in eqs. (2.1) and (2.7) to respect the shift symmetry.11

Non-perturbative corrections, usually proportional to e−αΦ, may break the shift sym-

metry to a discrete subgroup, as it happens in our examples of natural inflation. In those

cases we assume that additional instantonic contributions to the low-energy effective action

are smaller than those which generate the inflaton or moduli potentials.

Furthermore, as demonstrated in [42–44], higher-derivative interactions which are not

captured by the setups of eqs. (2.1) and (2.7) are expected to scale with powers of the origi-

nal potential, V n
0 /M

4(n−1)
P , and are thus generically suppressed compared to the corrections

we discuss in this paper.

3 Models with stabilizer fields

Stabilizer fields have first been used in context of inflation in [36].12 Unsurprisingly, they

stabilize the inflationary trajectory and help to achieve Minkowski or de Sitter vacua after

inflation. This is because they usually enter the superpotential linearly and are stabilized

at the origin, causing 〈W 〉 = 0 in the vacuum so that 〈V 〉 ≥ 0. As pointed out in section 2,

however, their interplay with supersymmetry breaking induces correction terms in the

inflaton potential. In the following we analyze these in plateau inflation models and natural

inflation models, respectively.

3.1 Starobinsky-like models with stabilizer fields

In the original proposal of [4] inflation is driven by the vacuum energy of a scalar field

whose potential is generated by a non-minimal coupling to gravity. It reads

V = Λ4

(
1− e−

√
2
3
ϕ
)2

, (3.1)

where Λ denotes the energy density during inflation and ϕ is the real inflaton field. The

potential is exponentially flat at large inflaton field values and produces observables in

accordance with the most recent CMB data. Much effort has been devoted recently to

embedding this scenario in four-dimensional N = 1 supergravity. One important class of

11For a recent discussion of this point we refer the reader to [41].
12Note also the enlightening discussion in [45] on possible Kähler potentials in models with stabilizer

fields. A microscopic embedding of models with stabilizer fields has been recently proposed in [46].
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plateau-like models in supergravity are those including a stabilizer field. While stability of

all directions in field space is usually not an issue in those cases, they are generically con-

strained once supersymmetry breaking is taken into account. In what follows we illustrate

this by means of two examples.

3.1.1 The modified Cecotti model

One of the first implementations of a plateau-like model in no-scale supergravity was pro-

posed in [5] and further developed in [6]. The model is comprised of a chiral superfield Φ

containing the inflaton field and a stabilizer field S which obey the following action,

K = −3 log

(
Φ + Φ− |S|2 +

ξ

3
|S|4

)
, (3.2)

W = MS(Φ− 1) . (3.3)

M is a mass scale which determines the energy scale of inflation. The quartic term for the

stabilizer field was introduced in [6] and is necessary for S to decouple sufficiently during

inflation. Notice that a kinetic term of S outside the logarithm would not give a plateau

model. During inflation S is stabilized at the origin while slow-roll proceeds along the

direction of the canonically normalized inflaton field ϕ, defined by Φ = e

√
2
3
ϕ

+ ia. The

field a is stabilized at the origin with a Hubble-scale soft mass and decouples from inflation.

The scalar potential on the inflationary trajectory thus becomes

V =
M2

12

(
1− e−

√
2
3
ϕ
)2

. (3.4)

This is the original Starobinsky potential with a plateau at large field values, ϕ & 5.

However, in the vacuum after inflation, corresponding to 〈ϕ〉 = 0 or 〈Φ〉 = 1, the potential

vanishes and supersymmetry is unbroken. Since control over the scale of supersymmetry

breaking is desirable from a phenomenological perspective, in the following we study the

effects of F-term supersymmetry breaking on the dynamics of inflation.

Supersymmetry breaking and backreaction of the stabilizer field. As in other

inflation models involving stabilizer fields we expect that S backreacts on the inflaton

potential if the supersymmetry breaking scale is large. For chaotic inflation with a stabi-

lizer field this was shown in [29]. The simplest and least constraining way to incorporate

supersymmetry breaking is via a Polonyi field, i.e.,

K = −3 log

(
Φ + Φ− |S|2 +

ξ

3
|S|4

)
+ k(|X|) , (3.5)

W = MS(Φ− 1) + fX +W0 . (3.6)

We assume that the function k can be chosen such that X is stabilized near the origin

of field space and decouples from inflation. This happens, for instance, through one-loop

interactions with other heavy fields, cf. [47] for more details. Thereby the dynamics of the

– 8 –
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Polonyi field can be completely decoupled from inflation.13 Notice that a kinetic term of

X inside the logarithm would not work since it would spoil the plateau.

To evaluate the effects of the supersymmetry breaking sector we can write the stabilizer

field as S = χ+ iβ and expand the potential around the origin in χ and β. The result reads

V = V0 +
e
−3

√
2
3
ϕ

8
f2 − e

−2
√

2
3
ϕ

2
MW0χ+m2

1χ
2 +m2

2β
2 , (3.7)

where V0 denotes the original potential in eq. (3.4) and m1 and m2 denote inflaton-

dependent mass terms for χ and β, respectively. Apparently β remains stabilized at the

origin while the minimum of χ is displaced due to the linear term proportional to W0. This

term is the explicit form of the first term in eq. (2.5), with m3/2 ∼W0. Notice that, while

cosmological constant cancellation in the true vacuum implies a relation between f and

W0, there can be no Minkowski solution with 〈ϕ〉 = 〈χ〉 = 0 and broken supersymmetry.

