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1 Introduction

The partition functions of many superconformal Chern-Simons-matter theories can be re-

duced to matrix models through the process of localization [1]. Many of these theories have

gravity duals given by M-theory on AdS4 ×X7, where X7 is some seven dimensional man-

ifold. A number of examples of this three-dimensional version of the AdS/CFT duality [2]

have been found, see for example [3–5]. If we want to use the matrix model describing the

partition function in the gauge theory in order to learn about the gravity dual, we need

to study them in a large N expansion. Two different types of large N expansions can be

considered for these matrix models. The first one is the standard ’t Hooft expansion, in

which the coupling of the gauge theory scales with N . This type of large N expansion

probes the string theory regime of the large N dual. To probe the M-theory regime, we

need to instead study the matrix model in a large N expansion in which the coupling of

the gauge theory is held fixed. This type of expansion has been coined the M-theory ex-

pansion, and matrix models which allows for this type of expansion are called M-theoretic

matrix models. In [6], general aspects of M-theoretic matrix models are discussed. By the

nature of the AdS/CFT duality, the matrix models describing the partition functions of
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Chern-Simons-matter theories with gravity duals are M-theoretic matrix models, but there

are also examples outside the context of gauge/gravity duality, given for example by [7–9].

Standard methods to compute the full M-theory expansion of a given matrix model

is today lacking. One way to approach the problem, which applies to a subset of the M-

theoretic matrix models, was proposed in the seminal paper [10]. In there it was shown how

to rewrite the matrix models for many superconformal Chern-Simons-matter theories into

the form of a partition function of a non-interacting quantum Fermi gas. In this descrip-

tion N is interpreted as the number of particles in the gas, and the M-theory expansion

corresponds to studying the thermodynamic limit of the Fermi gas. The Fermi gas picture

defines a one-particle Hamiltonian. In principle, all the information needed to compute

the thermodynamic limit is encoded in the spectrum of this Hamiltonian. Therefore, com-

puting the M-theory expansion of a matrix model which can be rewritten into a partition

function of a Fermi gas can be reduced to finding the solution to a certain spectral problem.

Of all the M-theoretic matrix models, the partition function of the so called ABJM

model [3] is the one which to date is best understood. The ABJM model is a superconfor-

mal Chern-Simons-matter theory with gauge group U(N) × U(N) and coupling constant

k. It was noticed in [11] that this matrix model is closely related to the matrix model de-

scription of the partition function of topological string theory on the Calabi-Yau manifold

known as local P1 × P1. Thanks to this relation it has been completely solved in the ’t

Hooft expansion [12]. Furthermore, a series of works [13–16] led up to a conjecture of the

full M-theory expansion of the partition function in [17]. In the M-theory expansion, both

the standard free energy of the topological string on local P1×P1 as well as the Nekrasov-

Shatashvili limit of the refined topological string, on the same manifold, appears. The

latter corresponds to effects which are invisible in the large N ’t Hooft expansion. Part of

the works which laid the ground for the conjecture put forward in [17] was the exact com-

putation of the partition function for various low-integer values of (N, k) with subsequent

extrapolation to large N [13, 14, 18]. The spectral problem associated to the ABJM model

was studied in detail in [19]. In there, it was solved through a WKB quantization condition

and many of the conjectures in [17] regarding the partition function was understood in a

new way, and some proven. Especially, the appearance of the Nekrasov-Shatashvili limit

of the refined topological string is completely natural from this point of view.

A generalization of the ABJM model is the ABJ model [4]. From the gauge theory

perspective, the difference between the two models is simply that the two gauge groups

are allowed to have different ranks in the ABJ model, whereas they must be the same for

the ABJM model. When studying the ’t Hooft expansion of the matrix model description

of the partition functions, this small difference is of no technical importance. In fact, the

most convenient way to study the ABJM matrix model in the ’t Hooft expansion is to

first allow for different ranks of the gauge groups and in the end set them equal. For

the M-theory expansion the situation is different. To begin with, the method of rewriting

the partition function of the ABJM matrix model into a Fermi gas found in [10] does not

straightforwardly apply when the gauge groups have different ranks. However, in later

works two different Fermi gas formalism for the partition function of the ABJ model has

been found. In [20] it is shown that the partition function of the ABJ model can be written
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as an expectation value of certain Wilson loops in the ABJM model. With a different

approach, the papers [21–23] have shown that the partition function of the ABJ model can

be factored into three different parts: the partition function of pure Chern-Simons theory

on S3, a phase and a partition function of a certain ideal quantum Fermi gas. Both the

phase and the pure Chern-Simons theory partition function is known explicitly. Therefore

the problem is once again reduced to study the thermodynamic limit of a Fermi gas, with

a Hamiltonian which generalize the one of the ABJM Fermi gas. In [20] and [23] the

techniques of [13, 14, 18] are employed, which leads to conjectured forms of the partition

function of the ABJ model along the lines of [17].

The purpose of this paper is to study the spectral problem associated to the Fermi gas

formalism found in [23]. We call this the spectral problem of ABJ theory. As will be clear

later on, even though the matrix models describing the ABJM and ABJ partition func-

tions are very similar in character, the corresponding spectral problems are quite different.

For example, for the ABJM model the connection to the refined topological string in the

Nekrasov-Shatashvili limit is clear and an important aspect of the solution in [19]. A priori,

as will be further explained below, for the ABJ spectral problem there does not seem to be

such a connection. Nevertheless, inspired by the results in [20, 23] we will argue that we

can solve the ABJ spectral problem through a WKB quantization condition, where again

topological strings play an important role. The expressions we obtain generalize the ones

in [19]. We lack a proof of our claim, but we will test it with high precision by comparing

the spectrum computed using the WKB method with numerical values of the spectrum.

The agreement is excellent. We will also check that the partition function computed based

on the results for the spectrum agrees with the expressions in [20, 23].

The paper is organized as follows. In section 2 we will review the formulation of the

spectral problem. We will also review the solution to the spectral problem of the ABJM

model in [19] and conjecture how this solution is generalized for the ABJ spectral problem.

In section 3 we will perform tests of the conjecture against numerical values of the spectrum.

In section 4 we will compute the M-theory expansion of the partition function of ABJ theory

using our knowledge of the spectrum and compare with the corresponding expressions

in [20, 23]. We will end with conclusions and a discussion about how to approach other

spectral problems appearing when computing the M-theory expansion of other Chern-

Simons-matter theories. There are two appendices. A few details of a calculation in

section 2.2 can be found in appendix A, whereas in appendix B a review of the Mellin

transform, used for the calculations in section 4, can be found.

2 The ABJ matrix model and the spectral problem

The ABJ model [4] is a N = 6 superconformal Chern-Simons-matter theory with gauge

group U(N1)k × U(N2)−k. The parameter k is the Chern-Simons level, and it comes with

opposite sign for the two gauge groups. The gravity dual of the theory is M-theory on

the manifold AdS4 × S7/Zk, with |N1 −N2|/k + 1/2 units of three-form flux through the

three cycle S3/Zk [2, 4, 24]. We will consider the gauge theory on the manifold S3. The

partition function of the theory can be reduced to a matrix model using localization [1].

– 3 –
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We will call this matrix model the ABJ matrix model and it is given by [1, 12]

Z(N1, N2, k) =
i−

1
2(N2

1−N2
2 )

N1!N2!

×
∫ N1∏

i=1

dµi
2π

N2∏
j=1

dνj
2π

∏
i<j

(
2 sinh

(
µi−µj

2

))2∏
i<j

(
2 sinh

(
νi−νj

2

))2

∏
i,j

(
2 cosh

(
µi−νj

2

))2 e
ik
4π (

∑
i µ

2
i−
∑
j ν

2
j )

(2.1)

For definiteness, we will in this paper without loss of generality assume that

N1 ≥ N2 (2.2)

and

k ≥ 0 . (2.3)

In [4] it was argued that the ABJ model does not exists quantum mechanically as a unitary

superconformal field theory unless k fulfills the bound

k ≥ N1 −N2 , (2.4)

which for N1 6= N2 sets a lower bound on k.

The ABJ matrix model is an example of a matrix model which can be studied in two

different expansions. First we have the standard ’t Hooft expansion in which we study the

model in the limit

N1, N2, k →∞ (2.5)

while keeping the ’t Hooft parameters N1/k and N2/k fixed. This limit of the model have

been analyzed in detail in [12]. For the other type of expansion we introduce the parameters

N,M given by

N = N1 , M = N1 −N2 . (2.6)

The M-theory expansion of the ABJ matrix model is given by studying the limit

N →∞ (2.7)

while keeping the parameters k and M fixed. As mentioned in the introduction, a general

discussion of this type of expansion of a matrix model can be found in [6].

