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1 Introduction

The Higgs particle, which was the last missing piece of the Standard Model (SM), has

been discovered, and other precision measurements have confirmed the SM. However, still

there are various mysteries on physics beyond the SM. For example, the SM has many free

parameters and most of them are relevant to the flavor sector, but we have not understood

what the origin of complicated flavor structure is. On the other hand, astrophysical and

cosmological observations tell the existence of dark matter, but we have not understood

its origin in particle physics.

The lepton sector has the specific form of mixing angles. Two of them, θ12 and θ23, are

large and the other, θ13, is of O(0.1). In the limit, θ13 → 0, the Tri-bimaximal Ansatz [1–

3] was a good approximation for the lepton mixing matrix, i.e. the PMNS matrix. The

Tri-bimaximal matrix can be derived by using non-Abelian flavor symmetries such as A4

and S4 and assuming certain breaking patterns into Abelian symmetries, Z2 and Z3. The

exact Tri-bimaximal mixing is excluded by recent experiments, which showed θ13 6= 0 [4–9].

However, the above approach through the use of non-Abelian discrete flavor symmetries is
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still interesting to realize the lepton mixing angles with θ13 6= 0 as well as the quark mixing

angles. (See for reviews of models with non-Abelian flavor symmetries [10–14].)

Dark matter may have heavy mass and couple with the SM particle. A certain sym-

metry, e.g. the R-parity in supersymmetric standard models, is useful to make dark matter

stable against decays into the SM particles. Thus, the origin of dark matter may be related

to the flavor structure, in particular the lepton flavor structure, and a single non-Abelian

discrete symmetry may be concerned with both the realization of the lepton mixing angles

and the stabilization of dark matter.

Recently, such a possibility was studied in the so-called discrete dark matter model

to relate the lepton flavor structure and the origin of dark matter in refs. [15, 16].1 The

discrete dark matter model has the A4 flavor symmetry and the A4 symmetry is assumed

to break to the Z2 symmetry and to lead to the lepton masses and mixing angles. All

of the SM particles have the Z2 even charge, but some of right-handed neutrinos and the

extra Higgs scalars coupled with only the neutrinos have the Z2 odd charge. Thus, the

lightest particle with the Z2 odd charge must be stable. In [15, 16], the extra Higgs scalar

is assumed to be a dark matter candidate. It was shown that the model leads to θ13 = 0

and the inverted hierarchy of neutrino masses with m3 = 0. One may obtain θ13 6= 0 by

extending the model.

In this paper, we revisit the discrete dark matter model. We will show that radiative

corrections can lead to θ13 = O(0.1) and m3 6= 0 even without extending the original

discrete dark matter model. Both the inverted and normal hierarchies are possible. We

also study the possibilities that the right-handed neutrino is a dark matter candidate in

this model.2 In such a scenario, the typical mass scale of the model is as low as O(100 −
1000)GeV. In general, experimental constraints such as lepton flavor violation experiments

and collider bounds have already set a limit on the right-handed neutrinos and the extra

Higgs scalars with such a mass scale. However, in our scenario, the breaking scale of A4 is

quite low. That leads to a characteristic phenomenology and the flavor symmetry is also

helpful to evade the strong experimental constraints.

This paper is organized as follows. In section 2, we review the discrete dark matter

model. In section 3, we study radiative corrections on neutrino masses. In section 4, we

study the scenario that the right-handed neutrino is lighter than the extra scalar and a

dark matter candidate. Several phenomenological aspects of our scenario are also studied.

Section 5 is devoted to conclusion and discussion. In appendix A, we show group theoretical

aspects of A4. In appendix B, we write explicitly the scalar potential, and study the mass

spectrum. In appendix C, we show in detail the neutrino mass matrix. In appendix D, we

discuss radiative corrections in the neutrino masses.

2 Discrete dark matter model

In this section, we briefly review the discrete dark matter model proposed in refs. [15, 16]

to give a dark matter candidate and an explanation for the flavor structure of the lepton

sector simultaneously.

1See also [17, 19–22].
2See, e.g. for works on right-handed neutrino dark matter [18].
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Le Lµ Lτ eR µR τR νR = (ν1R, ν
2
R, ν

3
R) N4 h η = (η1, η2, η3)

SU(2)L 2 2 2 1 1 1 1 1 2 2

A4 1 1′ 1′′ 1 1′′ 1′ 3 1 1 3

Table 1. Ingredients of the model and charge assignments to them.

2.1 Model

In this model, the A4 group, which is the symmetry group of the tetrahedron, is adopted

as the lepton flavor symmetry group. A brief description of the A4 group is given in

appendix A. A4 has four irreducible representations, that is, three singlets(1,1′,1′′) and

one triplet(3). Ingredients of the discrete dark matter model are assigned to symmetry

group representations according to table 1.

Lα(α = e, µ, τ) represent SU(2)L doublets composed of a left-handed charged lepton

and a left-handed neutrino. eR, µR, τR are right-handed charged leptons. h is the Higgs

boson. Adding to these SM particles, right-handed neutrinos νiR(i = 1, 2, 3), N4 and SU(2)L
doublet scalars ηj(j = 1, 2, 3) are introduced. Each of νiR and ηj are put together into A4

triplets.

Each term in the Lagrangian must be constructed to be A4 invariant. See appendix

A to check how to multiply non trivial A4 representations together into the trivial singlet.

The terms responsible for mass matrices of charged leptons and neutrinos are given by,

LYukawa = yeLeeRh+ yµLµµRh+ yτLττRh

+yeνLe(νRη̃)1 + yµνLµ(νRη̃)1′′ + yτνLτ (νRη̃)1′ (2.1)

+Y4LeN4h̃+MNνcRνR +M4N c
4N4 + h.c..

The potential of scalar bosons is given in appendix B. One comment has to be addressed

here. In this paper, we introduce the following A4 soft breaking bilinear term,

−m2
hη1η

†
1h+ h.c., (2.2)

which was not considered in the original paper [15, 16]. We will explain the motivation

in section 4. We assume m2
η > 0 and m2

hη1
/m2

η ≪ 1 in most of discussions below. Under

this assumption m2
η > 0 and the existence of the soft term eq. (2.2), η can acquire their

non-zero vacuum expectation values(VEVs) when electroweak(EW) symmetry is violated,

while light or massless scalar modes do not arise because the degrees of freedom of EW

vacuum degeneracy of scalar bosons coincide with the degrees of freedom of longitudinal

modes of massive electroweak gauge bosons.

2.2 Neutrino mass matrices at tree level

When scalar bosons of this model gets VEVs such that

〈h0〉 = vh 6= 0, 〈η01〉 = vη 6= 0, 〈η02,3〉 = 0, (2.3)
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the neutrino Dirac mass matrix is given by

mD =







yeνvη 0 0 Y4vh
yµν vη 0 0 0

yτνvη 0 0 0






≡







x1 0 0 y1
x2 0 0 0

x3 0 0 0






, (2.4)

from (2.1). Similarly, the Majorana mass matrix of right-handed neutrinos is

mR =











MN 0 0 0

0 MN 0 0

0 0 MN 0

0 0 0 M4











. (2.5)

Then we can get the Majorana mass matrix of left-handed neutrinos from these ma-

trices with type-I seesaw mechanism,

mν ≡ −mDm
−1
R mT

D =











x2
1

MN
+

y21
M4

x1x2

MN

x1x3

MN

x1x2

MN

x2
2

MN

x2x3

MN

x1x3

MN

x2x3

MN

x2
3

MN











≡







Y 2 AB AC

AB B2 BC

AC BC C2






. (2.6)

Here, parameters which determine matrix elements are defined as

A,B,C =
x1,2,3√
MN

, Y 2 =
x21
MN

+
y21
M4

. (2.7)

We can see now why the A4 singlet N4 is needed. If we did not have N4, the rank

of (2.6) would be one because of (2.4), and we would get a degenerate spectrum of the

left-handed neutrino masses which is excluded by experiments.

