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Abstract: We calculate the production of dileptons and photons in the presence of a

nontrivial Polyakov loop in QCD. This is applicable to the semi-Quark Gluon Plasma

(QGP), at temperatures above but near the critical temperature for deconfinement. The

Polyakov loop is small in the semi-QGP, and near unity in the perturbative QGP. Working

to leading order in the coupling constant of QCD, we find that there is a mild enhancement,

∼ 20%, for dilepton production in the semi-QGP over that in the perturbative QGP.

In contrast, we find that photon production is strongly suppressed in the semi-QGP, by

about an order of magnitude, relative to the perturbative QGP. In the perturbative QGP

photon production contains contributions from 2 → 2 scattering and collinear emission

with the Landau-Pomeranchuk-Migdal (LPM) effect. In the semi-QGP we show that the

two contributions are modified differently. The rate for 2 → 2 scattering is suppressed by

a factor which depends upon the Polyakov loop. In contrast, in an SU(N) gauge theory

the collinear rate is suppressed by 1/N , so that the LPM effect vanishes at N = ∞. To

leading order in the semi-QGP at large N , we compute the rate from 2 → 2 scattering to

the leading logarithmic order and the collinear rate to leading order.
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1 Introduction

In many ways, the collisions of heavy ions at high energies appear to be well described

by thermal properties of a Quark-Gluon Plasma (QGP). Certainly the bulk properties of

hadrons are accurately modeled by a nearly ideal plasma, using hydrodynamics [1–5].

It is also important to consider electromagnetic probes of a QGP such as dilepton [6–25]

and photon [26–43] production. Theoretically, these can be computed in the (resummed)

perturbative QGP at high temperature [44], by using hadronic models at low tempera-

ture [45, 46], and using the AdS/CFT correspondence [47–49].

Neither applies directly to Quantum ChromoDynamics (QCD) at temperatures near

that for the phase transition, at a temperature Tc. There are various models which can

be used to study the region near Tc, which we call the “semi” Quark-Gluon Plasma. This

includes Parton Hadron String Dynamics [50–55], Polyakov loop models [56–58], the func-

tional renormalization group [59–70], background field methods [71–73], and lastly, matrix

models [74–85].

Experiment has discovered several unexpected phenomena. For dileptons, there is

an enhancement at invariant masses below that for the ρ-meson. This is observed from

energies at the Super Proton Synchrotron (SPS) at CERN, to the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory, and onto the Large Hadron Collider

(LHC) at CERN [24].

Another puzzle appears in the photon spectrum: there is an unexpectedly large elliptic

flow for photons at moderate momenta, comparable to the elliptical flow observed for

hadrons [86, 87]. This large elliptic flow for photons is very difficult to understand from

either a perturbative analysis or from AdS/CFT.

In this paper we consider electromagnetic signals in a matrix model of the semi-QGP.

In a matrix model the relevant parameter is the expectation value of the Polyakov loop:

properly normalized, the expectation value of the loop is near unity in the perturbative

QGP [88–90]. Numerical simulations on the lattice [91–97] find that for QCD, there is no

true phase transition, only a rapid increase in the number of degrees of freedom. For our

purposes, whether or not there is a true phase transition is irrelevant: all that matters

is that the (renormalized) Polyakov loop, which from the lattice is 〈`〉 ∼ 0.1 at Tc, is

small [91–97].

A brief summary of the results of this analysis has appeared previously [98]. In this

paper we describe the computations in full. These are straightforward, simply a matter

of computing in the presence of a background field for the time-like component of the

gluon vector potential, A0. We then compute to leading order in the QCD coupling g.

These formalisms will be explained in section 2. For photons, we only compute to leading

logarithmic order, which means that we regard the logarithm of some large number as

much larger than unity.

In the semi-QGP, the production of colored particles is suppressed by powers of the

Polyakov loop as T → Tc. This is natural, as in the pure gauge theory, there are no

colored particles in the confined phase. Thus one might expect that dilepton production

is suppressed in the semi-QGP, relative to that in the perturbative phase. We make this
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comparison at the same temperature, and the same value of the QCD coupling, so that

the ratio is only a function of the value of the Polyakov loop in section 3. In contrast to

the naive expectation above, we find a mild enhancement of dilepton production in the

semi-QGP, even into the confined phase. This is because for an off-shell photon, it can

proceed directly through a color singlet channel, a quark anti-quark pair. While a single

quark or anti-quark is suppressed by a power of the Polyakov loop, a quark anti-quark pair

is not. We also show that to leading order, a Polyakov Nambu-Jona-Lasino model [56–58]

gives essentially the same result for dilepton production [99] as our matrix model. As we

discuss, this equality is not true beyond leading order.

The production of real photons, which will be analyzed in section 4.1, is very different.

Kinematically, a photon on its mass shell cannot decay directly into a quark anti-quark

pair. Therefore, the leading contribution is from a 2 to 2 scattering, which includes the

Compton scattering of a quark with a gluon and the pair annihilation of a quark anti-quark

pair. These particles also can form a color singlet like the case of the dilepton production,

but for an SU(N) gauge theory, the ratio of the color singlet state to the number of all

the states is suppressed by 1/N2 at large N . Consequently, we find a strong suppression

of real photon production in the semi-QGP. The contribution from the collinear emission

of the photon, which also can contribute at the leading order to the photon production, is

discussed in section 5.

2 Semi-quark gluon plasma

2.1 Double line notation

It is useful to compute the color factors using the double line basis [76]. In this basis,

as usual fundamental quarks carry a single index in the fundamental representation, a =

1, · · · , N . Gluons, however, carry a pair of fundamental indices, (ab). For an SU(N)

group there are N2 such pairs, and so this basis is overcomplete by one generator. This is

compensated by introducing the operator

Pabcd = δac δ
b
d −

1

N
δabδcd . (2.1)

This is a projection operator,

PabefP
ef
cd = Pabcd . (2.2)

In the double line basis, the vertex between a quark anti-quark pair and a gluon is propor-

tional to this projection operator, (
T ab
)
cd

=
1√
2
Pabcd . (2.3)

The other vertices are not relevant for the present discussion.

2.2 The Polyakov loop in Euclidean spacetime

To introduce the effect of nontrivial Polyakov loop in perturbative calculation, we work in

an effective model introduced in ref. [76]. The Lagrangian of that model is the same as

– 3 –
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that in QCD with N colors, but in a mean field type approximation, we take the temporal

component of the gluon field to be a constant, diagonal matrix,

Aab0 =
1

g
δab Qa , (2.4)

where summation over index a is not taken and g is the coupling constant. There is no

background field for the spatial components of the gluon, Ai. As the gauge group is SU(N),

A0 is traceless, and the sum of the Q’s vanishes,
∑

aQ
a = 0.

The Wilson line in the temporal direction is

L(~x) ≡ P exp

(
i g

∫ 1/T

0
dτ A0(τ, ~x)

)
, (2.5)

where P denotes path ordering and τ is the imaginary time, τ : 0→ 1/T .

To leading order in the coupling constant, a mean field approximation implies that we

can neglect fluctuations in A0. The variable Q is naturally proportional to the temperature,

so it is useful to introduce a dimensionless variable q, where

Qa = 2πT qa . (2.6)

In this paper we shall use both the Qa’s and the qa’s. For intermediate expressions the

Qa’s are more convenient, but final expressions are simpler in terms of the qa’s.

Traces of powers of the the Wilson line are Polyakov loops,

`n(Q) ≡ 1

N
〈tr Ln〉 =

1

N

N∑
a=1

ei nQ
a/T , (2.7)

and are gauge invariant. Since it arises frequently we write a loop without the subscript

as the first Polyakov loop, ` = `1.

In general there are N−1 independent Qa’s. For the problems of interest in this paper,

though, we can perform a global color rotation to enforce that the expectation value of the

loop ` is real. This implies that the eigenvalues pair up as

Qa = (−Qj , −Qj−1 . . .−Q1, 0, Q1 . . . Qj−1, Qj) , (2.8)

where we assume that N is odd, and j = (N −1)/2. When N is even the zero eigenvalue is

dropped, and there are j = N/2 pairs. Thus in general there are j independent eigenvalues.

For an arbitrary value of the loop, there is no simple relation between these eigenvalues.

Nevertheless, there are two exceptions. One is the perturbative QGP, where all Qa

vanish. The other is the confined phase of a pure gauge theory,

Qaconf = πT
N + 1− 2k

N
, k = 1, . . . , N . (2.9)

That is, in the confined phase the eigenvalues are evenly distributed on the unit circle. The

loops in the confined phase are

`n(Qconf) =

{
(−1)j(N+1) , n = jN ;

0 , n 6= jN ,
(2.10)
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for general N . This behavior is easy to understand. Loops which carry Z(N) charge vanish

in the confined phase of the pure gauge theory, while those which are Z(N) neutral do not.

For three colors,

Qa = (−Q, 0, Q) = 2πT (−q, 0, q) . (2.11)

The first Polyakov loop is then

` =
1

3
(1 + 2 cos (2πq)) . (2.12)

In the confined phase of the pure gauge theory qconf = 1/3. Similarly,

ln =
1

3
(1 + 2 cos(2π n q)) . (2.13)

In the presence of dynamical quarks there is no rigorous definition of a confined phase.

Dynamical quarks act as a background Z(N) field, so that any Polyakov loop is nonzero

at nonzero temperature. Nevertheless, numerical simulations on the lattice find that ` is

small, 〈`〉 ∼ 0.1, at the phase transition, at least for three colors and three light flavors.

Thus we shall find it very convenient to compare results in the perturbative QGP to those

in the confined phase of the pure gauge theory, as a limiting case of how large the effects

can possibly be.

2.3 Analytic continuation to Minkowski space-time

Expanding around the background field in eq. (2.4), in Euclidean spacetime the energy of

a quark becomes

p0 → p0 +Qa , (2.14)

while that of a gluon becomes

p0 → p0 +Qab ; Qab ≡ Qa −Qb , (2.15)

where a and b are color indices of the quark and the gluon in the double line basis [76].

Because of the usual boundary conditions in imaginary time, the energy p0 for a fermion

is an odd multiple of πT , while that for a boson is an even multiple of πT .

Although the momenta for fermions and bosons are rather different in Euclidean space-

time, it was argued previously that the proper procedure for analytic continuation to

Minkowski spacetime is to continue the entire Euclidean energy to −iE, where E is a

continuous energy variable [76].

This has a simple but profound implication. In kinetic theory a given process is given by

an integral over phase space of the square of a matrix elements times products of statistical

distribution functions. Since the energies in Minkowski spacetime are as usual, then, for

processes in which all the momenta are hard, the only change is in the Q-dependence of the

statistical distribution functions. For processes involving soft momenta, it is also necessary

to include the Q-dependence of the hard thermal loops as well [76]. We shall illustrate

these general expectations by our explicit computations. It also suggests that it may be

useful to treat the semi-QGP in kinetic theory, as for the perturbative QGP [100, 101].

– 5 –
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The background gluon field acts as an imaginary chemical potential for colored particle,

so that the statistical distribution functions for the quark, anti-quark, and gluon are,

respectively,

ña(E) =
1

e(E−iQa)/T + 1
, ña(E) =

1

e(E+iQa)/T + 1
,

nab(E) =
1

e(E−i(Qa−Qb))/T − 1
. (2.16)

Notice that the sign of Q for the anti-quark, +iQa in ña(E), is opposite to that for the

quark, −iQa in ña(E). This is just like the change in sign for a quark chemical potential

which is real. When the Qa = 0, of course these reduce to the usual Fermi-Dirac and

Bose-Einstein distribution functions.

For future reference, it is useful to compute the statistical distribution functions,

summed over all colors, in the confined phase of a pure gauge theory, eqs. (2.9) and (2.10).

For the quark distribution function, this is

1

N

N∑
a=1

1

e(E−iQa
conf )/T + 1

=
1

eNE/T + 1
, (2.17)

while that of the gluon distribution function is

1

N2

N∑
a,b=1

1

e(E−iQa
conf+iQ

b
conf )/T − 1

=
1

eNE/T − 1
. (2.18)

In the confined phase of the pure gauge theory, the only loops which contribute are those

which wrap around a multiple of N times. These can be considered as a type of “baryon”,

albeit in the pure gauge theory. Consequently, the energy which enters in the right hand

side of eqs. (2.17) and (2.18) is not E, but N times E. This rescaling of the energy will be

seen to help explain the suppression of photon production at large N , eq. (4.81).

2.4 Relation to lattice results

In a matrix model all results are functions of the temperature, the coupling constant, and

the background field Qa. In this paper we take a conservative approach to fix the variation

of the coupling constant, and the Qa’s, with temperature. We stress, however, that all of

our results can easily be used to compute for alternate choices of Qa(T ).

In order to give results as a function of temperature, in this work we determine the

Qa’s from measurements of the (renormalized) Polyakov loop in numerical simulations on

the lattice [85]. To do so, first it is necessary to remove perturbative corrections from the

expectation value of the loop [88],

`(Q = 0) = 1 + δ`(Q = 0) , (2.19)

δ`(Q = 0) =
g2CfmD

8πT
+
g4Cf
(4π)2

[
−
Nf

2
ln 2 +N

(
ln
mD

T
+

1

4

)]
+O(g5) ,

– 6 –
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Figure 1. Left panel: the Polyakov loop (l) determined from the lattice calculation [91], the

Polyakov loop (l0) with the perturbative correction removed according to eq. (2.21) as a function

of T . Right panel: Q as a function of T . We set ΛMS = Tc/1.35, where Tc = 170 MeV.

where Cf ≡ (N2 − 1)/(2N) is the Casimir for the fundamental representation, mD is the

Debye mass of the gluon, and Nf is number of quark flavors. We use the running coupling

constant calculated in the modified minimal subtraction scheme at two-loop order, and the

result for the Debye mass at one-loop order [89]:

g2 = 24π2

[
(11N − 2Nf )

{
ln

(
4πT

ΛMS

)
− γE

}
+Nf (4 ln 2− 1)− 11N

2

]−1

,

m2
D = (2N +Nf )4π2T 2

[
(11N − 2Nf )

{
ln

(
4πT

ΛMS

)
− γE

}

+ 4Nf ln 2−
5N2 +N2

f + 9Nf/(2N)

2N +Nf

]−1

, (2.20)

where ΛMS is the renormalization mass scale in the modified minimal subtraction scheme,

and γE ' 0.57721 is Euler’s constant.

Equation (2.19) shows that a finite renormalization gives `(Q = 0) > 1. We assume

that perturbative corrections exponentiate,

`(Q) = eδ`(Q=0)`0(Q) . (2.21)

Taking ` from numerical simulations of lattice QCD [91], and calculate `0 from eq. (2.21), to

obtain Q from eq. (2.12). These quantities are plotted in figure 1, by setting ΛMS = Tc/1.35.