In [10] a method to systematically study a certain type of matrix models in the M-

theory expansion was introduced. Namely, if we can rewrite the matrix model into the form

of a partition function of a one-dimensional quantum Fermi gas, it was shown in [10] how to

use standard statistical mechanics techniques in order to compute the M-theory expansion.

The Fermi gas formulation of the matrix model defines for us a one-particle Hamiltonian

Ĥ. The operator Ĥ defines a spectral problem, and all the information about the M-theory

expansion of the matrix model is encoded in the solution of this spectral problem. In this

paper, we are going to study the spectral problem associated to the matrix model (2.1);

the spectral problem of ABJ theory. This spectral problem has been introduced in [23],

building on the results in [21, 22]. Let us review how it is derived.

– 4 –
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Firstly, it is shown that the ABJ matrix model (2.1) can be rewritten as

Z(N,N +M,k) = eiθ(N,M,k)ZCS(M,k)Ẑ(N,N +M,k) . (2.8)

Above, ZCS(M,k) is given by

ZCS(M,k) = k−M/2
M−1∏
s=1

(
2 sin

(πs
k

))M−s
. (2.9)

The subscript CS is due to that this is the partition function of pure Chern-Simons theory

on S3 with gauge group U(M) (without the shift of the Chern-Simons level). For the values

M = 0 and M = 1 the term involving the product is defined as 1, so we have

ZCS(0, k) = 1 , ZCS(1, k) = k−1/2 . (2.10)

The phase θ(N,M, k) is given by

eiθ(N,M,k) = iNMe−
iπ
6k
M(M2−1) . (2.11)

Finally, Ẑ(N,N +M,k) can be written as

Ẑ(N,N +M,k) =
1

N !

∑
σ∈SN

∫
dNx

N∏
i=1

ρ(xi, xσ(i)) (2.12)

where the function ρ(x1, x2) is given by

ρ(x1, x2) =
1

2πk

e−U(x1,M)/2e−U(x2,M)/2

2 cosh
(
x1−x2

2k

) , (2.13)

with U(x,M) given by

U(x,M) = log
(

ex/2 + (−1)Me−x/2
)
−

M−1
2∑

m=− (M−1)
2

log

(
tanh

(
x

2k
+

iπm

k

))
. (2.14)

The sum over m in the above expression runs with the step ∆m = 1, and for M = 0 the

sum vanishes.

The point of all this rewriting is that Ẑ(N,N +M,k) in (2.12) can be identified with

the partition function of a one-dimensional Fermi gas with N particles and one-particle

density matrix in the position representation

ρ(x1, x2) = 〈x1|ρ̂|x2〉 (2.15)

given by (2.13). The operator ρ̂ defines the one-particle Hamiltonian Ĥ of the gas through

ρ̂ = e−Ĥ . (2.16)

In terms of the conjugate operators x̂, p̂ fulfilling the canonical commutator relation

[x̂, p̂] = i~ (2.17)

– 5 –
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we can write ρ̂ as

ρ̂ = e−U(x̂,M)/2e−T (p̂)e−U(x̂,M)/2 , (2.18)

where U(x,M) is given by (2.14) and T (p) is given by

T (p) = log
(

2 cosh
p

2

)
, (2.19)

if we identify the Planck constant ~ with k in the following way

~ = 2πk . (2.20)

Therefore, the Chern-Simons level k plays the role of the Planck constant in the Fermi gas

treatment. As in [19], we will use k and ~ interchangeably in this paper. We will call the

function Hcl(x, p,M) given by

Hcl(x, p,M) = T (p) + U(x,M) (2.21)

the classical limit of Ĥ (even though the resulting expression still contains factors of k for

M > 0).

The spectral problem of ABJ is defined by∫ ∞
−∞

ρ(x1, x2)φ(x1)dx1 = e−Eφ(x2) (2.22)

where φ(x) are normalizable functions and ρ(x1, x2) is given by (2.13). In order to have a

well defined spectral problem we need, not surprisingly, to require that

k ≥M , (2.23)

just as is the case in the original formulation of ABJ theory. Only when k and M fulfill this

condition, the potential energy of the gas (2.14) is bounded from below, and the integral

kernel (2.13) defines a non-negative, Hermitian, Hilbert-Schmidt operator.

An alternative way to formulate the spectral problem is given by rewriting (2.22) into

the difference equation

ψ(x+ iπk) + ψ(x− iπk) = e−U(x,M)eEψ(x) . (2.24)

Provided certain analyticity and boundary conditions for the function ψ(x) is fulfilled the

spectral problem (2.22) is equivalent to the spectral problem defined by (2.24). Follow-

ing [25], these conditions are given as follows. We denote by Sa the strip in the complex

x-plane defined by

|Im(x)| < a . (2.25)

Let us also denote by A(Sa) those functions g which are bounded and analytic in the strip,

continuous on its closure, and for which g(x + iy) → 0 as x → ±∞ through real values,

when y ∈ R is fixed and satisfies |y| < a. Using the results of [25] it can be seen that (2.22)

and (2.24) are equivalent if ψ(x) belongs to the space A(Sπk).

– 6 –
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We notice that the spectral problems for M = 0 and M > 0 are quite different in

character. For M > 0, there are explicit factors of k in the potential energy (2.14). Such

potentials have also appeared in other Fermi gas matrix models, see for example [6, 10, 26].

In addition, we have a lower bound on k, given by equation (2.23). Since k plays the role

of ~ in our quantum Fermi gas, from a physical point of view these features are unusual.

For the special case of M = 0, the spectral problem was studied in detail in [19]. For

the original matrix model, the case of M = 0 corresponds to what is known as the ABJM

model [3]. In the approach of [19], the spectrum is found using the so called WKB method.

In this approach, the energy levels En are determined by the WKB quantization condition

vol(E; ~,M) = 2π~
(
n+

1

2

)
, n = 0, 1, 2, . . . , (2.26)

where vol(E; ~,M) is the quantum volume of phase space. Below, we will review how

vol(E; ~, 0) is found in [19]. Due to the difference in the character of the spectral problems it

is not obvious that there is a function vol(E; ~,M) which solves the spectral problem (2.22)

through the condition (2.26) also for M > 0. However, we will in this paper give a proposal

for such a function.

2.1 Review of the solution of the spectral problem for M = 0

In general, the quantum volume has two different parts. One has a perturbative expansion

in ~, and we denote it by volp(E; ~, 0). The other one is non-perturbative in ~, meaning

that it involves terms which are non-analytic at ~ = 0, and we denote it by volnp(E; ~, 0).

So we have

vol(E; ~, 0) = volp(E; ~, 0) + volnp(E; ~, 0) . (2.27)

As will be further explained below, expanding the l.h.s. of (2.26) to lowest order in a small

~ expansion the WKB quantization condition reduces to the well known Bohr-Sommerfeld

quantization condition. The perturbative ~ corrections was first written down in [27].

Papers addressing the problem of computing non-perturbative corrections to the WKB

quantization condition includes [28–33].

The building blocks in computing both volp(E; ~, 0) and volnp(E; ~, 0) are period inte-

grals on the curve in phase space defined by the equation

eHcl(x,p,0) = eE . (2.28)

As was noticed in [10], this curve is a specialization of the curve describing the mirror of

the Calabi-Yau manifold known as local P1 × P1. The equation for this curve is usually

written as

eu + z1e−u + ev + z2e−v = 1 , (2.29)

where u, v are complex coordinates and z1, z2 are the two complex structure parameters of

the mirror Calabi-Yau. If we make a change of variables

u =
x+ p

2
− E , v =

x− p
2
− E (2.30)

– 7 –
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we see that the two curves are the same if we identify of the complex structure parameters

and the energy E in the following way

z1 = z2 = z , (2.31)

where we for convenience have introduced the notation

z = e−2E . (2.32)

In the quantum theory the identification of z1, z2 with the Fermi gas parameters involves

a quantum correction [19]

z1 = q1/2z , z2 = q−1/2z , (2.33)

where

q = eiπk . (2.34)

This provides a link between the spectral problem (2.24) for M = 0 and topological string

theory on local P1 × P1.