Using the explicit form of m1 we can solve for the displacement δχ(ϕ) to determine the

backreaction. We find

δχ ≈ 9W0

4ξM
e
−2

√
2
3
ϕ
. (3.8)

Notice that this shift decreases as ϕ increases, and thus vanishes in the plateau regime of the

potential. Nevertheless, it affects the potential for small inflaton field values and may inter-

fere with inflation. Inserting eq. (3.8) into V yields the effective potential for the inflaton,

V = V0 +
f2

8
e
−3

√
2
3
ϕ − 9W 2

0

8ξ
e
−4

√
2
3
ϕ
, (3.9)

at leading order in δχ. The true vacuum of the theory can in principle be found by solving

∂ϕV = V = 0. Since the correction terms are suppressed for large inflaton field values it

seems that there is no constraint on this theory at all. However, we must still require that

δχ� 1 at all times, i.e., for all values of ϕ including ϕ = 0. This is to guarantee that the

expansion converges and to ensure that perturbative corrections to the Kähler potential

are under control.14 For ξ ∼ O(1), which is realistic when the quartic term in the Kähler

potential arises from interactions with heavy fields, this implies

W0 �M . (3.10)

Since M ∼ 10−5 is fixed by observations, the allowed gravitino mass is bounded from

above by

m3/2 < 1013 GeV ∼ H . (3.11)

This bound is very similar to the one found in chaotic inflation in the analysis of [29].

13Alternatively, such a decoupling can be achieved by imposing a nilpotency condition on X, cf. the

discussions in [48–51]. This may work similarly for the stabilizer field S by imposing XS = 0.
14Moreover, the Kähler metric exhibits a singularity at |S|2 ∼ 2Re Φ ∼ 2.
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Comments on moduli stabilization. The result found above has implications for pos-

sible string theory embeddings of this model. In many string compactifications supersym-

metry is generically broken by fluxes close to the string scale or the GUT scale, or alter-

natively by the auxiliary fields of Kähler moduli. The latter case, as realized in KKLT or

the Large Volume Scenario, usually requires at least m3/2 > H for moduli stability, cf. the

discussion in section 4.1.1. Although in the present model Φ enters the Kähler potential

like a Kähler modulus parameterizing the entire compactification volume, its string theory

interpretation is unclear since it appears perturbatively in the superpotential.15 However,

if a suitable model with the correct couplings was to be found in string theory, all other

remnant moduli would have to be stabilized by some mechanism. The result in (3.11)

implies that this mechanism can not be KKLT or one of its variants. Instead, it seems

that one is forced to strong moduli stabilization, as discussed in section 4.1.2, where the

modulus mass and the gravitino mass are unrelated.

3.1.2 A model with an analytic Kähler metric

As our last example of this class, let us turn to a plateau model with stabilizer field which

does not exhibit a singularity in the Kähler metric. We choose

K = −2 log
(
Φ + Φ

)
+ |S|2 − ξ|S|4 , (3.12)

W = MS(Φ− Φ2) . (3.13)

Again a kinetic term of S inside the logarithm would not preserve the plateau. Analogous to

the previous example the potential on the inflationary trajectory with S = 0 and Φ = e−ϕ

reads16

V =
M2

4

(
1− e−ϕ

)2
. (3.14)

Again, in the vacuum supersymmetry is unbroken so that an analysis of the effects of a

supersymmetry-breaking sector becomes necessary.

Supersymmetry breaking and backreaction of the stabilizer field. Once more

we study the interaction of inflation and supersymmetry breaking using the ansatz

K = −2 log
(
Φ + Φ

)
+ |S|2 − ξ|S|4 + k(|X|) , (3.15)

W = MS(Φ− Φ2) + fX +W0 . (3.16)

Once more, the kinetic term of X must not be inside the logarithm to obtain a plateau in

the potential. Cosmological constant cancellation in the true vacuum with ϕ = 0 requires

f = W0. Similar to the previous example we can write S = χ+ iβ and observe that a linear

term in χ induces a backreaction in the inflaton potential. Analogous to eq. (3.8) we find

δχ ≈ − 2MW0 (2− eϕ)

W 2
0 e

2ϕ + 2M2 e−2ϕ + 4M2ξ (1− e−ϕ)2 . (3.17)

15Under certain circumstances such superpotentials for moduli may be generated by closed-string fluxes.
16Again the imaginary part of Φ is fixed at the origin with a Hubble-scale soft mass and decouples from

inflation.
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Figure 1. Effective inflaton potential for M = 10−5, ξ = 1, and W0 ranging from 10−10 to 10−7.

Evidently, the inflationary plateau is always destroyed for large field values, i.e., V → − 3
4M

2 as

ϕ→∞.

In contrast to the Cecotti model, in this case the backreaction becomes stronger with

increasing value of ϕ. Thus, we expect the plateau to be affected by the backreaction.