Note that eq. (2.1) leads to the diagonal mass matrix for the charged lepton sector.

Thus, the PMNS matrix is determined only by the structure of the neutrino mass matrix.

At the tree level, the Majorana mass of the lightest left-handed neutrino is zero be-

cause the rank of (2.6) is two. The eigenvector corresponding to this zero eigenvalue is

(0,−C,B)T /
√
B2 + C2, which means sin θ13 = 0, m3 = 0 when it is assumed to be the

third column of the PMNS matrix. This case realizes the Inverted Hierarchy(IH) mass

pattern.

2.3 Dark matter candidate

In this scenario, the A4 flavor symmetry is broken by the vacuum alignment in eq. (2.3).

The residual symmetry is Z2 generated by






1 0 0

0 −1 0

0 0 −1






, (2.8)

and the second and the third components of the A4 triplets become odd under this residual

Z2 symmetry. That is, η2, η3, ν
2
R, and ν3R belong to the Z2 odd sector after the A4 flavor

symmetry is broken to Z2 while all the other ingredients of this model have the Z2 even

parity. Thus, the lightest particle in the Z2 odd sector is stable and a good candidate for

dark matter.
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Figure 1. The one-loop diagrams contributing to A4 breaking neutrino masses under mass insertion

approximations for m2

hη1
/m2

η.

3 Neutrino masses and mixing angles

In this section, we investigate whether or not this model can explain both observed neutrino

mass hierarchy and lepton generation mixing including non-zero θ13.

The lepton flavor mixing matrix takes the form as VPMNS = U †
l Uν where Ul and Uν

are unitary matrices to diagonalize the charged lepton and neutrino mass matrices. In

this model, the charged lepton Yukawa couplings take diagonal form in the A4 irreducible

representation basis, we could safely take Ul to unit matrix as a good approximation and the

physical lepton generation mixings arise only from the neutrino mixing matrix Uν . In this

paper, to explain non-zero θ13, we consider the extension modifying only neutrino mixing

matrix Uν and we do not consider the modification of the charged lepton mixing matrix Ul

because we would like to leave the Z3 structure in charged lepton sector suppressing lepton

flavor violating processes which is discussed in the next section.

As we mentioned in the previous section, the tree-level contribution to neutrino mass

with N4 discussed in the original paper [15, 16] can not achieve non-zero θ13. In this paper,

we consider radiative corrections to neutrino masses which were not included in [15, 16].

The one-loop diagram contributing to neutrino masses are shown e.g in figure 1, figure 2

and figure 3. In general, the four point scalar boson interactions contain complex phases

and can introduce CP phases to the neutrino mass matrix. See appendix B for definitions

of the quartic scalar couplings λa. Also we could add non-trivial singlet N5(1
′) and N6(1

′′).

The Yukawa interactions and the mass terms are as follows,3

LYukawa = Y5LµN5h+ Y6LτN6h+ h.c., (3.1)

Lmass = mN5
N c

5N6 + h.c.. (3.2)

Since the rephasing of N5,6 can not remove all phases of Y5, Y6 and mN5
, these terms

can be a source of CP phase in neutrino masses. The situation for N4 is the same as the

case of N5,6.

This model generates neutrino masses in two different ways, seesaw mechanism and

radiative corrections. See for detailed studies on radiative corrections appendix D. However

3The modification for neutrino mass due to N5(1
′) and N6(1

′′) was discussed at tree level in [23].
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Figure 2. The one-loop diagrams contributing to A4 breaking neutrino masses under mass insertion

approximations for m2

hη1
/m2

η.

Figure 3. The one-loop diagrams contributing to A4 symmetric neutrino masses under mass

insertion approximations for m2

hη/m
2

η.

the mass structures are classified into two types, A4 symmetric m
sym
ij and A4 violating

mbreak
ij parts in our current basis,

(mν)ij = m
sym
ij +mbreak

ij . (3.3)

A4 breaking parts are introduced by picking up 〈η01〉 or m2
hη1

. Taking the vacuum as

(〈η1〉, 〈η2〉, 〈η3〉) = (vη, 0, 0) to leave dark matter stable, the structure of the dominant part

of A4 breaking parts takes the following form,4

mbreak
ij ≃ Cbreaky

i
νy

j
ν

v2η
mN

, (3.4)

with Cbreak = 1 + Cbreak
rad , where the first term arises from the tree-level seesaw contri-

butions by right-handed neutrinos νiR(3) exchanges and Cbreak
rad = loop factor × λbreak∆η=0

from corrections. Here, we named coupling constants which give contribution to radiative

corrections λbreak∆η=0 . The A4 symmetric parts can be generated through the type-I seesaw

4This form is a result of a condition imposed in our scalar potential. If the condition is relaxed, in

general, it can be modified. See the detail in appendix B and D.
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mechanism by Ni (i = 4, 5, 6) exchanges or radiative corrections. A4 symmetric nature

reflects into the structure of mass matrix and the non-zero elements are,

(msym)11 = [C
sym
rad

yeνy
e
ν + Y4Y4

MN

MN4

]
v2h
MN

, (3.5)

(msym)23 = (msym)32 = [C
sym
rad

yµν y
τ
ν + Y5Y6

MN

MN5

]
v2h
MN

, (3.6)

where C
sym
rad

= loop factor × λ
sym
∆η=2

, and λ
sym
∆η=2

∼ λ11. N4(1) seesaw contributes to the

11 entry of the A4 symmetric parts and N5(1
′),N6(1

′′) seesaw contributes to the 23 and

32 entries. The radiative corrections may contribute to all of 11 and 23, 32 entries. In

general, msym, mbreak could be independent of each other. As one can see from (3.6),

the contribution to neutrino mass matrix of N5,6 and the A4 symmetric parts of radiative

correction enter the same mass matrix elements. Then, if scalar potential is CP invariant,

we see that the same form of the neutrino mass matix is obtained in both the original

discrete dark matter model including radiative corrections without N5,6 and the model

with N5,6 neglecting radiative corrections. On the other hand, if scalar potential contains

CP phases, in general, radiative corrections can introduce more freedom than the case that

N5,6 are added and only tree level contributions are considered.5

As we explain the detail in appendix D, for the case that the scalar potentail has the

invariance for (η2,η3) odd permutation which may be naturally realized e.g in the case of

CP invariant scalar potential, we find the following general form of neutrino mass matrix

in this model,6

mν =







a2 +XA ab ac

ab b2 bc+XB

ac bc+XB c2






. (3.7)

We will further investigate the phenomenological consequences below. We have five com-

plex free parameters in the neutrino mass matrix. On the other hand, taking phase redefi-

nition of Li (i = e, µ, τ), for example, we can remove the phases of a, b, c and they can be

taken as real numbers. Thus we have three real (a, b, c) and two complex (XA, XB) phys-

ical parameters. Then in such a basis, XA and XB can be regarded as two sources of CP

phases which can not be removed by the field phase redefinition of Li. If the all elements of

(mν) are real, the phase redefinition arguments in this model require that (mν)22/(mν)33,

((mν)11 −XA)/(mν)22 are real positive numbers.

Notice that this model predicts one relation among the elements of the neutrino mass

matrices,

(mν)
2
12

(mν)22
=

(mν)
2
13

(mν)33
. (3.8)

5For example, the tree level contributions due to N5,6 can not change the form of mbreak given in

eq. (3.4) but radiative corrections in the general case of CP violating scalar potential may modify the form.

See the detail in appendix D.
6This form of the neutrino mass matrix is identical to the one considered in [24]
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In general, this condition is imposed on complex numbers of matrix elements. Then we

have two conditions on real numbers of parameters, that is,

Re

(

(mν)
2
12

(mν)22
− (mν)

2
13

(mν)33

)

= Im

(

(mν)
2
12

(mν)22
− (mν)

2
13

(mν)33

)

= 0. (3.9)

Notice that for any phase basis of Li, the above conditions for real and imaginary parts

have to be satisfied.