The perturbative part of the quantum volume can be computed as follows. Make an

ansatz for the solution of (2.24) of the form

ψ(x) = e
1
~S(x,~) (2.35)

where S(x, ~) has a ~ expansion of the form

S(x, ~) =
∑
n≥0

Sn(x)~n . (2.36)

The function volp(E; ~, 0) is then given by

volp(E; ~, 0) =

∮
γ
∂xS(x, ~) , (2.37)

where γ is a cycle on the curve (2.28) around the two turning points defined by the solutions

to the equation

Hcl(x, 0, 0) = E . (2.38)

The classical limit

~→ 0 (2.39)

of (2.37) is given by

lim
~→0

volp(E; ~, 0) =

∮
γ
p(x,E)dx , (2.40)

where p(x,E) is obtained by solving (2.28). The integral on the r.h.s. in (2.40) calculates

the volume enclosed by the contour γ in phase space. This is why we call the function

vol(E; ~, 0) the quantum volume of phase space; it is given by the classically available

volume of phase space for a given energy together with quantum corrections.

The period integral (2.40) is closely related to what is usually called the B period in

the topological string theory literature. To obtain the quantum corrections, that is, to

– 8 –
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compute the quantum B period, one can follow the standard prescription, which consists

of calculating order by order in a small ~ expansion. However, in the context of the ABJM

model it would be much desired to instead calculate the quantum B period for fixed ~, but

in an expansion for large E. This corresponds, in the original matrix model, to the M-

theory expansion, that is, to a large N expansion for fixed k. In [34], a method to compute

quantum periods for fixed ~, but as an expansion in the complex structure parameters, was

introduced. This method can be applied to the mirror curve of local P1×P1. Furthermore,

in [34–36] it was shown that the perturbative quantum B period is closely related to the

free energy of the refined topological string in the Nekrasov-Shatashvili limit [37]. See

also [38] for a discussion about computations of quantum periods.

For general complex structure parameters, there are two different quantum B periods,

which we denote by ΠBI (z1, z2; ~), I = 1, 2. They are related by an exchange of moduli

ΠB1(z1, z2; ~) = ΠB2(z2, z1; ~) (2.41)

and can be written

ΠB1(z1, z2; ~) = − 1

8

(
log2 z1 − 2 log z1 log z2 − log2 z2

)
+

1

2
log z2 Π̃A(z1, z2; ~)

+
1

4
Π̃B(z1, z2; ~) ,

(2.42)

where Π̃A(z1, z2; ~) and Π̃B(z1, z2; ~) can be computed systematically in a power series in

z1, z2 [17, 34]. As shown in [19], the combination of quantum B periods which gives the

perturbative part of the quantum volume is

volp(E; ~, 0) = 4ΠB1(q1/2z, q−1/2z; ~) + 4ΠB2(q1/2z, q−1/2z; ~)− 4π2

3
− ~2

12

= 8E2 − 4π2

3
+

~2

24
− 8E

∑
`≥1

â`(~)e−2`E + 2
∑
`≥1

b̂`(~)e−2`E
(2.43)

where the coefficients â`(~) and b̂`(~) are defined by

Π̃A(q1/2z, q−1/2z; ~) =
∑
`≥1

â`(~)z` ,

1

2

(
Π̃B(q1/2z, q−1/2z; ~) + Π̃B(q−1/2z, q1/2z; ~)

)
=
∑
`≥1

b̂`(~)z` .
(2.44)

For the non-perturbative part of the quantum volume, volnp(E; ~, 0), by general principles

it is instead the quantum A period ΠAI (z1, z2; ~) that appears [10, 19, 31–33]. As for the

B periods, there are two A periods. They are given by

ΠAI (z1, z2; ~) = log zI + Π̃A(z1, z2; ~) , I = 1, 2 . (2.45)

To calculate the non-perturbative part of the quantum volume for the ABJM spectral

problem from first principles is a difficult, unsolved problem. However, in [19] it is con-

jectured that volnp(E; ~, 0) is closely related to the standard, un-refined, topological string

– 9 –
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free energy on local P1 × P1. In Gopakumar-Vafa form, this quantity is given by [39]

F (T1, T2, gs) =
∑
g≥0

∑
m≥1

∑
m|d

∑
d1+d2=d

d

m
nd1,d2
g

(
2 sin

(
igsm

2d

))2g−2

e−
m
d

(d1T1+d2T2) . (2.46)

In the above formula, gs is the topological string coupling constant, T1,2 are the complexified

Kähler classes and nd1,d2
g are the Gopakumar-Vafa invariants of local P1 × P1. In [19] it is

conjectured that volnp(E; ~, 0) is given by

volnp(E; ~, 0) = −4πk
∑
g≥0

∑
m≥1

∑
m|d

∑
d1+d2=d

sin

(
4πk

m

)
d

m
nd1,d2
g

(
2 sin

(
2πm

dk

))2g−2

× e−
m
dk (d1ΠA1

(q1/2z,q−1/2z;~)+d2ΠA2
(q1/2z,q−1/2z;~)) .

(2.47)

A major inspiration for the conjecture (2.47) comes from the fact that there are coefficients

in the large energy expansion of the perturbative part of the quantum volume that diverges

for rational values of k. However, the original spectral problem (2.22) is perfectly well

defined for these values of k. With the non-perturbative part of the quantum volume given

by (2.47) all poles cancel out, so the total function vol(E; ~, 0) does not have poles for any

real value of ~. This is an implementation of the so called Hatsuda-Moriyama-Okuyama

cancelation mechanism discovered in [14].

In summary, using the fact that the constant energy surface in phase space (2.28) can

be identified with the mirror curve of local P1 × P1, the perturbative part of the quantum

volume for M = 0 can be calculated from first principles and is given (2.43), whereas the

non-perturbative part has the conjectured form (2.47).

2.2 The quantum volume for M > 0

The goal of this paper is to find the function vol(E; ~,M) also for M > 0. At first sight

the WKB method seems somewhat problematic for M > 0. This is since we have a lower

bound on ~, and a WKB quantization procedure is usually associated with the existence

of a small ~ expansion. A problem from a practical point of view is that, for M > 0, it

does not seem like we can identify the constant energy surface

eHcl(x,p,M) = eE (2.48)

with the mirror curve of local P1×P1 for any choice of identification of the complex structure

parameters and the energy, as we could for M = 0. For these reasons, it seems hopeless to

approach the spectral problem (2.22) with the WKB method, and even if we could, it does

not seem that we can get any help from results in topological string theory. On the other

hand, as can be seen from the analysis in the ’t Hooft limit [12], the ABJ matrix model is

clearly related to topological string theory on local P1 × P1, also for N1 6= N2. We would

therefore expect that there is a connection to topological strings for the spectral problem

appearing in the Fermi gas formulation, also for M > 0.
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A very useful method to get a first hand on the problem of calculating the quantum

volume in a large E expansion given a classical Hamiltonian was found in [10]. This method

is based on the Wigner approach to quantization [40], and it neglects terms involving e−E

and e−E/~, but otherwise gives exact results in ~. It has been applied in for example [10, 26]

when the “classical” Hamiltonian depends on ~, just as in our case for M > 0. Applying

the method with the Hamiltonian given by (2.16) and (2.18) we find

vol(E; ~,M) =8E2 − 4π2

3
+

~2

24
+ 2π2

(
M − ~

2π

)
M +O(e−E , e−E/~) . (2.49)

The calculation of the above result can be found in appendix A. We do not know how to

systematically calculate the exponentially small corrections, but we notice that taking the

combination of quantum B periods given in the first line of (2.43), but with the complex

structure parameters instead given by

z1 = e−2E+ iπk
2
−iπM

z2 = e−2E− iπk
2

+iπM ,
(2.50)

we reproduce the displayed terms in (2.49). Encouraged by this result, we conjecture that

the quantum volume vol(E; ~,M) which solves the ABJ spectral problem using the WKB

quantization condition is given by the sum of (2.43) and (2.47), but where the arguments

of the quantum periods are given by the r.h.s. of (2.50) instead:

vol(E; ~,M) = volp(E; ~,M) + volnp(E; ~,M) (2.51)

where

volp(E; ~,M) = 4ΠB1

(
e−iπMq1/2z, eiπMq−1/2z; ~

)
+ 4ΠB2

(
e−iπMq1/2z, eiπMq−1/2z; ~

)
− 4π2

3
− ~2

12

= 8E2 − 4π2

3
+

~2

24
+ 2π2

(
M − ~

2π

)
M

− 8E
∑
`≥1

(−1)M`â`(~)e−2`E + 2
∑
`≥1

(−1)M`b̂`(~)e−2`E (2.52)

and

volnp(E; ~,M) = − 4πk
∑
g≥0

∑
m≥1

∑
m|d

∑
d1+d2=d

sin

(
4πk

m

)
d

m
nd1,d2
g

(
2 sin

(
2πm

dk

))2g−2

× e−
m
dk [d1ΠA1(e−iπM q1/2z,eiπM q−1/2z;~)+d2ΠA2(e−iπM q1/2z,eiπM q−1/2z;~)]

= − 4πk
∑
m≥1

sin

(
4πm

k

)
dm(k,M)e−4mEeff/k . (2.53)
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In the last line we have introduced the notation1

dm(k,M) =
∑
g≥0

∑
d|m

∑
d1+d2=d

d

m
(−β−1)d1m/d(−β)d2m/d nd1,d2

g

(
2 sin

2πm

dk

)2g−2

,

β = e−2πiM/k

(2.54)

and

Eeff = E − 1

2

∑
`≥1

(−1)M`â`(~)e−2`E . (2.55)

In the next section we will collect strong evidence that this is the correct quantum volume

for the ABJ spectral problem by calculating energy levels using the WKB quantization

condition and compare against numerical values obtained directly from (2.22). Before we

do this, let us mention two other aspects of the above expressions which supports the

claim that it is the correct quantum volume; invariance under a Seiberg like duality and

cancelation of poles.