Using this result the effective inflaton potential takes the form

V = V0 −
M2W 2

0 (2− eϕ)2

W 2
0 e

2ϕ + 2M2 e−2ϕ + 4M2ξ (1− e−ϕ)2 , (3.18)

where V0 denotes the original potential in eq. (3.14). Note that, in line with the discussion

in section 2.1, the denominator of the correction term is the squared mass term of S. As

mentioned before, it can not be made arbitrarily large to suppress the backreaction. M is

fixed by observations and ξ is bounded by consistency of the effective field theory, cf. the

more detailed treatment in [29].

The negative correction term in eq. (3.18) dominates for large inflaton field values.

Depending on the magnitude of W0 it may dominate even for ϕ < ϕ? ∼ 6, which is the

starting point of the last 60 e-folds of slow roll inflation. In particular, in the limit ϕ→∞
the correction term becomes −M2. For V0 to be larger than the correction term it must be

W0 < M
√
ξ e−ϕ . (3.19)

With ξ ∼ O(1) and ϕ = ϕ? ∼ 6 this becomes W0 < 10−7, a quite conservative bound.

In fact, the cosmological observables are affected for even smaller values of W0. We have

illustrated the effective potential with M = 10−5 and ξ = 1 for several values of W0 in

figure 1. Apparently, for W0 & 10−9 the plateau becomes quite narrow so that the initial

conditions must be chosen very carefully. If W0 & 10−8 the hilltop is already too close to

ϕ? for 60 e-folds of inflation to be possible in agreement with CMB observations. Thus,
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it seems that the upper bound

m3/2 < 1010 GeV , (3.20)

must be satisfied for inflation to be viable in this setup. Since the backreaction affects the

plateau regime of the potential, this bound is even more severe than the one found in the

previous example. Even for substantially smaller gravitino masses the plateau is always

lost at very large field values, foiling one of the prime virtues of plateau-like inflation.

Moreover, this result implies that the comments about moduli stabilization made in the

previous example apply in this case as well.

3.2 Natural inflation models with stabilizer fields

In natural inflation the expansion of the early universe is driven by an axionic field with a

discrete shift symmetry. Thus, a periodic potential for the axion arises, i.e.,

V = Λ4

[
1− cos

(
ϕ

f

)]
. (3.21)

For a sufficiently large axion decay constant f the predicted observables of this model are

in agreement with the most recent CMB data. Achieving super-Planckian decay constants,

f & 1, is a subtle issue. We postpone this discussion and first study a minimal toy model

of natural inflation involving a stabilizer field. As in the case of plateau inflation the

backreaction of the stabilizer field becomes important when the scale of supersymmetry

breaking becomes large. Afterwards we comment on possibilities to enhance the effective

axion decay constant.

3.2.1 Natural inflation and large axion decay constants

A simple way to realize natural inflation in supergravity has been developed in [52]. The

corresponding Lagrangian for two chiral multiplets Φ and S is defined by

K =
1

2
(Φ + Φ) + |S|2 − ξ|S|4 , (3.22)

W = M2S
(
1− e−aΦ

)
. (3.23)

In string theory a superpotential like this may arise from Yukawa couplings of matter fields

and couplings to world-sheet or space-time instantons whose action is determined by Φ.

As before, during inflation the stabilizer field is fixed at the origin and its auxiliary field

sources the inflaton potential,

V = 2M4

[
1− cos

(
aϕ√

2

)]
. (3.24)

Here ϕ =
√

2 Im Φ denotes the canonically normalized inflaton field. The real part of Φ is

stabilized close to the origin with a Hubble-scale mass.

However, once supersymmetry breaking is taken into account the potential changes.

Let us consider, once more, a coupling to a Polonyi field X of the type

K =
1

2
(Φ + Φ) + |S|2 − ξ|S|4 + k(|X|) , (3.25)
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W = M2S
(
1− e−aΦ

)
+ fX +W0 . (3.26)

The additional F-term again induces inflaton-dependent linear terms for both Re S and

ImS so that the stabilizer backreacts on the inflationary trajectory. As before we integrate

out S and find for the effective inflaton potential

V = f2 − 3W 2
0 + V0 −

4W 2
0 V0

f2 − 2W 2
0 + a2M4 + 4ξV0

, (3.27)

with V0 given by eq. (3.24). There are two interesting cases to be considered here. If W0 —

and hence the scale of supersymmetry breaking — is small, W0 � M2 ∼ H, cancellation

of the cosmological constant in the vacuum is enforced by f =
√

3W0 and the last term

in (3.27) is subdominant. In this case natural inflation may proceed unperturbed. If,

on the other hand, W0 is large compared to H the relation between f and W0 slightly

changes and the correction term in (3.27) becomes approximately −4V0. The resulting

effective potential is again a cosine function with the same frequency as before.17 With an

appropriate uplift, by choice of f , inflation may proceed driven by the effective potential

V = 6M4

[
1 + cos

(
aϕ√

2

)]
. (3.28)

Hence, there is an important difference to Starobinsky-like inflation or chaotic inflation.

Due to the periodicity of the scalar potential, also the correction induced by the backre-

action of the stabilizer field is periodic and may be brought back to the same form as the

original potential. We remark that there is an intermediate regime W0 ∼ H, in which the

shape of the potential is changed significantly so that inflation may not be possible.