We see that `0 is different from unity even around ∼ 3Tc, where Tc ∼ 170 MeV is the

pseudo-critical temperature of the phase transition [91].

There are several shortcomings of the above procedure. Instead of taking the value of

the Polyakov loop from numerical simulations on the lattice, it would be better to have

a complete effective model, whose parameters fit both thermodynamic quantities, such as

the pressure, and the value of the Polyakov loop. With dynamical quarks, such a model

does not, at present, exist, although it is actively under study.

– 7 –
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Indeed, the case of the pure gauge theory has been studied intensively in refs. [79, 80].

Fitting the parameters of the matrix model to the pressure, a good fit is found a computed

quantity, the value of the ’t Hooft loop. However, at a given temperature above Tc, the

value of the Polyakov loop is uniformly larger than that measured on the lattice. Indeed,

the width of the transition region in the matrix model, from Tc to ∼ 1.2Tc, is much

narrower than that indicated by the value of the (renormalized) Polyakov loop, from Tc to

∼ 4.0Tc [79, 80].

In this vein, we note that two other effective models which predict the value of the

Polyakov loop. Using either using the functional renormalization group [59–70], or back-

ground field methods [71–73], both models find a similarly narrow width for the region in

which the Polyakov loop goes from zero to near unity. (We exclude Polyakov loop models,

which by assumption fit the value of the Polyakov loop.)

Either all such models neglect important physics, or there is some subtle effect as-

sociated with the renormalization of the Polyakov loop (which is, after all, a nonlocal

operator). At present we do not know the resolution of this problem. For this reason, we

adopt the approach described above and simply take the value of the Polyakov loop from

lattice simulations.

Another qualm about the prescription above is that in subtracting the perturbative cor-

rections, we have used those computed in the ordinary perturbative vacuum, with Qa = 0.

Clearly this should be done self-consistently, taking the correct Qa 6= 0. Given the discrep-

ancy between the lattice Qa and those in the matrix model, it seems prudent to delay such

a technically challenging computation until this difference is better understood.

3 Dilepton production rate

3.1 Computation to leading order

We calculate the production rate of dileptons when Qa 6= 0 in this subsection. To leading

order in αem, the production rate is

dΓ

d4P
= − αem

24π4P 2
Wµ
µ (P ) , (3.1)

where Wµν(P ) is the Wightman correlator for two electromagnetic currents,

Wµν(P ) =

∫
d4x ei P ·x 〈 jν(0) jµ(x) 〉 , (3.2)

where jµ ≡ e
∑

f ψfγ
µψf , with ψ is the quark operator with flavor index f . In thermal

equilibrium, Wµν is related to the imaginary part of the retarded photon self-energy as

Wµν(P ) = − 2 n(E) Im ΠR
µν(P ) , (3.3)

with

ΠR
µν = −i

∫
d4x eiP ·x θ(x0) 〈 [jµ(x), jν(0)] 〉 . (3.4)

Here P ≡ P1 + P2 with P1 and P2 being the momenta of the two leptons.

– 8 –
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At the leading order in the QCD coupling constant g, the contribution is obtained by

1→ 2 processes, illustrated in figure 2. In this process, a quark anti-quark pair becomes a

virtual photon, which then decays to a dilepton pair. This gives

dΓ

d4P
=

αem

24π4P 2

∑
f,spin

∫
d3k1

(2π)3

1

2E1

∫
d3k2

(2π)3

1

2E2
(2π)4δ(4)(P −K1 −K2)

× |M|2
N∑
a=1

ña(E1) ña(E2) ,

(3.5)

where f is a subscript for flavor running from 1 to Nf . We use the spacetime signature

(+ − −−) in this paper; four-momenta are denoted by capital letters, Pµ = (E, ~p), Kµ
1 =

(E1, ~k1), Kµ
2 = (E2, ~k2). The quark anti-quark pair is produced on it mass shell, K2

1 =

K2
2 = 0, so E1 = |~k1| ≡ k1, E2 = |~k2| ≡ k2, and P is time-like, P 2 > 0. Without loss

of generality we can assume that the (virtual) photon energy is positive, E > 0. Here

ña(E1) and ña(E2) are the statistical distribution functions for the quark and anti-quark

in eq. (2.16). The square of matrix element is∑
spin

|M|2 = 8 e2q2
f K1 ·K2 = 4 e2q2

f P
2 , (3.6)

where we have used K2
1 = K2

2 = 0, and qf is the electromagnetic charge of the quark with

flavor f in the unit of e.

The result when Qa = 0 is well known [25]:

dΓ

d4P

∣∣∣∣
Q=0

=
α2

em

12π4

∑
f

q2
f N n(E) h(E, p) . (3.7)

For three flavors of quarks,
∑

f q
2
f = 2/3. Here

h(E, p) ≡ 1− 2T

p
ln

(
1 + e−p−/T

1 + e−p+/T

)
, (3.8)

and

p± =
1

2
(E ± p) (3.9)

is the range of the quark momenta. Especially, when the dilepton pair is produced at

rest, ~p = 0, the quark anti-quark pair are produced back to back, with ~k1 = −~k2. Their

energies are equal, E1 = E2 = E/2, and there is no integral over the quark momentum.

The expression then reduces to

dΓ

d4P

∣∣∣∣
Q=0

=
α2

em

12π4

∑
f

q2
f N ñ2(E/2) . (3.10)

This is natural, as the product of a Fermi-Dirac distribution function for the quark and

anti-quark appears.
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Equation (3.5) illustrates our comment in section 2.3, that for hard momenta the only

change when Qa 6= 0 is in the change in the statistical distribution functions. To handle

the Q-dependence of the ñ’s it is useful to note that

ña(E1) ña(E2) = n(E) (1− ña(E1)− ña(E2)) , (3.11)

remembering that E = E1 + E2. This identity is familiar from when Qa = 0.

Using this, we can derive

Im ΠRµ
µ = αem

∑
f

q2
f

(
E2 − p2

p

) N∑
a=1

∫ p+

p−

dk (1− ña(k)− ña(E − k)) . (3.12)

Here we wrote the photon retarded self-energy instead of the dilepton production rate

for future convenience. We use energy-momentum conservation to write E1 = k and

E2 = E − k. This expression is useful when we compare to the results of ref. [99] at the

end of this section, see eq. (3.23).

To leading order, we can write the rate for dilepton production when Qa 6= 0 as a

momentum dependent factor times that for Qa = 0,

dΓ

d4P

∣∣∣∣
Q 6=0

= fll(Q)
dΓ

d4P

∣∣∣∣
Q=0

, (3.13)

where

h(E, p) fll(Q) =
1

N

N∑
a=1

(
1− 2T

p
ln

(
1 + e−(p−− iQa)/T

1 + e−(p+− iQa)/T

))
. (3.14)

This result can be evaluated by expanding in powers of exp(−(p∓−iQa)/T ), and performing

the sum over a to obtain a series of Polyakov loops. For general N all independent Polyakov

loops, which run from `1 to `N−1, enter. The resulting expression is not very illuminating.

There are two cases in which one can obtain simple results. One is the confined phase

of the pure gauge theory, eqs. (2.9) and (2.10). Then only loops which are a multiple of N

contribute, so that

h(E, p) fll(Qconf) = 1− 2T

N p
ln

(
1 + e−Np−/T

1 + e−Np+/T

)
. (3.15)

Another special case is three colors. Then one can rewrite fll so that only the first

Polyakov loop appears,

h(E, p) fll(Q) = 1− 2T

3 p
ln

(
1 + 3 ` e−p−/T + 3 ` e−2p−/T + e−3p−/T

1 + 3 ` e−p+/T + 3 ` e−2p+/T + e−3p+/T

)
. (3.16)

Of course fll(0) = 1 in the perturbative QGP, when ` = 1. In the confined phase where

` = 0, this agrees with the result in eq. (3.15).

In figure 3 we plot fll(Q) as a function of temperature for three colors. We do this for

back to back dileptons, p = 0, with E = 1 GeV. We see that the production of dileptons is
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Figure 2. The 1 to 2 process which results the production of dilepton. The solid line denotes the

quark while the wavy line denotes the (virtual) photon.

200 300 400 500
T�MeV

0.2

0.4

0.6

0.8

1.0

1.2

fl l

Figure 3. The ratio of dilepton production in the semi-QGP versus the perturbative QGP, fll in

eq. (3.16), as a function of temperature. The dileptons are back to back, p = 0, with a total energy

E = 1 GeV.

not suppressed by the effect of the Polyakov loop, but moderately enhanced, by ∼ 20%, at

low temperatures T ∼ 300 MeV in the semi-QGP.

This enhancement is rather unexpected. While the probability to produce either a

single quark or anti-quark is small when the loop is small, that to produce a quark anti-

quark pair is greater in the semi-QGP than the perturbative QGP.

3.2 Enhancement of dilepton production in the confined phase versus the

perturbative Quark-Gluon Plasma

To better understand the enhancement of dilepton production in the semi-QGP, relative to

that in the perturbative QGP, we consider dilepton production for infinite N , comparing

the confined phase to the perturbative QGP.

To simplify the analysis we consider dileptons which are produced back to back. This

is most useful, because if the total spatial momentum of the pair vanishes, p = 0, then each

dilepton carries the same energy, E/2, and we can ignore the integral over phase space as a

common factor, independent of the Qa. The effects of confinement, represented by Qa 6= 0,

can then be included just by computing the sum over the statistical distribution functions
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in eq. (3.5),

N∑
a=1

ña(E/2) ña(E/2) =

N∑
a=1

1

e(E/2−iQa)/T + 1

1

e(E/2+iQa)/T + 1
. (3.17)

We note that, since the background field acts like a chemical potential for color, albeit

imaginary, the sign for Qa is opposite between the quark and the anti-quark.

In the perturbative phase, Qa = 0, and eq. (3.17) is just = N ñ(E/2)2, as appears in

eq. (3.10).

In the semi-QGP, eq. (3.17) is computed by expanding each statistical distribution

function in powers of exp((E/2∓ iQa)/T ),

N∑
a=1

∞∑
m=1

∞∑
m′=1

(−)m+m′ exp
(
−
(
(m+m′)E/2 + i(m−m′)Qa

)
/T
)
. (3.18)

This sum is especially easy to compute in the confined phase at infinite N . In that case,

if m 6= m′ the sum over a gives
∑

exp(i(m−m′)Qa/T ); this is the Polyakov loop `|m−m′|,

whose contribution vanishes at large N . The only nonzero contributions are from terms

where m = m′. For the terms in eq. (3.18) where m = m′, though, the dependence on Qa

drops out, cancelling identically between the quark and the anti-quark. The sums over a

and m are then independent, and easy to do,

N∑
a=1

∞∑
m=1

e−mE/T =
N

eE/T − 1
= N n(E) , (3.19)

which does not vanish at large N . That is, while we start with only Fermi-Dirac distribution

functions with Qa 6= 0, in the confined phase at infinite N we end up with a Bose-Einstein

distribution function, which corresponds to the mesonic distribution function instead of the

quark and the anti-quark. We also note that, previously we showed that the cancellation

of the phases of the quark and the anti-quark are essential for the non-suppression of the

dilepton rate at large N by using the Boltzmann approximation [98]. From the discussion

above, we see that the cancellation (m = m′) is important also in the case that we do not

use the Boltzmann approximation.

This is a type of statistical confinement. Our simple model does not have true bound

states, but there is a remnant of a bound state from the statistical sum over the Qa’s. It is

this sum in eq. (3.18) which generates the Bose-Einstein distribution function in eq. (3.19).

Thus in the confined phase at infinite N ,

fll(Qconf)N=∞ =
n(E)

ñ2(E/2)
. (3.20)

We note that this result also can be obtained by taking p → 0 limit in eq. (3.14). This

demonstrates a few interesting features. First, fll(Qconf)N=∞ is always larger than unity.

Second, at low energy, the Bose-Einstein distribution function is enhanced, n(E) ∼ T/E,

while the Fermi-Dirac distribution function is constant, so

fll(Qconf)N=∞ =
4T

E
, E � T . (3.21)
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Thus under the given assumptions, at small energies dilepton production in the confined

phase dominates that from the perturbative Quark-Gluon Plasma. This occurs because

statistical confinement generates confined “bosons” from quark anti-quark pairs, and these

confined bosons become over-occupied when their energies are much smaller than temper-

ature. This occurs even though the probability to produce a single quark, or anti-quark, is

strictly zero in the confined phase at infinite N . Nevertheless, we note that, when E ≤ gT ,

we need to calculate with the HTL resummation [102] instead of our calculation, so our

result eq. (3.21) can be altered in that energy region.

More generally, that the ratio of dilepton production in the confined phase to that in

the perturbative QGP, fll(Q), is of order one, indicates that at all temperature dilepton

production is of order N . This is one example of quark-hadron duality [103].

A similar enhancement of dilepton production in the confined phase was found previ-

ously by Lee, Wirstram, Zahed, and Hansson [14]. They considered a condensate for A2
0.

We can take our result in eq. (3.14), and expand up to quadratic order in the Qa’s, to

obtain

h(E, p) fll(Q) ≈ h(E, p) +
1

NpT

N∑
a=1

Q2
a (ñ(p−)(1− ñ(p−))− ñ(p+)(1− ñ(p+))) , (3.22)

in agreement with eq. (7) of ref. [14]. These authors suggested that the enhancement of

dilepton production in the confined phase may be related to the excess seen in heavy ion

collisions for dilepton masses below that for the ρ-meson [24].

We can also make contact with results from Polyakov Nambu-Jona-Lasino (PNJL)

models [56–58], especially with the computation of dilepton production by Islam, Ma-

jumder, Haque, and Mustafa [99]. To do so we need a simple identity. For three colors

the sum of the Fermi-Dirac distribution function, with the Qa and ` as in eqs. (2.11)

and (2.12), obeys

1

3

3∑
a=1

ña(E) =
1

3

3∑
a=1

ña(E) =
` e−E/T + 2 ` e−2E/T + e−3E/T

1 + 3 ` e−E/T + 3 ` e−2E/T + e−3E/T
. (3.23)

In the PNJL models of refs. [56–58, 99], when ` 6= 1 the effective statistical distribution

function is defined as the right hand side of eq. (3.23); e.g., eqs. (67) and (68) of ref. [57].