2.2.1 Seiberg like duality

In [4] it is argued that the ABJ theory with gauge groups

U(N +M)k ×U(N)−k (2.56)

and

U(N)k ×U(N + k −M)−k (2.57)

give equivalent theories. In [41, 42], this Seiberg like duality was checked using the ABJ

matrix model. In the Fermi gas approach, it translates to the invariance of the Hamiltonian

defining the ABJ spectral problem under

M → k −M , (2.58)

as shown in [23]. A necessary condition for the quantum volume is therefore that it is

invariant under (2.58). That the function (2.51) fulfills this requirement can be seen as

follows. Under the transformation (2.58) the complex structure parameters given in (2.50)

are exchanged

z1 ↔ z2 . (2.59)

The M -dependence in (2.51) comes solely from the complex structure parameters (2.50)

and since the transformation (2.58) exchange these parameters, the perturbative part of

the quantum volume is invariant by construction. For the non-perturbative part, the M -

dependence is in β and Eeff . The β in (2.54) is clearly invariant under the Seiberg like

duality and that Eeff is invariant can be seen using (2.44) together with the fact that

Π̃A(z1, z2) is a symmetric function in z1 and z2.

1Note that dm(k, 0) differs from dm(k) in [19] by a factor (−1)m.
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2.2.2 Pole cancelation

Also for M > 0, both the perturbative and the non-perturbative part of the quantum

volume have poles. In this section we will check that the poles cancel out. As in [19],

we rewrite both volp(E; ~,M) and volnp(E; ~,M) in terms of the refined BPS invariants

Nd1,d2
jL,jR

of local P1 × P1 [43]. First, we re-express the perturbative volume in terms of the

variable Eeff , given in equation (2.55). The function volp(E; ~,M) can then be written as

volp(E; ~,M) = 8E2
eff −

4π2

3
+

~2

24
+ 2π2

(
M − ~

2π

)
M + 4π2k

∑
`≥1

(−1)M`b̃`(k)e−2`Eeff ,

(2.60)

where b̃`(k) are the same coefficients as in [17, 19]. In terms of Nd1,d2
jL,jR

they are given by [17]

b̃`(k) = − `

2π

∑
jL,jR

∑
`=dw

∑
d1+d2=d

Nd1,d2
jL,jR

q
w
2

(d1−d2) sin πkw
2 (2jL + 1) sin πkw

2 (2jR + 1)

w2 sin3 πkw
2

. (2.61)

Next we use that the Gopakumar-Vafa invariants nd1,d2
g can be related to the refined BPS

invariants Nd1,d2
jL,jR

. The relevant relations can be found in [17]. Using this we find that (2.54)

can be written

dm(k,M) =
∑
jL,jR

∑
m=dn

∑
d1+d2=d

1

n
(−β−1)d1m/d(−β)d2m/dNd1,d2

jL,jR

× 2jR + 1(
sin 2πn

k

)2 sin
(

4πn
k (2jL + 1)

)
sin 4πn

k

.

(2.62)

There are poles in both volp(E; ~,M) and volnp(E; ~,M) for any rational value of k. Let

us verify to the poles cancel between the two expressions. For a given rational value of k,

let us consider the terms in (2.60) and (2.53) with summation indices fulfilling

k =
2n

w
=

2m

`
. (2.63)

Expanding the term in volp(E; ~,M) around this value of k we find

(−1)M`+1eiπkw(d1−d2)/2 8m

w3
(
k − 2n

w

)(−1)n(2jL+2jR−1)(1+2jL)(1+2jR)Nd1,d2
jL,jR

e−2`Eeff (2.64)

whereas the term in volnp(E; ~,M) has the pole structure

e
2πiM
k

m(d1−d2)/d(−1)m
8m

w3
(
k − 2n

w

)(1 + 2jL)(1 + 2jR)Nd1,d2
jL,jR

e−
2mw
n

Eeff , (2.65)

which generalizes the pole structure of the quantum volume derived for M = 0 in [19] to

M ≥ 0. A geometric argument explained in [19] gives that

(−1)n(2jL+2jR−1) = 1 (2.66)

and using this together with (2.63) we find that the poles present for rational values of k

cancel between volp(E; ~,M) and volnp(E; ~,M) for all M ≥ 0.
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3 Testing the WKB quantization condition

In the previous section we proposed that the eigenvalue problem (2.22) is solved by the

WKB quantization condition (2.26) using the quantum volume (2.51). Although we are

not able to prove this fact, we will in this section perform a detailed test of it. The most

obvious way to test a proposed solution of a quantum problem is in a small ~ expansion.

For M > 0, due to the condition (2.23), this is not possible in this case. In [19], a way

to test the WKB quantization condition for finite ~ was used. Since the quantum volume

is given by a large E expansion for fixed ~, we can calculate the energy levels in a large

quantum number expansion, for fixed ~. For the case M = 0 it was shown in [19] that

this method gave good values already for the lowest lying energy levels. The eigenvalues

computed in this way could then be compared with values obtained from solving (2.22)

numerically. For M > 0, we can use the same approach to test if (2.51) gives the correct

quantum volume.

In general, good numerical values for the eigenvalues of (2.22) is easier to obtain for

low integer values of (k,M). We will focus on testing the WKB quantization condition for

k = 2, 3. When k = 2, 3, the large E expansion of vol(E; ~,M) is an expansion in e−4E/k.

Let us write the quantum volume, for k = 2, 3, as

vol(E; ~,M) = 8E2 + α(k,M)− 8E
∑
`≥1

A`(~,M)e−4`E/k + 2
∑
`≥1

B`(~,M)e−4`E/k (3.1)

where

α(k,M) = −4π2

3
+
π2k2

6
+ 2π2(M − k)M . (3.2)

We notice that, for a given k, for those terms in the sum such that 2`/k is an integer,

A`(~) and B`(~) will in general get contributions from both (2.52) and (2.53). We assume

an ansatz for the solution for the energy levels En of the form

En = E(0)
n +

∑
`≥1

E(`)
n e−4`E

(0)
n /k . (3.3)

Plugging this into (3.1) and using the WKB condition (2.26) we can solve for E
(l)
n recursively

in `. To lowest order we find

E(0)
n =

√
π~
4

(
n+

1

2

)
− α(k,M)

8
, (3.4)

which is valid provided n is large enough. For ` ≥ 1 we have2

E(`)
n =

1

2E
(0)
n

[
E(0)
n A` −

1

4
B` +

`−1∑
m=1

E(m)
n A`−m −

`−1∑
m=1

E(m)
n E(`−m)

n

+

`−1∑
s=1

( ∑
s≤r+

∑s
q=2 mq≤`−1

(
−4r

k

)s 1

s!
E

(`−
∑s
q=2 mq−r)

n E(m2)
n · · ·E(ms)

n

×
(
E(0)
n Ar −

1

4
Br

))
2We suppress the arguments of A`(~,M) and B`(~,M) for notational convenience.
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Energy levels for k = 2,M = 1

Order E0 E1

0 2.86786860477 4.25373656158

1 2.88190835982 4.25459185227

2 2.88181489768 4.25459152848

3 2.88181543241 4.25459152858

Numerical value 2.88181542992 4.25459152858

Table 1. The lowest and next-to-lowest energy eigenvalues for k = 2, M = 1 calculated analytically,

including higher and higher orders of exponentially small corrections in (3.3). In the last line

numerical values are given obtained from the integral equation (2.22) are given. At each order of

the approximation, we underline the digits which agree with the numerical result.

+
`−2∑
s=1

( ∑
s+1≤r+

∑s
q=2 mq+t≤`−1

(
−4r

k

)s 1

s!
E

(`−
∑s
q=2 mq−r−t)

n E(m2)
n · · ·E(ms)

n E(t)
n Ar

)]
.