A point we have not addressed so far is the issue of super-Planckian axion decay

constants. With the above scalar potential, agreement with observations is only possible

if a � 1. However, string theory suggests that a & 1 [11, 12]. The model defined by

eqs. (3.22) can be extended in a simple way to achieve an effectively super-Planckian axion

decay constant. As noted in [52], including a second non-perturbative term involving Φ, i.e.,

W = M2S(A+Be−aΦ + Ce−bΦ) , (3.29)

leads to an inflationary potential of the form

V = M4

[
A2 +B2 + C2 + 2AB cos

(
aϕ√

2

)
+ 2AC cos

(
bϕ√

2

)
+ 2BC cos

(
(a− b)ϕ√

2

)]
.

(3.30)

If the constant coefficients are chosen such that BC < 0 and A � B,C the last term

in eq. (3.30) may drive inflation. Then, even if a, b & 1 it is possible that a − b � 1 so

that the inflaton has an effectively super-Planckian decay constant. When this theory

is coupled to supersymmetry breaking the effect of the backreaction of the stabilizer is

precisely the same as in the previous case. Thus, natural inflation is possible in both

regimes W0 � H and W0 � H.

17Its amplitude differs by a factor of three, which means that the inflationary energy density differs by a

factor of 31/4. This can be compensated by a redefinition of M .
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Another option to enhance the effective decay constant on the inflaton trajectory is

by aligning two axion fields in an appropriate way [13]. Models of aligned natural inflation

have recently been implemented in string-motivated supergravity using stabilizer fields

in [53, 54]. Also in those cases the backreaction of the stabilizer becomes sizeable when

W0 . H. But again, due to the periodicity of the potential, inflation is still possible for

large values of W0 if an appropriate uplift is taken into account.

3.2.2 Natural inflation and monodromy

Yet another possibility to reconcile natural inflation with CMB data is by introducing

a monodromy for the shift-symmetric axion field [14, 15]. Regardless of the string the-

ory embedding of such models, in the low-energy effective supergravity potential such

monodromies usually imply lifting the periodic potential with a monomial function. One

possible setup involving a stabilizer field, based on the previous example, can be defined by

K =
1

2
(Φ + Φ) + |S|2 − ξ|S|4 , (3.31)

W = M2S
(
Φ−Ae−aΦ

)
, (3.32)

where A is a constant parameter. The inflaton potential becomes

V = M4

[
A2 +

1

2
ϕ2 +

√
2Aϕ sin

(
aϕ√

2

)]
. (3.33)

The result is a quadratic potential with sinusoidal modulations. Coupling this model to a

Polonyi field works the same way as in the previous examples. The backreaction of S again

becomes important when W0 . M2 ∼ H. The corrected inflaton potential is identical to

eq. (3.27), but with V0 as in eq. (3.33). This time, if W0 �M2 inflation is impossible since

the negative correction term does not have the same form as the original potential. This

is because the periodicity of the potential has been lifted by the quadratic term. Thus,

the same conclusions as in chaotic inflation with a quadratic potential apply, cf. the more

thorough analysis in [29]. In this case, there is indeed an upper bound on the gravitino mass,

m3/2 < H . (3.34)

4 Models without stabilizer fields

Backreactions of heavy fields are not only important concerning the stabilizer field. There

exist numerous setups without stabilizer fields which reproduce natural inflation or plateau-

like inflation in some limit. In the following we would like to discuss a few representative

examples. In particular, we wish to stress the importance of Kähler moduli backreactions

once these models are viewed from a string theory perspective. In plateau-like inflation

it turns out that stabilizing all moduli consistently often ruins the exponential flatness of

the inflaton potential. Instead one is left with an effective potential which is exponentially

steep. In natural inflation there is no such clear statement, since the periodicity of the

potential usually protects these models from severe backreactions. However, there are

subtleties involved when supersymmetry is broken above the Hubble scale.
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4.1 Starobinsky-like models without stabilizer fields

4.1.1 A model in no-scale supergravity

An appealing implementation of plateau-like inflation has been proposed by the authors

of [7] and has been further developed in [55–57]. The model contains two chiral superfields,

denoted by T and Φ. It is based on the Wess-Zumino model [58] and its Lagrangian can

be defined by

K = −3 log

(
T + T − 1

3
|Φ|2

)
, (4.1)

W = M

(
1

2
Φ2 − b

3
√

3
Φ3

)
, (4.2)

where M is a mass scale which determines the energy scale of inflation. In string theory a

Kähler potential like (4.1) can arise if T is a Kähler modulus parameterizing the compacti-

fied volume and Φ is an untwisted matter field. If the modulus is stabilized at T = T = T0

one can find the scalar potential for the canonically normalized inflaton field ϕ by replacing

Φ =
√

6T0 tanh
ϕ√
6
. (4.3)

The corresponding imaginary part of Φ is stabilized at the origin with a Hubble-scale soft

mass and decouples from inflation. The same is true for Im T . A plateau for large inflaton

field values, ϕ & 5, is achieved when b = (2T0)−1/2, in which case the potential reads18

V =
3M2

8T0

(
1− e−

√
2
3
ϕ
)2

. (4.4)

A crucial assumption to obtain this result is that T is stabilized at its vacuum expec-

tation value. In the following we discuss if this can be achieved with the mechanisms for

Kähler moduli stabilization available in string theory. We distinguish two kinds of non-

perturbative stabilization schemes, supersymmetric (or strong) moduli stabilization, and

moduli stabilization with spontaneous supersymmetry breaking. As it turns out, unsur-

mountable obstacles arise in both cases.