In refs. [57, 58, 99] this effective distribution function was obtained by taking the derivative

of the free energy, when ` 6= 1, with respect to a given energy E. Since the free energy

involves a sum over all colors, it is clear that defining the effective statistical distribution

function in this way automatically gives a sum over all ña(E) (or ña(E)), which appears on

the left hand side of eq. (3.23). (The identity of eq. (3.23) holds for the case of zero quark

chemical potential. Then we can define ` to be real, and
∑

a ña(E) and
∑

a ña(E) are equal.

At nonzero quark chemical potential the loops in the fundamental and anti-fundamental

representations are not equal, `3 6= `3 [104]. In this instance, identities similar to eq. (3.23)

hold for
∑

a ña(E) and
∑

a ña(E) separately, and are again equal to those in the PNJL

model, [57, 58, 99].)

In our matrix model the sum over the statistical distribution functions with all Qa,∑
a ña(E) and

∑
a ña(E), enters naturally when we sum over all quark colors, eqs. (3.11)
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and (3.14). In the PNJL model calculation done in ref. [99], ImΠR
00 is given in eq. (4.36),

and ImΠR
ii by eq. (4.46). Taking the quarks to be massless, and using the fact that∫ p+

p−
dp ña(E − p) =

∫ p+
p−

dp ña(E), it can be shown that their result for Im ΠRµ
µ coincides

identically with our eq. (3.12).

We emphasize that the equality between our results and the PNJL model [99] is valid

only to leading order. In both cases, at leading order dilepton production is only a function

of the Polyakov loop and the temperature. (As well as the quark mass and chemical

potential, if one chooses to add them.) The results will certainly differ beyond leading

order, and depend strongly upon the details of each effective model.

We note that, results for dilepton production at nonzero quark masses were computed

in ref. [99] and by Satow and Weise [105]. There is a relatively mild dependence on the

quark masses, apart from obvious kinematical constraints, such as the energy of the photon

has to be greater than twice the quark mass.

4 Photon production

4.1 Overview

To leading order in αem, the photon rate in the QGP is

p
dΓγ
d3p

= − 1

2(2π)3
gµν Wµν(P ) . (4.1)

Since a photon on its mass shell cannot decay directly to a quark anti-quark pair, this

quantity vanishes at one-loop order.

In our model the first nonzero contribution occurs at two-loop order, from the diagrams

shown in figure 4. Cutting the diagrams we obtain 2 → 2 processes, which are Compton

scattering and pair annihilation, both of order e2g2. We note that, consequently, and

unlike the case of dilepton production to leading order, the results which we find have

no direct correspondence in a PNJL model. One could compute photon production in a

PNJL model, but since these models do not have dynamical gluons, the results will be very

different from our matrix model. Each of these two processes has an infrared divergence

when the momentum exchanged becomes soft [6]. The divergence is removed by using a

resummed quark propagator for soft momenta, corresponding to the uncutted lower quark

line in the left diagram of figure 4, for example.

It was later realized that there exists another kinematic regime which contributes at the

same order [9–11]. This corresponds to the case when the photon becomes collinear with

quarks in the loop in the two diagrams of figure 4, more precisely, when the longitudinal

momenta (defined with respect to photon momentum) of quarks remain hard, ∼ T , and

the transverse momenta are soft, ∼ gT . Despite the reduced phase space, due to collinear

enhancement, this regime was found to contribute equally as the 2 → 2 processes, in the

analysis by Arnold, Moore and Yaffe (AMY) [10]: the collinear regime in this diagram also

gives an overall e2g2 contribution to the photon emission rate. To clarify terminology, we

will refer 2 ↔ 2 rate as the contribution from figure 4, excluding the rate in the collinear

regime. We refer to the rest of the contributions ∼ e2g2 as the collinear rate.
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Figure 4. Two loops diagrams contributing to photon self-energy.

It turns out that the collinear rate goes beyond two-loop order: i.e. further addi-

tional soft gluons ladders in the collinear regime still contributes at the same order. Thus,

the story is further complicated by interference among different diagrams. Physically, it

is because that, the formation time of a photon, tF ∼ 1/(g2T ), is comparable to the

mean free path for quarks, λ ∼ 1/(g2T ). Since these two scales are similar, interference

effects between scattering with multiple gluons must be included, which is the Landau-

Pomeranchuk-Migdal (LPM) effect [10, 11]. Different diagrams add destructively, so that

the LPM effect leads to additional suppression of collinear photon rate by p−1/2 at large

photon momentum p� T .

In this section we compute the production of real photons with large momentum in the

presence of a nontrivial Polyakov loop. We begin by reviewing the computation of photon

production to leading order in perturbation theory for 2 → 2 processes. We then generalize

this to Qa 6= 0. In contrast to dilepton production, we find that photon production is

strongly suppressed in the confined phase. We give a simple explanation for this in terms

of the initial state of the scattering.

We then give a detailed computation of the leading contributions to the collinear rate

when Qa 6= 0. In the presence of a nontrivial loop, the thermal mass of the quark is

suppressed by a loop dependent factor, but it remains ∼ g
√
NT (here we explicitly wrote

the N dependence in the large N limit). In contrast, the damping rate is suppressed by

a factor of 1/N . Consequently, the mean free path of a quark or gluon is much larger,

λ ∼ 1/(g2T ), not 1/(g2NT ) as in the Qa = 0 case. This implies that the LPM effect can

be neglected at large N .

We compute the collinear processes when Qa 6= 0 at large N . Doing so, we find that

for three colors, the result is not that small, at least for physically reasonable values of the

QCD coupling constant. Nevertheless, we find the result illuminating, to show how results

can change in the semi-QGP.

4.2 Hard momentum exchange with trivial Polyakov loop

To establish notation on kinematics, we first review the computation of the differential

photon rate for 2 ↔ 2 processes at hard momentum exchange, in the case of Qa = 0 [6].
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In kinetic theory, this is given by

p
dΓ

d3p
=
∑
i=1,2

∫
d3k1 d

3k2d
4P ′

(2π)8 8E1E2
δ(4)(K1 +K2 − P − P ′) δ((P ′)2)θ(E′)

× n(E1) n(E2) (1± n(E′)) |M|2i . (4.2)

The summation i represents the contribution of Compton scattering and pair annihilation,

whose diagrams are shown in figure 5. The statistical factors n(E1), n(E2), and n(E′) can

refer to either Fermi-Dirac or Bose-Einstein factors, depending upon the particular process.

For Compton scattering, the statistical factor above is 1−ñ(E′), which corresponds to Pauli

blocking; for pair annihilation, the corresponding factor 1 + n(E′), which represents Bose

enhancement.

The incoming momenta are K1 = (E1,~k1) and K2 = (E2, ~k2) the outgoing momentum

P ′ = (E′, ~p ′), and P = (E, ~p ) is the photon momentum. We assume all particles are

massless, so E1 = |~k1|, etc. Whether the incoming or outgoing momenta are quarks or

gluons depends upon the process considered. In this paper, we consider the case that the

photon energy is much larger than temperature, E � T .

It is convenient to introduce the Mandelstam variables,

s = (K1 +K2)2 ,

t = (K1 − P )2 , (4.3)

u = (K2 − P )2 .

With our kinematics,

s ≥ 0 ; t , u ≤ 0 . (4.4)

We decompose the incoming momenta ~k1 and ~k2 into components parallel and perpendic-

ular to the photon momentum ~p, with

k
‖
1 =

t

2p
+ E1 , (k⊥1 )2 = − t2

4p2
− tE1

p
,

k
‖
2 =

u

2p
+ E2 , (k⊥2 )2 = − u2

4p2
− uE2

p
, (4.5)

and where ~k1
⊥
· ~k2
⊥

= k⊥1 k
⊥
2 cos(φ1−φ2). We can then convert the variables of integration as

d3k1 d
3k2 =

1

4
dφ1 dφ2 dk

‖
1 dk

‖
2 d(k⊥1 )2 d(k⊥2 )2 =

1

4
dφ1 dφ2

E1E2

p2
dt du dE1 dE2 . (4.6)

The integrand only depends on φ ≡ φ1 − φ2 through δ((P ′)2):

δ(P ′2) = δ
(

2E1E2 − 2k
‖
1k
‖
2 − 2k⊥1 k

⊥
2 cosφ− s

)
. (4.7)

The angular integrals are easily done to give the following result:∫
d3k1d

3k2

8E1E2
δ((P ′)2) =

∫
dt du dx dy(2π)

32p

1√
ay2 + by + c

, (4.8)

– 16 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
5

where we define

x = E1 + E2 ; y = E1 − E2 , (4.9)

and

a = −s
2

4
,

b =
(x

2
− p
) (
t2 − u2

)
,

c = −1

4
(t− u)2 x2 + p s2 x− p2 s2 − u t s . (4.10)

We start with the integral over y. Let y± be the solutions of the quadratic form in y,

ay2
± + by± + c = 0. The integral over y runs from y− to y+, where ay2 + by + c ≥ 0.

In considering the quadratic form in y, we assumed that b2 − 4ac ≥ 0. A bit of

algebra shows that this determines the range for x to be x ≥ p + s/(4p). As the energy

E′ = E1 + E2 − p = x − p, we automatically satisfy the condition that this particle has

positive energy, E′ > 0, and can set θ(E′) = 1 in eq. (4.2).

Since we assume that the incoming momenta are hard, the distribution functions, n(E1)

and n(E2), can be replaced by their Boltzmann forms, exp(−E1/T ) and exp(−E2/T ).

Consequently, the product of statistical distribution functions in eq. (4.2) reduces to

n(E1)n(E2)(1±n(E′)) ∼ e−(E1+E2)/T

(
1± 1

eE′/T ∓ 1

)
= e−x/T

(
1± 1

e(x−p)/T∓1

)
. (4.11)

This vastly simplifies the integral over phase space. In general, the product in eq. (4.11) is

a function of both sum and difference of the energies, x and y. For hard momenta, though,

this reduces just to a function of the sum, of x. In appendix A, we show that corrections

to eq. (4.11) are in fact exponentially suppressed, as one would expect.

This allows us to immediately perform the integral over y. Although the coefficients b

and c, and y±, are all functions of x, in the end we obtain simply∫ y+

y−

dy√
ay2 + by + c

=
1√
−a

sin−1

(
2ay + b√
b2 − 4ac

)∣∣∣∣y+
y−

=
π√
−a

. (4.12)

We can then readily evaluate the integral over x,∫ ∞
p+ s

4p

dx e−x/T
(

1± 1

e(x−p)/T ∓ 1

)
= ∓ T e−p/T ln

(
1∓ e−s/(4pT )

)
. (4.13)

Therefore, the phase space integrals give∫
d3k1 d

3k2

8E1E2
δ((P ′)2) n(E1) n(E2) (1± n(E′))

=

∫
dt du

π2

8 p s

(
∓T e−p/T

)
ln
(

1∓ e−s/(4pT )
)
. (4.14)

To proceed, we consider Compton scattering and pair annihilation separately, since it

involves a calculation of the matrix element squared. For Compton scattering off of quarks
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and antiquarks, the squared amplitude is given by

|M|2 = 2
∑
f

q2
f (4π)2αem αs

N2 − 1

2
(−8)

(
s

t
+
t

s

)
. (4.15)

The first term in eq. (4.15), ∼ s/t, is logarithmically divergent when integrated over t. The

second term, ∼ t/s, does not produce a logarithmic divergence. As we show below, it is the

logarithmic divergence that gives rise to leading logarithmic results in photon production,

and we can ignore the second term.

Remembering that t is negative, the logarithmic divergence happens for small −t, and

invalidates the kinetic theory description. The standard treatment is to introduce an IR

cutoff µ for the spatial component of the exchanged momentum, |~k1 − ~p | > µ. We assume

that this cutoff lies between the hard and soft scales in the problem, µ� gT and µ� T .

Near zero, the integral over t is modified as follows:

|~k1 − ~p | > µ ⇒ t+ µ2 ≤ (E1 − p)2 . (4.16)

On the other hand, the integration range of y is given by ay2 + by+ c ≥ 0, which as t→ 0

takes the following form

2|E1 − p| = |x+ y − 2p| ≤ 2

√
t

s
(4p2 + s− 4px) . (4.17)

Comparing eqs. (4.16) and (4.17) and noting x > p, the lower cutoff on −t is

− t ≥ s

4p(x− p)
µ2 . (4.18)

Since we compute only to leading logarithmic accuracy, in the integral over −t we can

simply take the lower limit to be µ2, to obtain∫ s

µ2
d(−t)s

t
= −s ln

(
s

µ2

)
. (4.19)

This leaves an integral over u. However, since s = −t−u, we can trade this for an integral

over s. The final s-integral becomes∫ ∞
µ2

ds

s
ln
(

1 + e−s/(4pT )
)

(−s) ln

(
s

µ2

)
∼ − ln

(
pT

µ2

)∫ ∞
0

ds ln
(

1 + e−s/(4pT )
)

= −π
2

12
(4 p T ) ln

(
p T

µ2

)
, (4.20)

where we have replaced ln(s/µ2) by ln(pT/µ2) and extend the lower bound of the integra-

tion to zero. This is justified as to leading logarithmic order the region of integration is

s ∼ pT � µ2.

Collecting everything together, we obtain

p
dΓ

d3p
'
∑
f

q2
f

αem αs
48π2

(N2 − 1) T 2 e−p/T ln

(
p T

µ2

)
. (4.21)

– 18 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
5

Figure 5. The diagrams for the Compton scattering (left) and the pair annihilation (right). The

solid line corresponds to a quark, the wavy line to the photon, and the curly line to the gluon,

respectively. The Compton scattering includes s and t channel processes while pair annihilation

includes the t and u channel processes.

The case of annihilation proceeds similarly. The squared amplitude is given by

|M|2 =
∑
f

q2
f (4π)2αemαs

N2 − 1

2
8

(
u

t
+
t

u

)
. (4.22)

Since the integrand is symmetric in t and u, both t and u-channels contribute the same to

leading logarithmic order. The integral in the t-channel becomes∫ µ2

s
d(−t) u

t
= µ2 − s+ s ln

s

µ2
. (4.23)

We again keep only the logarithm and use the same trick as in eq. (4.20) to obtain the lead-

ing logarithmic result. Note that there is Bose-Einstein enhancement for the annihilation

process: ∫ ∞
µ2

ds

s
ln
(

1− e−s/(4pT )
)
s ln

(
s

µ2

)
∼ ln

(
p T

µ2

)∫ ∞
0

ds ln
(

1− e−s/(4pT )
)

= −π
2

6
(4 p T ) ln

(
p T

µ2

)
. (4.24)

The u-channel gives an identical contribution.