(3.5)

Next we evaluate the quantum volume for k = 2, 3. For the perturbative part of the

quantum volume we need the coefficients â`(~), b̂`(~); these can be found in for example [17,

19]. For the non-perturbative part we need the Gopakumar-Vafa invariants nd1,d2
g of local

P1×P1; these are listed up to genus g = 8 and total degree d1 +d2 = 10 in for example [44].

Using these results we find, including the first few non-trivial exponentially small terms,

vol(E; 4π,M) = 8E2 − 2π2

3
+ 2(M − 2)Mπ2 + 64(−1)MEe−2E + 16(−1)Me−2E + . . .

vol(E; 6π,M) = 8E2 +
π2

6
+ 2(M − 3)Mπ2 + 8

√
3π cos

2Mπ

3
e−4E/3

+ 4
√

3π

(
2 + cos

4Mπ

3

)
e−8E/3 + 32Ee−4E + 4e−4E

−
2π
(
21 + 67 cos 4Mπ

3

)
√

3
e−16E/3 + . . . (3.6)

From these expressions we can read off A`(~,M), B`(~,M) and then use (3.4) and (3.5)

to calculate the energy levels. The results for M = 1 and the two lowest lying energy

levels are displayed in table 1 and 2 . We will now compare these analytically calculated

energy levels with the numerical values obtained from the integral equation that defines

our spectral problem, equation (2.22). For M = 0, it was shown in [13] how to rewrite

the integral equation (2.22) into an eigenvalue equation for an infinite dimensional matrix

M(k,M). Since the kinetic energy T (p) for our Fermi gas (given in equation (2.19)) does

not depend on M , we can use the same approach also for M > 0. Following the derivation

in [13] we find that the matrix M(k,M) is given by

M
(k,M)
ij =

1

2π

∫ 1

−1
ti+j exp

[
−U
(

2k arctanh(t),M
)]

dt (3.7)
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Energy levels for k = 3,M = 1

Order E0 E1

0 3.48301431852 5.18997064969

1 3.48677116444 5.19022958113

2 3.48669611439 5.19022910159

3 3.48669531759 5.19022910009

Numerical value 3.48669532933 5.19022910008

Table 2. The lowest and next-to-lowest energy eigenvalues for k = 3, M = 1 calculated analyt-

ically, including higher and higher orders of exponentially small corrections in (3.3). In the last

line numerical values obtained from the integral equation (2.22) are given. At each order of the

approximation, we underline the digits which agree with the numerical result.

where U(x,M) is the potential energy of the Fermi gas, given in equation (2.14). Explicitly,

for k = 2, M = 1 and k = 3, M = 1 we find

M
(2,1)
ij =

{
1

2π(i+j+1)(i+j+3) if i+ j is even

0 if i+ j is odd

M
(3,1)
ij =


Γ( 1

2
(i+j+1))(4 2F1(1, 1

2
(i+j+1); 1

2
(i+j+4);− 1

3)−3)
24
√
πΓ( 1

2
(i+j+4))

if i+ j is even

0 if i+ j is odd
.

(3.8)

In order to compute the eigenvalues of M
(k,M)
ij with high numerical accuracy we follow the

same approach as in [19]. First off, as noticed in [13], since the matrix M(k,M) has the

following form

M(k,M) =



m0 0 m1 0 m2 0 . . .

0 m1 0 m2 0 m3

m1 0 m2 0 m3 0

0 m2 0 m3 0 m4

m2 0 m3 0 m4 0
...

. . .


, (3.9)

we can instead compute the eigenvalues of the matrices M
(k,M)
+ and M

(k,M)
− given by:

M
(k,M)
+ =


m0 m1 m2 . . .

m1 m2 m3

m2 m3 m4

...
. . .

 , M
(k,M)
− =


m1 m2 m3 . . .

m2 m3 m4

m3 m4 m5

...
. . .

 . (3.10)

The eigenspaces of M(k,M) decompose into a direct product of the eigenspaces of M
(k,M)
± .

Let the eigenvalues of M(k,M) be denoted by λn, ordered such that

λ0 > λ1 > λ2 > . . . , (3.11)
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and let the eigenvalues of M
(k,M)
± be denoted by λ±,n, ordered in the same way. We

then have

λ+,n = λ2n, λ−,n = λ2n+1 . (3.12)

The relation between the eigenvalues of M(k,M) and the energy eigenvalues is

En = − log λn . (3.13)

Second off, in practice we have to truncate the infinite dimensional matrix to a finite

L×Lmatrix. The eigenvalues of the truncated matrix En(L) give numerical approximations

of the exact eigenvalues En, and they converge to En as L → ∞. To accelerate the

convergence we use Richardson extrapolation; see for example [45] for an explanation of

this method.

Using this approach we have calculated the energy eigenvalues numerically for the

first few integer values of k and M . The results for k = 2, M = 1 and k = 3, M = 1

are displayed in table 1 and 2, respectively. As we can see, the agreement between the

numerical values obtained from (2.22) and the analytical values calculated using the WKB

quantization condition and the quantum volume (2.51) is excellent. This strongly supports

that we have found the correct quantum volume.

4 The partition function of ABJ

The original motivation for studying the spectral problem (2.22) is to compute the M-

theory expansion of the ABJ matrix model. In the Fermi gas formulation of the matrix

model the central object to compute is the grand potential J(µ, k,M), defined in terms of

canonical partition function Ẑ(N,N +M,k) as

J(µ, k,M) = log

(
1 +

∑
N=1

Ẑ(N,N +M,k)eNµ

)
. (4.1)

If we know the spectrum of the one-particle Hamiltonian Ĥ of the Fermi gas, we can

compute J(µ,M, k) by the formula

J(µ, k,M) =
∑
n≥0

log
(
1 + eµ−En

)
, (4.2)

where En, n = 0, 1, 2, . . . are the eigenvalues of Ĥ. As shown in [19], using the Euler-

Maclaurin formula we can rewrite the sum (4.2) into an integral

J(µ, k,M) =
1

2π~

∫ ∞
E0

vol(E; ~,M)dE

eE−µ + 1
−R(k,M) . (4.3)

In the expression above, E0 is the ground state energy of the Fermi gas and vol(E; ~,M)

is the quantum volume determined in section 2.2. The function R(k,M) is defined by

R(k,M) =
∑
r≥1

B2r

(2r)!
f (2r−1)(0) (4.4)
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where Br is the r-th Bernoulli number and the function f(n) is given by

f(n) = log
(

1 + eµ−E(n)
)
, (4.5)

where we have used the WKB condition (2.26) to define a function E(n) for arbitrary values

of n. f (r)(n0) denotes the r-th derivative of f(n), evaluated at n = n0. To compute the

integrals appearing in (4.3) we can use the same method as was used for the case M = 0

in [19]. In there, a variant of the Mellin transform considered in [30] is used. In appendix B

we compute the relevant integrals. The final expression we obtain for J(µ, k,M) is quite

complicated. Namely, using the results in appendix B we find after a little rewriting that

for M ≥ 0 the grand potential J(µ, k,M) is given by

J(µ, k,M) =
2

3π2k
µ3 +B(k,M)µ+

∑
`≥1

(
(−1)M`+1â`(~)

π2k
µ2 +

(−1)M`b̂`(~)

π2k
µ

)
e−2`µ

+
∑
m≥1

dm(k,M)e−4mµeff/k + Ã(k,M) +
∑
`≥1

c̃`(~,M)e−2`µ

+
∑
`≥0

d̃`(~,M)e−(2`+1)µ . (4.6)

In the above expression, B(k,M) is given by

B(k,M) =
1

3k
+

k

24
+
M

2k
(M − k) , (4.7)

and µeff is given by

µeff = µ− 1

2

∑
`≥1

(−1)M`â`(~)e−2`µ . (4.8)

In order to write the functions with a tilde in a somewhat compact way we introduce the

following notation. By writing the non-perturbative part of the quantum volume as

volnp(E; ~,M) =
∑
m≥1

∑
r≥0

sr,m(k,M)e−( 4m
k

+2r)E , (4.9)

we define the coefficients sr,m(k,M). In addition we introduce

R0(k,M) = −
∑
r≥1

B2r

(2r)!

d2r−1

dn2r−1
E(n)|n=0 ,

R`(k,M) =
(−1)`+1

`

∑
r≥1

B2r

(2r)!

d2r−1

dn2r−1
e`E(n)|n=0 , ` ≥ 1 ,

(4.10)

as well as defining Ij(n) by

Ij(n) =

∫ ∞
E0

Eje−nEdE =

(
− ∂

∂n

)j ( 1

n
e−nE0

)
. (4.11)
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R`(k,M) is the coefficient of the term e−`µ in the expansion of (4.4) at large µ. With this

notation the functions with a tilde are given by

Ã(k,M) = Â(~,M)−R0(k,M) +
1

4π2

∑
m≥1

∑
r≥0

sr,m(k,M)