4.1.2 Strong moduli stabilization

Let us assume, for the sake of simplicity, that the vacuum of our theory is such that α′

and string-loop corrections to the Kähler potential are negligible in the low-energy effective

description for T . In this case the theory is correctly described by the tree-level Kähler

potential in eq. (4.1) and T can be stabilized by non-perturbative contributions to W . In

particular, we assume that

W = M

(
1

2
Φ2 − b

3
√

3
Φ3

)
+Wmod(T ) , (4.5)

18In fact, a fine-tuning of b at the level of O(10−3) is necessary to realize 60 e-folds of Starobinsky-like

inflation.
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i.e., inflaton and modulus only couple gravitationally and via kinetic mixing. For T to

decouple from inflation Wmod must be such that mT > H ∼M . One may expect that the

simplest way of decoupling the modulus is by supersymmetric stabilization, meaning that

Wmod(T0) = ∂TWmod(T0) = 0 , (4.6)

so that FT
∣∣
T0

= 0, but still ∂2
TWmod(T0) ∝ mT > H. This has been shown to be possible

via a racetrack setup [16] or via interactions with additional fields in the presence of

anomalous U(1) symmetries [18]. The inflationary backreaction of moduli stabilized in

this way has been previously studied in [19] for arbitrary inflaton superpotentials. Indeed

it was found that, after integrating out T above the Hubble scale, the effective inflaton

potential is identical to the theory without a modulus up to corrections suppressed by

powers of H/mT . In this case, however, this is undesirable because in the setup of [7] the

no-scale symmetry associated with T is crucial to realizing the plateau for large inflaton

field values. If T does not break supersymmetry and is decoupled with a large mass, there

is no no-scale cancellation to eliminate the dangerous term proportional to −3|W |2 in the

scalar potential. Let us be more specific. We can compute the scalar potential defined by

eqs. (4.1) and (4.5) and expand around the true vacuum, T = T0 + δT (ϕ). By minimizing

the result with respect to δT (ϕ) we find19

δT (ϕ) =
3M tanh2 ϕ√

6

2W ′′mod(T0)
∼ H

mT
, (4.7)

where primes denote derivatives with respect to T . During inflation the modulus minimum

is shifted by an amount which depends on the inflaton field value, as for the stabilizer

field in section 3. Inserting this result for T in the potential yields the following effective

potential for the inflaton,

V =
3M2

8T0

(
1− e−

√
2
3
ϕ
)2

− 3M2

8T0
sinh4 ϕ√

6
+O

(
M

mT

)
. (4.8)

Hence, we obtain the Starobinsky potential but also the term proportional to −3|W 2|
which is negative and too steep to allow for inflation in any field range. The latter term is

absent in [7] because there T is taken to be a dynamical field whose vacuum expectation

value is fixed in a very special way, as we discuss in section 4.1.4. The correction terms

contained in the third piece are never large enough to remedy the model. Furthermore,

eq. (4.8) again implies b = (2T0)−1/2 to high accuracy. It is a straight-forward exercise to

verify that inflation is impossible for any value of b.

4.1.3 Moduli stabilization with supersymmetry breaking

Taking this into account, one could expect that the model may be viable when T breaks

supersymmetry at a high scale, so that a no-scale cancellation between F 2
T and −3|W |2

can take place. The interplay between such moduli stabilization schemes and large-field

19Without loss of generality we choose all superpotential parameters to be real. In this case only Re T is

affected by inflation, so that δT (ϕ) is real.
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inflation has recently been studied in [27]. Examples include KKLT stabilization [20],

Kähler Uplifting [23–26], and the Large Volume Scenario [21, 22]. However, as pointed out

in [27], if the modulus breaks supersymmetry the interplay between T and Φ becomes non-

trivial due to the appearance of soft terms, as discussed in section 2. Thus, the backreaction

of T never fully decouples. To see this explicitly, let us choose

Wmod(T ) = W0 +Ae−aT , (4.9)

as in the mechanism of KKLT. Since the KKLT mechanism generically produces AdS vacua

we include an uplift sector comprised of a Polonyi superfield X, so that the combined theory

is defined by

K = −3 log

(
T + T − 1

3
|Φ|2 + k(|X|)

)
, (4.10)

W = M

(
1

2
Φ2 − b

3
√

3
Φ3

)
+Wmod(T ) + fX . (4.11)

Here f denotes the scale of supersymmetry breaking and, as in section 3.1, the function k

is chosen such that X is stabilized near the origin with a large mass.

Imposing the existence of a Minkowski vacuum after inflation, at Φ = 0 and T = T0,

leads to two relations among the parameters,

A = −3 eaT0 W0

5 + 2aT0
, f =

√
12a+ 6a2T0

5 + 2aT0
W0 . (4.12)

In this vacuum both X and T contribute to supersymmetry breaking, cf. [27] for more

details.