The first question to be answered is whether this condition (3.9) is allowed or not in

the current observational results. It restricts neutrino masses and mixing parameters, that

is, we expect a relation among them as we will discuss it later. Taking neutrino masses as

|mi| (i = 1, 2, 3) and using the conventional form of the PMNS mixing matrix,

UPMNS = V Pν , (3.10)

V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23






, (3.11)

Pν =







1 0 0

0 eiφ2/2 0

0 0 eiφ3/2






, (3.12)

where sij = sin θij and cij = cos θij , we could relate the neutrino mass matrix to observed

mixing parameters, that is,

(mν) = UPMNS







|m1| 0 0

0 |m2| 0

0 0 |m3|






UT
PMNS. (3.13)

We list the concrete expressions for the neutrino mass matrix in appendix C. In figure 4,

we show the values of the observationally preferred mass matrix elements for the case of IH

mass pattern as an example by varying observable values within 3 σ of table 2. We see that

there is a region where the above relation eq. (3.8) is satisfied. In following discussions,

regarding m2 and m3 as complex numbers, m2 = |m2|eiφ2 and m3 = |m3|eiφ3 , we take

Pν = 1 without loss of generality.

Notice that the relation eq. (3.8) has to be satisfied even in the case of previous

studies [15, 16] where θ13 = 0 is taken. We easily find that s223 = 1/2, s13 = 0, e−iδ =

eiφ1 = eiφ2 = 1 satisfy the relation eq. (3.8) and it can realize the Tri-bimaximal mass

pattern previously discussed in the original paper [15, 16]. In the case of non-zero θ13,

eq. (3.8) requires δm12 = m2−m1 = 0 at s223 = 1/2 according to the discussion in appendix

C. This is a trivial solution of eq. (3.8). We find the general solutions of eq. (3.8) for non

zero θ13 by shifting δs23 and δm12 from the trivial solution and the solution sensitively

constrains deviation from s223 = 1/2, δs23 = s23 − sgn(s23)/
√
2 as a function of other

mixing parameters. This is an interesting prediction of this model. We give the exact form

of δs23 as a function of other mixing parameters in eq. (C.18) of appendix C. Notice that

eiδ = eiφ1 = eiφ2 = 1 automatically satisfy the condition for the imaginary part of eq. (3.9).

– 8 –
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Figure 4. m2 and observationally preferred (mν)ij in the case of IH mass pattern with
∑

mν <

0.66eV [34].

Parameter 3σ range best fit value

∆m2
21 (10−5eV2) 6.99− 8.18 7.54

|∆m2| (10−3eV2) 2.19− 2.62(2.17− 2.61) 2.43(2.42)

sin2 θ12 0.259− 0.359 0.307

sin2 θ23 0.331− 0.637(0.335− 0.663) 0.386(0.392)

sin2 θ13 0.0169− 0.0313(0.0171− 0.0315) 0.0241(0.0244)

Table 2. The 3σ allowed ranges [19]. The values are in the case with m1 < m2 < m3. The values

in bracket correspond to m3 < m1 < m2. ∆m2 = m2

3
− (m2

1
+m2

2
)/2 is defined.

First, we investigate the model implication to the neutrino mixing parameters under this

phase condition for simplicity. Later we will relax this condition for phases.

As for the case of IH mass pattern, observations require δm2
12/δm

2
13 ∼ 3× 10−2 where

δm2
ij = m2

j − m2
i , and the mass difference δm12 = m2 − m1 is always very small com-

pared with m1 and m2 in this case. Near the observed values of mixing parameters, we

approximately translate the relation eq. (3.8) into the following form,

δm12 ≃ −γ × 2
√
2

s13
s12c12

δs23δm13, (3.14)

where γ = m1/(δm13 + 2m1) and δm13 = m3 − m1. It is easy to see that this relation

can be satisfied within the current observational results at 3σ level7 and we find a tight

correlation between the smallness of δm12 and δs23. By using the best fit values for masses

7We used a global fit result [25]. There are the other similar studies [26, 27]. These are consistent

each others at 3σ level, but there is a difference in the allowed regions within 2σ level due to the different

– 9 –
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Figure 5. δs23 and δm12/m1 in the IH case with s23 > 0, s12 = 1/
√
3 and s13 = 0.15. The red

(blue) line is the prediction of our A4 model with m1 = 0.15(0.06)eV, within 3σ of |∆m2|. The

light green region for the 3σ allowed range of sin2 θ23, and the light pink (blue) band for the one of

∆m2

12
with m1 = 0.15(0.06)eV respectively.

and mixing parameters shown in table 2 and leaving s23 as a free parameter, we could

see that the maximal angle s223 = 1/2 is excluded for non zero θ13 but s223 still has to be

close to 1/2 and we find δs23 ∼ +0.015 for the case of δm13 ∼ m1 (m1 ∼ 0.05eV) and

δs23 ∼ +0.06 for the case of m1 > δm13 (m1 > 0.1eV). By using the exact form of δs23
eq. (C.18) and varying the values of s12, s13 within current 3σ errors of table 2, we can

still see the qualitatively same results as shown in figure 5.

In a similar way, we investigate the case of normal hierarchy (NH) mass pattern. In

the case of m1 > δm13 which realizes degenerate spectrum for three neutrinos, the mass

hierarchy δm12 ∼ 3 × 10−2δm13 is required by experimental results. In this case, we find

the same approximated relation given in the previous IH case, eq. (3.14). The difference

between the NH case and the IH cases is only the sign of δm13. The observed mass hierarchy

and mixing angles require δs23 ∼ O(0.1) and we find that δs23 ∼ −0.06 is preferred if we

assume m1 ≫ δm13. Notice that the sign of δs23 is opposite to the IH case and the negative

sign is preferred by the global fit of experimental data [25]. Increasing the value of δm13/m1

up to ∼ 1 , δs23 increases up to ∼ 0.15 and it reaches outside of the 3σ allowed region

of δs23 > 0.12. For δm13 > m1, the approximation of eq. (3.14) is not always valid and

we numerically checked that for m1 < 0.04eV, δs23 reaches outside of allowed region of

experimental data in the case. This is again numerically confirmed in figure 6.

To see the above statements, we show the scatter plots for both IH (figure 7) and NH

(figure 8) cases where all mixing parameters except for s23 are varied within the 3σ range

treatment of observational data. There are recent developments measuring s23 precisely. For examples, if

we use T2K [28] seriously, then s223 = 1/2 is still allowed enough. On the other hand, MINOS results [29]

seems a little bit disfavoring s323 = 1/2.
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Figure 6. δs23 and δm12/m1 in the NH case with s23 > 0, s12 = 1/
√
3 and s13 = 0.15. The red

(blue) line is the prediction of our A4 model with m1 = 0.15(0.06)eV, within 3σ of |∆m2|. The

light green region for the 3σ allowed range of sin2 θ23, and the light pink (blue) band for the ∆m2

12

with m1 = 0.15(0.06)eV respectively.

given in table 2. For both NH and IH, non zero θ13 excludes the possibility of s223 = 1/2, and

the tight correlation of the smallness of δs23 and δm12 exists. This is a robust prediction

of this model. The deviation from s23 obtain 0.01 < |δs23| . 0.1 for |δm13| . m1 and

increasing δm13/m1, |δs23| increases and it reaches outside of experimentally allowed range

when we take m1 . 0.03eV .