Collecting everything together, the combination of Compton scattering in the t channel,

and pair annihilation in the t and u channels, is

p
dΓ

d3p
'
∑
f

q2
f

αem αs
16π2

(N2 − 1) T 2 e−p/T ln

(
p T

µ2

)
. (4.25)
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d
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e

c

d

e
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Figure 6. The color labeling of Compton scattering (left) and pair annihilation (right). The double

line corresponds to a gluon, a single line to a quark or antiquark. The color flow does not involve

color neutral photon, which we still indicate with a dashed line. The quark-gluon vertices are drawn

as an empty circle. They have their own graphic representation [76], but this is not needed here.

The Feynman diagrams obtained by crossing symmetry are identical in the flow of colors.

4.3 Hard momentum exchange with nontrivial Polyakov loop

In the previous section, we computed the matrix elements for the diagrams which contribute

to photon production at leading logarithmic order. Once we work in terms of Minkowski

variables, there is no change in computing in the presence of a background field for the

Polyakov loop.

The only change in a background field arises from the modification of the statistical

distribution functions. We start with the case of Compton scattering, as illustrated in the

figure in the left hand side of figure 6. In this case, the incoming momenta are those of

a gluon, with momentum K1, and a quark, with momentum K2. Consequently, in the

statistical distribution functions we replace the gluon energy as E1 → E1 + i(Qc − Qd),
while the quark energy E2 → E2+iQb. Similarly, the energy of the outgoing quark becomes

E′ → E′ + iQe.

With the color labeling in figure 6, the thermal distribution functions when Qa 6= 0 are∫ ∞
p+s/(4p)

dx e−(x+i(Qb+Qc−Qd))/T

(
1− 1

e(x−p+iQe)/T + 1

)
= e−i(Qb+Qc−Qd)/T

∫ ∞
p+s/4p

dx

∞∑
n=0

e−x/T (−1)ne−n(x−p+iQe)/T

= e−i(Qb+Qc−Qd)/T
∞∑
n=1

(−1)n+1

n
T e−p/T e−n s/(4 p T )e−i (n−1)Qe/T . (4.26)

To obtain the leading logarithmic result, we recall eq. (4.20): eq. (4.26) should be integrated

over s. The s-dependent factor gives rise to an additional factor of 1/n:∫ ∞
0

ds exp

(
− n

4 p T
s

)
=

4pT

n
. (4.27)

It is sufficient to calculate the ratio of photon rate with Qa 6= 0 to that in the perturbative

limit, Qa = 0. We will thus only keep track of Q-dependent factor
∑

n(−1)n+1 exp(−i(Qb+
Qc−Qd+(n−1)Qe))/T )/n2. To proceed, we then need the form of the quark-gluon vertex
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in the double line notation [76], appearing in the matrix element squared, eq. (2.3). We

then multiply eq. (4.26) by the product of two quark-gluon vertices,

N∑
b,c,d,e=1

(T dc)be(T
cd)eb

∞∑
n=1

(−1)n+1

n2
e−i(Qb+Qc−Qd+(n−1)Qe)/T

=
N∑

b,c,d,e=1

1

2

(
δbd δce −

2

N
δbd δce δcd δbe +

1

N2
δcd δbe

) ∞∑
n=1

(−1)n+1

n2
e−i(Qb+Qc−Qd+(n−1)Qe)/T

=

(
N2 − 1

2N

) ∞∑
n=1

(−1)n+1

n2
tr Ln . (4.28)

When all Q′s are zero, this reduces to(
N2 − 1

2

) ∞∑
n=1

(−1)n+1

n2
=

(
N2 − 1

2

)
π2

12
. (4.29)

For Compton scattering, the ratio of this contribution when Qa 6= 0, to that for Qa = 0, is

just the ratio of eqs. (4.28) and (4.29),

fComp(Q) =
12

π2

∞∑
n=1

(−1)n+1

n2
`n , (4.30)

where `n is the n-th Polyakov loop in eq. (2.7).

The case of annihilation is similar. In the presence of a background color charge, the

thermal distribution becomes∫ ∞
p+s/(4p)

dx e−(x+iQb−iQe)/T

(
1 +

1

e(x−p+iQc−iQd)/T − 1

)
=
∞∑
n=1

1

n
T e−p/T e−ns/(4 p T )e−i(Qb−Qe+(n−1)(Qc−Qd))/T . (4.31)

Again, the integration of e−ns/(4 p T ) over s picks up an additional factor of 1/n. The color

sum for scattering in the t-channel becomes

N∑
b,c,d,e=1

(T cd)be(T
dc)eb

∞∑
n=1

1

n2
e−i(Qb−Qe+(n−1)(Qc−Qd))/T

=
1

2

N∑
b,c,d,e=1

(
δbc δde −

2

N
δbc δde δcd δbe +

1

N2
δcd δbe

) ∞∑
n=1

1

n2
e−i(Qb−Qe+(n−1)(Qc−Qd))/T

=
1

2

∞∑
n=1

1

n2

(
(tr Ln)2 − 1

)
. (4.32)

When all Q′s are zero, eq. (4.32) becomes(
N2 − 1

2

) ∞∑
n=1

1

n2
=

(
N2 − 1

2

)
π2

6
. (4.33)
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Scattering in the u-channel gives a result identical to that in the t-channel. Therefore, the

suppression factor for annihilation is given by

fpair(Q) =
1

N2 − 1

6

π2

∞∑
n=1

1

n2

(
N2 `2n − 1

)
. (4.34)

Remember that Compton scattering is 1/3 of the total for 2 → 2 scatterings, eqs. (4.21)

and (4.25). Summing over Compton scattering and pair annihilation, to leading logarith-

mic order, we obtain the contribution from 2 → 2 scattering from hard momenta in the

semi-QGP,

p
dΓ

d3p
=
∑
f

q2
f

1

16
(N2 − 1) αem αs

T 2

π2
e−p/T ln

(
pT

µ2

)
fγ(Q) ,

fγ(Q) =
1

3
(fComp(q) + 2fpair(q)) . (4.35)

These expressions can be more simply expressed when N = 3 in terms of Qa=2πT (−q, 0, q),
eq. (2.13):

fComp(q) = 1− 8 q2 ,

fpair(q) = 1− 6 q + 9 q2 ,

fγ(Q) = 1− 4 q +
10

3
q2 . (4.36)

The results for more than three colors are similar, simple quadratic polynomials in the Qa’s.

That for fComp(Q) involves the Qa, while that for fpair(Q) is a function of the differences,

Qa −Qb.
We also note that exactly the same functions of qa enter into collisional energy loss

for a heavy quark in the semi-QGP. Because of the historical convention, the function

for Compton scattering in photon production, fComp(q), is identical to that for Coulomb

scattering of a heavy quark, eq. (33) of ref. [85]. Similarly, the function for pair annihila-

tion in photon production, fpair(Q), is the same function as for Compton scattering of a

heavy quark, eq. (45) of ref. [85]. While these two functions are the same, in detail they

enter differently into collisional energy loss for a heavy quark, times different logarithms of

the energy.

4.4 Soft momentum exchange

We now compute the contribution to photon production when the momentum exchanged

is soft. This case is simpler than when the momentum exchanged is hard, and so we treat

the case of a nontrivial Polyakov loop at the outset.

We follow the analysis of Baier, Nakkagawa, Niegawa, and Redlich [6]. We begin the

computation in imaginary time, and then analytically continue the external momentum.

The photon self-energy in the imaginary time is

Πµ
µ (P ) = 2 e2

∑
f

q2
f

N∑
a=1

T
∑
k0

∫
d3k

(2π)3
tr [γµ S∗a(K) γµ Sa(K − P )] . (4.37)

– 22 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
5

The overall factor of two arises because K or K − P can be a soft momentum: we have

chosen only K to be soft. Thus the momenta K − P is hard, so we can use the bare

quark propagator, Sa(K − P ). For the quark with soft momenta it is necessary to use a

propagator, S∗a(K), which is resummed with Hard Thermal Loops (HTLs) in the presence

of Qa 6= 0 [76],

Sa(K) =

∫ ∞
−∞

dω

2π

ρ(ω,~k)

ω − ik̃0

, (4.38)

S∗a(K) =

∫ ∞
−∞

dω

2π

ρ∗a(ω,
~k)

ω − ik̃0

, (4.39)

with k̃0 ≡ k0 +Qa and the quark spectral functions are

ρ(ω,~k) = 2πε(ω) /Kδ(K2) , (4.40)

ρ∗a(ω,
~k) =

γ0 − ~γ · k̂
2

ρ∗a+(ω,~k) +
γ0 + ~γ · k̂

2
ρ∗a−(ω,~k) , (4.41)

where ε(ω) is the sign function. We note that the bare quark spectral function ρ(ω,~k) does

not have its color index. The HTL spectral functions are a sum of pole and cut terms,

ρ∗a±(ω,~k) = 2π [Z±a(k) δ(ω − ω±a(k)) + Z∓a(k) δ(ω + ω∓a(k))]

+ θ(k2 − ω2)ρspacelike
a± (ω,~k) .

(4.42)

The quark quasi-particles have a thermal mass mqka, a dispersion relation ω±a(k), and

residue Z±a(k) (k = |~k|). Explicitly,

Z±a(k) =
ω2
±a(k)− k2

2m2
qka

, (4.43)

ω±a(k)∓ k =
m2

qka

k

[(
1∓ ω±a(k)

k

)
Q0

(
ω±a(k)

k

)
± 1

]
, (4.44)

where

Q0(x) ≡ 1

2
ln

(
x+ 1

x− 1

)
. (4.45)

The explicit form of the cut term from Landau damping, ρspacelike
a± , is irrelevant for our

analysis. The result for the quark quasi-particle mass mqka is given later.

Introducing a spectral representation for the propagators,

Πµ
µ (P ) = − 2 e2

∑
f

q2
f

N∑
a=1

∫
d3k

(2π)3

∫
dω1

2π

∫
dω2

2π

×(ña(ω2)− ña(ω1))

−ip0 + ω1 − ω2
tr
[
γµρ∗a(ω1, ~k)γµρ(ω2,~k − ~p)

]
, (4.46)

Since for massless quarks their spectral density has only a vector component,

tr
[
γµρ∗a(ω1,~k)γµρ(ω2, ~k − ~p)

]
= − 2 tr

[
ρ∗a(ω1,~k)ρ(ω2,~k − ~p)

]
. (4.47)
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Now we compute the discontinuity in the amplitude, as we analytically continue the

photon energy p0 → −iE ± ε, for infinitesimal ε,

Disc Πµ
µ (P ) = + 2 e2

∑
f

q2
f

N∑
a=1

∫
d3k

(2π)3

∫
dω

2π
(ña(ω − E)− ña(ω))

× tr
[
ρ∗a(ω,

~k)ρ(ω − E,~k − ~p)
]
,

(4.48)

where DiscΠµ
µ (P ) ≡ [Πµ

µ (E+iε, ~p)−Πµ
µ (E−iε, ~p)]/(2i). Since the photon is a singlet under

color, there is no ambiguity in how we do the analytic continuation for the photon energy.

We have also used the fact that the spectral function is real. When the Qa’s vanish,

this discontinuity is the same as the imaginary part of the retarded self-energy. When

the Qa 6= 0, however, if we were to compute the imaginary part, we would also obtain

contributions from the imaginary parts of the statistical distribution functions, which are

complex valued. To us this is an unphysical contribution which we neglect. After all, the

discontinuity is directly related to the amplitude to produce physical particles, albeit with

an (imaginary) chemical potential for color.

By using the decomposition of the spectral functions, eqs. (4.40) and (4.41),

tr
[
ρ∗a(ω,

~k)ρ(ω − E,~k − ~p)
]

= 4πε(ω − E)δ((P −K)2)
(
ρ∗+a(ω,

~k)(ω − E − k + k̂ · ~p )

+ρ∗−a(ω,
~k)(ω − E + k − k̂ · ~p )

)
, (4.49)

where p = |~p |.
Since k � T , by using the assumption p� T , we find p� k. Using this and P 2 = 0,

ε(ω − E)δ((K − P )2) ' − 1

2pk
δ
(

cos θ − ω

k

)
. (4.50)

Thus,

DiscΠµ
µ (P ) ' + 2

∑
f

q2
f e

2
N∑
a=1

∫
d3k

(2π)2

∫
dω

2π
(ña(−E)− ña(0))

−1

k
δ
(

cos θ − ω

k

)
×
(
ρ∗+a(ω,

~k)
(
−1 +

ω

k

)
+ ρ∗−a(ω,

~k)
(
−1− ω

k

))
= − 2

∑
f

q2
f e

2 1

2π

N∑
a=1

(ña(−E)− ña(0))

∫ µ

0
dk k

∫ k

−k

dω

2π

×
(
ρ∗+a(ω,

~k)
(
−1 +

ω

k

)
+ ρ∗−a(ω,

~k)
(
−1− ω

k

))
,

(4.51)

where we introduce an ultraviolet cutoff, µ. In the HTL approximation, the only difference

between the quark propagators in the usual perturbative regime and those in the semi-QGP

is that in the latter, the quark thermal mass is color dependent. Thus we can use standard

sum rules for the quark spectral densities [106] by just keeping track of the appropriate
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color indices. ∫ ∞
−∞

dω

2π
ρ∗±a(ω,

~k) = 1 , (4.52)∫ ∞
−∞

dω

2π
ω ρ∗±a(ω,

~k) = ± k . (4.53)

Using the spectral functions in the time-like region, eq. (4.42), we obtain

DiscΠµ
µ (P ) ' + 2

∑
f

q2
f e

2 1

2π

N∑
a=1

(ña(−E)− ña(0))

×
∫ µ

0
dk k 2

[
Z+a(k)

(
−1 +

ω+a(k)

k

)
+ Z−a(k)

(
−1− ω−a(k)

k

)]
' + 2

∑
f

q2
f e

2 1

2π

N∑
a=1

(ña(−E)− ña(0))

×
[
µ(ω−a(µ)− ω+a(µ)) + 2

∫ µ

0
dk(ω+a(k)− ω−a(k))

]
,

(4.54)

where we have used [106]

(ω± ∓ k)(ω2
± − k2)

1

m2
qk

= ω± − k
dω±
dk

. (4.55)

The wave function constants and the mass shells are functions of the color index, a, but

we suppress this index for now to make it easier to read. By using the asymptotic form for

the mass shells at hard momenta, k � gT ,

ω+ ' k +
m2

qk

k
, (4.56)

ω− ' k , (4.57)

we get

DiscΠµ
µ (P ) ' + 2

∑
f

q2
f e

2 1

2π

N∑
a=1

m2
qka (ña(−E)− ña(0))

×

[
−1 + 2

∫ µ

0
dk

ω+a(k)− ω−a(k)

m2
qka

]
.