4m+ 2kr
e−( 4m

k
+2r)E0

c̃`(~,M) =
ĉ`(~,M)

2π2k
−R2`(k,M) +

e2`E0

4π2

∑
m≥1

∑
r≥0

sr,m(k,M)

4m+ k(2r − 2`)
e−( 4m

k
+2r)E0

d̃`(~,M) =
d̂`(~,M)

2π2k
−R2`+1(k,M)− e(2`+1)E0

4π2

∑
m≥1

∑
r≥0

sr,m(k,M)

4m+ k(2r − 2`− 1)
e−( 4m

k
+2r)E0

(4.12)

where

Â(~,M) = − 1

π~

(
4

3
E3

0 +
1

2
α(k,M)E0 +4

∑
`≥1

(−1)M`â`(~)I1(2`)−
∑
`≥1

(−1)M`b̂`(~)I0(2`)

)

ĉ`(~,M) = − 2π2

3
(−1)M`â`(~) + 2(−1)M`â`(~)E2

0 − (−1)M`b̂`(~)E0

− 4
∑
m 6=`

(−1)Mmâm(~)I1(2(m− `)) +
∑
m 6=`

(−1)Mmb̂m(~)I0(2(m− l))

+ 4I2(−2l) +
1

2
α(k,M)I0(−2l) ,

d̂`(~,M) = 4
∑
m 6=`

(−1)Mmâm(~)I1(2m− 2`− 1)−
∑
m 6=`

(−1)Mmb̂m(~)I0(2m− 2l − 1)

− 4I2(−2l − 1)− 1

2
α(k,M)I0(−2l − 1) . (4.13)

The expression (4.6) is obviously quite formidable. We now want to compare this expression

with the expressions for the grand potential of ABJ theory obtained previously in the

papers [20, 23]. We notice that the first two lines on the r.h.s. in (4.6) does not depend on

the ground state energy E0, whereas the terms involving the functions with a tilde do. For

the terms which do not depend on E0, we can easily compare with the corresponding terms

in [20, 23], and we see that they match. Since we do not have a closed form expression

for the ground state energy, it is harder to compare the other terms. In [19], for M = 0

the first few of the other terms were checked in perturbation theory around k = 0. Due

to the lower bound on k, given in equation (2.23), we cannot do the same type checks for

M > 0. However, from the previous section we know how to calculate the energy levels

for k = 2, 3, in a large quantum number expansion. The terms with a tilde can then be

calculated in a similar expansion. More precisely, since we can compute the energy levels

in the expansion (3.3), the terms that depend on E0 can be calculated in an expansion in

e−4E
(0)
0 /k. As we will see, similarly as for the energy levels the expansion seems to converge

quite fast and we are able to obtain approximate values with high accuracy.3 We can then

3The author would like to thank Yasuyuki Hatsuda for discussions about how these kind of checks for

finite k of the coefficients can be performed.
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compare with the coefficients of the expressions in [20, 23]. Before we perform these test

we will discuss a type of term which was not present when calculating the energy levels,

namely R`(k,M), defined in (4.10).

4.1 Borel resummation of R`(k,M)

R`(k,M) is in general a divergent series, since the Bernoulli numbers asymptotically

grows as

B2r ∼ (2r)! , r →∞ (4.14)

and the factor with the r-th derivative in (4.10) is not divided by a r!. For example, for

` = 0, k = 2, M = 1 and to lowest order in the large quantum number expansion we have

R0(2, 1) = π
∑
r≥1

B2r

(2r)!

(
1/2

2r − 1

)
(2r − 1)!

(
1

2
+
π2

3

)−(2r−1)/2

, (4.15)

and the sum on the r.h.s. diverges. We can use Borel resummation in order to evaluate these

divergent series. We will only give a brief description of this technique, for a pedagogical

review see for example [46, 47]. Let us denote

ar,0 = −Br
r!

dr−1

dnr−1
E(n)|n=0 ,

ar,` =
(−1)`+1

`

Br
r!

dr−1

dnr−1
e`E(n)|n=0 , ` ≥ 1 .

(4.16)

The series

ϕ`(w) =
∑
r≥1

a2r,`w
2r (4.17)

has zero radius of convergence. Its Borel transform B`(p) is defined by

B`(p) =
∑
r≥1

a2r,`
p2r−1

(2r − 1)!
. (4.18)

B`(p) typically defines a function which is analytic in a neighborhood of the origin. If we

can analytically continue B`(p) to a neighborhood of the real line in such a way that the

Laplace transform ∫ ∞
0

e−wpB`(p)dp (4.19)

is convergent the function s(ϕ`)(w) defined by

s(ϕ`)(w) =

∫ ∞
0

e−wpB`(p)dp (4.20)

is called the Borel sum of ϕ`(w). Evaluating s(ϕ`)(w) at w = 1 gives the Borel sum

of (4.10).

For our expressions, even though we know explicitly all the coefficients in the Borel

transform B`(p), we will not be able to evaluate it in closed form. However, we can apply
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the technique of Padé approximants in order to get an accurate approximation to the

analytical continuation of B`(p). Given a power series

g(z) =
∑
n≥0

anz
n (4.21)

the Padé approximant [l/m]g(z) is given by a ratio of two polynomials of degree l and m,

respectively:

[l/m]g(z) =
p0 + p1z + p2z

2 + . . .+ plz
l

1 + q1z + q2z2 + . . .+ qmzm
. (4.22)

The original series g(z) and the Padé approximant [l/m]g(z) agrees up to order l +m:

g(z)− [l/m]g(z) = O(zm+l+1) . (4.23)

This equation determines the coefficients in (4.22). In the calculations in section 4.2 we

will use a Padé approximant to the series B`(p) of the form

P(q)
` (p) =

[
[q/2]/[(q + 1)/2]

]
B`

(p) , (4.24)

where the notation [x] means the integral part of x, for various q. We will call the value of

q the degree of the Padé approximant. Let us define R(q)
` (k,M) by

R(q)
` (k,M) =

∫ ∞
0

e−pP(q)
` (p)dp . (4.25)

R(q)
` (k,M) gives an approximation to the Borel resummation of (4.10). The approximation

can be systematically improved by increasing q.

See also [48] where expressions for the Borel transform of (4.4) are obtained which

might be useful in this context.

4.2 Comparing coefficients for integer values of k

As mentioned above, in [20, 23] a proposal for the grand potential of ABJ theory is given.

The expression in these papers is given by

J(µ, k,M) =
2

3π2k
µ3 +B(k,M)µ+A(k,M) + Jnp(µ, k,M) (4.26)

where we have used the definition of Jnp(µ, k,M) as given in [20]. The µ-independent term

A(k,M) is given by4

A(k,M) = − ζ(3)

8π2
k2 +

1

2
log 2 +

1

6
log

π

2k
+ 2ζ ′(−2)

− 1

3

∫ ∞
0

dx
1

ekx − 1

(
3

x3
− 1

x
− 3

x sinh2 x

)
− log |ZCS(k,M)|

(4.27)

4The grand potential is defined slightly differently in [23] and [20], with the effect that the µ-independent

term differs by a term | logZCS | between the two papers. In this paper we use the definition for the grand

potential given in [23].
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and in [20] explicit expressions for the large µ expansion of Jnp(µ, k,M) for various integer

k is written down. We quote the first few terms for k = 2, 3, M = 1 below:

Jnp(µ, 2, 1) =

[
−4µ2 + 2µ

π2
− 1

π2

]
e−2µ + . . .

Jnp(µ, 3, 1) = −2

3
e−4µ/3 − e−8µ/3 + . . .