Until now, we considered only the case that all Majorana phases and Dirac CP phase

are trivial. Taking account for the effect of Majorana phases, for example, we can change

the sign of m2 and m3, that is, taking φ1 = 0, π, φ2 = 0, π. In this case, the approximated

form eq. (3.14) is not always valid, especially for m2 < 0 cases. We use eq. (C.18) to

determine s23 satisfying condition eq. (3.8) without any approximation, and estimate δs23
for several combinations of the sign of m2, m3. We show the results in figure 9. Also, in

appendix C, we notice δs23 ∝ s12s13. As the result, for the change of the sign of s12, s13,

the flip of the sign of s12s13 causes the flip of the sign for δs23. If we include Dirac CP

phase δ for real m1, m2, m3, sin δ = 0 is one of the solution, which obtain e−iδ = ±1. The

effect is identical to the effect of the sign flip of s13.

From figure 10, we find that the solutions for IH and NH cases are allowed by the

current neutrinoless double beta decay experiments [31–33], and we may expect the obser-

vation or the exclusion of the large parts in future. In this degenerate mass spectrum, as

we see in figure 11, m1 & 0.07eV(NH), 0.08eV(IH) faces a milder tension with the results

of recent Planck CMB observation by seriously taking the BAO data, but it may be still

allowed in general if we do not combine the Planck data with the BAO data [34]. Also

variations of Nνeff from the SM value may obtain milder constraints on
∑

mν [34]. How-
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Figure 7. The scatter plot showing the A4-model-inspired allowed region for δm12 and δs23 in IH

mass pattern. The mixing parameters s12, s13 are taken within the 3σ allowed range in table 2.

Increasing m1 obtains decreasing observationally preferred δm12/m1.

Figure 8. The scatter plot showing the A4-model-inspired allowed region for δm12 and δs23 in NH

mass pattern. The mixing parameters s12, s13 are taken within the 3σ allowed range. Decreasing

m1 indicates increasing observationally preferred δm12/m1.

ever, too large m1 > 1eV has been already excluded by both the neutrinoless double beta

decay experiments and the cosmological observations.

Once we specify the observationally allowed mixing parameters and mass hierarchy

where the above one relation is simultaneously satisfied, we could determine the all values

of neutrino mass model parameters in turn, that is, model parameters of eq. (3.7) are
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Figure 9. We show the plot for δs23 vs m1 for the various cases when we take different Majorana

phase (0 or π) for m2 and m3. We assumed s12 > 0 and s13 > 0 and we fixed δm2

12
, δm2

13
, s2

12
and

s2
13

to the best fit values in table 2. When we flip the sign of s13, s12, the sign of δs23 flips as sign

of s12s13. As for the change of sign of s23, the sign of δs23 is unchanged.

Figure 10. We show the constraints on m1 imposed by KamLAND-Zen and EXO-200 results for

neutrinoless double beta decay.
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Figure 11. We show the constraints on m1 imposed by cosmological observation of Planck satel-

lite. The lower horizontal line corresponds to the combined constraint with BAO and the upper

horizontal line corresponds to the combined constraint with WMAP and high red shift survey.

written by

a2 =
(mν)

2
12

(mν)22
=

(mν)
2
13

(mν)33
, (3.15)

b2 = (mν)22, (3.16)

c2 = (mν)33, (3.17)

XA = (mν)11 − a2 = (mν)11 −
(mν)

2
12

(mν)22
, (3.18)

XB = (mν)23 − bc. (3.19)

In figure 12, we show the preferred values for the above model parameter a which may

be an important coupling for νR searches in electron-positron colliders when η bosons are

heavy. We find that for m1, m2, m3 > 0 cases, the coupling takes very small values and it

makes the search difficult in the case that only the production of a νR pair is kinematically

allowed.

If we do not include N4, N5, N6, under the assumption of CP invariance in our scalar

potential, since radiative corrections obtain universal contributions to XA, XB except for

the neutrino Yukawa coupling dependencies, non-zero A4 symmetric mass matrix elements

become

(msym)11 = Crady
e
νy

e
ν , (3.20)

(msym)23 = (msym)32 = Crady
µ
ν y

τ
ν . (3.21)

As a result, another relation has to be imposed,

(mν)12
(mν)22

× (mν)13
(mν)33

=
(mν)11
(mν)23

. (3.22)
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Figure 12. We show the plot for the value of a2/(a2 + b2 + c2) which correspond to (yeν)
2 when

we take
∑

i=e,µτ (y
i
ν)

2 = 1. The values of a, b, c are given in eq. (3.15)-(3.19) satisfying condition

eq. (3.8). We assumed s12 > 0 and s13 > 0 and we fixed δm2

12
, δm2

13
, s2

12
and s2

13
to the best fit

values in table 2.

We find that when we impose the first condition eq. (3.8), the case where this second

condition (3.22) is simultaneously satisfied within the 3σ range of [26, 27] does not exist in

the case of real m1, m2 and m3. In such a case, N4 (and/or N5, N6) is necessarily required

to explain the observed neutrino mass structure.

On the other hand, throughout this paper, we have not investigated general cases for

CP phases. The limited analysis may not obtain the complete information of the prediction

of this model. We will present further analysis for general cases of CP phases elsewhere in

future.

4 Right-handed neutrino dark matter

In this model, as we have seen it in section 2, the A4 breaking due to the vacuum alignment

(〈η1〉, 〈η2〉, 〈η3〉) = (vη, 0, 0) leaves a Z2 generator of A4 corresponding to a parity operator

unbroken and make the lightest parity odd particle stable which can become a viable

dark matter candidate. In this sense, both of ηi and νiR (i=2,3) can be dark matter

candidates. In past studies along with A4 discrete dark matter models [15, 16], only the

case that ηi are dark matters has been considered. In this paper, we investigate another

case where right-handed neutrino νiR becomes dark matter and pursue the possibility where

the thermal freeze-out in early universe obtains the desired relic density required in the

current cosmological observations [34].

To make νiR stable, the masses (mN ) have to be lower than ηi masses, and assuming

that νiR obtain the desired relic density through the thermal freeze-out phenomena, Yukawa

couplings (yiν) should be sizable and TeV scale η and νR are required. In such a situation,
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to realize the observed small neutrino masses, vη at sub MeV range is required as we will

discuss the detail below.

In the case of spontaneous A4 breaking taken in the past studies [15, 16], η masses

are related to the EW symmetry breaking scale vh or vη. The smallness of vη makes some

of scalar particles light and the other modes obtain EW-scale masses, which may make

the viable model building difficult for νiR dark matter scenario. Hence we introduce the

following soft A4 breaking term to make all modes of η heavy,

Lsoft = −m2
hη1η

†
1h+ h.c.. (4.1)

This term develops the desired breaking pattern in the η VEVs and approximately we find

vη ≃ m2
hη1

/m2
η×vh ∼ 0.1MeV if m2

hη1
/m2

η ∼ 10−6. Such smallness of the soft term coupling

may be realized if the mediation scale of A4 breaking is significantly higher than the A4

breaking scale in hidden sector or if the couplings are non-perturbatively generated. We

leave the discussion for future work and just assume the smallness in our following studies.8

By the inclusion of this soft term, the physical spectrum of η particles can be independent

from the EW symmetry breaking scale vh and A4 breaking scale vη. We show the physical

spectrum of scalar sector in appendix B.