(4.58)

We now make the dependence of the thermal quark mass on the color index a mani-

fest again.

Evaluating the integral by using eqs. (4.56) and (4.57) at the leading-log accuracy,

DiscΠµ
µ (P ) ' + 2

∑
f

q2
f e

2 1

2π

N∑
a=1

m2
qka (ña(−E)− ña(0)) ln

(
µ2

g2T 2

)
. (4.59)

The lower limit of the integral comes from k ∼ gT , in which eqs. (4.56) and (4.57) becomes

unreliable.

– 25 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
5

To leading logarithmic order, then, the Qa’s only enter through the statistical distri-

bution functions of the quarks, and the quark thermal mass. By using eqs. (3.3) and (4.1),

the contribution to the production rate for photons from soft quarks is found to be

p
dΓ

d3p
= f soft

γ (Q) p
dΓ

d3p

∣∣∣∣
pQGP

. (4.60)

The result in the perturbative QGP [6] is

p
dΓ

d3p

∣∣∣∣
pQGP

= −
∑
f

q2
f

1

8
αemαs

T 2

π2
(N2 − 1)

(
ñ(−p)− 1/2

1− ep/T

)
ln

(
µ2

g2T 2

)
.

In the semi-QGP, this is modified by a Q-dependent factor,

f soft
γ (Q) =

1

N

∑N
a=1m

2
qka (ña(−p)− ña(0))

m2
qk (ñ(−p)− ñ(0))

, (4.61)

where mqk is the thermal mass when Qa = 0, whose expression will be written later.

To evaluate the photon production rate in the semi-QGP, we need the explicit form of

the thermal quark mass when Qa 6= 0. From ref. [75],

m2
qka =

g2

24

(
N∑
b=1

(
A(Qa −Qb)− Ã(Qb)

)
− 1

N

(
A(0)− Ã(Qa)

))
. (4.62)

The function A(Q) is given by

A(Q) =
3

π2

∫ ∞
0

dE E

(
1

e(E+iQ)/T − 1
+

1

e(E−iQ)/T − 1

)
, (4.63)

and Ã(Q) ≡ A(Q+ πT ). Note that A(Q) is an even function of Q.

Our definition of A(Q) differs by T 2 from that in ref. [75], which we do to emphasize

the physics in the following section, eqs. (4.78) and (4.79). Also for the purposes of this

discussion to follow, we note that in eq. (4.62) the terms involving
∑

bA(Qa − Qb) and

A(0) are from the gluon distribution functions, while Ã(Qb) and Ã(Qa) are from the quark

distribution functions.

In the perturbative QGP, the thermal quark mass squared is

m2
qk =

g2

24

(
N − 1

N

)
T 2

(
1−

(
−1

2

))
=

(
N2 − 1

2N

)
g2T 2

8
. (4.64)

In the first expression the 1 is from the gluon distribution functions, while the +1/2 is from

the quark distribution functions.

It is direct to evaluate A(Qa) in terms of the dimensionless variable qa = Qa/(2πT ),

eq. (2.6),

A(Q) = (1− 6 |q|mod 1(1− |q|mod 1))T 2 . (4.65)

While nominally a quadratic polynomial in q, some care must be taken in using this ex-

pression. Only the absolute value of q enters because by construction eq. (4.63) is even in
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Q. Secondly, q is defined modulo one, since only exp(±2πiqa) enters into the Bose-Einstein

distribution functions in eq. (4.63), so the qa are manifestly periodic variables.

Equation (4.61) can be simplified for large photon energy p� T . In this case, ña(−p) ∼
ñ(−p) ∼ 1, independent of q. We further make use of the fact that all Q’s pair up as in

eq. (2.8) and the corresponding thermal quark masses are identical for the components in

the pair, m2
qka = m2

qkN+1−a. Consequently, we have

N∑
a=1

m2
qka (ña(−p)− ña(0)) '

N/2∑
a=1

m2
qka (2− ña(0)− ñN+1−a(0)) =

N∑
a=1

m2
qka (1− ñ(0)) .

(4.66)

This allows us to express f soft
γ (Q) as the ratio of average thermal quark mass squared when

Qa 6= 0 to the perturbative thermal quark mass:

f soft
γ (Q) ' 1

N

∑
am

2
qka

m2
qk

. (4.67)

We note that eq. (4.67) is derived assuming an even N . The conclusion holds for odd N also.

For three colors, taking the eigenvalues as in eq. (2.11), the components of thermal

mass read

m2
qk1 = m2

qk3 =
g2T 2

6

(
1− 9

2
q + 5 q2

)
,

m2
qk2 =

g2T 2

6
(1− 3 q) .

The suppression factor is then

f soft
γ (Q) =

1

3

[
(1− 3q) +

(
1− 9

2
q + 5 q2

)
ñ1(−p)− ñ1(0) + ñ3(−p)− ñ3(0)

(ñ(−p)− ñ(0))

]
. (4.68)

For large energy, we obtain a simple polynomial in q,

f soft
γ (Q) ' 1

3

[
(1− 3q) + 2

(
1− 9

2
q + 5 q2

)]
= 1− 4 q +

10

3
q2 , (4.69)

which agrees with the suppression factor for the hard contribution, fγ(Q). Altogether, the

photon production rate from soft momentum exchange is

p
dΓ

d3p
=
∑
f

q2
f

1

2
αemαs

T 2

π2
e−p/T ln

(
µ2

g2T 2

)
fγ(Q) . (4.70)

Comparing the hard contribution in eq. (4.35) to the soft contribution in eq. (4.70), we

see that the dependence upon the momentum cutoff µ cancels. This is a nontrivial check

of our computation. The sum of the two contributions is

p
dΓ

d3p
= fγ(Q) p

dΓ

d3p

∣∣∣∣
pQGP

, (4.71)

where

p
dΓ

d3p

∣∣∣∣
pQGP

=
∑
f

q2
f

1

2
αemαs

T 2

π2
e−p/T ln

(
p

g2T

)
. (4.72)

We can extract Q from lattice results of Polyakov loop and obtain f(Q) as a function of

the temperature. The result is shown in figure 7.
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Figure 7. The suppression factor fγ(Q) in eq. (4.69) versus temperature.

4.5 Why so few photons are produced in the semi-QGP

For dilepton production we found a moderate enhancement near Tc. In contrast, figure 7

shows that photon production is strongly suppressed in the semi-QGP, versus the perturba-

tive QGP. To understand the suppression of photons, as in section 3.2 it helps to generalize

the computation to an arbitrary number of colors. In the calculation of the contribution

from the Compton scattering, the following product of the distribution function appears,

as was discussed in section 4.3:

1

N2

N∑
b,c=1

e−(E1−iQb)/T e−(E2−iQc+iQb)/T (1− ñc(E′)) . (4.73)

Here the Boltzmann approximation was applied to the initial state, and we took the large-

N limit, in which we ignore the second term of (T dc)be (eq. (2.3)) appearing in the matrix

element squared. The factor 1/N2 was multiplied for normalization. The quantity above

becomes

1

N

N∑
c=1

e−E1/T e−(E2−iQc)/T (1− ñc(E′)) (4.74)

after partial cancellation of the phase of the distribution functions in the initial state. Here

we note that this cancellation is not complete unlike the dilepton case: the phase iQc/T

still remains in the present case while the phase completely cancels for dilepton production

in the Boltzmann approximation [98]. By performing the sum as in the dilepton case and

using eq. (2.10), this expression can be rewritten as

e−E/T ñ(NE′) (4.75)

in the confined phase. We see that this expression vanishes in the N →∞ limit, unlike the

dilepton case. The origin of this behavior can be tracked to the fact that the cancellation of
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the phase of the distribution functions for the initial state is only partial, and not complete.

This is because that the initial state for photon production is not a color singlet, as it is

for dilepton production.

For the contribution from pair annihilation, the product of the distribution functions

is, in the confined phase and the large-N limit, again e−E/Tn(NE′). We note that previ-

ously [98], we gave a similar but simpler analysis, using the Boltzmann approximation to

both the final as well as the initial state.

Next, let us discuss more quantitative point: the origin of the 1/N2 dependence of the

suppression factor in the confined phase. For hard photons, with E � T , we have shown

that the ratio of photon production in the semi-QGP, to that in the perturbative QGP, is

just the ratio of the thermal quark masses squared, of course summed over color:

fγ(Q) =
1

m2
qk

1

N

N∑
a=1

m2
qka . (4.76)

This result is not surprising, as the photon production rate is usually written [6–11] as

proportional to the thermal quark mass squared. In the perturbative QGP this is somewhat

trivial, however, as photon production is naturally proportional to ∼ e2g2T 2. This relation

is less trivial in the semi-QGP, since then the thermal quark mass is a function of the

Qa’s. Of course eq. (4.76) holds only to the order at which we compute, which is leading

logarithmic order.

To illustrate how large photon suppression can be, we take the most extreme case, the

confined phase. It is most useful to use the form of A(Q) in eq. (4.63), as an integral over

the energy, E. The gluon distribution enters as

1

N2

N∑
a,b=1

A(Qa −Qb) =
6

π2

∫ ∞
0

dE E
1

N2

N∑
a,b=1

1

e(E−i(Qa−Qb))/T − 1
. (4.77)

In the perturbative QGP, Qa = 0, this integral is A(0) = T 2. In the confined phase, we

use eq. (2.18) to obtain

1

N2

N∑
a,b=1

A(Qaconf −Qbconf) =
6

π2

∫ ∞
0

dE E
1

eNE/T − 1
=

T 2

N2
. (4.78)

Notice that the integral over E is exactly the same as when Qa = 0. The only difference is

that because only loops which are multiples of N enter, the energy enters not as E/T , but

as NE/T . Hence in the confined phase we can replace T by T/N : as the integral is ∼ T 2,

this term is suppressed by 1/N2 relative to that in the perturbative QGP.

From eq. (4.78), we see that the terms involving the gluon distribution function in the

thermal quark mass squared, eq. (4.62), cancel identically. This leaves only the terms from

the quark distribution functions, which are functions of the color index a. However, photon
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production only depends only upon the sum over colors, eq. (4.76), and so we compute

1

N

N∑
b=1

Ã(Qbconf) = − 6

π2

∫ ∞
0

dE E
1

N

N∑
b=1

1

e(E−iQb
conf )/T + 1

= − 6

π2

∫ ∞
0

dE E
1

eNE/T + 1
= − T 2

2N2
, (4.79)

by using eq. (2.17). Again, this result is precisely 1/N2 times the result for Qa = 0. We

thus find that in the confined phase, the square of the thermal quark masses, summed over

color, is

1

N

N∑
a=1

m2
qk(Qconf) =

(
N2 − 1

2N

)
g2 T 2

24

1

N2
. (4.80)

Comparing to the thermal quark mass in the perturbative QGP, eq. (4.64), we obtain

fγ(Qconf) =
1

3N2
. (4.81)

The coefficient of 1/3 arises as follows. As discussed following eq. (4.64), for the thermal

quark mass squared in the perturbative QGP, the gluon terms contribute two thirds (the

1), and the quarks, one third (the 1/2). In the confined vacuum the gluon distributions

cancel identically, while the quark terms are precisely 1/N2 times that for Qa = 0, or

1/(3N2) in all.

This shows that photon production is strongly suppressed in the confined phase, by

∼ 1/N2. Because the coefficient is small, = 1/3, even for three colors the suppression is

significant, = 1/27. This is why the suppression in figure 7 is so dramatic.

The above analysis applies to the soft contribution to photon production. It can also be

computed from the hard contribution to photon production, since the suppression factor is

common. As demonstrated in section 4.3, there are two contributions. That from Compton

scattering is given in eq. (4.30), where by definition, fComp(0) = 1 in the perturbative QGP.

To compute its value in the confined phase of the pure gauge theory, we remember that the

only nonzero loops are those which wrap around a multiple of N times, eq. (2.10). Hence

fComp(Qconf) =
12

π2

∞∑
n=1

(−1)n+1

n2
`n(Qconf) =

12

π2

∞∑
j=1

(−1)j+1

(jN)2
=

1

N2
. (4.82)

The contribution of pair annihilation is given by fpair(Q) in eq. (4.34), where fpair(0) = 1.

In the confined phase,

fpair(Qconf) =
1

N2 − 1

6

π2

N2
∞∑
j=1

1

(jN)2
−
∞∑
n=1

1

n2

 = 0 , (4.83)

and the contribution from pair annihilation vanishes identically.

In the confined phase, then, the hard part of photon production only receives a contri-

bution from Compton scattering. From eq. (4.36), relative to the perturbative QGP photon
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Figure 8. The diagram of four point function with labels indicating fields insertions on different

branches of the Keldysh contour.

production in the semi-QGP is one third the sum of Compton scattering, plus equal con-

tributions from pair annihilation in the t and u channels. Since pair annihilation vanishes

in the confined phase, eq. (4.83), and the contribution from the Compton scattering is just

1/N2 times that of the perturbative QGP, eq. (4.82), in all we obtain a relative suppression

factor of 1/(3N2), eq. (4.81).

5 Collinear rate

5.1 Review of AMY’s calculation of photon production

5.1.1 Photon self-energy in RA basis

First we recapitulate the detailed analysis by Arnold, Moore, and Yaffe (AMY) [9–11] for

the collinear contribution to the photon production, in the case that Qa = 0. We start

with the expression for differential photon emission rate, eq. (4.1). In the 1/2 basis in the

real time formalism, Wµν is given by

Wµν = e2
∑
f

q2
f

∫
d4K1

(2π)4

∫
d4K2

(2π)4
(P + 2K1)µ(P + 2K2)ν

×G1122(−K1, P +K1,−P −K2,K2) . (5.1)

As will be justified in the next subsection, (P + 2K1)µ and (P + 2K2)ν come from quark-

photon vertices. G1122(−K1, P + K1,−P −K2,K2) is the Fourier transform of the four-

point function G1122(x1, x2, y1, y2). The labels 1, 2 distinguish different field insertions on

the Keldysh contour. Figure 8 summarizes the field labeling and momenta flow, with

convention that the momenta flow from right to left in propagators. It is easier to calculate

the four-point function in the RA basis, which is defined for quarks and gluons as

ψR =
ψ1 + ψ2

2
, ψA = ψ1 − ψ2 ; (5.2)

AµR =
Aµ1 +Aµ2

2
, AµA = Aµ1 −A

µ
2 . (5.3)
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Figure 9. The four point function GAARR with labels of all internal lines uniquely fixed in RA basis.