As in the supersymmetric case we can expand the potential around the vacuum, i.e.,

we expand in the displacement δT (ϕ). In this case we find

δT (ϕ) = −
MT0 tanh2 ϕ√

6

aW0
∼ H

mT
, (4.13)

at leading order in M and (aT0)−1. This leads to the following effective potential after

integrating out T ,

V =
3M2

8T0

(
1− e−

√
2
3
ϕ
)2

+
3Mm3/2√

8T0
sinh2

√
2

3
ϕ− 3M2

8T0
sinh4 ϕ√

6
+O

(
M

mT

)
, (4.14)

withm3/2 ≈W0/(2T0)3/2. As before we obtain the Starobinsky potential and the dangerous

term proportional to −3|W |2. In addition, there is a soft term proportional to the gravitino

mass or, equivalently, to the modulus mass. In the setup of chaotic inflation studied in [27]

this soft term may dominate over the negative third term for a sufficient field range and

drive inflation. The case considered here, however, seems a lost cause. Due to the steepness

of the potential induced by the second term, it is never possible to achieve 60 e-folds of

slow-roll inflation. Either the third term becomes dominant at a small field value, or

the modulus is destabilized by the vacuum energy of the inflaton, rendering our four-

dimensional description invalid.
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Let us comment briefly on the appearance of the third term in eq. (4.14) and other

stabilization mechanisms. Contrary to naive expectation, the F-term of T ,

FT = eK/2
√
KTTDTW

∣∣∣
T0
≈ − 3

√
3W0

a(2T0)5/2
, (4.15)

does not cancel the negative term by virtue of the no-scale symmetry. This is because

FT ∼ FX/aT0 and hence X contributes dominantly to supersymmetry breaking. This situ-

ation is different in other stabilization schemes like Kähler Uplifting or the simplest Large

Volume Scenario. In those setups the negative third term in eq. (4.14) may be canceled at

leading order in V−1, the inverse of the volume of the compact manifold. The same is true

for the soft term. However, even in those cases it is inconceivable that the first term in

the potential is dominant for a sufficient field range, cf. the more detailed analysis in [27].

4.1.4 Comments on other stabilization mechanisms

A different stabilization mechanism, without using non-perturbative superpotentials, was

proposed by the authors of [55] based on the mechanism in [59]. It relies on the presence

of strongly stabilizing terms in the Kähler potential, i.e.,

K = −3 log

[
T + T − 1

3
|Φ|2 +

(
T + T − 2T0

)4
+
(
T − T

)4
Λ2

]
, (4.16)

while the superpotential in eq. (4.2) is simply extended by a constant W0. The additional

term in K stabilizes ImT at the origin and ReT at T0. Due to the no-scale structure of

K the cosmological constant vanishes in the vacuum and supersymmetry is broken by the

auxiliary field of T , with m3/2 = W0/(2T0)3/2. As long as Λ� 1 the modulus is stabilized

at a high scale with mT ∼ m3/2/Λ. This distinguishes this mechanism from the others.

The modulus breaks supersymmetry dominantly but there is still a hierarchy between mT

and m3/2.

We can apply the same formalism as before to integrate out T and find the effective

inflaton potential. We find

V = V0

[
1− V0

m2
T

+O
(
H3

m3
T

)]
, V0 =

3M2

8T0

(
1− e−

√
2
3
ϕ
)2

. (4.17)

The result is the Starobinsky potential with a series of corrections suppressed by at least

H2/m2
T . In particular, the soft mass term and the term proportional to −3|W |2 are absent

due to the exact no-scale symmetry of the theory. As long as the backreaction terms are

under control, which is necessary for consistency since mT > H is still a requirement for

stability, inflation may proceed as if the modulus was fixed by hand. This puts a bound

on a combination of the parameters W0, Λ, T0, and M .

From this perspective there seems to be an elegant solution to the problems encoun-

tered in sections 4.1.2 and 4.1.3. However, from the perspective of string theory it is

questionable if the Kähler potential in eq. (4.16) is realistic. Perturbative corrections to

K from the α′ and gs expansions are usually expected to include smaller (and negative)
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powers of T [60]. Non-perturbative contributions to K are typically subdominant to

those contributions [61, 62]. On the other hand, the most successful moduli stabilization

schemes compatible with string theory available so far involve the breaking of the

no-scale symmetry by non-perturbative superpotentials, as demonstrated in sections 4.1.2

and 4.1.3. In this case the obstacles outlined above always seem to be present and

challenge the setup defined by eqs. (4.1) and (4.2).

4.1.5 The Goncharov-Linde model

There exist a number of other supergravity setups which feature a plateau and which are

not based on no-scale supergravity. Although their string theory interpretation is rather

unclear, it is instructive to consider one of the most prominent examples as a toy model.

It was proposed in [8, 9] and its Lagrangian is defined by

K =
1

2
(Φ + Φ)2 , (4.18)

W =
1

6
M sin(

√
3Φ) cos(

√
3Φ) , (4.19)

in an obvious notation. The scalar potential for the canonically normalized inflaton field

ϕ =
√

2 Im Φ reads

V =
1

12
M2

[
4− tanh2

(√
3

2
ϕ

)]
tanh2

(√
3

2
ϕ

)
. (4.20)

It is exponentially flat for ϕ � 1. We can study the coupling of this model to supersym-

metry breaking and to Kähler moduli in two steps. It has been noted in [63] that there is

an upper bound on the allowed gravitino mass once the model is coupled to a Polonyi field.

Adding a Polonyi sector to eqs. (4.18) as in our other examples leads to an additional soft

term in the scalar potential,

Vsoft = Mm3/2 sinh

(√
3

2
ϕ

)
tanh

(√
3

2
ϕ

)
, (4.21)

with m3/2 = eK/2W = W0. Evidently, this new term is exponentially steep and makes

inflation impossible when m3/2 & 10−4M ∼ 109 GeV.