Explaining the observed smallness of neutrino masses, we find

mν ∼ 0.1eV
( yν
0.3

)2 ( vη
0.1MeV

)2
(

1TeV

mN

)

. (4.2)

Also the observed small neutrino masses require small couplings for η number violating cou-

plings,9 λ11 ∼ O(10−8) and heavy N4 (and/or N5, N6), M4 ∼ 1013GeV (mN5
∼ 1013GeV)

when the Yukawa couplings Yi (i = 4, 5, 6) are of O(1).10

Next we evaluate the relic density of νR dark matter. In this model, the masses of

νiR (i = 1, 2, 3) are degenerate at the tree level and the mass splitting arises through loop

corrections by picking up A4 breaking vη. We have to understand the roles of heavier νR
state in thermal history. The leading contributions for the mass splitting are introduced

through following dimension five operators,

Lmη =
MN

Λ2
[η†[η[νcRνR]3]3]1, (4.3)

Lmhη
=

MN

Λ2

m2
hη1

m2
η

[η†h[νcRνR]3]1, (4.4)

8In general, such a mechanism which introduces the A4 violating soft term may generate other small

A4 breaking terms, for an example, yukawa coulings like flavor violating L̄eτRη1 and flavor conserving

L̄eeRη1. On the other hand, for the inclusion of such possible A4 breaking terms, if the desired A4 breaking

pattern is preserved, such couplings are also suppressed . 10−6 as well as the soft term, and the conclusions

in our paper are basically unchanged. If we consider the radiative corrections, such η1 number violating

dimensionless terms can generate soft term m2
hη1

η†
1h through quantum corrections. When the A4 breaking

scale is higher than weak scale and mhη1 ∼ O(1GeV), the A4 violating dimensionless couplings must be

≪ O(10−6). This may mean that our bilinear term may be induced by radiative corrections and only the

term has phenomenological significances for physics we discussed in this paper.
9This 4-point interaction violates η number by ∆η = 2 and can be independent from the other terms

with ∆η = 0, 1 in the origin.
10Very small Yukawa and TeV-scale mNi

(i = 4, 5, 6) might be still viable, in this paper, we do not discuss

the possibility further more.
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where Λ is a cut-off scale. It is expected Λ ≫ mη and the mass splitting may be smaller

than neutrino massmν . These terms are proportional toMN because they would be related

to the mechanism to realize TeV scale Majorana mass MN . As for parity-even ν1R, since

the decay into νiR and two leptons is suppressed due to the very small mass splitting, it

can dominantly decay to SM particles, ν1R → h+ν through a mixing between the standard

model Higgs and η1 bosons,

τ−1
even ∼ y2ν

32π

(

m2
hη1

m2
η

)2

m2
N −m2

h

mN
∼ [10−14sec]−1

( yν
1.0

)2

(

m2
hη1

/m2
η

10−6

)2
( mN

500GeV

)

, (4.5)

where y2ν =
∑

i=e,µ,τ (y
i
ν)

2 is defined. This means that for yν ∼ O(1), the parity-even ν1R can

be short-lived enough and it may not disturb the thermal relic estimation of νiR by the late

decays. In the case for parity-odd νRs, due to the very tiny mass splitting between heavier

and lighter states, the decay of the heavier state to the lighter state may be introduced

through the transition magnetic moments of νiR,

Lη =
cη
Λ3

[η†[η[νcRσ
µννR]3]3]1Fµν , (4.6)

Lηh =
cηh
Λ3

m2
hη1

m2
η

[η†h[νcRσ
µννR]3]1Fµν . (4.7)

Once A4 symmetry is broken by vη, the above interaction generates off diagonal elements

and contributes to the decay of heavier state νhR to lighter state νlR νhR → νlR + γ.11 The

gamma line has very small width and it is very soft Eγ < mν . We find that the lifetime of

the heavier state is longer than the age of the universe,

τ−1

odd
∼

c2η
64π

v4η
Λ6

(δmN )3 <
α

64π

m5
ν

m4
η

< 10−23τ−1
U , (4.8)

where δmN is the mass difference between ν2R and ν3R and τU ∼ 13.8Gyears. It may be

difficult to detect this line spectrum in CMB at present [35]. This model realizes multi-state

dark matter ν2R and ν3R at present time.

The main annihilation process of νiRs happens through the process shown in figure 13

and the P-wave dominates for the thermal relic estimation. The cross section is roughly,

σannvrel ∼ 1pb×
(

v2rel
0.1

)

(

y2ν
0.3

)2
( mN

1TeV

)2
(

1TeV

mη

)4

, (4.9)

where vrel is the relative velocity of incident two dark matter particles. In the thermal relic

estimation, we deal with the two states of νiR as stable. In figure 14, we show the preferred

values of η, νR masses and neutrino Yukawa coupling to obtain full amount of observed

dark matter relic density [34]. Now we understand that in this model, WIMP type dark

matter scenario can be achieved by TeV-scale νR and η, sub MeV vη and O(1) neutrino

Yukawa couplings. Here we did not include co-annihilation processes like ηi + νiR → l∗ →
l + a gauge boson(W,Z, γ). Such processes are relevant only if the masses of νiR highly

degenerate with those of ηi.
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Figure 13. The main annihilation process for νR dark matter during the thermal freeze out.

Figure 14. The values of mη and mN that give the observed relic abundance of dark matter in

the case of νR dark matter scenario.

The collider signals for parity-odd η bosons are similar to R-parity conserving minimal

supersymmetric standard model(MSSM) with bino dark matter except for the production

rate. This model has only the pure electroweak productions at the LHC. The direct EW

production of left-handed sleptons producing multi-lepton final state receives the LHC

constraints as m & 300GeV at ATLAS [36] and m & 300GeV at CMS [37] depending on

the mass splitting of the lightest supersymmetric particle and slepton. These constraints

include the Drell-Yan production.12 We find enough allowed parameter spaces to realize

thermal freeze out scenario to obtain desired relic density. As for parity-even η1, since vη is

11L =
cRij

Λ
νc
R

i
σµννj

RFµν vanishes because of the Majonara nature of νR and A4 nature.
12Gauge boson fusion process also exists. The s-channel process is highly suppressed due to the smallness

of vη. Thus, t-channel process is the dominant process, but it would be small compared with Drell-Yan

processes.

– 18 –



J
H
E
P
1
0
(
2
0
1
4
)
1
8
3

very small and the di-boson decay mode is suppressed, the primary decay is similar to the

case of parity-odd η bosons though, the decay products contain parity-even ν1R decaying to

a Higgs and a light neutrino. ν1R may be long-lived, which might leave the displaced track

in collider detectors.

Here we consider the possibility for dark matter indirect detections. Again the situation

is similar to the case of bino dark matter in MSSM, but it differs in the coupling of DM-

lepton-η which is not fixed by hypercharge gauge coupling. Since the dominant 2 → 2

annihilation process is velocity suppressed or chirality suppressed, radiative processes like

νR + νR → γ + ll̄ may become important [38–41] and the gamma ray signals have the

characteristic properties on the spectrum [38–40]. Other indirect detections of these types

of dark matter through charged cosmic rays and neutrinos have been intensively studied

in past papers [42–45].

In this model, when vη goes to zero, η and νR couple with only left-handed leptons

which do not contribute to the lepton transition magnetic moments at one-loop level. It is

expected that a small contribution arises at two loop level from figure 15. The situation is

similar in the loop contributions through Ni (i = 4, 5, 6) which also do not directly couple

with right-handed charged leptons.13 Such loop contributions may be described by the

following dimension six operator,

L =
cij
Λ2

Lihσ
µν(eR)jFµν , (4.10)

where cij are O(1) numerical coefficients, Λ is a cut off scale of effective operators and it is

expected to be higher than η mass scale. We might expect the lepton flavor violating(LFV)

contributions like µ → eγ , τ → eγ due to the dimension six operator, however, when we

ignore the vη/vh, this term can not have LFV contributions due to the conservation of

Z3 charge of A4 and only flavor diagonal contributions like muon g − 2 may be allowed.

The non-zero LFV contributions through lepton transition magnetic moments require the

Z3 symmetry violation, that is, the η VEV. They can arise at one-loop level through

mediators, νR and Ni (i = 4, 5, 6)), but they face the significant suppression due to the

small vη/Λ ≪ 1. The LFV process with no chirality flips through Z boson couplings is

also aligned to diagonal form due to A4 symmetry nature YνY
†
ν = 3diag((yeν)

2, (yµν )2, (yτν )
2)

if vη is not picked up, and it is suppressed again as well as the case of the magnetic

moment type LFV processes. In this model, A4 symmetry remains as an approximately

good symmetry at low energy and it plays a key role to suppress LFV processes in nature.14

This is a contrast to the case of only very heavy right-handed Majorana neutrinos added

to Standard Model particles where such flavor symmetry may not necessarily play any role

to explain the tiny LFV.