In this basis, GRA and GAR correspond to the retarded and advanced propagators, re-

spectively. The propagator GAA vanishes, while vertices with an odd number of R indices

vanish. The latter is true for quark-gluon vertices only, but only these are relevant to the

calculation of the collinear rate. To perform the calculation in the RA basis, we need to

decompose G1122 in terms of four-point functions. While there are in total 16 four-point

functions, only 7 of them are independent [107]. The decomposition into an independent

set has been done for neutral scalar in ref. [107]. It is easily generalized to the case of

fermions with µ = 0 as

G1122 = α1GAARR + α2GAAAR + α3GAARA + α4GARAA

+ α5GRAAA + α6GARRA + α7GARAR

+ β1G
∗
AARR + β2G

∗
AAAR + β3G

∗
AARA + β4G

∗
ARAA

+ β5G
∗
RAAA + β6G

∗
ARRA + β7G

∗
ARAR . (5.4)

Detailed analysis by AMY [9–11] shows that the collinear rate receives contributions only

from GAARR. Thus the only coefficients which we need are α1 and β1,

α1 = ñ(p1)ñ(p2), β1 = −(1− ñ(p3))(1− ñ(p4))
−1 + ñ(p1) + ñ(p2)

−1 + ñ(p3) + ñ(p4)
. (5.5)

In our case (p1, p2, p3, p4) = (−K1, P +K1,−P −K2,K2).

For the four-point function GAARR, the RA labeling is uniquely fixed as in figure 9.

The contribution to the collinear regime arises from the kinematic regime where hard quark

in the loop is nearly collinear with the photon: k0 ' k‖ & T , k⊥ ∼ gT , with ‖ and ⊥ defined

with respect to photon momentum p. The gluon exchanged between the quark lines are

soft: q0 ∼ gT , q ∼ gT . From the collinear scattering of quarks and gluons, the energy

of the quarks remain unmodified at order T . With this kinematic simplification, eq. (5.5)

reduces to

α1 ' β1 ' ñ(k‖ + p)(1− ñ(k‖)) , (5.6)

and therefore,

G1122 = 2 α1 Re GAARR . (5.7)
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5.1.2 Reduction of spinor structure

To proceed, we need to see how collinear enhancement works. To do so, consider the

convolution of two quark propagators, which enters as a unit upon inserting an additional

gluon scattering into GAARR: ∫
dk0

2π
SAR(P +K)SRA(K) . (5.8)

SAR and SRA are advanced and retarded dressed quark propagators:

− S =
1

/k − /Σ
=

1

2

γ0 − ~γ · k̂
A0 −As

+
1

2

γ0 + ~γ · k̂
A0 +As

, (5.9)

where

A0 = k0 − Σ0 , As = |~k − ~Σ| . (5.10)

Here /Σ = Σµγµ is the retarded or advanced quark self-energy, and Σµ does not have a spinor

structure. Note that due to rotational symmetry, ~k ‖ ~Σ, so As = |k − Σ|. The advanced

and retarded propagators differ only in the sign of the damping rate, which corresponds

to the imaginary part of self-energy Σ. Both SAR and SRA have two poles with positive

and negative energies. The collinear enhancement occurs when two poles coming from

the two propagators pinch the real axis of k0 plane. Thus, it suffices to consider the pole

contribution:

− S(k) '

 1
2
γ0−~γ·k̂
A0−As

' /k
2k0(A0−As)

for k0 > 0

1
2
γ0+~γ·k̂
A0+As

' /k
2k0(A0+As)

for k0 < 0
. (5.11)

It is useful to write /k in terms of spinor sums:

/k =
∑
s

us(k)ūs(k) , for k0 > 0 ,

/k =
∑
t

vt(k)v̄t(k) , for k0 < 0 , (5.12)

where u and v refer to the spinor basis

u =
(√

k · σξs,
√
k · σ̄ξs

)T
,

v =
(√

k · σηt,−
√
k · σ̄ηt

)T
, (5.13)

with

ξs = (δs1, δs2)T , ηt = (δt1, δt2)T , s, t = 1, 2 . (5.14)

Here, σµ = (1, σi), σ̄µ = (1,−σi) with Pauli matrices σi. Note that k0, k & T and Σ ∼ gT ,

so we can take

A0 −As ' k0± i
2

Γk − Ek , A0 +As ' k0± i
2

Γk + Ek , Ek =
√
k2 +m2 . (5.15)

The asymptotic thermal mass m and damping rate Γk/2 are of order m ∼ gT and Γk ∼
g2T , and the explicit expressions of these quantities will be given later. For the retarded
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(advanced) propagator, we take the positive (negative) sign, respectively. It is not difficult

to find that the pinching of poles occurs when k0 ' k‖, with k‖ defined with respect to

photon momentum p. With the approximation in eqs. (5.15) and (5.8) evaluates to∫
dk0

2π
SAR(P +K)SRA(K) ' (/P + /K) /K

4k‖(k‖ + p) (Γ + iδE)

∣∣∣∣
k0=k‖

, (5.16)

where

Γ ≡ 1

2
(Γk + Γk+p) , δE ≡ Ek sgn(k‖) + p− Ek+p sgn(k‖ + p) . (5.17)

Note that /P + /K and /K in the numerator of eq. (5.16) carry independent spinor indices,

which are to be contracted with quark-gluon and quark-photon vertices. Contracting each

quark-gluon vertex with two spinors from the propagators joining it, with eq. (5.12) there

is one of two situations, depending on the sign of k0. Since

ūt(K)γµus(K) = 2 Kµ δts , v̄t(K)γµvs(K) = 2 Kµ δts , (5.18)

each gives the same result. We have neglected the momentum of the exchanged soft gluon

Q, since it is negligible compared with K. Cross terms between u and v are not allowed

because multiple scatterings with soft gluons do not change the sign of k0. We have not

included the coupling constant g and color factors, which will be discussed separately in

the next subsection. According to eq. (5.18), each quark-gluon vertex gives rises to 2Kµ,

while maintaining the quark’s chirality.

Now consider the quark-photon vertex, contracting the left/right quark-photon vertex

with two spinors from the propagators joining them. As an example, consider k0 > 0:

ūt(K)γµus(K + P ) , ūs(K +Q+ P )γνut(K +Q) . (5.19)

Summing over spinor indices and (transverse) photon polarizations, after some algebra [9,

11] we obtain ∑
s,t=1,2

∑
i=⊥

ūt(K)γius(K + P ) ūs(K +Q+ P )γiut(K +Q)

= 4 k0 (k0 + p) k⊥ · (k⊥ + q⊥)

(
(k0)2 + (k0 + p)2

(k0)2(k0 + p)2

)
' 4k⊥ · (k⊥ + q⊥)

(
k2
‖ + (k‖ + p)2

k‖(k‖ + p)

)
. (5.20)

The other cases are similar, with the same result as eq. (5.20). Note that by definition

p⊥ = 0, so we can write eq. (5.20) as∑
s,t=1,2

∑
i=⊥

ūt(K)γius(K + P )ūs(K +Q+ P )γiut(K +Q)

=

(
k2
‖ + (k‖ + p)2

k‖(k‖ + p)

)∑
i=⊥

εiµε
i
ν (2K + P )µ(2K + 2Q+ P )ν . (5.21)
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Figure 10. The diagrammatic equation in terms of graphical elements D, I, M and F .

Apart from an overall factor (k2
‖ + (k‖ + p)2)/(k‖(k‖ + p)), eq. (5.21) allows us to interpret

(2K+P )µ and (2K+2Q+P )ν as quark-photon vertices on the left and right of self-energy

diagrams. We have thus shown in eqs. (5.18) and (5.21) that quark-gluon and quark-photon

vertices can be simplified as 2(K1 +K2)µ with K1 and K2 being the incoming and outgoing

momenta of quarks. We note that
∑

i=⊥ ε
i
µε
i
ν = −gµν as in eq. (4.1).

5.1.3 Color structure in the double line basis

The color structure of the gluon propagator is given by P abcd , as in eq. (5.44). Thus the

color sum which appears when a gluon propagator is sandwiched between two quark-gluon

vertices is (
T ab
)
ef

P abcd

(
T dc
)
gh

=
1

2
P hgef . (5.22)

This can be simplified further by noting that in the photon self-energy, eq. (5.22) is sand-

wiched with the quark-photon vertex in the vertices which are all the way to the left or all

the way to the right. Starting from the left hand side gives

1

2
δeh P

hg
ef =

1

2

(
N − 1

N

)
δfg = CF δ

f
g , (5.23)

where CF = (N2 − 1)/(2N) is the quadratic Casimir for the fundamental representation.

If this is iterated further, each quark-gluon vertex preserves the Kronecker delta in color,

and generates an additional factor of CF . After the last quark-gluon scattering, the delta

function is color is contracted with the right most quark-photon vertex, giving an overall

factor of N .

5.1.4 Resummation of infinite self-energy diagrams

We next resum diagrams with arbitrary quark-gluon scatterings. This is done by solving

the integral equation illustrated in figure 10. The graphical elements are the same as those

defined by Arnold, Moore, and Yaffe [9, 11], except that we use the double line notation

for future convenience. The integral equation shown in figure 10 becomes

Dµ
ab(K,P ) = Iµab(K,P ) +

∫
d4q

(2π)4
M(K,Q,P )ab,efF (K+Q,P )ef,cdD

µ
cd(K+Q,P ). (5.24)
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The color structure can be taken as

Iµab(K,P ) = Iµ(K,P ) δab ,

M(K,Q,P )ab,ef =
1

2CF
Paebf M(K,Q,P ) ,

F (K +Q,P )ef,cd = δce δdf F (K +Q,P ) ,

Dµ
ab(K,P ) = Dµ(K,P ) δab , (5.25)

so that eq. (5.24) simplifies

Dµ(K,P ) = Iµ(K,P ) +

∫
d4q

(2π)4
M(K,Q,P ) F (K +Q,P ) Dµ(K +Q,P ) . (5.26)

Note the color factor from eq. (5.23) cancels the factor of 1/(2CF ) in eq. (5.25).

As discussed previously, we regard the quark-gluon vertices and quark-photon vertices

as (K +Q)µ, with K and Q being the incoming and outgoing momenta. As a result,

Iµ(K,P ) = (2K + P )µ , (5.27)

and the function F (K,P ) equals

F (K,P ) = (−i)2 GAR(P +K) GRA(K)|pinch

'
(

−1

4k‖(k‖ + p)

)(
1

Γ + iδE

)
4π δ

(
2k0 + p− Eksgn(k‖)− Ek+psgn(k‖ + p)

)
'
(

−1

4k‖(k‖ + p)

)(
1

Γ + iδE

)
2π δ(k0 − k‖) . (5.28)

The pinching condition is enforced by the delta function. The rung of the ladder equals

M(K,Q,P ) = ig2 CF (2K +Q+ 2P )µ (2K +Q)ν GRRµν (Q)

' 4ig2 CF k‖ (k‖ + p) P̂µ P̂ ν GRRµν (Q) , (5.29)

with P̂µ = (1, p̂). The Ward identity and the fact that Kµ is almost collinear with Pµ was

used to simplify eq. (5.29). To further simplify eq. (5.26), we define

fµ(k, p) ≡ −4k‖(k‖ + p)

∫
dk0

2π
F (K,P )Dµ(K,P ) , (5.30)

which leads us to

(Γ + iδE)fµ(k, p) = (2K + P )µ +

∫
d3q

(2π)3
C(q, p) fµ(k + q, p) , (5.31)

where

C(q, p) = g2CF

∫
dq0

2π
2π δ(q0 − q‖)(−iGRRµν (Q)P̂µP̂ ν) . (5.32)

The delta function in eq. (5.32) again results from δ(k0 + q0 − k‖ − q‖) in F (K + Q,P ).

We can further simplify eq. (5.31) using the explicit expression of the damping rate Γ,

Γk = g2CF

∫
d3q dq0

(2π)4
2π δ(q0 − q‖)(−iGRRµν (Q)P̂µP̂ ν) . (5.33)
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As this is independent of k, Γ = (Γk + Γk+p)/2 = Γk. This allows us to write eq. (5.31) as

i δE fµ(k, p) = (2K + P )µ +

∫
d3q

(2π)3
C(q, p) [fµ(k + q, p)− fµ(k, p)] . (5.34)

As is clear from eq. (5.21), only the transverse components of fµ(k, p) are needed, so we

can project eq. (5.34) onto the transverse plane,

i δE f⊥(k, p) = 2k⊥ +

∫
d3q

(2π)3
C(q, p) [f⊥(k + q, p)− f⊥(k, p)] . (5.35)

The last element is to determine the propagator, GRRµν (Q)P̂µP̂ ν . Since q ∼ gT , we use the

HTL-resummed propagator,

− iGRRµν (Q)P̂µP̂ ν = −2T

q0

(
1−

q2
‖

q2

)
Im

(
1

Q2 −ΠR
T (Q)

− 1

Q2 −ΠR
L(Q)

)
, (5.36)

where we have taken Feynman gauge, and used q0 ' q‖. ΠL and ΠT are the retarded

longitudinal and transverse self-energies of the gluon:

ΠR
L(Q) = −Q

2

q2
M2

[
1− q0

2q
ln

(
q0 + q

q0 − q

)]
, (5.37)

ΠR
T (Q) =

M2

2

[(
q0

q

)2

− Q2

q2

q0

2q
ln

(
q0 + q

q0 − q

)]
, (5.38)

where the gluon Debye mass is given by

M2 = g2T 2

(
N

3
+
Nf

6

)
. (5.39)

The Wightman correlator for two electromagnetic currents can be expressed as

Wµν = (−)2Ne2
∑
f

q2
fα1 Re

∫
d4K

(2π)4
Iµ(K,P ) F (K,P ) Dν(K,P )

(
k2
‖ + (k‖ + p)2

k‖(k‖ + p)

)

= Ne2
∑
f

q2
f

∫
d3k

(2π)3
A(k‖, p) Re[Iµ(K,P )fν(K,P )] , (5.40)

where

A(k‖, p) = ñ(k‖ + p)(1− ñ(k‖))

(
k2
‖ + (k‖ + p)2

2k2
‖(k‖ + p)2

)
. (5.41)

Note that an overall factor of (k2
‖ + (k‖ + p)2)/(k‖(k‖ + p)) in eq. (5.21) is inserted into

eq. (5.40) along with −1 from the fermion loop. From eq. (4.1), Wµν is contracted with

−gµν to give the collinear rate:

p
dΓγ
d3p

=
αemN

∑
f q

2
f

4π2

∫
d3k

(2π)3
A(k‖, p) Re[2k⊥ · f⊥(k, p)] . (5.42)

Note there is an additional factor of N for each color of Wµν .
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5.2 Photon self-energy with nontrivial Polyakov loop

5.2.1 Quark and gluon thermal masses with background color charge

Now we compute the modification of the results in the previous section in the presence

of a nontrivial Polyakov loop. In this case, quantities like the thermal mass, the damping

rate, and so on are all dependent on the background color charge. This changes the color

structure of the self-energy diagrams.