A much bigger problem arises when we couple the Goncharov-Linde model to moduli

with a no-scale Kähler potential. From the general discussion in section 2 it is clear that

a combined theory defined by

K = −3 log(T + T ) +
1

2
(Φ + Φ)2 , (4.22)

W = Wmod(T ) +
1

6
M sin(

√
3Φ) cos(

√
3Φ) , (4.23)

will contain the soft term in eq. (4.21) as well as correction terms in the effective potential

which are proportional to the square of the inflaton-dependent piece of the superpotential,
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cf. eq. (2.15).20 For example, for Wmod = W0 +Ae−aT , the leading-order backreaction term

reads

Vback = − 1

4aT0
M2 sinh2

(√
3

2
ϕ

)
tanh2

(√
3

2
ϕ

)
+ . . . . (4.24)

Note that we have rescaled the mass scale M by a factor of (2T0)−3/2. This piece of the

backreaction of T is independent of the gravitino mass. Eq. (2.15) contains additional

terms suppressed by powers of H/mT , where mT ∼ m3/2 denotes the mass of modulus,

which produce subdominant effects.

The combined theory described by

V = V0 + Vsoft + Vback , (4.25)

where V0 denotes the original potential in eq. (4.20), has two problems. First, Vback is

negative and exponentially steep, so that 60 e-folds of inflation are impossible to achieve.

Second, even if the backreaction could be suppressed by some mechanism the steep soft term

is dominant as long as T remains stabilized, since stability requires m3/2 > H as discussed

earlier. This can be avoided, of course, if we resort to strong moduli stabilization. In that

case the soft term can be made very small and all correction terms can be suppressed by

making T very heavy.

4.2 Natural inflation models without stabilizer fields

A class of natural inflation models without the need for a stabilizer field was proposed

in [64] and developed further in [65]. It is closely related to the extended setup discussed

in section 3.2.1. We can write it as

K =
1

2
(Φ + Φ)2 , (4.26)

W = W0 +Ae−aΦ +Be−bΦ , (4.27)

where Φ once more contains the canonically normalized axion ϕ which is protected by a shift

symmetry. The above superpotential could clearly arise from a string theory compactifica-

tion with Φ being a modulus field and W0 resulting from fluxes and/or vacuum expectation

values of heavy fields. In any case, the corresponding scalar potential for ϕ reads

V = Λ4
0 + 2AB(−3 + ab) cos

(
(a− b)ϕ√

2

)
− 6AW0 cos

(
aϕ√

2

)
− 6BW0 cos

(
bϕ√

2

)
, (4.28)

where Λ0 denotes a constant which depends on the superpotential parameters. Cancella-

tion of the cosmological constant in the true vacuum must be ensured by an appropriate

uplift, for example, via a Polonyi field.21 For now, we assume
√

2 Re Φ = χ to be stabilized

during inflation and in the vacuum.

20This is true unless T does not break supersymmetry in the ground state, as in strong moduli

stabilization.
21Note that in this case there is no stabilizer field whose backreaction we have to fear. Thus, the uplift

is somewhat trivial in this setup, even for large values of W0.
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There are two interesting cases which deserve our attention. The authors of [64]

assumed the hierarchy |A|, |B| � |W0| so that χ is sufficiently heavy to decouple from

the inflationary dynamics. In that case the last two terms in eq. (4.28) drive inflation

and the trajectory follows a modulated cosine potential which may predict observables in

accordance with observations.

However, a sufficient mass splitting between ϕ and χ may also be achieved when

|W0| � |A|, |B| and at the same time (a − b) � 1. This case resembles the discus-

sion following eq. (3.30). In this case, the second term in eq. (4.28) drives inflation and

the Hubble scale is H2 ∼ AB. The inflaton mass, on the other hand, is approximately

m2
ϕ ∼ AB(a− b)2 � H2. The resulting inflaton potential is a cosine function with an ef-

fectively large axion decay constant. The real part of Φ, not being protected by the shift

symmetry, receives a Hubble-scale soft mass during inflation. This is sufficient to decouple

it from the inflationary dynamics.

In view of a possible string theory embedding of this model it is conceivable that the

latter case with a small value of W0 is difficult to reconcile with moduli stabilization. Any

moduli stabilization scheme which entails supersymmetry breaking, meaning anything

but strong moduli stabilization, requires m3/2 ∼ W0 > H. This is at odds with the

requirement that the second term in eq. (4.28) is the dominant one. Thus, one is either

forced to work in a regime where W0 and thus the supersymmetry breaking scale is large,

and the inflaton potential is a rather complicated modulated cosine function, or to resort

to strong moduli stabilization.

5 Discussion and conclusion

We have analyzed the effects of heavy stabilizer fields and heavy moduli fields on super-

gravity models of inflation. In the presence of supersymmetry breaking, integrating out

these heavy modes generically induces backreactions which are difficult to decouple even

when the masses are taken to be very large. Some effects even increase with the mass of

the heavy fields. The results presented here are generalizations of [29] and [27] concerning

the stabilizer backreaction and the moduli backreaction, respectively.