13As we know in MSSM, if we introduce new scalars with the same SM gauge quantum numbers of

right-handed sleptons, we expect the sizable contribution to, for example, muon g − 2. However, in this

case, the annihilation process of νa
R can have S-wave component and may have different implications to the

relic density and the indirect detection. On the other hand, if the new scalars are A4 charged and do not

acquire VEVs, LFV may be suppressed by A4 symmetric nature as we will see below.
14Even though we add other explicit A4 breaking terms, this statement may be correct as long as the

couplings of added A4 breaking are small.
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Figure 15. A two loop diagram contributing to lepton transition magnetic moments.

At the last of this section, we consider constraints on Ni (i = 4, 5, 6). The mass scale

of these particles are rather free and only the combination of the masses and neutrino

Yukawa couplings Yi (i = 4, 5, 6) are constrained by neutrino masses as the case of usual

seesaw mechanism. If we assume TeV-scale Ni (i = 4, 5, 6), the lifetime is O(1)×10−14sec×
(mNi

/1TeV)−1. This production at collider may be minor if the mass is heavier than SM

Higgs mass. On the other hand, in early universe, it may play some roles at the freeze

out time of dark matter or the later, e.g. diluting dark matter relic at late time. Thus we

simply assume that they have heavy masses, for example, ∼ 1012−13GeV.

5 Conclusion and discussion

In this paper, we discussed the discrete dark matter model originally introduced in [15, 16]

and showed that this type of models can explain current experimental results of neutrino

masses and mixing angles, that is, it can achieve non-zero θ13. We find that this model

predicts one relation among neutrino mass matrix elements and the non-zero θ13 requires

non-zero δs23 and m1 in both NH and IH cases assuming no CP phases. Such prediction

can be tested in several future neutrino experiments and cosmological observations. Next,

we investigated the possibility of νR dark matter, especially focusing on the case that they

obtain the desired relic density of observed dark mater. This motivates the existence of

TeV-scale νR. We could realize such a possibility by introducing an explicit A4 breaking

bilinear term. We find that the current experimental constraints still allow the scenario that

the thermal freeze out of νR dark matter obtains the desired relic density. Future collider

experiments such as the LHC and the ILC may discover the signals or exclude the large

parts of interesting parameter spaces. Within TeV-scale νR scenario, the A4 symmetry

plays an interesting role to hide LFV processes in low energy physics. We demonstrated

that even the two loop processes can be hidden due to the symmetry, and LFV processes

only appear when the breaking is picked up, which is highly suppressed by the mismatch

of vη and cut off scale & mη. This is a contrast to heavy right-handed neutrino scenarios

in the role of flavor symmetry.
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In this paper, we only considered the possibility of TeV-scale νR though, notice that the

TeV-scale mass is required when we assume that the thermal freeze out obtain the desired

relic density of the present dark matter. The physical mass of η is not related to the EW

symmetry breaking scale any more thanks to the soft term m2
hη1

h†η and the A4 symmetric

η mass term m2
ηη

†η. Even in the case that νR significantly heavier than 1TeV, we could

realize that the η is heavier than νR. If we relax the constraints on thermal freeze out for

the observed dark matter density, heavy νR, e.g stable 1012GeV right-handed neutrinos

may be allowed and may obtain other possibilities within the νR dark matter scenario,

e.g. possibilities of the simultaneous production of dark matter and baryon asymmetry,

which was not discussed in this paper. For such heavy νR, m2
hη/m

2
η is not necessarily

very small and the small neutrino masses are achieved in the usual meaning of Type I

seesaw mechanism. On the other hand, the EW symmetry breaking may require a fine

tuning among m2
h, m

2
hη, and m2

η at the EW scale, which may be theoretical challenges in

different points of view from the case of TeV-scale νR.
15 The most of our phenomenological

discussions presented in this paper depend on only vη/Λ. By fixing the ratio, we may find

similar conclusions except for the testability in collider experiments.

Acknowledgments

This work is supported in part by the Grant-in-Aid for Scientific Research No. 25400252

(T. K.), No. 23104011 (Y. O.), No.25.1146 (A. O.), No25.1107 (Y. H.) from the Ministry

of Education, Culture, Sports, Science and Technology of Japan.

A A short glance at A4 group

A4 is the group of even permutation of four objects. In this appendix, we show some

properties of A4 which is needed to describe the discrete dark matter model.

A4 has four irreducible representations 1,1′,1′′,3, and is generated by two generators

S, T which satisfy

S2 = T 3 = 1, (ST )3 = 1. (A.1)

On the trivial singlet 1, S and T are represented by S = 1 and T = 1. 1′(1′′) corresponds

to S = 1, T = ω(ω2). Here, ω is a primitive cube root of 1, say e2πi/3 . On 3 representation,

S and T is represented by

S =







1 0 0

0 −1 0

0 0 −1






, T =







0 1 0

0 0 1

1 0 0






. (A.2)

The sub group of A4 generated by S is left as the symmetry of the discrete dark matter

model even after the scalar fields get VEVs. This subgroup Z2 guarantees stability of a

15See the scalar boson spectrum and the condition for the EW symmetry breaking in appendix A.
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dark matter candidate. Multiplication rule is as below,

1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′, 1′ ⊗ 1′′ = 1,

3⊗ 3 = 31 ⊕ 32 ⊕ 1⊕ 1′ ⊕ 1′′. (A.3)

For example, when a = (a1, a2, a3) and b = (b1, b2, b3) are two A4 triplets, the ways to

compose 1,1′,1′′ and 3 representation from them are

(ab)1 = a1b1 + a2b2 + a3b3,

(ab)1′ = a1b1 + ωa2b2 + ω2a3b3,

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3,

(ab)31
=







a2b3
a3b1
a1b2






, (ab)32

=







a3b2
a1b3
a2b1






. (A.4)

B Scalar boson potential and the physical spectrum

General form of CP and A4 invariant potential terms of scalar bosons are given by,

V (h, η) = m2
ηη

†η +m2
hh

†h

+λ1(h
†h)2 + λ2[η

†η]21 + λ3[η
†η]1′ [η

†η]1′′

+λ4([η
†η†]1′ [ηη]1′′ + [η†η†]1′′ [ηη]1′) + λ5[η

†η†]1[ηη]1

+λ6([η
†η]31 [η

†η]31 + [η†η]32 [η
†η]32) + λ7[η

†η]31 [η
†η]32 + λ8[η

†η†]31 [ηη]31

+λ9[η
†η]1(h

†h) + λ10[η
†h]3[h

†η]3 + λ11([η
†η†]1hh+ h†h†[ηη]1)

+λ12([η
†η†]31 [ηh]3 + [h†η†]3[ηη]32) + λ13([η

†η†]32 [ηh]3 + [h†η†]3[ηη]31)

+λ14([η
†η]31 [η

†h]3 + [h†η]3[η
†η]32) + λ15([η

†η]32 [η
†h]3 + [h†η]3[η

†η]31).

(B.1)

To explain observed tiny neutrino masses in our scenario, we have to demand smallness for

m2
hη1

and λ11. The quantum corrections due to ∆η = 1 interactions, λ12, λ13, λ14 and λ15

generate λ11 at one loop, so these conpligs also have to be suppressed < m2
hη1

/m2
η. This

may exhibit an approximate global U(1)η symmetry in the scalar potential. Notice that

λ11 also violates U(1)η by ∆η = 2 but the quantum corrections by itself never generate

∆η = 1 interactions.