The quantities relevant for the problem at hand are the quark asymptotic thermal mass

and the resummed gluon propagator. The asymptotic quark thermal mass is
√

2 times the

quark thermal mass in eq. (4.62):

m2
a = 2m2

qka . (5.43)

Next we consider the HTL-resummed gluon propagator. The resummed gluon prop-

agator consists of bare gluon propagators with arbitrary number of self-energy insertions,

figure 11. The bare gluon propagator in the RA basis of the real time formalism, in the

presence of background color charge, is proportional to Pabcd :

Gµν,abRA,cd =
gµν

(k0 + iε)2 − k2
Pabcd , Gµν,abAR,cd =

gµν

(k0 − iε)2 − k2
Pabcd ,

Gµν,abRR,cd = −iπε(k0)(1 + 2nab(k
0))δ(K2)gµνPabcd , GµνAA = 0 . (5.44)

Here we need to recall that in the analysis in the case of Qa = 0, Bose-Einstein

enhancement was essentially important for the collinear contribution to be as large as the

2 → 2 contribution: for soft gluons with k0 ∼ gT , n(k0) ∼ 1/g. This is no longer true in

the presence of hard background charge Qa ∼ T . The only exception is for diagonal gluons,

Qa = Qb, where Bose-Einstein enhancement is still operative. Therefore, we only need the

expression of the diagonal components of the gluon propagator. Thus we contract the bare

gluon propagator in eq. (5.44) with δab. As a result, the soft diagonal gluon carries only

one index at large N : the color structure of the bare gluon propagator is

δabPabcd = δabδcd Pac , (5.45)

where we defined a color projection operator for diagonal gluons,

Pac ≡ Paacc = δac −
1

N
, (5.46)

which satisfies PabPbc = Pac. We note that the first term of the projection operator is

orthogonal among diagonal gluons while the second term mixes different diagonal gluons,

which is a consequence of the over completeness of the double line basis. At large N ,

eq. (5.45) becomes δabδcdδac, which indicates that there is only one color index to be

specified.

In terms of diagonal gluon projection operator, the resummed gluon propagator is

given by the sum of the following terms:

1

Q2
Pab +

1

Q2
PacΠcd

1

Q2
Pdb +

1

Q2
PacΠcd

1

Q2
PdeΠef

1

Q2
Pfb + . . . , (5.47)
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where the Lorentz indices are suppressed for the time being. Here Πcd is given by Πcd(Q) ≡
Πcc,dd(Q), with Πcd,ef (Q) being the gluon self-energy. Each color projection operator is

accompanied by a momentum dependent part of the bare propagator 1/Q2. The color

structure of one-index gluon self-energy is

Πab = δabFa −
1

N
Gab . (5.48)

By restoring the Lorentz indices, the gluon self-energy in the HTL approximation [76]

is given by

Πµν
ab,cd(Q) = M2

ab,cdδΠ
µν . (5.49)

Here

δΠµν =

(
−δ0µδ0ν + q0

∫
dΩq

4π

Q̂µQ̂ν

Q · Q̂± iε

)
(5.50)

with Q̂ ≡ (1, q̂). The sign in the denominator is plus (minus) if the self-energy is retarded

(advanced). The form of δΠµν is identical to that in perturbative QGP. The Polyakov loop

dependence is entirely in the gluon Debye mass:

M2
ab,cd =

g2

6

[
δadδbc

(
N∑
e=1

(
A(Qae) +A(Qeb)

)
−Nf

(
Ã(Qa) + Ã(Qb)

))

− 2δabδcd

(
A(Qac)−

Nf

N

(
Ã(Qa) + Ã(Qc)− 1

N

N∑
e=1

Ã(Qe)

))]
, (5.51)

which for Qa = 0 reduces to eq. (5.39), namely

M2
ab,cd = g2T 2

(
1

3
N +

1

6
Nf

)
Pab,cd . (5.52)

Equation (5.51) leads us to

Fµνa =
g2

3

(
N∑
e=1

A(Qae)−Nf Ã(Qa)

)
δΠµν(Q) ,

Gµνab =
g2

3

(
NA(Qab)−Nf

(
Ã(Qa) + Ã(Qb)

)
−

N∑
e=1

Ã(Qe)

)
δΠµν(Q) , (5.53)

where we have restored the Lorentz indices.

Formally the two terms in eq. (5.48) are of the same order if we regard δab ∼ 1/N .

However, we show in appendix B that a naive large N limit is justified. This allows us to

disregard the term proportional to G, so that the gluon Debye mass becomes

M2
a =

g2

3

[
N∑
e=1

A(Qae)−Nf Ã(Qa)

]
, (5.54)
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Figure 11. The resummed gluon propagator as an infinite series of propagators with arbitrary

self-energy insertions. Each unfilled circle represents a self-energy insertion Π. The double line

notation is used.
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Figure 12. The diagrammatic equation for a color index e, in the presence of nontrivial

Polyakov loop.

where M2
a is defined as M2

aa,bb = M2
aδab. When Qa = 2πTq 6= 0, the explicit form of M2

a

for N = Nf = 3 are

M2
1 = M2

3 = g2T 2

(
3

2
− 6q + 4q2

)
,

M2
2 = g2T 2

(
3

2
− 4q + 4q2

)
. (5.55)

5.2.2 AMY’s integral equation with one color index

We next generalize the integral equation of AMY for a nontrivial Polyakov loop in the limit

of a large number of colors. From the discussion of the previous subsection, all elements of

the graph carry one color index, as in figure 12.

The integral equation analogous to eq. (5.26) is

Dµ
e (K,P ) = Iµe (K,P ) +

∫
d4q

(2π)4
Me(K,Q,P ) Fe(K +Q,P ) Dµ

e (K +Q,P ) . (5.56)

Most quantities only need trivial modifications:

Iµe (K,P ) = (2K + P )µ ,

Fe(K,P ) =
−1

4k‖(k‖ + p)

1

Γe + iδEe
2π δ(k0 − k‖) ,

Me(K,Q,P ) = 4ig2 1

2
k‖(k‖ + p)P̂µP̂ νGRRµν,e(Q) . (5.57)

A distinct difference is the color factor CF in Me changes to 1/2. This follows from enforcing

color neutrality on the soft gluon and dropping terms 1/N in the gluon self-energy. Apart
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from this, the color index e enters Γ and δE through quark asymptotic thermal mass

eq. (5.43) and gluon Debye mass eq. (5.54). Explicitly,

δEe = Eksgn(k‖) + p− Ek+p sgn(k‖ + p) ' p

2k‖(k‖ + p)
(k2
⊥ +m2

e) ,

−iGRRµνe(Q)P̂µP̂ ν = −2T

q0

(
1−

q2
‖

q2

)
Im

(
1

Q2 −ΠR
T,e(Q)

− 1

Q2 −ΠR
L,e(Q)

)
, (5.58)

with

ΠR
L,e(Q) = −Q

2

q2
M2
e

[
1− q0

2q
ln

(
q0 + q

q0 − q

)]
, (5.59)

ΠR
T,e(Q) =

M2
e

2

[(
q0

q

)2

− Q2

q2

q0

2q
ln

(
q0 + q

q0 − q

)]
. (5.60)

Following the case with Qa = 0, we define

fµe (k, p) = −4k‖(k‖ + p)

∫
dk0

2π
Fe(K,P ) Dµ

e (K,P ) . (5.61)

Similarly,

(Γe + iδEe)f
µ
e (k, p) = (2K + P )µ +

∫
d3q

(2π)3
Ce(q, p) f

µ
e (k + q, p) , (5.62)

where

Ce(q, p) =
g2

2

∫
dq0

2π
2π δ(q0 − q‖)(−iGRRµν,e(Q)P̂µP̂ ν) . (5.63)

The term proportional to Γe can be written in terms of Ce,

Γe =
g2

2

∫
d3q dq0

(2π)4
2π δ(q0 − q‖)(−iGRRµν,e(Q)P̂µP̂ ν) . (5.64)

Physically, this is because quark damping is due to scattering off of soft and diagonal

gluons. We note that, by using q ∼ gT and GRRµν,e ∼ T/q3, Γe is of order g2T . This is

suppressed by 1/N compared with Γ ∼ g2NT , which is the damping rate when Qa = 0.

The diagrams of quark damping are the same as gluon rung M , as illustrated in figure 13.

Note that the Bose-Einstein enhancement fixes the color indices as f = e.

Therefore we have

iδEe f
µ
e (k, p) = (2K + P )µ +

∫
d3q

(2π)3
Ce(q, p) [fµe (k + q, p)− fµe (k, p)] . (5.65)

We again need only an equation for projected fe,

iδEe fe⊥(k, p) = 2k⊥ +

∫
d3q

(2π)3
Ce(q, p) [fe⊥(k + q, p)− fe⊥(k, p)] . (5.66)
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Figure 13. The correspondence between the diagrams for quark damping and for soft gluon

exchange. The left-hand side is the quark self-energy, whose imaginary part gives the damping rate

of the quark. The right-hand side is the diagram from gluon exchange, which is the cut diagram

on the left-hand side. The double line notation is used.

The last changes are for eqs. (5.4) and (5.7). Following the derivation of ref. [107], eq. (5.4)

becomes

G1122 = α1GAARR + α2GAAAR + α3GAARA + α4GARAA

+ α5GRAAA + α6GARRA + α7GARAR

+ β1G
∆
AARR + β2G

∆
AAAR + β3G

∆
AARA + β4G

∆
ARAA

+ β5G
∆
RAAA + β6G

∆
ARRA + β7G

∆
ARAR , (5.67)

where ∆ is defined as complex conjugation together with charge conjugation, i.e. flipping

the sign of background color charge. The relevant coefficients are

α1 ' β1 ' ñe(k‖ + p)(1− ñe(k‖)) . (5.68)

As a result, eq. (5.7) becomes

G1122 = α1GAARR(Qa) + α1G
∗
AARR(−Qa) . (5.69)

Note that the background charge enters the integral equation eq. (5.66) only through

eqs. (5.43) and (5.54), which are independent of the sign of Qa, as A is an even function.

We still have

G1122 = 2α1 ReGAARR(Qa) . (5.70)

Finally, the collinear rate is given by

p
dΓγ
d3p

=
αem

∑
f q

2
f

4π2

∫
dk‖

2π

N∑
e=1

Ae(k‖, p)

∫
d2k⊥
(2π)2

Re[2k⊥ · fe⊥(k, p)] , (5.71)

where

Ae(k‖, p) = ñe(k‖ + p)(1− ñe(k‖))

(
k2
‖ + (k‖ + p)2

2k2
‖(k‖ + p)2

)
. (5.72)

Note that the factor N in eq. (5.42) is replaced by a sum over color index e in eq. (5.71).

To summarize, the collinear rate in the presence of nontrivial Polyakov loop is given by

eq. (5.71), with fe⊥(k, p) the solution of eq. (5.66). All quantities which depend upon the
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background charge are defined in eqs. (5.43), (5.54), (5.58), (5.59), and (5.63). We note that

the Polyakov loop effect enters separately in both the longitudinal and the transverse parts,

as can be seen from eqs. (5.59), (5.71) and (5.72). In the longitudinal part, the Polyakov

loop dependence is reflected in the distribution function factor ñe(k‖ + p)(1 − ñe(k‖)). In

the transverse part, the Polyakov loop effect appears in the asymptotic quark thermal mass

me and the gluon Debye mass Me.

5.3 Photon rate in the collinear regime at large N

To obtain the photon rate in collinear regime, we need to solve eq. (5.66). In the limit of

large N , the collision term in eq. (5.66) is suppressed by 1/N . This can be understood

as follows. Since δEe ∼ m2
e/k‖ ∼ g2T 2N/k‖, the left-hand side of eq. (5.66) is of order

g2T 2N/k‖fe⊥. On the other hand, by using eq. (5.64) the terms containing Ce in the right-

hand side are of order Γefe⊥ ∼ g2T fe⊥. Thus, at sufficiently large N , terms in the latter

are small compared to the former.

This allows us to solve eq. (5.66) perturbatively. The solutions to zeroth and first order

in terms of Ce are easily obtained. In the argument of all quantities, we suppress p but

indicate k:

fe⊥
(0) =

2k⊥
iδEe(k)

,

fe⊥
(1) =

1

iδEe(k)

∫
d3q

(2π)3
Ce(q)

[
2(k⊥ + q⊥)

iδEe(k + q)
− 2k⊥
iδEe(k)

]
. (5.73)

Only the solution to first order contributes to the photon rate. The relevant combination is∫
d2k⊥
(2π)2

Re[2k⊥ ·fe⊥(k)] = 4

∫
d2k⊥
(2π)2

∫
d3q

(2π)3
Ce(q)

[
k2
⊥

δEe(k)2
− k⊥ · (k⊥+q⊥)

δEe(k)δEe(k+q)

]
. (5.74)

We note that, because of this truncation, the LPM effect is suppressed. Using the sum

rules of refs. [8, 108],∫
dq0dq‖

2π
δ(q0 − q‖) (−iGRRµν,e(Q)P̂µP̂ ν) = T

(
1

q2
⊥
− 1

q2
⊥ +M2

e

)
, (5.75)

eq. (5.74) simplifies to∫
d2k⊥
(2π)2

Re[2k⊥ · fe⊥(k)] = 2g2

(
2k‖(k‖ + p)

p

)2 ∫
d2k⊥
(2π)2

∫
d2q⊥
(2π)2

TM2
e

q2
⊥(q2
⊥+M2

e )
(5.76)

× 1

k2
⊥ +m2

e

(
k2
⊥

k2
⊥ +m2

e

− k⊥ · (k⊥ + q⊥)

|k + q|2 +m2
e

)
= − 2g2T

(2π)2

(
k‖(k‖ + p)

p

)2 ∫
dk2
⊥

∫
dq2
⊥

M2
e

q2
⊥(q2
⊥ +M2

e )

× 1

k2
⊥ +m2

e

 m2
e

k2
⊥ +m2

e

−
q2
⊥ + 2m2

e

2
√

(k2
⊥ + q2

⊥ +m2
e)

2 − (2k⊥q⊥)2

 ,
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where in the second line we have performed the two angular integrations, and used the

formula [8], ∫ ∞
0

dk2
⊥

 1

k2
⊥ +m2

e

− 1√
(k2
⊥ + q2

⊥ +m2
e)

2 − (2k⊥q⊥)2

 = 0 . (5.77)

Here k⊥ and q⊥ are of order gT . Nevertheless, since the integrand is convergent in both

the infrared and the ultraviolet, we can extend the range of the integrations of k⊥ and q⊥
to [0,∞]. The result can be expressed in terms of a dimensionless function of the mass

ratio Me/me: ∫
d2k⊥
(2π)2

Re[2k⊥ · fe⊥(k)] ≡ 2g2

(
2k‖(k‖ + p)

p

)2

T G
(
Me

me

)
, (5.78)

where

G
(
Me

me

)
≡ − 1

(4π)2

∫ ∞
0

dk2
⊥

[
m2
e

(k2
⊥ +m2

e)
2

ln

∣∣∣∣ m2
eM

2
e

(k2
⊥ +m2

e)
2

∣∣∣∣
− M2

e − 2m2
e

2
√
A(k2

⊥ +m2
e)

ln
M2
e (m2

e − k2
⊥ −M2

e −
√
A)

M2
e (m2

e − k2
⊥ −M2

e ) +A− (k2
⊥ +m2

e)
√
A

]
,

(5.79)

with A ≡ (M2
e )2− 2M2

e (m2
e − k2

⊥) + (k2
⊥+m2

e)
2. In general, the left hand side of eq. (5.78)

is a complicated function of k‖, p and Me/me. However, when LPM effect can be ignored,

it factorizes into the form of the right hand side of eq. (5.78). The function G(Me/me)

can be interpreted as the suppression factor for collinear rate, which can be determined

numerically.