(4.28)

In order to compare our expressions for integer k with the above formulas we first

use the form of the quantum volume in (3.1) in the integration formula which determines

J(µ, k,M), equation (4.3). Using the Mellin transform we find that, for k = 2, 3, J(µ, k,M)

is given by

J(µ, k,M) =
2

3π2k
µ3 +B(k,M)µ+ Ã(k,M) + J̃np(µ, k,M) (4.29)

where

J̃np(µ, k,M) =
∑
`≥1,
4`
k
∈N

(−1)4`/k

(
−A`(~,M)

π2k
µ2 +

B`(~,M)

2π2k
µ

)
e−4`µ/k +

∑
`≥1

C̃`(~,M)e−`µ

+
∑
`≥1,
4`
k
/∈N

[
2A`(~,M)

πk

(
csc

(
4π`

k

)
µ+ π cot

4π`

k
csc

4π`

k

)
− B`(~,M)

2πk
csc

4π`

k

]
e−4`µ/k

(4.30)

where now

Ã(k,M) = Â(k,M)−R0(k,M) ,

C̃`(~,M) = Ĉ`(~,M)−R`(k,M)
(4.31)

with

Â(k,M) = − 1

π~

(
4

3
E3

0 +
1

2
α(k,M)E0+ 4

∑
`≥1

A`(~,M)I1(4`/k)−
∑
`≥1

B`(~,M)I0(4`/k)

)

Ĉ`(~,M) =
(−1)`

2π2k

[
−4
∑
m≥1,

m 6= `k
4

Am(~,M)I1(4m/k−`)+
∑
m≥1,

m 6= `k
4

Bm(~,M)I0(4m/k−`)+4I2(−`)

+
1

2
α(k,M)I0(−`) + δ `k

4
,N

(
4A `k

4
(~,M)

(
E2

0

2
− π2

6

)
−B `k

4
(~,M)E0

)]
.

(4.32)

The Dirac delta δ `k
4
,N takes the value one when the positive number `k

4 takes integer values,

otherwise it is zero. We would now like to check whether

A(k,M) = Ã(k,M) (4.33)

and if the coefficients in Jnp(µ, k,M) match with (4.30). In table 3 we list approximative

values of the function Ã(k,M), including up to second order exponentially small terms
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(k,M, q) Â(k,M) −R(q)
0 (k,M) A(k,M) Difference Error estimate

(2, 1, 32) 0.14763411 . . . 0.1380432 0.28567667 . . . 10−6 10−6

(3, 1, 32) 0.15809673 . . . 0.17358596 0.33168359. . . 10−6 10−6

Table 3. Comparison between the functions Ã(k,M) and A(k,M) for k = 2, 3 and M = 1. The

sum of the second and the third column should equal the fourth. In the fifth column the difference

is displayed, and in the last column an error estimate. We have included exponentially small

corrections up to order two in (3.3). The value of q is the degree of the Padé approximant used in

the Borel resummation. Only stable digits are displayed in the third column.

(k,M, `, q) Ĉ`(2πk,M) −R(q)
` (k,M) Exact value Difference Error estimate

(2, 1, 1, 30) 2.45141795 . . . −2.451437 0 10−5 10−5

(2, 1, 2, 40) −39.8991984 . . . 39.79831 − 1
π2 10−4 10−4

(3, 1, 1, 52) 5.58971619 . . . −5.589682 0 10−5 10−5

(3, 1, 2, 52) −157.31222 . . . 157.31093 0 10−3 10−3

Table 4. Comparison between the coefficients in (4.28) and (4.34). The second and third column

should add up to the fourth column. In the fifth column the difference is displayed. We have

included exponentially small corrections up to order two in (3.3). The value of q gives the number

of terms kept in the sum when performing the Borel-Padé resummation. Only stable digits are

displayed in the third column.

in (3.3). There are two sources of error for the value of Ã(k,M). First, there is an error due

to the approximation of the lowest energy level obtained by neglecting exponentially small

corrections of order three and higher in (3.3). Second, keeping a finite number of terms in

the Padé approximant when resumming R0(k,M) also introduce a numerical error. The

error estimate displayed is the largest of these errors, and in table 3 the largest error is due

to neglecting exponentially small corrections in (3.3). As we can see, the matching between

the exact value A(k,M) and Ã(k,M) is within the estimated error of approximation.

Next, using the values of the coefficients A`(~,M) and B`(~,M) given in section 3

we find

J̃np(2, 1, µ) = C̃1(4π, 1)e−µ +

[
−4µ2 + 2µ

π2
+ C̃2(4π, 1)

]
e−2µ + . . .

J̃np(3, 1, µ) = C̃1(6π, 1)e−µ − 2

3
e−4µ/3 + C̃2(6π, 1)e−2µ − e8µ/3 + . . . .

(4.34)

We see that the coefficients that do not depend on E0 match with the ones in (4.28).

For the coefficients which do depend on E0, in table 4 we compare approximate values of

these coefficients with the exact values from (4.28). We have included exponentially small

corrections up to second order in (3.3), and the error estimate is due to this truncation.

Again we see that the coefficients match within the estimated error.
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5 Summary and outlook

In this paper we have discussed the spectral problem introduced in [23] in the context of a

Fermi gas formulation of the ABJ matrix model. We have shown strong evidence that the

spectral problem can be solved through the WKB quantization condition, with a quantum

volume based on expressions from the refined topological string on local P1 × P1. These

results generalize the ones obtained in [19] for the ABJM spectral problem, and we have

performed detailed tests of the proposed solution by comparing with numerical values of

the energy levels. The solution to the spectral problem allows us to calculate the grand

potential of the ABJ model and we have found that the expressions for the grand potential

obtained in [20, 23] are reproduced.

From the formulation of the spectral problem itself, the connection to topological string

theory is surprising. It is only knowing that the spectral problem originates from the ABJ

matrix model that helps us conjecture the form of the quantum volume. This is different

from the spectral problem of the ABJM model. In this case, the spectral problem can

be interpreted as a quantization of the mirror curve of local P1 × P1, and the connection

to topological string theory is clear. Perhaps the same is true also for the ABJ spectral

problem, maybe the curve (2.48) can be identified with of the mirror curve of local P1×P1

with some clever change of coordinates which we have so far been unable to find.

Spectral problems which are similar to the one studied in this paper appears when

studying the M-theory expansion of many different matrix models, see for example [6, 10,

26, 49]. The spectral problems for these models are much less well understood as compared

to the problems studied in [19] and in this paper. It would be very interesting to make

progress in these cases as well. If we would approach them with the WKB analysis, a first

step is to develop techniques for computing the quantum period integrals in a large energy

expansion, but for fixed ~, on the constant energy curve in phase space, corresponding to

the curve (2.28) for the ABJM model. Perhaps the techniques developed for computing

the quantum periods for mirror curves in local Calabi-Yaus in [34, 38] can be adapted.

Also, a better understanding of how to obtain the non-perturbative part of the WKB

quantization condition is needed. Although the conjecture in [19] and in this paper is

well motivated in view of the connection with the ABJ(M) matrix model, a first principle

derivation of the non-perturbative part is at present not known. A better understanding

has become even more desirable in view of the results presented in the recent paper [50].

In there, spectral problems obtained from quantizing various mirror curves of local Calabi-

Yaus are studied. As emphasized in [19], the ABJM spectral problem can be understood as

quantizing the mirror curve of local P1 × P1, for the slice in the complex structure moduli

space defined by (2.33). In [19] it was also speculated that quantizing other mirror curves in

a similar way would lead to spectral problems whose spectrum can be found from a WKB

quantization condition based on a similar combination of the standard topological string

free energy and the free energy of the refined topological string in the Nekrasov-Shatashvili

limit, as for the case in the ABJM spectral problem. However, for the cases studied

in [50], the non-perturbative part in the WKB quantization condition is not given purely

by the expression based on the topological string free energy, as in this paper and [19].
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There are more terms, which does not seem to have its origin in amplitudes in topological

string theory. A few of them are determined in [50] by numerical methods. An analytical

understanding of how to the derive the non-perturbative WKB quantization condition for

the type of spectral problems arising when quantizing mirror curves and studying the M-

theory expansion of various Chern-Simons-matter theories would therefore be important

to obtain. Possibly this can be done along the lines of [28–33].

Of course it would as well be interesting to find completely different techniques to

determine the spectrum. In [51] a difference equation similar to (2.24) for M = 0 is

analyzed with methods different from the ones used in this paper. Also, in [52] a spectral

problem similar to the one in [19] and in this paper is solved with a different approach,

which perhaps can be relevant also in our case.

We believe that there are many things to be understood about how to solve these kind

of spectral problems. Given the importance in the context of the gauge/gravity duality we

hope to make progress in the future.

Note added in proof: since this paper was first posted, there have been developments

closely related to the problems raised here. Most importantly, a corrected quantization

condition for the operator (2.13), which so far agrees with all existing numerical data, has

been proposed in [53].
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A Polynomial part of the quantum volume

We want to compute the quantum volume for M ≥ 0, up to exponentially small terms in E

and E/k. We will follow the method outlined in section 5.3 in [10], where the calculation

is performed for M = 0; the case of ABJM. An important ingredient for the arguments

in [10] was that the functions T (p) in (2.19) and U(x, 0) in (2.14) grows linearly at infinity,

up to exponentially small terms. For M > 0, U(x,M) has the following behavior

U(x,M) =
x

2
+
∑
n≥1

(−1)(M+1)n+1e−nx

n
+

M−1
2∑

m=−M−1
2

∑
s≥1

(−1)s+12s

s

∑
n≥1

(−1)ne−
nx
k
− 2πimn

k

s ,
(A.1)

and we see that the crucial property of linear growth is preserved also for M > 0. Therefore,

the arguments in [10] applies also for M > 0, and we can use the same formula for the
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quantum volume as in that paper. Doing this we find

vol(E; ~,M) = 4

[ ∫ E

0
(2E − 2U(x,M))dx+

~2

24

∫ ∞
0

U ′′(x,M)dx

+

∫ E

0
(2E − 2T (p))dp− ~2

48

∫ ∞
0

T ′′(p)dp− E2

]
+O(e−E , e−E/k) .