As we mentioned in section 2, we add the following A4 explicit breaking term,

Vsoft = −m2
hη1η

†
1h+ h.c., (B.2)

which explicitly breaks U(1)η by ∆η = 1.

We notice that in this scalar potential, an exact invariance for an odd permutation

between η2 and η3 exists. The full invariance for all three odd permutations among η1,

η2 and η3 recovers if we ignore the soft term m2
hη1

. The (η2, η3) permutation is not a

symmetry inside A4 symmetry but an accidental symmetry in our model when we impose
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CP invariance in scalar potential. As we explain in appendix D, this invariance for (η2, η3)

permutation is crucial to obtain a relation of eq. (3.8) in neutrino mass matrix elements. CP

invariance in all couplings of the scalar potential is not always nesessary for the invariance of

(η2, η3) odd permutation in scalar potential, for example, the CP invariance in λ11 coupling

can be relaxed for this purpose. The phase of λ11 can introduce CP phases for neutrino

mass matrix without changing the relation eq. (3.8). In general, inclusions of CP phases

in the other terms of scalar potential may violate the invariance for (η2, η3) permutation,

for example, by the following term,

λ4[η
†η†]1′ [ηη]1” + λ4′ [η

†η†]1”[ηη]1′ , (B.3)

where λ4 6= λ4′ . In such cases, the relation eq. (3.8) is not hold any more, which results

more freedom to describe neutrino mass matrix in this model.

We expand the fields around the physical vacuum 〈h〉 = vh, (〈η1〉, 〈η2〉, 〈η3〉) = (vη, 0, 0),

h =

(

h+

vh + h0 + iA0
h

)

, η1 =

(

η+1
vη + η01 + iA0

η1

)

, η2,3=

(

η+2,3
η02,3 + iA0

η2,3

)

. (B.4)

We define new couplings as follows [16],

L = λ9 + λ10 + 2λ11, (B.5)

Q = λ12 + λ13 + λ14 + λ15, (B.6)

P = λ2 + λ3 + 2λ4 + λ5, (B.7)

R1 = −3λ3 − 6λ4 + 2λ6 + λ7 + λ8, (B.8)

R2 = −3λ3 − 2λ4 − 4λ5 − 2λ6 + λ7 + λ8, (B.9)

R3 = −3λ3 − 4λ4 − 2λ5 + λ8. (B.10)

Then the minimalization conditions for scalar potential are written by,

m2
h + 2λ1v

2
h + Lv2η −m2

hη

vη
vh

= 0, (B.11)

m2
η + 2Pv2η + Lv2h −m2

hη

vh
vη

= 0. (B.12)

From the second condition, we approximately read vη ∼ m2
hη1

m2
η
vh when m2

hη1
/m2

η ≪ 1.

B.1 Physical spectrum of scalar bosons

The physical states of Z2 even and parity even charged Higgs boson sector are

h+0 =
vh
v
h+ − vη

v
η+, h+1 =

vη
v
h+ +

vh
v
η+, (B.13)

where v =
√

v2h + v2η. The physical mass spectrum is obtained as

m2

h+
0

= 0, m2

h+
1

= (
m2

hη

vhvη
− λ10 − λ11)v

2. (B.14)

The physical states of Z2 even and parity even neutral Higgs boson sector are,

h00 = h0 cosφ− η01 sinφ, h01 = h0 sinφ+ η01 cosφ, (B.15)
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where the mixing angle is

tan 2φ =
2Lvηvh +m2

hη

2Pv2η − 2λ1v2h −
m2

hη

2

(

vh
vη

− vη
vh

)
, (B.16)

and the mass spectrum is written by

m2
h0,1

= 2λ1v
2
h + 2Pv2η +

m2
hη

2vhvη
v2

±

√

√

√

√

(

2λ1v2h − 2Pv2η −
m2

hη

2vhvη
(v2h − v2η)

)2

+

(

2L−
m2

hη

vhvη

)2

v2hv
2
η. (B.17)

The physical states of Z2 even and parity odd neutral pseudo scalar Higgs boson

sector are

A0
0 =

vh
v
A0

h −
vη
v
A0

η1 , A0
1 =

vη
v
A0

h +
vh
v
A0

η1 , (B.18)

and the mass spectrum is written by

m2
A0

= 0, m2
A1

= (
m2

hη

vhvη
− 4λ11)v

2. (B.19)

The physical states of Z2 odd and parity even charged Higgs boson sector are,

h+2 =
1√
2
(η+2 − η+3 ), h+3 =

1√
2
(η+2 + η+3 ), (B.20)

and the mass spectrum is written by,

m2

h+
2,3

= R3v
2
η − (λ10 + 2λ11)v

2
h +m2

hη

vh
vη

±Qvhvη. (B.21)

The physical states of Z2 odd and parity even neutral Higgs boson are,

h02 =
1√
2
(η02 − η03), h03 =

1√
2
(η02 + η03), (B.22)

and the mass spectrum is written by,

m2
h2,3

= R1v
2
η +m2

hη

vh
vη

±Qvhvη. (B.23)

The physical sates of Z2 odd and parity odd neutral Higgs boson are,

A0
2 =

1√
2
(A0

η2 −A0
η3), A0

3 =
1√
2
(A0

η2 +A0
η3), (B.24)

and the mass spectrum is written by,

m2
A2,3

= R2v
2
η − 4λ11v

2
h +m2

hη

vh
vη

±Qvhvη. (B.25)

We find that the zero mass states are absorbed into the longitudinal components of

electroweak massive gauge bosons.
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C Neutrino mass matrix and the prediction of discrete dark matter mod-

els

Using the conventional form for PMNS matrix in eq. (3.10), we can relate the neutrino

mass matrix elements to the observed masses and mixing parameters as follow,

(mν) = UPMNS







|m1| 0 0

0 |m2| 0

0 0 |m3|






UT
PMNS =







(mν)11 (mν)12 (mν)13
(mν)

∗
12 (mν)22 (mν)23

(mν)
∗
13 (mν)

∗
23 (mν)33






, (C.1)

(mν)11 = c213(m1c
2
12 + s212m2) + s213m3, (C.2)

(mν)22 = −2s12c12s23c23s13δm12 cos δ

+c223(s
2
12m1 + c212m2) + s223s

2
13(c

2
12m1 + s212m2) + s223c

2
13m3, (C.3)

(mν)33 = 2s12c12s23c23s13δm12 cos δ

+s223(s
2
12m1 + c212m2) + c223s

2
13(c

2
12m1 + s212m2) + c223c

2
13m3, (C.4)

(mν)12 = s12c12c23c13δm12 − s23s13c13e
−iδ(c212m1 + s212m2 −m3), (C.5)

(mν)13 = −s12c12s23c13δm12 − c23s13c13e
−iδ(c212m1 + s212m2 −m3), (C.6)

(mν)23 = s12c12s13(s
2
23e

iδ − c223e
−iδ)δm12

−s23c23
(

(s212m1 + c212m2)− s213(c
2
12m1 + c212m2)

)

+ s23c23c
2
13m3,

(C.7)

where the masses are defined as m1 = |m1|, m2 = |m2|eiφ2 and m3 = |m3|eiφ3 .