Consequently, the collinear rate can be expressed as

p
dΓγ
d3p

=
αem

∑
f q

2
f

4π2

N∑
e=1

∫
dk‖

2π
ñe(k‖ + p)(1− ñe(k‖)) 4g2T G

(
Me

me

)(k2
‖ + (k‖ + p)2

p2

)
.

(5.80)

The final k‖-integral can be done as follows:∫
dk‖

2π

(
k2
‖ + (k‖ + p)2

p2

)
ñe(k‖ + p) (1− ñe(k‖))

=

∫ +∞+iQe

−∞+iQe

dl

2π

(
2l2 + p2/2− 2Q2

e − 4il Qe
p2

)
ñ
(
l+
p

2

)
ñ
(
−l+p

2

)
, (5.81)

where l = k‖ + p/2 + iQe. The integrand is exponentially suppressed as Re l → ±∞,

which allows us to shift the integration contour to the real axis. The following integration

formulas are useful: ∫
dl

2π
ñ
(
l+
p

2

)
ñ
(
−l+p

2

)
=

1

2π

p

ep/T − 1
,∫

dl

2π
l2ñ
(
l+
p

2

)
ñ
(
−l+p

2

)
=

1

2π

p(4π2T 2 + p2)

12(ep/T − 1)
. (5.82)
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They can be obtained by integrating l ñ
(
l + p

2

)
ñ
(
−l + p

2

)
and l3ñ

(
l + p

2

)
ñ
(
−l + p

2

)
along

the rectangular contour bounded by −∞, ∞, ∞+ 2πT i and −∞+ 2πT i. Using eq. (5.82),

we obtain the collinear rate from eq. (5.80)

p
dΓγ
d3p

=
αemαs

∑
f q

2
f

π2
2T

N∑
e=1

G
(
Me

me

)
2π2T 2 + 2p2 − 6Q2

e

3p(ep/T − 1)
. (5.83)

For a hard photon, where p� T,Qe, the collinear rate is simplified to

p
dΓγ
d3p
'
αemαs

∑
f q

2
f

π2

4Tp

3

N∑
e=1

G
(
Me

me

)
e−p/T , (5.84)

whose parametric behavior is a Boltzmann factor times a term linear in p. This p-

dependence is consistent with AMY’s analysis without the LPM mechanism, and the anal-

ysis at two-loop order [109].

Note that the Polyakov loop only enters through the sum
∑

e G(Me/me). In figure 14

we show the temperature dependence of this function when N = Nf = 3. While each indi-

vidual term G(Me/me) changes with temperature, especially near Tc, the sum is remarkably

flat, with
∑

e G(Me/me) ' 3× 0.015 over a wide range of temperature.

From eq. (5.84) the collinear rate is not suppressed in the confined phase. At first

this is a surprising result, and it is worth discussing in some detail. It happens because

the soft gluon which is radiated is diagonal in color space, so the quarks in the initial and

final state have the same color indices. The distribution factor which appears in eq. (5.80)

is ñe(k‖ + p) (1 − ñe(k‖)) = n(p)(ñe(k‖) − ñe(k‖ + p)). For large p > 0, this factor is

nonzero only when k‖+ p is positive, and k‖ is negative [11, 109]. This corresponds to pair

annihilation, as illustrated in figure 15; the other processes correspond to bremsstrahlung,

and do not contribute in this limit.

Since k‖+ p is positive, k‖ is not only negative, but large. Consequently, as p� T , we

can use a Boltzmann approximation for the statistical distribution functions:

1

N

N∑
e=1

ñe(k‖ + p) (1− ñe(k‖)) =
1

N

N∑
e=1

ñe(k‖ + p) ñe(−k‖)

' 1

N

N∑
e=1

e−(k‖+p−iQe)/T e−(−k‖+iQe)/T

= e−p/T .

(5.85)

Thus the collinear contribution is not suppressed in the confined phase because the phases

cancel between the quark and anti-quark. This is exactly the same cancellation as found

for dilepton production, and rather unlike the color flow for the contribution to photon

production from 2→ 2 scattering.

This completes our derivation of photon rate in the semi-QGP, with a nontrivial

Polyakov loop at large N . The result is a sum of leading logarithmic term from the rate

for 2↔ 2, eq. (4.71), and the collinear rate in the large N limit, eq. (5.83). We emphasize

that rates for 2 ↔ 2 and collinear emission depend upon the Polyakov loop in completely
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Figure 14. Temperature dependence of function G(Me/me) in eq. (5.84), which is the suppression

factor for collinear rate due to background color charge when LPM effect can be ignored. In N = 3,

the background color charge is parametrized as Qe = (−Q, 0,+Q). Points of different colors in the

figure correspond to e = 1 (red), e = 2 (blue) and G averaged over three colors (green).

Figure 15. The collinear pair annihilation process. The curly line with a blob is the gluon HTL-

resummed propagator.

different ways. When the Polyakov loop is small, the rate for 2 ↔ 2 is suppressed while

that for collinear emission is not. We note that our results are valid only for small values

of g2 and large N . At moderate values of the coupling constant, corrections due to the

constant under the logarithm become important. At moderate values of N , the LPM effect

becomes relevant, and will produce cancellations between diagrams with different number

of loops, suppressing the photon rate in the collinear regime.

5.4 Why the LPM effect is suppressed in the semi-QGP

A nontrivial Polyakov loop is understood as from quantum fluctuations in A0 of order

T/g. This background gauge field affects quarks and gluons in different ways. As shown

in ref. [85], it reduces the density of hard quarks. It also acts as a Higgs effect for gluons,

giving mass of order T to off-diagonal gluons, while leaving diagonal gluons massless. The

only gluons which scatter off of quarks in the large N limit are diagonal, and so are reduced

by 1/N .

– 46 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
5

In the perturbative QGP, the LPM effect is relevant because the photon formation

time, tF , is comparable to the mean free path, λ, of a quark undergoing multiple scattering

with gluons in the medium. The formation time is the time scale when a collinear photon

can be well separated from the quark, which is

tF ∼
1

δE
∼ T

k2
⊥ +m2

∼ 1

g2NT
. (5.86)

On the other hand, the mean free path has the same order of magnitude as the damping

rate of a quark in the thermal bath, with λ ∼ 1/Γ ∼ 1/(g2NT ), which is comparable to tF .

A nontrivial Polyakov loop modifies the two scales differently. The thermal mass m re-

sults from interactions of a quark with hard thermal gluons. The Polyakov loop suppresses

the quark and the gluon density, and thus also m, by a loop dependent factor. The damp-

ing rate is due to the scattering off of soft gluons, but as these are suppressed for Qa ∼ T ,

only the scattering off of soft, diagonal gluons matters. Consequently, λ ∼ 1/(g2T ) times

a loop dependent factor, so at large N , λ � tF . This implies that quarks rarely scatter

more than once during the emission of a photon, and thus the LPM effect can be ignored.

6 Summary and concluding remarks

We calculated the production rates of the dilepton and the real photon in a matrix model

of the semi-QGP. The main results of this paper are eqs. (3.13), (4.71), and (5.84). The

dilepton production rate was found to be slightly enhanced in the confined phase due to a

cancellation in the phases of the statistical distribution functions for the quark and anti-

quark [98]. By contrast, the photon production rate due to the 2 → 2 scattering is strongly

suppressed for small values of the Polyakov loop, as the phases in the distribution functions

do not cancel. We showed that the collinear contribution to the photon production is

suppressed at large N in the semi-QGP, since when the Polyakov loop is small, the Qa’s are

large, and off-diagonal gluons do not experience Bose-Einstein enhancement. We computed

the collinear contribution at large N , and found that because of a cancellation of phases,

like dilepton production it is not suppressed even in the confined phase.

These results will modify the theoretical predictions for thermal production in heavy

ion collisions. Certainly the production rates for dileptons and photons are altered. The

elliptic flow for these particles are similarly modified, as the total elliptic flow is an average

over all the phases, from the initial state, to the QGP, to hadrons. These effects were previ-

ously discussed in ref. [98]. However, in that work the modifications of photon production

from 2→ 2 scattering and from collinear emission were not considered separately. Clearly

a more realistic treatment is called for.

In the current analysis, the effect of the confinement is taken into account as a nontrivial

value of the Polyakov loop. It is also interesting to consider the effect of the chiral symmetry

restoration as well as confinement [99, 105].

For the future, besides doing a more complete analysis of photon production, the most

urgent problem is to compute radiative energy loss for light quarks. This is closely related

to collinear photon emission, and so we expect that near Tc, it will be dominated by

diagonal gluons for processes in which the color phases cancel.
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A Corrections to Boltzmann approximation to thermal distribution

functions

We will argue that correction to (4.11) is suppressed by additional exponential. We illus-

trate this in case of Compton scattering. The exact thermal distribution factors can be

expressed as

1

eβE1 + 1

1

eβE2 − 1

(
1− 1

eβE′ + 1

)
=

∞∑
m,n=0

(−1)me−(m+n+2)βx/2−(m−n)βy/2

(
1− 1

eβ(x−E) + 1

)
. (A.1)

Now the y-integral becomes∫
dye−(m−n)βy/2√
ay2 + by + c

=
π√
−a

e−(m−n)βy0/2I0

(
m− n

2
β∆y

)
, (A.2)

where

y0 =
t− u
t+u

(x− 2E) ,

∆y = −
2
√
tu(t+ u+ 4E(x− E))

t+ u
, (A.3)

and I0(z) is the modified Bessel function of the first kind. Note that the leading logarithmic

contribution comes from t ∼ µ2, s ∼ p T , which implies ∆y ∼ µ. Therefore we may set

I0((m− n)β∆y/2) = 1. This leads to the following x-integral∫ ∞
p+ s

4p

dxe−(β+δ)x

(
1− 1

eβ(x−p) + 1

)
=
e−βp−δx

δ
F

(
1,− δ

β
, 1− δ

β
,−eβ(x−p)

)
|x=p+s/(4p)

=
e−(β+δ)(p+s/(4p))

δ + β
F

(
1, 1 +

δ

β
, 2 +

δ

β
,−e−βs/(4p)

)
, (A.4)

1http://theory.tifr.res.in/∼qcd2015.
2http://indico.vecc.gov.in/indico/internalPage.py?pageId=37&confId=29.
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with δ = β(m+n)/2 + β(m− n)(t− u)/(2(t+u)) > 0 unless m = n = 0. Here, F (a, b, c, z)

is the hypergeometric function. For non-vanishing δ, there is an additional exponential

suppression factor e−δ(p+s/(4p)). Therefore, we conclude any terms with non-vanishing m

or n is negligible in eq. (A.1), leaving only the term with m = n = 0, which corresponds

to the Boltzmann approximation.

B Thermal gluon mass in the presence of Polyakov loop

We regard Nf ∼ N as a large number. Naively, the F and G terms give the same order

contribution in N because δab ∼ 1/N , however, as we show below, the G term is suppressed

by 1/N compared to the F term. By plugging eq. (5.48) into eq. (5.47), we obtain the first

few terms explicitly:

1

Q2

(
δab −

1

N

)
,

1

(Q2)2

(
δabFa −

1

N
L1(F,G)

)
,

1

(Q2)3

(
δabF

2
a −

1

N
L2(F,G)

)
. (B.1)

Here L1(L2) are complicated functions linear(quadratic) in F or G. By induction, we can

obtain the form of propagator with n self-energy insertions

1

(Q2)n+1

(
δabF

n
a −

1

N
Ln(F,G)

)
. (B.2)

It is easy to see the δab term can be summed as a geometric series, while the 1/N term

is not summable in simple manner. In any case, the resummed gluon propagator has the

following color structure

δabAa(Q)− 1

N
Bab(Q) , (B.3)

with Aa(Q) and Bab(Q) of the same order in N . Note Aa(Q) = (Q2 − Fa)−1δab is entirely

from F , while Bab(Q) has contribution from both F and G.

Now we insert the resummed propagator into the graphical element M . Focusing again

on the color structure, we obtain after summing over gluon color indices:

(T aa)ef (T bb)hg

[
δabAa −

1

N
Bab

]
= δefδhg

1

2

[
δfgAf −

1

N
(Af +Ag) +

1

N2

N∑
c=1

Ac −
1

N
Bfg

+
1

N2

N∑
c=1

(Bfc +Bcg)−
1

N3

N∑
c,d=1

Bcd

]
. (B.4)

In the above, we have suppressed the P dependence of A and B for notational simplicity.

Formally all terms are of the same order if we regard δfg ∼ 1/N and sum as ∼ N . However,
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we have learned from the case without background color charge that the structure of M is

ultimately contracted with δeh on the left, which brings eq. (B.4) into the following form

δfg

[
δfgAf−

1

N
(Af +Ag)+

1

N2

N∑
c=1

Ac−
1

N
Bfg+

1

N2

N∑
c=1

(Bfc+Bcg)−
1

N3

N∑
c,d=1

Bcd

]
. (B.5)

We see the δfg in the first term of the bracket becomes redundant. We can replace it by 1.

Consequently, all other terms are suppressed by 1/N . We will keep only the first term,

which is fortunately easy to calculate. This approximation amounts to dropping the 1/N

term in eq. (5.51), leading to the gluon Debye mass, eq. (5.54).
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