(A.2)

The integrals over p are identical to the ones in [10], and they give a contribution∫ E

0
(2E − 2T (p))dp− ~2

48

∫ ∞
0

T ′′(p)dp =
3E2

2
− π2

6
− ~2

96
+O(e−E , e−E/k) (A.3)

For the integrals over x, let us consider the cases M even and M odd separately.

A.1 M even

When M is even, we have∫ E

0
(2E − 2U(x,M))dx+

~2

24

∫ ∞
0

U ′′(x,M)dx

=

∫ E

0
(2E − 2U(x, 0))dx+

~2

24

∫ ∞
0

U ′′(x, 0)dx+ I
(0)
M + I

(1)
M ,

(A.4)

where I
(0)
M and I

(1)
M are given by

I
(0)
M = 2

M−1
2∑

m=− (M−1)
2

∫ E

0
log

(
tanh

(
x

2k
+

iπm

k

))
dx

I
(1)
M = −~2

24

M−1
2∑

m=− (M−1)
2

∫ ∞
0

d2

dx2
log

(
tanh

(
x

2k
+

iπm

k

))
dx .

(A.5)

The first two terms on the r.h.s. in (A.4) is the contribution calculated in [10]. They are

given by∫ E

0
(2E − 2U(x, 0))dx+

~2

24

∫ ∞
0

U ′′(x, 0)dx =
3E2

2
− π2

6
+

~2

48
+O(e−E , e−E/k) . (A.6)

To calculate the integral in the first line of (A.5) we make the change of variables

t = e−
x
k
− 2πim

k . (A.7)

We then find that∫ E

0
log

(
tanh

(
x

2k
+

iπm

k

))
dx = −k

∫ e−
E
k
− 2πim

k

e−
2πim
k

log

(
1− t
1 + t

)
1

t
dt

= −k
[
Li2

(
e−

2πim
k

)
− Li2

(
e2πi(mk +1/2)

)
+O(e−

E
k )
]
.

(A.8)
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Next we use the identity

Li2
(
e2πix

)
+ Li2

(
e−2πix

)
= 2π2B2(x) , (A.9)

where Bn(x) are the Bernoulli polynomials. For real x, this identity is valid for

0 ≤ x < 1 . (A.10)

We therefore have

I
(0)
M = −2k

M−1
2∑

m=− (M−1)
2

[
Li2

(
e−

2πim
k

)
− Li2

(
e2πi(mk +1/2)

)]
+O(e−

E
k )

= −4π2k

M−1
2∑

m= 1
2

[
B2

(
m

k

)
−B2

(
m

k
+

1

2

)]
+O(e−

E
k ) =

π2

2
(M − k)M +O(e−

E
k ) .

(A.11)

For I
(1)
M , we find

I
(1)
M = −~2

24

M−1
2∑

m=− (M−1)
2

1

k sinh 2iπm
k

+O(e−
E
k ) = O(e−

E
k ) . (A.12)

Adding everything up, we find that the quantum volume for M ≥ 0 is given by

vol(E; ~,M) = 8E2 − 4π2

3
+

~2

24
+ 2π2

(
M − ~

2π

)
M +O(e−E , e−E/k) . (A.13)

A.2 M odd

For M odd, the potential is given by

U(x,M) = log
(

2 sinh
x

2

)
−

M−1
2∑

m=− (M−1)
2

log

(
tanh

(
x

2k
+

iπm

k

))
. (A.14)

For the lowest order term in the ~ expansion in (A.2) we have∫ E

0
(2E − 2U(x,M)) dx

=
3E2

2
+
π2

3
− π2k

2
+ 2

M−1
2∑

m=−M−1
2 ,

m 6=0

∫ E

0
log

(
tanh

(
x

2k
+
πim

k

))
+O(e−E , e−

E
k )

=
3E2

2
+
π2

3
− π2k

2
− 4π2k

M−1
2∑

m=1

[
B2

(m
k

)
−B2

(
m

k
+

1

2

)]
+O(e−E , e−

E
k )

=
3E2

2
− π2

6
+
π2

2
(M − k)M +O(e−E , e−

E
k )

(A.15)
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where we have reused the results from the previous section for the integral inside the sum.

Let us now discuss the term
~2

24

∫ ∞
0

U ′′(x,M)dx . (A.16)

With a similar calculation as for M even we find that the only term in the sum in (A.14)

that gives a contribution which is not exponentially small is the one with m = 0. We find

~2

24

∫ ∞
0

U ′′(x,M)dx =
~2

48

[
coth

x

2
− 1

k sinh x
k

]∞
0

+O(e−E , e−
E
k )

=
~2

48
+O(e−E , e−

E
k ) .

(A.17)

Adding everything up, we find that also for M odd we have

vol(E; ~,M) = 8E2 − 4π2

3
+

~2

24
+ 2π2

(
M − ~

2π

)
M +O(e−E , e−E/k) . (A.18)

B Mellin transform

In order to compute the grand potential given the quantum volume we need to compute

the integrals

R(j)
σ (µ) =

∫ ∞
E0

Eje−σE

eE−µ + 1
dE , j = 0, 1, 2 , σ ∈ Q . (B.1)

This can be done analytically using the Mellin transform. Given a function g(u) the Mellin

transform ĝ(s) is defined by

ĝ(s) =

∫ 1

0
g(u)u−s−1du . (B.2)

To compute R
(j)
σ (µ) we take the Mellin transform with respect to the variable

u = e−µ (B.3)

and use the fact that ∫ 1

0
un−s−1 (log u)m du = − Γ(m+ 1)

(s− n)m+1
. (B.4)

From the pole structure of the Mellin transform R̂
(j)
σ (s) we can then read off the original

function R
(j)
σ (µ). The Mellin transform we need is given by∫ 1

0

u−s−1

eEu+ 1
du = esEI(s) +

∑
k≥1

(−1)ke−kE

s+ k
. (B.5)

where

I(s) = −π csc (πs) . (B.6)

Note that the function on the r.h.s. in (B.5) does not have poles at negative values of s.

Using this result we find that the Mellin transform of R
(j)
σ (µ) is given by

R̂(j)
σ (s) = Ij(σ − s)I(s) + . . . (B.7)
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where Ij(n) is defined in (4.11) and we have only written out the terms which are relevant

for finding the poles. Let us assume that σ is not an integer (we can easily obtain the

correct expressions when σ is an integer from the end results). The above function has

poles at s = σ and s = n, where n is a non-negative integer. Explicitly, we have

R̂(0)
σ (s) =

π csc (πσ)

s− σ
−
∑
n≥0

(−1)n
I0(σ − n)

s− n
+ . . .

R̂(1)
σ (s) = − π csc (πσ)

(s− σ)2
+
π2 cot (πσ) csc (πσ)

s− σ
−
∑
n≥0

(−1)n
I1(σ − n)

s− n
+ . . .

R̂(2)
σ (s) =

2π csc (πσ)

(s− σ)3
− 2π2 cot (πσ) csc (πσ)

(s− σ)2
+
π3 csc (πσ) + 2π3 cot2 (πσ) csc (πσ)

s− σ

−
∑
n≥0

(−1)n
I2(σ − n)

s− n
+ . . . . (B.8)

Using (B.4) we find that

R(0)
σ (µ) = − π csc (πσ)e−σµ +

∑
n≥0

(−1)nI0(σ − n)e−nσµ

R(1)
σ (µ) = − π csc (πσ) [µ+ π cot (πσ)] e−σµ +

∑
n≥0

(−1)nI1(σ − n)e−nσµ

R(2)
σ (µ) = − π csc (πσ)

[
µ2 + 2πµ cot (πσ) + π2 + 2π2 cot2 (πσ)

]
e−σµ

+
∑
n≥0

(−1)nI2(σ − n)e−nσµ . (B.9)

When σ takes integer values, the trigonometric functions in the above expressions have

poles. These poles are canceled by the poles of the function Ij(σ − n), so the above

expressions are valid also for σ being an integer, after cancelation of the poles.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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