We can find the following structure for (mν)12, (mν)13, (mν)22 and (mν)33,

(mν)22 = −As23c23 +Bc223 + Cs223, (C.8)

(mν)33 = As23c23 +Bs223 + Cc223, (C.9)

(mν)12 = Xc23 − Y s23, (C.10)

(mν)13 = −Xs23 − Y c23, (C.11)

A = 2s12c12s13δm12 cos δ, (C.12)

B = (s212m1 + c212m2), (C.13)

C = s213(c
2
12m1 + s212m2) + c213m3, (C.14)

X = s12c12c13δm12, (C.15)

Y = s13c13e
−iδ((c212m1 + s212m2)−m3). (C.16)

Our discrete dark matter model predicts eq. (3.8). The condition (mν)
2
12/(mν)22 =

(mν)
2
13/(mν)33 gives

1

tan(2θ23)
=

1

2
× A(X2 + Y 2)− 2(B + C)XY

BY 2 − CX2
, (C.17)

s23 = sin(
arctan(2θ23)

2
). (C.18)
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Notice that A ∝ δm12s13s12, X ∝ δm12s12 and Y ∝ s13. Then we find that the right hand

side of eq. (C.17) is,

A(X2 + Y 2)− 2(B + C)XY

BY 2 − CX2
∝ δm12s13s12. (C.19)

If we take s13 = 0, then c223 = s223 = 1/2 is required and Tri-bimaximal mass pattern taken

in original paper [15, 16] can be realized. On the other hand, if we take non-zero s13, in

general, δs23 is proportional to δm12. Since the observed δm12 is not zero, we can expect

non-zero deviation δs23 from s223 = 1/2.

For mi > 0 (i = 1, 2, 3) and degenerate spectrum, we obtain δm12 ≪ m1. Then we

obtain CX2 ≪ BY 2 even in the case of small s13 ∼ 0.15. In such a case, we find the

approximate formula presented as eq. (3.14).

In the case of real m1, m2 and m3, the imaginary part of the condition eq. (3.9) obtain

([−A(c212m1 + s212m2 −m3)s13c13 cos δ + (B + C)X]s23c23

+B(c212m1 + s212m2 −m3)(c
2
23 − s223)s13c13 cos δ) sin δ = 0. (C.20)

The possible choice is sin δ = 0, that is, δ = 0, π.
Taking s23 = sgn(s23)/

√
2+ δs23, for the cases of no CP phases, the following relation

among neutrino masses and mixing parameters is derived,

δs23 =
(s12s13/2

√
2)δm12(m1m2 − (c2

12
− s2

12
)δm12m3 −m2

3
)

(s2
12
c2
12
[s2

13
(c2

12
m1 + s2

12
m2) + c2

13
m3](δm12)2 − s2

13
(s2

12
m1 + c2

12
m2)(c212m1 + s2

12
m2 −m3)2)

.

(C.21)

D Radiatively induced neutrino mass structure in discrete dark matter

model

As we mentioned in section 3, the model can generate neutrino masses through radiative

correction at loop level. Here we explain that the radiative corrections induce the mass

structure described in section 3. Since η boson is almost diagonal in mass, here we take

mass insertion approximation.

At one loop, the flavor mixing of νRs is highly suppressed at the order of (vη/mη)
2 or

higher order. This requires that the η boson propagating inside the loop diagram can not

change the flavor indices to connect with internal νR line. Another restriction comes from

the special pattern of η VEVs (〈η1〉, 〈η2〉, 〈η3〉) = (vη, 0, 0).

The first type arises through λ11 coupling(See figure3.). In this case, the η propagating

internal line of the loop has universal couplings for all the indices (i = 1, 2, 3) in the four

points scalar interactions. The SU(2)L breaking in neutrino masses happens through two

vh and there is no A4 breaking part in this diagram at the leading piece. This type obtains

A4 symmetric mass structure msym. That is, the non zero pieces are

(mν)
rad:1
11 = λ11y

e
νy

e
ν

v2h
mN

f(mη,mN ), (D.1)

(mν)
rad:1
23 = (mν)

rad:1
32 = λ11y

µ
ν y

τ
ν

v2h
mN

f(mη,mN ), (D.2)
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where f(x, y) ∼ 1

16π2

y2

x2−y2
[ y2

x2−y2
][log(x

2

y2
) + 1] is a loop function. We used λ11v

2
η ≪ (m2

η −
m2

N ).

The second type arises through λ4 and λ5 couplings(See figure1.). In this case, both

two of ηs acquire the VEV and the two η bosons constitute singlets (1, 1′, 1′′), we find

that the common piece of η2 and η3 loop vanishes due to Z3 nature 1 + ω + ω2 = 0 and

the mismatch of the two couplings, λ5 − λ4 allows the non zero contributions for η2 and

η3 loops. As a result, we find two mass structures. The first one is A4 symmetric mass

structure msym which is proportinal to λ5 − λ4,

(mν)
rad:2,sym
11 = (λ5 − λ4)y

e
νy

e
ν

v2η
mN

f(mη,mN ), (D.3)

(mν)
rad:2,sym
23 = (mν)

rad:1
32 = (λ5 − λ4)y

µ
ν y

τ
ν

v2η
mN

f(mη,mN ), (D.4)

and the second one is A4 violating mass structure mbreak which is proportional to 3λ4,

(mν)
rad:2,break
ij = 3λ4y

i
νy

j
ν

v2η
mN

f(mη,mN ). (D.5)

The third type arises through λ2 and λ3 couplings. In this case, the η constitute singlets

with the η propagating internal line in the loop. Since only η1 acquire non zero VEV, only

η1 can be allowed to propagate the internal line which results the same mass pattern given

in the type I tree level seesaw contribution, that is, A4 violating mass structure, mbreak,

(mν)
rad:3,break
ij = 3(λ2 + λ3)y

i
νy

j
ν

v2η
mN

f(mη,mN ). (D.6)

The forth type is induced through λ6 coupling. In this case, only η2 and η3 are allowed

to propagate the internal line of loops. Then we find that this contribution is regarded as

the sum of msym,

(mν)
rad:4,sym
11 = λ6y

e
νy

e
ν

v2η
mN

f(mη,mN ), (D.7)

(mν)
rad:4,sym
23 = (mν)

rad:4
32 = λ6y

µ
ν y

τ
ν

v2η
mN

f(mη,mN ), (D.8)

and mbreak,

(mν)
rad:4,break
ij = −λ6y

i
νy

j
ν

v2η
mN

f(mη,mN ). (D.9)

The contributions from ∆η = 1 interactions pick up two ∆η = 1 couplings and two η

vevs. They obtain negligible contributions becuase of the smallness of ∆η = 1 couplings.

∆η = 2 coupling λ11 can also contribute to mbreak by picking up η vev and it is also

significantly small and negligible.

Correcting above all contributions, we find that neutrino mass in our model can be

described by the two types of mass structure, msym and mbreak.
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As we mentioned in appendix B, under our A4 breaking pattern, the invariance for

(η2, η3) permutation in scalar potential is crucial to have the special pattern ofmbreak given

in eq. (3.4), that is, to obtain the relation eq. (3.8). This can be easily seen as follows.

Here notice that our lagragian is invariant for an exchange of (η2, N2, (y
µ
ν , Lµ), (yµ, µR))

and (η3, N3, (y
τ
ν , Lτ ), (yτ , τR)).

16 In loop diagrams contributing to neutrino masses, we see

that fixing the flavors of external two leptons, the amplitudes except for the two vertex

with fixed external leptons are invariant against the exchange. The entanglements for

the permutation at the two vertex is disentangled by ((yµν , Lµ), (y
η
ν , Lτ )) exchange in the

external leptons. As the result, the invariance of scalar potential for (η2, η3) permutation

demands the universality for the coefficients of the follwoing two Dim 5 neutrino mass

operators,

1

Λa
[(yανL)(y

β
νL)]1′ [(η

†η†)]1”,
1

Λb
[(yανL)(y

β
νL)]1”[(η

†η†)]1′ , (D.10)

that is, Λa = Λb. This universality of the cut-off scale results the relation eq. (3.8). The

relation of eq. (3.8) is stable against the extentions of models as long as the lagragian is

invariant for (η2, η3) permutation.

If the invariance for (η2, η3) permutation is lost, e.g by introduing CP phases in scalar

potential, since we can not expect a relation such as Λa = Λb , the expression for mbreak

is not valid any more and the relation among neutrino mass parameters as Eq. (3.8) is lost,

which means that we have more freedom to explain neutrino mass.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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