In our examples of plateau models with stabilizer fields we have found that the back-

reaction constrains the gravitino mass in the vacuum to be m3/2 . H ∼ 1013 GeV, or

even m3/2 . 1010 GeV in cases where the correction terms affect the plateau regime of the

inflaton potential. With regard to string theory embeddings of such models this implies

that remnant moduli fields can not be stabilized with non-perturbative superpotentials

and spontaneous supersymmetry breaking at a high scale, like in KKLT or the Large Vol-

ume Scenario. In plateau models without stabilizer fields the backreaction of moduli can

have similar effects. The Goncharov-Linde model seems incompatible with anything but

strong moduli stabilization. The no-scale models discussed in section 4.1.1 are even incom-

patible with any kind of moduli stabilization involving non-perturbative superpotentials

which break the no-scale symmetry of the Kähler potential. In our opinion, however, these

tensions put pressure on the available mechanisms of moduli stabilization rather than on

inflation.
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In natural inflation the picture is somewhat different. The models involving stabilizer

fields are often protected from severe effects since the backreaction terms are of the same

functional form as the original cosine potentials. A proper uplift can compensate the sign

difference in the effective potential even for very large gravitino masses. However, this

is no longer true when the periodicity of the potential is lifted by monomial functions

as in setups of axion monodromy inflation. In those cases similar bounds on m3/2 as

in plateau-like inflation or chaotic inflation apply. Thus, barring a few exceptions, this

confirms our previous finding that stabilizer fields do not fare well with high-energy

supersymmetry. As is well-known, natural inflation without stabilizer fields and with a

large effective axion decay constant is difficult to achieve without fine-tuning. We have

analyzed one possible setup and found that, similar as in the Goncharov-Linde model,

the scale of supersymmetry breaking must be low for the correct term to dominate the

inflationary vacuum energy. This, however, is at odds with moduli stabilization unless we

resort to strong moduli stabilization once more.

Although our general discussion in section 2 covers many more possible setups which

exist in the literature, we could not cover all of them in explicit examples. For example,

it has been realized in a series of recent publications that some of our plateau toy models

belong to a more general class of so-called α-attractor setups [66–73]. It may be worthwhile

to study whether our results apply to these more general supergravity models as well.

Furthermore, it may be interesting to investigate backreactions in, for example, the models

developed in [74, 75], the string theory embedding of natural inflation in [76], and the

string-effective models of [77–83]. The setup recently proposed in [84] is of particular

interest since it involves both Kähler moduli and a stabilizer field.
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[12] P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206]

[INSPIRE].

[13] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005

[hep-ph/0409138] [INSPIRE].

[14] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation,

Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

[15] L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion

monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

[16] R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12

(2004) 004 [hep-th/0411011] [INSPIRE].

[17] E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization

and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].

[18] C. Wieck and M.W. Winkler, Inflation with Fayet-Iliopoulos terms, Phys. Rev. D 90 (2014)

103507 [arXiv:1408.2826] [INSPIRE].

[19] W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric moduli stabilization and

high-scale inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].

[20] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[21] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[INSPIRE].

[22] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli

spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076]

[INSPIRE].

– 23 –

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B91,99"
http://dx.doi.org/10.1016/0370-2693(87)90844-6
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B190,86"
http://dx.doi.org/10.1088/1475-7516/2013/06/028
http://dx.doi.org/10.1088/1475-7516/2013/06/028
http://arxiv.org/abs/1306.3214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3214
http://dx.doi.org/10.1103/PhysRevLett.111.111301
http://dx.doi.org/10.1103/PhysRevLett.111.129902
http://arxiv.org/abs/1305.1247
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1247
http://dx.doi.org/10.1016/0370-2693(84)90027-3
http://dx.doi.org/10.1016/0370-2693(84)90027-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B139,27"
http://inspirehep.net/search?p=find+J+"Sov.Phys.JETP,59,930"
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,65,3233"
http://dx.doi.org/10.1088/1475-7516/2003/06/001
http://arxiv.org/abs/hep-th/0303252
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303252
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://arxiv.org/abs/hep-th/0605206
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605206
http://dx.doi.org/10.1088/1475-7516/2005/01/005
http://arxiv.org/abs/hep-ph/0409138
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409138
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://arxiv.org/abs/0808.0706
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0706
http://dx.doi.org/10.1088/1126-6708/2004/12/004
http://dx.doi.org/10.1088/1126-6708/2004/12/004
http://arxiv.org/abs/hep-th/0411011
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411011
http://dx.doi.org/10.1140/epjc/s10052-012-2268-7
http://arxiv.org/abs/1209.0499
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0499
http://dx.doi.org/10.1103/PhysRevD.90.103507
http://dx.doi.org/10.1103/PhysRevD.90.103507
http://arxiv.org/abs/1408.2826
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2826
http://dx.doi.org/10.1016/j.physletb.2014.07.024
http://arxiv.org/abs/1404.2275
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2275
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arxiv.org/abs/hep-th/0301240
http://inspirehep.net/search?p=find+EPRINT+hep-th/0301240
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://arxiv.org/abs/hep-th/0502058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
http://dx.doi.org/10.1088/1126-6708/2005/08/007
http://arxiv.org/abs/hep-th/0505076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505076


J
H
E
P
1
0
(
2
0
1
5
)
0
6
2

[23] V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY

breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054]

[INSPIRE].

[24] G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux

compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].
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